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Motivation




The road so far

So far, we have studied models with binary variables on the regression's right-hand-side, as an
explanatory factor.

But what if we want to have a qualitative indicator as the model's dependent variable?

Several decisions made by individuals and firms are either-or in nature.

For instance, what are the factors that determine an individual's decision to join the labor force, enroll
in a course, or drink Coke over Pepsi?

To do that, we turn to binary dependent variable models.
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The road so far

The problem now becomes setting up a statistical model of binary choices.

We represent these choices by an indicator variable that equals 1 if the outcome is chosen, and 0
otherwise.

Unlike flipping a coin or rolling a die, the probability of an individual choosing an outcome depends on
many factors.

 Let these factors be denoted by x; = (z1;, ©2i, - - - , Tik).
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The road so far

Then, the conditional probability that the " individual chooses a given outcome is given by

P(y; = 1| x;) = p(x;)

And the conditional probability that the ** individual does not choose a given outcome is given by
P(y; =0]x;) =1 — p(x;)

where 0 < p(x;) < 1.

In general, we can write a conditional probability function:

fyi | i) = p(xi)¥ [1 — p(xi)] " yi =0,1
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The Linear Probability Model




The Linear Probability Model

The Linear Probability Model (LPM) is the first alternative to estimate binary choice models.

It simply consists in estimating @ model with p(y; | x;) as the dependent variable via OLS.

And since the left-hand side of the regression now has a probability function, we have

E(yi | xi) = > wif(yilxi) = 0 x f(0x:) + 1 x f(1]x:) = p(x;)

¥;=0

p(x;) =E(y; | x;) = Bo + Biz1i + Bz + - + Br

and U; = Y; — ]E(yz ’ Xi).
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The Linear Probability Model

Therefore, the full Linear Probability Model is:

v = E(y; | x;) +u; = Bo + b1z + Bawo; + - - - + BrTii + wi

And the marginal effect of a one-unit change in a variable j changes the probability of success,
p(yi =1 =;), by

OE(y; | x;)
8 wj - IBJ

Problem!: Suppose 8; > 0. Its interpretation implies that increasing x; by one unit will increase the
probability of y; being equal to 1 by a constant amount ;.

e What is wrong with this?
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The Linear Probability Model

Moreover, the residuals from an LPM model will likely be heteroskedastic:
Var(u; | x;) # o

Therefore, LPM models should always be estimated with robust standard errors.
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The Linear Probability Model

An example:

Tpm_model <« Im(inlf ~ nwifeinc + educ + exper +
I(exper”2) + age + kidslt6 + kidsge6, data = mroz)
Tpm_model %>% tidy()

#> # A tibble: 8 x 5

#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 0.586 0.154 3.80 1.58e- 4
#> 2 nwifeinc -0.00341  0.00145 -2.35 1.90e- 2
#> 3 educ 0.0380 0.00738 5.15 3.32e-7
#> 4 exper 0.0395 0.00567 6.96 7.38e-12
#> 5 I(exper™2) -0.000596 0.000185 -3.23 1.31e- 3
#> 6 age -0.0161 0.00248 -6.48 1.71e-10
#> 7 kidslté -0.262 0.0335 -7.81 1.89e-14
#> 8 kidsgeb 0.0130 0.0132 0.986 3.24e- 1

When interpreting this model's estimates, recall that a change in the independent variable changes the

probability that inlf = 1.
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The Linear Probability Model

An example:

reg inlf nwifeinc educ exper expersq age kidslt6 kidsge6

Source | SS df MS Number of obs = 753
————————————— b mmm e F(7, 745) = 38.22
Model | 48.8080578 7 6.97257969 Prob > F = 0.0000
Residual | 135.919698 745 (182442547 R-squared = 0.2642
————————————— e e e e E e e e e Adj R-squared = 0.2573
Total | 184.727756 752  .245648611 Root MSE = 42713

inlf | Coefficient Std. err. t P>[t] [95% conf. interval]
_____________ U
nwifeinc | -.0034052 .0014485 -2.35 0.019 -.0062488 -.0005616
educ | .0379953 .007376 5.15 0.000 .023515 .0524756

exper | .0394924 .0056727 6.96 0.000 .0283561 .0506287
expersq | -.0005963 .0001848 -3.23 0.001 -.0009591 -.0002335

age | -.0160908 .0024847 -6.48 0.000 -.0209686 -.011213

kidslt6 | -.2618105 .0335058 -7.81 0.000 -.3275875 -.1960335
kidsge6 | .0130122 .013196 0.99 0.324 -.0128935 .0389179
_cons | .5855192 .154178 3.80 0.000 .2828442 .8881943

When interpreting this model's estimates, recall that a change in the independent variable changes the probability that
inlf = 1. 11/ 44



The Linear Probability Model

Visually (assuming simple regression models):
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Logit Models




The main issue with the Linear Probability Model is its incapacity to constrain the predicted probability
between 0 and 1.

The Logit and Probit models are examples of nonlinear models that address the above issue.

These models ensure that p(y; | x;) remains between 0 and 1.

This is made possible due to these models' ability to generate S-shaped (sigmoid) curves, which do not
go beyond the [0]1] interval.

Think of a single-variable model with y as a binary outcome variable. IfB1 > 0, as z Increases, the
probability of success increases rapidly at first, then begins to increase at a decreasing rate, keeping
this probability below 1 no matter how large x becomes.

Moreover, slope coefficients are not constant anymore.
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Logit models are based on a random variable's Cumulative Distribution Function (CDF).

Consider a random variable L that follows a logistic distribution.

Then, its Probability Density Function (PDF) is given by

e—l

)‘(l):(1+e—l)2 —00 <l < o0

And its Cumulative Density Function (CDF) is given by
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Probability Density Function (PDF)
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Cumulative Probability Function (CDF)
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Interpreting Logit Models




Interpreting Logit Models

Logit and Probit models use maximum likelihood to estimate model coefficients.

This implies a completely different coefficient interpretation from these models.

In case xx is a continuous explanatory variable, its marginal effect on p(y; = 1 | x;) is given by

8P(Xz') _ 0 A(IBO + Bix; + - -+ ,kakz) . 0 Bo + Bix1i + -+ + BrTy; _

OP) _ B+ Brans + -+ Bua)By
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Interpreting Logit Models

In case zy is a discrete explanatory variable (such as a dummy variable), its interpretation is a bit
different:

Ap(x;) = p(xi |z = 1) = p(x; [ 2 = 0) =

Ap(x;) = A(Bo + Brz1; + Br) — A(Bo + Biz1i)
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Interpreting Logit Models

So far, we have talked about model estimation.

But what about coefficient interpretation?

Logit coefficients are not directly interpretable.
Therefore, in order to do that, we have a few strategies.

The one we will focus on here is the Average Marginal Effect (AME).

OP(y; =1|x;)  OA() _ D i1 A(Bo + Brz1 + Bymat. .. +Byai) N

8$7;j 833,'3' n

J
The AME is the sample average of the ML estimation evaluated at each sample observation.
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Interpreting Logit Models

For discrete explanatory variables, the AME is given by

OP(y; =11 x;) _ D i A(Bo + Bz + B]) B D i1 A(Bo + 315”1)

8213@' n n
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A Logit example

logit_model « glm(inlf ~ nwifeinc + educ + exper +
I(exper™2) + age + kidslt6 + kidsge6, data = mroz,
family = binomial(link='logit'))
logit_model %>% tidy()

#> # A tibble: 8 x 5

#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 0.425 0.860 0.495 6.21e- 1
#> 2 nwifeinc -0.0213 0.00842 -2.53 1.13e- 2
#> 3 educ 0.221 0.0434 5.09 3.55e- 7
#> 4 exper 0.206 0.0321 6.42 1.34e-10
#> 5 I(exper™2) -0.00315 0.00102 -3.10 1.91e- 3
#> 6 age -0.0880 0.0146 -6.04 1.54e- 9
#> 7 kidslté -1.44 0.204 -7.09 1.34e-12
#> 8 kidsgeb 0.0601 0.0748 0.804 4.22e- 1

From this output, we cannot directly interpret the model's coefficients.

However, we can interpret the coefficient's signs.
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A Logit example

. logit inlf nwifeinc educ exper expersqg age kidslt6 kidsge6

Iteration 0
Iteration 1
Iteration 2:
Iteration 3
Iteration 4

Logistic regression

Log likelihoo

d

Number of obs
LR chi2(7)
Prob > chi2
Pseudo R2

753
226.22
0.0000
= 0.2197

nwifeinc
educ
exper
expersq
age
kids1lté
kidsge6
_cons

log likelihood = -514.8732
log likelihood = -402.38502
log likelihood = -401.76569
log likelihood = -401.76515
log likelihood = -401.76515
= -401.76515
Coefficient Std. err.
-.0213452 .0084214 =2
.2211704 .0434396 5
.2058695 .0320569 6
-.0031541 .0010161 =3¢
-.0880244 .014573 -6
-1.443354 .2035849 =7
.0601122 .0747897 0.
4254524 .8603697 0.

[95% conf.

-.0378509
.1360303
.1430391

-.0051456
-.116587

-1.842373
-.086473

-1.260841

interval]

-.0048394
.3063105
.2686999

-.0011626

-.0594618

-1.044335
.2066974
2.111746

From this output, we cannot directly interpret the model's coefficients.



A Logit example

The PDF for this estimated model looks like this:

0.20
0.10

0.00

25 | 44



A Logit example
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A Logit example

Average Marginal Effects:

#> Variable AME
#> 1 intercept 0.0759771297
#> 2 nwifeilnc -0.0038118135
#> 3 educ 0.0394965238
H> 4 exper 0.0367641056
#> 5 exper”2 -0.0005632587
#> 6 age -0.0157193606
#> 7 kidslt6 -0.2577536551
#> 8  kidsge6b 0.0107348186

How to interpret these coefficients?
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Probit Models




Probit Models

Probit models are based on the standard normal distribution's Cumulative Distribution Function
(CDF).

Consider a random variable Z that follows a standard normal distribution.

Then, its Probability Density Function (PDF) is given by
]. —82/2 z2
¢(2) = ——ce —00 <2< 00

V2T

And its Cumulative Density Function (CDF) is given by

®(z) =P|Z < 2| = / %632/2“2 du
—00 V4T 29 | 44



Probit Models

Probability Density Function (PDF)
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Probit Models

Cumulative Probability Function (CDF)
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Interpreting Probit Models




Interpreting Probit Models

In case xy is a continuous explanatory variable, its marginal effect on p(y; = 1 | x;) is given by

0 p(x;) _ 0 ®(By + Piz1i + - - + Brxr;) 0B+ Prxri + - - + Braw
0 i, 0 By + Brx1 + -+ - + Brxwi 0 ;i

0 p(x;)
0z,

= ¢(Bo + Piz1i + - - + Brri) B

In case zj, is a discrete explanatory variable (such as a dummy variable):

Ap(x;) = p(x; |z = 1) — p(x; [z, = 0) =

Ap(x;) = ®(Bo + Prx1i + Br) — (6o + Pix1i) 33/ 44



Interpreting Probit Models

For Average Marginal Effects (AME), the procedure is the same as with Logit coefficients.

The only change is in the CDF/PDF portions.

OP(y; = 1| x;) _ 0%(-) _ D i $(By + Brm1 + Byzat. .. +B k) .3

8a:ij 8:1:1-]- n J
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A Probit example

probit _model ¢« glm(inlf ~ nwifeinc + educ + exper +
I(exper™2) + age + kidslt6 + kidsge6, data = mroz,
family = binomial(link='probit'))
probit _model %>% tidy()

#> # A tibble: 8 x 5

#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 0.270 0.508 0.532 5.95e- 1
#> 2 nwifeinc -0.0120 0.00494 -2.43 1.49e- 2
#> 3 educ 0.131 0.0254 5.15 2.55e- 7
#> 4 exper 0.123 0.0188 6.58 4.85e-11
#> 5 I(exper™2) -0.00189 0.000600 -3.15 1.66e- 3
#> 6 age -0.0529 0.00846 -6.25 4.22e-10
#> 7 kidslté -0.868 0.118 -7.34 2.21e-13
#> 8 kidsgeb 0.0360 0.0440 0.818 4.14e- 1

As with the Logit case, these coefficients are not directly interpretable. Only their signs.
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A Probit example

probit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

Iteration 0
Iteration 1
Iteration 2:
Iteration 3
Iteration 4

Probit regression

Log likelihood

Number of obs
LR chi2(7)
Prob > chi2
Pseudo R2

753
227 .14
0.0000
= 0.2206

nwifeinc
educ
exper
expersq
age
kids1lté
kidsge6
_cons

log likelihood = -514.8732
log likelihood = -402.06651
log likelihood = -401.30273
log likelihood = -401.30219
log likelihood = -401.30219
= -401.30219
Coefficient Std. err.
-.0120237 .0048398 =2
.1309047 .0252542 5
.1233476 .0187164 6
-.0018871 .0006 =3¢
-.0528527 .0084772 =@
-.8683285 .1185223 =7
.036005 0434768 0.
.2700768 .508593 OF

[95% conf.

-.0215096
.0814074
.0866641
-.003063

-.0694678

-1.100628
-.049208

-.7267473

interval]

-.0025378
.180402
.1600311
-.0007111
-.0362376
-.636029
.1212179
1.266901

As with the Logit case, these coefficients are not directly interpretable. Only their signs.



A Probit example

The PDF for this estimated model looks like this:
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A Probit example
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A Probit example

Average Marginal Effects:

#> Variable AME
#> 1 intercept 0.081226125
#> 2 nwifelnc -0.003616176
#> 3 educ 0.039370095
H> 4 exper 0.037097345
#> 5 exper”2 -0.000567546
#> 6 age -0.015895665
#> 7 kidslt6 -0.261153464
#> 8 kidsge6 0.010828887

How to interpret these coefficients?
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Model comparison

In terms of coefficients:

#>
#>
#>
#H>
#>
#>
#>
#>
#>

Coefficient

1 (Intercept)

2
3
4
5
6
7
8

nwifeinc
educ

exper
I(exper”2)
age
kidslt6
kidsgeb

LPM

.5855192249
.0034051689
.0379953030
.0394923895
.0005963119
.0160908061
.2618104667
.0130122346

Logit

.425452376
.021345174
.221170370

0.205869531

.003154104
.088024375
443354143
.060112222

0
-0

Probit

.270073573
.012023637
0.

130903969

0.123347168

-0
-0
-0

0

.001887067
.052852442
.868324680
.036005611
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Model comparison

In terms of Average Marginal Effects:

#>
#>
#>
#H>
#>
#>
#>
#>
#>

Variable
1 intercept
2 nwifeinc
3 educ
4 exper
5 exper”?2
6 age
7 kidslté
8 kidsgeb

Logit

.0759771297
.0038118135
.0394965238
.0367641056
.0005632587
.0157193606
.2577536551
.0107348186

Probit

.081226125
.003616176
.039370095

0.037097345

.000567546
.015895665
.261153464
.010828887
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Goodness-of-fit




Goodness-of-fit

The usual R? and adjusted R? measures are not satisfactory for binary dependent variable models.

However, in case goodness-of-fit is of interest, we can use the McFadden's pseudo R? measure.

005
o1 B
£(9)
where £(8) is the log-likelihood of the fitted model, and £(§) is the log-likelihood of a restricted model,
only containing an intercept term.

For our estimated Logit and Probit models, the pseudo—R2 measures are 0.219 and 0.2205,
respectively.

We will calculate these next time.
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Next time: Binary models in practice




