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Introduction

So far, we have applied OLS regression to models whose de-
pendent variables were quantitative by definition. However,
sometimes our research question involves estimating potential
determinants of qualitative variables. A few weeks ago, we
studied how to use and interpret binary (dummy) variables
when these were located on the right-hand side of the regres-
sion model. Now, we investigate how to properly estimate and
interpret models with this kind of variable on the left-hand
side, as the explained variable.

In this lecture, we will further investigate three different tech-
niques for the purpose above. First, we will see what happens
when we use our traditional OLS estimation for the binary
dependent variable case. We will conclude that this is not an
appropriate method, since it does not fully capture the intrinsic
limitations of the dependent variable. Then, we move on to
non-linear techniques, the Binomial Logit and Probit models,
which take care of the things that OLS cannot provide.

The Linear Probability Model

In case there were no better techniques to estimate models with
dummy dependent variables, what would we do? Based on
our previous knowledge, we would run OLS regression and
see what happens. When this is the case, we call it the Linear
Probability Model (LPM). But why do we call it by a different
name, and not just the usual linear regression model?

Recall that binary variables take on either 1 or 0 values. When
located on the left-hand side of an econometric model, our
research question needs to change a bit. Since we are now
dealing with discrete choice topics, the interpretation is no longer
“a one-unit increase in xi will change yi by βi units,” but how
changes in the independent variables affect the likelihood of
success (i.e., the dummy variable being equal to 1). This is a
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similar reasoning as the one we are used to, though adapted to
this new kind of dependent variable.

A Linear Probability Model is simply a linear-in-parameters equa-
tion that aims to explain a binary dependent variable:

Di = β0 + β1x1i + β2x2i + ... + βkxki + ui

where Di is a dummy variable, and the right-hand side elements
are those familiar parameter, variable, and error terms.

Let us now take the Expected Value on both sides:

E(Di |xi) = P(Di = 1|xi) = β0 + β1x1i + β2x2i + ... + βkxki

where P(Di = 1|xi) is the probability of success, that is, the
probability that the dummy variable equals 1 for the ith obser-
vation, given the independent regressors. This term is also
known as response probability.

To measure the change in the response probability from a one-
unit change in the jth variable, we use the partial derivatives
method we saw a few weeks ago:

∆P(Di = 1|xj) = βj

Lastly, the predicted probability of success, i.e., of Di being
equal to 1 is

D̂ = β̂0 + β̂1x1 + β̂2x2 + ... + β̂kxk
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Issues with the Linear Probability Model

Using OLS to estimate binary response models is straightfor-
ward. However, there are many problems associated with this
practice, which will become clear as soon as we look at an
example. But before that, a couple of things worth noting:

1. The estimated dependent variable, D̂i, is not bounded
by 0 and 1. Even though a dummy variable can only
take on 0 or 1 values, as soon as the regression model is
estimated by OLS, we can no longer guarantee this fact.
Depending on the values of the independent variables
(xi) and the estimated β coefficients (β̂i), the value of D̂i

may go below 0 or above 1, which does not make logical
sense, since probabilities must lie between 0 and 1.

2. Usual goodness-of-fit measures, such as the R2 and the
adjusted R2 will not reflect an accurate measure of overall
fit. For a similar reason as the one for the item above,
the nature of these measures do not allow for a precise
measurement of model fit. Therefore, LPMs may return
negative values for the adjusted R2, even if the coefficients
may make practical sense.

Dealing with this latter issue is not a big problem. We will
learn how to calculate a better goodness-of-fit measure for these
special models. And with respect to the first, we will look
at more robust regression techniques for binary dependent
variable models. Let us first look at a practical example of a
Linar Probability Model.

An example

Suppose we want to determine the most relevant factors for
labor force participation. An individual can either participate
(part = 1) or not participate (part = 0) in the labor force. Thus,
we have already defined our dependent variable, and it is a
dummy variable. As independent variables, we will assume
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relevant the individual’s age and its squared term, their income,
years of education, the number of young children (youngkids), the
number of children over 7 years of age (oldkids), and whether the
individual is a foreigner or not (foreign). Our data set contains
872 observations, collected from a health survey conducted in
Switzerland in 1981.

Our econometric model looks like this:

parti = β0 + β1incomei + β2agei + β3age
2
i + β4educationi+

+ β5youngkidsi + β6oldkidsi + β7foreigni + ui

Table 1 illustrates this regression’s estimates. This Linear Prob-
ability Model is interpreted in the same way as we are used to,
only changing the effect on the dependent variable. Now, we
are interpreting the likelihood of success, that is, likelihood of
the dummy variable being equal to 1. In our case, we are investi-
gating the likelihood of an individual participating in the labor
force (parti = 1), given our chosen independent variables.

First, let us analyze the coefficients’ signs. Coefficients on
income, age2, youngkids, and oldkids are negative, meaning
that the higher the income, the older, and the more children
(regardless of age) an individual is/has, the less likely they are to
participate in the labor force. Conversely, for the other factors,
their positive signs indicate an increased likelihood of joining the
labor force.

But what about marginal effects? In other words, how to make
sense of the values returned by this regression? First, the table
shows us that, except for years of education, all covariates are
statistically significant at α = 0.01. Moreover, the adjusted R2

indicates that the model is responsible for explaining 18.6% of
the predicted likelihood of an individual participating in the
labor force. Lastly, on the estimated coefficients. The average
age for this data set is close to 40 years old.1 Thus, using this 1 This data set has age in decades, thus

we use 4 to calculate the respective
marginal effect.

value we can interpret that, holding all other factors constant, an
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Table 1: A Linear Probability Model

Dependent variable:
part

income −0.213∗∗∗
(0.041)

age 0.683∗∗∗
(0.130)

agesq −0.097∗∗∗
(0.016)

education 0.007
(0.006)

youngkids −0.241∗∗∗
(0.031)

oldkids −0.049∗∗∗
(0.017)

foreign 0.250∗∗∗
(0.040)

Constant 1.664∗∗∗
(0.446)

Observations 872
R2 0.193
Adjusted R2 0.186
Residual Std. Error 0.450 (df = 864)
F Statistic 29.495∗∗∗ (df = 7; 864)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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additional year of age decreases the likelihood of an individual
joining the labor force by 0.093 p.p., supposing this individual
is 40 years old. Another interpretation we can easily draw
from this model is that a foreign worker (foreigni = 0) is 0.25
p.p. more likely to be part of the labor force, ceteris paribus. In
summary, we pick the values given by the regression output
and interpret these as probabilities of the dependent variable
being equal to 1. As an exercise, try to interpret the effect of the
remaining variables on the target likelihood.

So far so good, right? Actually, no. For several observations,
the predicted probability, i.e., D̂i will be either greater than
1 or less than 0, which does not make logical sense. Even
though this may not be verified for other values, there is no
way of having a consistent estimation technique if it delivers
probabilities that lie outside the reasonable bounds. Lastly, let
us look at Figure 1, showing a scatter plot between parti and
incomei, including the respective regression line with slope
β̂educ = −0.213. Notice that the values are bounded between
0 and 1, but OLS estimation delivers a regression line that
goes beyond 1 for some observations. This fact does not make
sense and therefore the Linear Probability Model is not the best
option for estimating models with binary dependent variables.
We thus look at more appropriate techniques to deal with this
issue.

The Binomial Logit Model

One of the main issues associated with the Linear Probability
Model is that some predicted probabilities end up being either
greater than or lower than 0 or 1, the only accepted values
for the dependent variable in models with dummy dependent
regressors. Since a linear method such as OLS does not fulfill
this basic requirements, we thus turn to generalized models, in
which the dependent variable is no longer a linear function of
the coefficients, independent variables, and error term. The
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Figure 1: A linear probability model.

first version we will study is the Binomial Logit Model, which
assumes that the probability of success, i.e. P(Di = 1|xi) takes
the form of a logistic function ℒ(·). Thus, we write:

P(Di = 1|xi) = ℒ(β0 + β1x1i + β2x2i + ... + βkxki)

And ℒ(·) takes the following form:

ℒ =
e(β0+β1x1i+β2x2i+...+βkxki)

1 + e(β0+β1x1i+β2x2i+...+βkxki)

This functional form is the Cumulative Distribution Function
(CDF) for a logistically distributed random variable, and it as-
sures that the predicted probabilities for the dependent variable
will lie between 0 and 1.2 Instead of estimating the model via 2 Believe it or not, but Wikipedia has

pretty decent pages on probability dis-
tributions. You can check out its Logis-
tic Distribution page here.

OLS, as before, we use another estimator called Maximum Like-
lihood. Then, the density of ℒ, given the β coefficients and the
set of independent variables, becomes
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f(Di |xi ,βi) =
[
ℒ(β0+β1x1i+β2x2i+...+βkxki)

]Di
[
1−ℒ(β0+β1x1i+β2x2i+...+βkxki)

]1−Di

where f(·) = ℒ(·) when Di = 1 and f(·) = 1 − ℒ(·) when
Di = 0.

How to interpret Logit coefficients?

As with the LPM, the signs of the estimated coefficients are
enough to assess whether a variable increases or decreases the
likelihood of the dependent variable being equal to 1. However,
in terms of their magnitudes, Logit coefficients are not directly
interpretable.

Fortunately, there are several alternatives to interpret marginal
effects derived from Logit models. In this course, we will
focus on one of the most common approaches: average marginal
effects (AME). These are basically

∂P(Di = 1|xi)
∂xij

=
∂ℒ(·)
∂xij

=

∑n
i=1 f(β̂0 + β̂1x1 + β̂2x2 + ... + β̂kxk)

n
·β̂j

where f(·) is the probability density function evaluated at the
estimated coefficient values, multiplied by the independent
variables. This partial derivative is the mean effect of a one-unit
change in the jth independent variable. Its application is easily
implemented in a software like R or Stata, as we will see soon.

An example

Now that we know that there is a different estimator for binary
dependent variable models, let us compute the same model as
before, this time using Logit regression. Table 2 illustrates the
results.
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Table 2: A Binomial Logit Model

Dependent variable:
part

income −1.104∗∗∗
(0.226)

age 3.437∗∗∗
(0.688)

agesq −0.488∗∗∗
(0.085)

education 0.033
(0.030)

youngkids −1.186∗∗∗
(0.172)

oldkids −0.241∗∗∗
(0.084)

foreign 1.168∗∗∗
(0.204)

Constant 6.196∗∗∗
(2.383)

Observations 872
Log Likelihood −508.785
Akaike Inf. Crit. 1,033.570

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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First, notice that the signs are the same as the ones delivered
by the Linear Probability Model. In addition, evaluating the
statistical significance of Logit coefficients is done in the same
way as we are used to, using either the test statistic or the
p-value. Observe that the table does not report any goodness-
of-fit measure. For Logit and Probit models (which will be
seen in the next section), these measures are no longer valid.
However, we will look at a different way of assessing model fit
later in these notes, which will use the Log-Likelihood informed
by the regression output table. Lastly, the Akaike Information
Criterion is a measure used for model comparison. Here, we
will not study this criterion in detail.

The coefficients’ magnitudes cannot be directly interpreted, as
stated before. Thus, we can compute average marginal effects.
Details on these computations will be provided in the applied
lecture, but let us interpret the effect of income on the likelihood
of an individual participating in the labor force.

∂P(parti = 1|xi)
∂incomei

=

∑n
i=1 f(β̂0 + β̂1incomei + ... + β̂kforeigni)

872 ·(−1.104) = −0.2203

The average marginal effect of income on part is -.2203. This
means that if an individual’s income increases by 1%, she is
0.2203 p.p. less likely to join the labor force, ceteris paribus.3 3 For this data set, income is log-

transformed.
Lastly, Figure 2 illustrates the logit regression curve between
part and income. Unlike before, now this estimation technique
returns a curve that respects the 0 and 1 bounds, and this slope
changes as 0 or 1 are approached. That is why we turn to
these generalized techniques to estimate dummy dependent
variable models, so it is possible to stay within logical limits for
probability values.
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Figure 2: A binomial logit model.

The Binomial Probit Model

Another popular option for binary dependent variable models
is the Binomial Probit Model. Its intuition is very similar to
the Logit model’s, with the main difference concerning the
assumed cumulative density function (CDF). For Probit models,
the latter is standard Normal, and not logistic, as assumed for
Logit models. Hence, we write

E(Di |xi) = P(Di = 1|xi) = Φ(β0 + β1x1i + β2x2i + ... + βkxki)

where Φ(·) is a variant of the cumulative Normal distribution.
More specifically,

P(Di = 1) = 1√
2π

∫ Zi

−∞
e−s

2/2 ds
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whereZi = β0+β1x1i+β2x2i+...+βkxki and s is a standardized
normally distributed variable. Do not worry about these ugly
maths. We will easily practice these in our applied lecture.

An example

Let us estimate the labor force participation model, this time
using a Binomial Probit procedure. Table 3 summarizes its
results.

Table 3: A Binomial Probit Model

Dependent variable:
part

income −0.667∗∗∗
(0.132)

age 2.075∗∗∗
(0.405)

agesq −0.294∗∗∗
(0.050)

education 0.019
(0.018)

youngkids −0.714∗∗∗
(0.100)

oldkids −0.147∗∗∗
(0.051)

foreign 0.714∗∗∗
(0.121)

Constant 3.749∗∗∗
(1.407)

Observations 872
Log Likelihood −508.577
Akaike Inf. Crit. 1,033.155

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

As we can see, the output is similar to Logit’s, and signs and
significances are still the same as before. Computing average
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marginal effects follows the same procedure as shown for Logit
models, with the only difference of using a Normal probability
density function. Let us evaluate the average marginal effect of
income on the likelihood of an individual participating in the
labor force:

∂P(parti = 1|xi)
∂incomei

=

∑n
i=1 f(β̂0 + β̂1incomei + ... + β̂kforeigni)

872 ·(−1.104) = −0.2209

Holding all other factors constant, a 1% increase in an individ-
ual’s income decreases the likelihood of participating in the
labor force by .2209 p.p.. The Probit estimation returns a similar
result as the one seen for the Logit estimation, and the next
figure illustrates its curve.

Figure 3: A binomial probit model.

Lastly, the next figure compares the regression lines for the
Linear Probability Model (purple), Logit (orange), and Probit
(green) estimations. We can see that the two generalized
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methods are bounded between 0 and 1, and yield very similar
curves for this specific example.

Figure 4: Model comparison.

Measuring goodness-of-fit in Logit and Probit
models

A few pages ago, we saw that goodness-of-fit measures, such as
R2 and R̄2, are not effective for generalized linear models. Many
times, this is not even a matter of interest when estimating these
models, since the central interest lies in the signs and marginal
effects returned by Logit and Probit models.

Nevertheless, in case we want to explain how much the esti-
mated model explains the likelihood of success for our chosen
dependent variable, there are several techniques to achieve
this goal. Here, we will look more closely at the McFadden’s
pseudo-R2. This measure is defined as
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R2 = 1 − ℓ(β̂)
ℓ(ȳ)

where ℓ(β̂) is the log-likelihood of the fitted model, and ℓ(ȳ)
is the log-likelihood of a restricted model, only containing
an intercept term. In these cases, the model will be only the
dependent variable’s mean, which explains the ȳ term. The
log-likelihood is simply the logarithm of a likelihood function,
which is nothing but a goodness-of-fit measure. In more detail,
it is the combination of parameter values that maximize the
probability of observing a specific sample. And since we are
using Maximum Likelihood instead of OLS, this maximization
is obtained via this method.

From the Logit and Probit regression output tables, the informed
Log-Likelihood values is ℓ(β̂), while ℓ(ȳ) can be obtained by
estimating these models without any dependent variable. For
the Logit model, the pseudo-R2 is 0.1542, while for the Probit
model, its value is 0.1546. The pseudo-R2 is better suited for
model comparison purposes rather than direct interpretation.
Therefore, if we are trying out different Logit and Probit models
with varied variables and specification, this measure may be
helpful in deciding which model to stick with. We will learn
how to compute these values in our applied lecture as well.
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