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The road so far

So far, we have studied models with binary variables on the regression's right-hand-side, as an
explanatory factor.

But what if we want to have a qualitative indicator as the model's dependent variable?

Several decisions made by individuals and �rms are either-or in nature.

For instance, what are the factors that determine an individual's decision to join the labor force, enroll
in a course, or drink Coke over Pepsi?

To do that, we turn to binary dependent variable models.
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The road so far

The problem now becomes setting up a statistical model of binary choices.

We represent these choices by an indicator variable that equals 1 if the outcome is chosen, and 0
otherwise.

Unlike �ipping a coin or rolling a die, the probability of an individual choosing an outcome depends on
many factors.

Let these factors be denoted by .xi = (x1i,x2i, . . . ,xik)
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The road so far
Then, the conditional probability that the  individual chooses a given outcome is given by

And the conditional probability that the  individual does not choose a given outcome is given by

where .

In general, we can write a conditional probability function:

ith

P(yi = 1 | xi) = p(xi)

ith

P(yi = 0 | xi) = 1 − p(xi)

0 ≤ p(xi) ≤ 1

f(yi | xi) = p(xi)
yi[1 − p(xi)]

1−yi              yi = 0, 1
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The Linear Probability Model
The Linear Probability Model (LPM) is the �rst alternative to estimate binary choice models.

It simply consists in estimating a model with  as the dependent variable via OLS.

And since the left-hand side of the regression now has a probability function, we have

and .

p(yi | xi)

E(yi | xi) =
1

∑
yi=0

yif(yi|xi) = 0 × f(0|xi) + 1 × f(1|xi) = p(xi)

p(xi) = E(yi | xi) = β0 + β1x1i + β2x2i + ⋅ ⋅ ⋅ + βkxki

ui = yi − E(yi | xi)
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The Linear Probability Model
Therefore, the full Linear Probability Model is:

And the marginal effect of a one-unit change in a variable j changes the probability of success, 
, by

Problem!: Suppose . Its interpretation implies that increasing  by one unit will increase the
probability of  being equal to 1 by a constant amount .

What is wrong with this?

yi = E(yi | xi) + ui = β0 + β1x1i + β2x2i + ⋅ ⋅ ⋅ + βkxki + ui

p(yi = 1 | xj)

= βj
∂ E(yi | xi)

∂ xj

βj > 0 xji

yi βj
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The Linear Probability Model

Moreover, the residuals from an LPM model will likely be heteroskedastic:

Therefore, LPM models should always be estimated with robust standard errors.

V ar(ui | xi) ≠ σ2
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The Linear Probability Model
An example:

lpm_model �� lm(inlf ~ nwifeinc + educ  + exper + 
                  I(exper^2) + age + kidslt6 + kidsge6, data = mroz)
lpm_model %>% tidy()

#> # A tibble: 8 × 5
#>   term         estimate std.error statistic  p.value
#>   <chr>           <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)  0.586     0.154        3.80  1.58e� 4
#> 2 nwifeinc    -0.00341   0.00145     -2.35  1.90e� 2
#> 3 educ         0.0380    0.00738      5.15  3.32e� 7
#> 4 exper        0.0395    0.00567      6.96  7.38e-12
#> 5 I(exper^2)  -0.000596  0.000185    -3.23  1.31e� 3
#> 6 age         -0.0161    0.00248     -6.48  1.71e-10
#> 7 kidslt6     -0.262     0.0335      -7.81  1.89e-14
#> 8 kidsge6      0.0130    0.0132       0.986 3.24e� 1

When interpreting this model's estimates, recall that a change in the independent variable changes the
probability that inlf �� 1 .
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The Linear Probability Model
An example:

. reg inlf nwifeinc educ exper expersq age kidslt6 kidsge6

      Source |       SS           df       MS      Number of obs   =       753
-------------+----------------------------------   F(7, 745)       =     38.22
       Model |  48.8080578         7  6.97257969   Prob > F        =    0.0000
    Residual |  135.919698       745  .182442547   R-squared       =    0.2642
-------------+----------------------------------   Adj R-squared   =    0.2573
       Total |  184.727756       752  .245648611   Root MSE        =    .42713

------------------------------------------------------------------------------
        inlf | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
    nwifeinc |  -.0034052   .0014485    -2.35   0.019    -.0062488   -.0005616
        educ |   .0379953    .007376     5.15   0.000      .023515    .0524756
       exper |   .0394924   .0056727     6.96   0.000     .0283561    .0506287
     expersq |  -.0005963   .0001848    -3.23   0.001    -.0009591   -.0002335
         age |  -.0160908   .0024847    -6.48   0.000    -.0209686    -.011213
     kidslt6 |  -.2618105   .0335058    -7.81   0.000    -.3275875   -.1960335
     kidsge6 |   .0130122    .013196     0.99   0.324    -.0128935    .0389179
       _cons |   .5855192    .154178     3.80   0.000     .2828442    .8881943
------------------------------------------------------------------------------

When interpreting this model's estimates, recall that a change in the independent variable changes the probability that
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The Linear Probability Model
Visually (assuming simple regression models):
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Logit Models

The main issue with the Linear Probability Model is its incapacity to constrain the predicted probability
between 0 and 1.

The Logit and Probit models are examples of nonlinear models that address the above issue.

These models ensure that  remains between 0 and 1.

This is made possible due to these models' ability to generate S-shaped (sigmoid) curves, which do not
go beyond the [0,1] interval.

Think of a single-variable model with  as a binary outcome variable. If , as  increases, the
probability of success increases rapidly at �rst, then begins to increase at a decreasing rate, keeping
this probability below 1 no matter how large  becomes.

Moreover, slope coef�cients are not constant anymore.

p(yi | xi)

y β̂1 > 0 x

x
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Logit Models

Logit models are based on a logistic random variable's Cumulative Distribution Function (CDF).

Consider a random variable  that follows a logistic distribution.

Then, its Probability Density Function (PDF) is given by

And its Cumulative Density Function (CDF) is given by

L

λ(l) =                − ∞ < l < ∞
e−l

(1 + e−l)2

Λ(l) = p[L ≤ l] =
1

1 + e−l
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Logit Models

16 / 44



Logit Models
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Interpreting Interpreting LogitLogit Models Models



Interpreting Logit Models

Logit and Probit models use maximum likelihood to estimate model coef�cients.

This implies a completely different coef�cient interpretation from these models.

In case  is a continuous explanatory variable, its marginal effect on  is given byxk p(yi = 1 | xi)

= ⋅ =
∂ p(xi)

∂ xik

∂ Λ(β0 + β1x1i + ⋅ ⋅ ⋅ + βkxki)

∂ β0 + β1x1i + ⋅ ⋅ ⋅ + βkxki

∂ β0 + β1x1i + ⋅ ⋅ ⋅ + βkxki

∂ xik

= λ(β0 + β1x1i + ⋅ ⋅ ⋅ + βkxki)βk
∂ p(xi)

∂ xik
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Interpreting Logit Models

In case  is a discrete explanatory variable (such as a dummy variable), its interpretation is a bit
different:

xk

Δp(xi) = p(xi | xk = 1) − p(xi | xk = 0) =

Δp(xi) = Λ(β0 + β1x1i + βk) − Λ(β0 + β1x1i)
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Interpreting Logit Models

So far, we have talked about model estimation.

But what about coef�cient interpretation?

Logit coef�cients are not directly interpretable.

Therefore, in order to do that, we have a few strategies.

The one we will focus on here is the Average Marginal Effect (AME).

The AME is the sample average of the ML estimation evaluated at each sample observation.

= = ⋅ β̂j

∂P(yi = 1 | xi)

∂xij

∂Λ(⋅)

∂xij

∑n

i=1 λ(β̂0 + β̂1x1 + β̂2x2+. . . +β̂kxk)

n
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Interpreting Logit Models

For discrete explanatory variables, the AME is given by

= −
∂P(yi = 1 | xi)

∂xij

∑n

i=1 Λ(β̂0 + β̂1x1 + β̂j)

n

∑n

i=1 Λ(β̂0 + β̂1x1)

n
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A Logit example

logit_model �� glm(inlf ~ nwifeinc + educ  + exper + 
                  I(exper^2) + age + kidslt6 + kidsge6, data = mroz,
             family = binomial(link='logit'))
logit_model %>% tidy()

#> # A tibble: 8 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)  0.425     0.860       0.495 6.21e� 1
#> 2 nwifeinc    -0.0213    0.00842    -2.53  1.13e� 2
#> 3 educ         0.221     0.0434      5.09  3.55e� 7
#> 4 exper        0.206     0.0321      6.42  1.34e-10
#> 5 I(exper^2)  -0.00315   0.00102    -3.10  1.91e� 3
#> 6 age         -0.0880    0.0146     -6.04  1.54e� 9
#> 7 kidslt6     -1.44      0.204      -7.09  1.34e-12
#> 8 kidsge6      0.0601    0.0748      0.804 4.22e� 1

From this output, we cannot directly interpret the model's coef�cients.

However, we can interpret the coef�cient's signs.
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A Logit example
. logit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

Iteration 0:   log likelihood =  -514.8732  
Iteration 1:   log likelihood = -402.38502  
Iteration 2:   log likelihood = -401.76569  
Iteration 3:   log likelihood = -401.76515  
Iteration 4:   log likelihood = -401.76515  

Logistic regression                                     Number of obs =    753
                                                        LR chi2(7)    = 226.22
                                                        Prob > chi2   = 0.0000
Log likelihood = -401.76515                             Pseudo R2     = 0.2197

------------------------------------------------------------------------------
        inlf | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
    nwifeinc |  -.0213452   .0084214    -2.53   0.011    -.0378509   -.0048394
        educ |   .2211704   .0434396     5.09   0.000     .1360303    .3063105
       exper |   .2058695   .0320569     6.42   0.000     .1430391    .2686999
     expersq |  -.0031541   .0010161    -3.10   0.002    -.0051456   -.0011626
         age |  -.0880244    .014573    -6.04   0.000     -.116587   -.0594618
     kidslt6 |  -1.443354   .2035849    -7.09   0.000    -1.842373   -1.044335
     kidsge6 |   .0601122   .0747897     0.80   0.422     -.086473    .2066974
       _cons |   .4254524   .8603697     0.49   0.621    -1.260841    2.111746
------------------------------------------------------------------------------

From this output, we cannot directly interpret the model's coef�cients.
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A Logit example

The PDF for this estimated model looks like this:
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A Logit example
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A Logit example

Average Marginal Effects:

#>    Variable           AME
#> 1 intercept  0.0759771297
#> 2  nwifeinc -0.0038118135
#> 3      educ  0.0394965238
#> 4     exper  0.0367641056
#> 5   exper^2 -0.0005632587
#> 6       age -0.0157193606
#> 7   kidslt6 -0.2577536551
#> 8   kidsge6  0.0107348186

How to interpret these coef�cients?
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Probit Models

Probit models are based on the standard normal distribution's Cumulative Distribution Function
(CDF).

Consider a random variable  that follows a standard normal distribution.

Then, its Probability Density Function (PDF) is given by

And its Cumulative Density Function (CDF) is given by

Z

ϕ(z) =  e−s2/2 z2

            − ∞ < z < ∞
1

√2π

Φ(z) = P[Z ≤ z] = ∫
z

−∞

e−s2/2 u2

 du
1

√2π 29 / 44



Probit Models
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Probit Models
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Interpreting Interpreting ProbitProbit Models Models



Interpreting Probit Models

In case  is a continuous explanatory variable, its marginal effect on  is given by

In case  is a discrete explanatory variable (such as a dummy variable):

xk p(yi = 1 | xi)

= ⋅
∂ p(xi)

∂ xik

∂ Φ(β0 + β1x1i + ⋅ ⋅ ⋅ + βkxki)

∂ β0 + β1x1i + ⋅ ⋅ ⋅ + βkxki

∂ β0 + β1x1i + ⋅ ⋅ ⋅ + βkxki

∂ xik

= ϕ(β0 + β1x1i + ⋅ ⋅ ⋅ + βkxki)βk
∂ p(xi)

∂ xik

xk

Δp(xi) = p(xi | xk = 1) − p(xi | xk = 0) =

Δp(xi) = Φ(β0 + β1x1i + βk) − Φ(β0 + β1x1i) 33 / 44



Interpreting Probit Models

For Average Marginal Effects (AME), the procedure is the same as with Logit coef�cients.

The only change is in the CDF/PDF portions.

= = ⋅ β̂j

∂P(yi = 1 | xi)

∂xij

∂Φ(⋅)

∂xij

∑n

i=1 ϕ(β̂0 + β̂1x1 + β̂2x2+. . . +β̂kxk)

n
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A Probit example

probit_model �� glm(inlf ~ nwifeinc + educ  + exper + 
                  I(exper^2) + age + kidslt6 + kidsge6, data = mroz,
             family = binomial(link='probit'))
probit_model %>% tidy()

#> # A tibble: 8 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)  0.270    0.508        0.532 5.95e� 1
#> 2 nwifeinc    -0.0120   0.00494     -2.43  1.49e� 2
#> 3 educ         0.131    0.0254       5.15  2.55e� 7
#> 4 exper        0.123    0.0188       6.58  4.85e-11
#> 5 I(exper^2)  -0.00189  0.000600    -3.15  1.66e� 3
#> 6 age         -0.0529   0.00846     -6.25  4.22e-10
#> 7 kidslt6     -0.868    0.118       -7.34  2.21e-13
#> 8 kidsge6      0.0360   0.0440       0.818 4.14e� 1

As with the Logit case, these coef�cients are not directly interpretable. Only their signs.
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A Probit example
. probit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

Iteration 0:   log likelihood =  -514.8732  
Iteration 1:   log likelihood = -402.06651  
Iteration 2:   log likelihood = -401.30273  
Iteration 3:   log likelihood = -401.30219  
Iteration 4:   log likelihood = -401.30219  

Probit regression                                       Number of obs =    753
                                                        LR chi2(7)    = 227.14
                                                        Prob > chi2   = 0.0000
Log likelihood = -401.30219                             Pseudo R2     = 0.2206

------------------------------------------------------------------------------
        inlf | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
    nwifeinc |  -.0120237   .0048398    -2.48   0.013    -.0215096   -.0025378
        educ |   .1309047   .0252542     5.18   0.000     .0814074     .180402
       exper |   .1233476   .0187164     6.59   0.000     .0866641    .1600311
     expersq |  -.0018871      .0006    -3.15   0.002     -.003063   -.0007111
         age |  -.0528527   .0084772    -6.23   0.000    -.0694678   -.0362376
     kidslt6 |  -.8683285   .1185223    -7.33   0.000    -1.100628    -.636029
     kidsge6 |    .036005   .0434768     0.83   0.408     -.049208    .1212179
       _cons |   .2700768    .508593     0.53   0.595    -.7267473    1.266901
------------------------------------------------------------------------------

As with the Logit case, these coef�cients are not directly interpretable. Only their signs.
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A Probit example

The PDF for this estimated model looks like this:
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A Probit example
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A Probit example

Average Marginal Effects:

#>    Variable          AME
#> 1 intercept  0.081226125
#> 2  nwifeinc -0.003616176
#> 3      educ  0.039370095
#> 4     exper  0.037097345
#> 5   exper^2 -0.000567546
#> 6       age -0.015895665
#> 7   kidslt6 -0.261153464
#> 8   kidsge6  0.010828887

How to interpret these coef�cients?
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Model comparison
In terms of coef�cients:

#>   Coefficient           LPM        Logit       Probit
#> 1 (Intercept)  0.5855192249  0.425452376  0.270073573
#> 2    nwifeinc -0.0034051689 -0.021345174 -0.012023637
#> 3        educ  0.0379953030  0.221170370  0.130903969
#> 4       exper  0.0394923895  0.205869531  0.123347168
#> 5  I(exper^2) -0.0005963119 -0.003154104 -0.001887067
#> 6         age -0.0160908061 -0.088024375 -0.052852442
#> 7     kidslt6 -0.2618104667 -1.443354143 -0.868324680
#> 8     kidsge6  0.0130122346  0.060112222  0.036005611
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Model comparison
In terms of Average Marginal Effects:

#>    Variable         Logit       Probit
#> 1 intercept  0.0759771297  0.081226125
#> 2  nwifeinc -0.0038118135 -0.003616176
#> 3      educ  0.0394965238  0.039370095
#> 4     exper  0.0367641056  0.037097345
#> 5   exper^2 -0.0005632587 -0.000567546
#> 6       age -0.0157193606 -0.015895665
#> 7   kidslt6 -0.2577536551 -0.261153464
#> 8   kidsge6  0.0107348186  0.010828887
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Goodness-of-�t

The usual R2 and adjusted R2 measures are not satisfactory for binary dependent variable models.

However, in case goodness-of-�t is of interest, we can use the McFadden's pseudo R2 measure.

where  is the log-likelihood of the �tted model, and  is the log-likelihood of a restricted model,
only containing an intercept term.

For our estimated Logit and Probit models, the pseudo-R2 measures are 0.219 and 0.2205,
respectively.

We will calculate these next time.

R2 = 1 −
ℓ(β̂)

ℓ(ȳ)

ℓ(β̂) ℓ(ȳ)
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Next time: Binary models in practiceNext time: Binary models in practice


