Binary dependent variable models EC 339

Marcio Santetti Fall 2022

Motivation

So far, we have studied models with **binary** variables on the regression's right-hand-side, as an *explanatory* factor.

But what if we want to have a **qualitative** indicator as the model's *dependent variable*?

Several decisions made by individuals and firms are *either-or* in nature.

For instance, what are the factors that determine an individual's decision to **join the labor force**, **enroll in a course**, or **drink Coke over Pepsi**?

To do that, we turn to **binary dependent variable models**.

The problem now becomes setting up a statistical model of **binary** choices.

We represent these choices by an **indicator** variable that equals **1** if the outcome is chosen, and **0** otherwise.

Unlike flipping a *coin* or rolling a *die*, the probability of an individual choosing an outcome depends on **many factors**.

• Let these factors be denoted by $\mathbf{x}_i = (x_{1i}, x_{2i}, \dots, x_{ik})$.

The road so far

Then, the **conditional probability** that the *i*th individual **chooses** a given outcome is given by

$$P(y_i = 1 \mid \mathbf{x}_i) = p(\mathbf{x}_i)$$

And the **conditional probability** that the *i*th individual **does not** choose a given outcome is given by

$$P(y_i=0 \mid \mathbf{x}_i) = 1-p(\mathbf{x}_i)$$

where $0 \leq p(\mathbf{x}_i) \leq 1$.

In *general*, we can write a **conditional probability function**:

$$f(y_i \mid \mathbf{x}_i) = p(\mathbf{x}_i)^{y_i} ig[1-p(\mathbf{x}_i)ig]^{1-y_i} \qquad y_i = 0,1$$

The Linear Probability Model (LPM) is the first alternative to estimate binary choice models.

It simply consists in estimating a model with $p(y_i \mid \mathbf{x}_i)$ as the dependent variable via **OLS**.

And since the left-hand side of the regression now has a probability function, we have

$$egin{aligned} \mathbb{E}(y_i \mid \mathbf{x}_i) &= \sum_{y_i=0}^1 y_i f(y_i \mid \mathbf{x}_i) = 0 imes f(0 \mid \mathbf{x}_i) + 1 imes f(1 \mid \mathbf{x}_i) = p(\mathbf{x}_i) \ p(\mathbf{x}_i) &= \mathbb{E}(y_i \mid \mathbf{x}_i) = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + \dots + eta_k x_{ki} \end{aligned}$$

and $u_i = y_i - \mathbb{E}(y_i \mid \mathbf{x}_i).$

Therefore, the **full** Linear Probability Model is:

$$y_i = \mathbb{E}(y_i \mid \mathbf{x}_i) + u_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + \dots + eta_k x_{ki} + u_i$$

And the **marginal effect** of a one-unit change in a variable j changes the *probability of success*, $p(y_i = 1 \mid x_j)$, by

$$rac{\partial \, \mathbb{E}(y_i \mid \mathbf{x}_i)}{\partial \, x_j} = eta_j$$

Problem!: Suppose $\beta_j > 0$. Its interpretation implies that increasing x_{ji} by one unit will increase the probability of y_i being equal to 1 by a constant amount β_j .

• What is **wrong** with this?

Moreover, the residuals from an **LPM** model will likely be **heteroskedastic**:

 $Var(u_i \mid \mathbf{x}_i)
eq \sigma^2$

Therefore, LPM models should always be estimated with robust standard errors.

An example:

```
#> # A tibble: 8 × 5
```

#>		term	estimate	std.error	statistic	p.value
#>		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
#>	1	(Intercept)	0.586	0.154	3.80	1.58e- 4
#>	2	nwifeinc	-0.00341	0.00145	-2.35	1.90e- 2
#>	3	educ	0.0380	0.00738	5.15	3.32e- 7
#>	4	exper	0.0395	0.00567	6.96	7.38e-12
#>	5	I(exper^2)	-0.000596	0.000185	-3.23	1.31e- 3
#>	6	age	-0.0161	0.00248	-6.48	1.71e-10
#>	7	kidslt6	-0.262	0.0335	-7.81	1.89e-14
#>	8	kidsge6	0.0130	0.0132	0.986	3.24e- 1

When interpreting this model's *estimates*, recall that a change in the independent variable changes the probability that inlf = 1.

An example:

. reg inlf nwi	feinc educ ex	per expersq	age kidslt6	kidsge6		
Source	SS	df	MS	Number of obs	=	753
+				F(7, 745)	=	38.22
Model	48.8080578	7	6.97257969	Prob > F	=	\odot . \odot \odot \odot \odot
Residual	135.919698	745	.182442547	R-squared	=	0.2642
+				Adj R-squared	=	0.2573
Total	184.727756	752	.245648611	Root MSE	=	.42713
inlf	Coefficient	Std. err.	t P>	t [95% cor	nf.	interval]
+						
nwifeinc	0034052	.0014485	-2.35 0.	0190062488	3	0005616
educ	.0379953	.007376	5.15 0.	. 023515	5	.0524756
exper	.0394924	.0056727	6.96 0.	.0283563	1	.0506287
expersq	0005963	.0001848	-3.23 0.	0010009593	1	0002335
age	0160908	.0024847	-6.48 0.	0000209686	6	011213
kidslt6	2618105	.0335058	-7.81 0.	0003275875	5	1960335
kidsge6	.0130122	.013196	0.99 0.	3240128935	5	.0389179
_cons	.5855192	.154178	3.80 0.	.2828442	2	.8881943

When interpreting this model's *estimates*, recall that a change in the independent variable changes the probability that inlf = 1.

Visually (assuming simple regression models):

Logit Models

Logit Models

The **main** issue with the Linear Probability Model is its incapacity to **constrain** the predicted probability between **0** and **1**.

The **Logit** and **Probit** models are examples of **nonlinear** models that address the above issue.

These models **ensure** that $p(y_i | \mathbf{x}_i)$ remains between 0 and 1.

This is made possible due to these models' ability to generate **S-shaped** (*sigmoid*) curves, which **do not** go beyond the [0,1] interval.

Think of a single-variable model with y as a binary outcome variable. If $\hat{\beta}_1 > 0$, as x increases, the probability of success increases rapidly at first, then begins to increase at a decreasing rate, keeping this probability below 1 no matter how large x becomes.

Moreover, **slope** coefficients are not *constant* anymore.

Logit models are based on a **logistic** random variable's *Cumulative Distribution Function* (CDF).

Consider a random variable L that follows a logistic distribution.

Then, its **Probability Density Function** (PDF) is given by

$$\lambda(l) = rac{e^{-l}}{(1+e^{-l})^2} \qquad \qquad -\infty < l < \infty$$

And its **Cumulative Density Function** (CDF) is given by

$$\Lambda(l) = pig[L \leq lig] = rac{1}{1+e^{-l}}$$

Logit Models

Cumulative Probability Function (CDF)

Logit and Probit models use **maximum likelihood** to estimate model coefficients.

This implies a **completely different** coefficient interpretation from these models.

In case x_k is a **continuous** explanatory variable, its marginal effect on $p(y_i = 1 \mid \mathbf{x}_i)$ is given by

$$rac{\partial \ p(\mathbf{x}_i)}{\partial \ x_{ik}} = rac{\partial \ \Lambda(eta_0 + eta_1 x_{1i} + \dots + eta_k x_{ki})}{\partial \ eta_0 + eta_1 x_{1i} + \dots + eta_k x_{ki}} \cdot rac{\partial \ eta_0 + eta_1 x_{1i} + \dots + eta_k x_{ki}}{\partial \ x_{ik}} =$$

$$rac{\partial \ p(\mathbf{x}_i)}{\partial \ x_{ik}} = \lambda (eta_0 + eta_1 x_{1i} + \dots + eta_k x_{ki}) eta_k$$

In case x_k is a **discrete explanatory variable** (such as a *dummy* variable), its interpretation is a bit different:

$$\Delta p(\mathbf{x}_i) = p(\mathbf{x}_i \mid x_k = 1) - p(\mathbf{x}_i \mid x_k = 0) =$$

$$\Delta p(\mathbf{x}_i) = \Lambda(eta_0 + eta_1 x_{1i} + eta_k) - \Lambda(eta_0 + eta_1 x_{1i})$$

So far, we have talked about model estimation.

But what about **coefficient interpretation**?

Logit coefficients are **not** directly interpretable.

Therefore, in order to do that, we have a few strategies.

The one we will focus on here is the **Average Marginal Effect** (AME).

$$rac{\partial P(y_i=1 \mid \mathbf{x}_i)}{\partial x_{ij}} = rac{\partial \Lambda(\cdot)}{\partial x_{ij}} = rac{\sum_{i=1}^n \lambda(\hat{eta}_0 + \hat{eta}_1 x_1 + \hat{eta}_2 x_2 + \ldots + \hat{eta}_k x_k)}{n} \cdot \hat{eta}_j$$

The **AME** is the sample average of the ML estimation evaluated at each sample observation.

For **discrete** explanatory variables, the **AME** is given by

$$rac{\partial P(y_i=1 \mid \mathbf{x}_i)}{\partial x_{ij}} = rac{\sum_{i=1}^n \Lambda(\hat{eta}_0 + \hat{eta}_1 x_1 + \hat{eta}_j)}{n} - rac{\sum_{i=1}^n \Lambda(\hat{eta}_0 + \hat{eta}_1 x_1)}{n}$$

#>	#	A tibble: 8	× 5			
#>		term	estimate	<pre>std.error</pre>	statistic	p.value
#>		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
#>	1	(Intercept)	0.425	0.860	0.495	6.21e- 1
#>	2	nwifeinc	-0.0213	0.00842	-2.53	1.13e- 2
#>	3	educ	0.221	0.0434	5.09	3.55e- 7
#>	4	exper	0.206	0.0321	6.42	1.34e-10
#>	5	I(exper^2)	-0.00315	0.00102	-3.10	1.91e- 3
#>	6	age	-0.0880	0.0146	-6.04	1.54e- 9
#>	7	kidslt6	-1.44	0.204	-7.09	1.34e-12
#>	8	kidsge6	0.0601	0.0748	0.804	4.22e- 1

From this output, we cannot directly interpret the model's **coefficients**.

However, we can interpret the coefficient's **signs**.

. logit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

log likeliho	od = -514.3	8732							
Iteration 1: log likelihood = -402.38502									
Iteration 2: log likelihood = -401.76569									
log likeliho	od = -401.7	6515							
log likeliho	od = -401.7	6515							
Logistic regression Number of obs = 753 LR chi2(7) = 226.22 Prob > chi2 = 0.0000 Log likelihood = -401.76515 Pseudo R2 = 0.2197									
Coefficient	Std. err.	Z	P> z	[95% conf.	interval]				
0213452	.0084214	-2.53	0.011	0378509	0048394				
.2211704	.0434396	5.09	0.000	.1360303	.3063105				
.2058695	.0320569	6.42	0.000	.1430391	.2686999				
0031541	.0010161	-3.10	0.002	0051456	0011626				
0880244	.014573	-6.04	0.000	116587	0594618				
-1.443354	.2035849	-7.09	0.000	-1.842373	-1.044335				
		0 00	0 100	000/70	200007/				
.0601122	.0/4/89/	0.80	0.422	0864/3	.2066974				
	<pre>log likeliho log likeliho log likeliho log likeliho log likeliho sion = -401.76515 Coefficient</pre>	<pre>log likelihood = -514.3 log likelihood = -402.33 log likelihood = -401.7 log likelihood = -401.7 log likelihood = -401.7 sion = -401.76515 Coefficient Std. err0213452 .0084214 .2211704 .0434396 .2058695 .03205690031541 .00101610880244 .014573 -1.443354 .2035849 20501122 .076707</pre>	<pre>log likelihood = -514.8732 log likelihood = -402.38502 log likelihood = -401.76569 log likelihood = -401.76515 log likelihood = -401.76515 sion = -401.76515 Coefficient Std. err. z 0213452 .0084214 -2.53 .2211704 .0434396 5.09 .2058695 .0320569 6.42 0031541 .0010161 -3.10 0880244 .014573 -6.04 -1.443354 .2035849 -7.09 200000000000000000000000000000000000</pre>	<pre>log likelihood = -514.8732 log likelihood = -402.38502 log likelihood = -401.76569 log likelihood = -401.76515 sion = -401.76515 Coefficient Std. err. z P> z </pre>	<pre>log likelihood = -514.8732 log likelihood = -402.38502 log likelihood = -401.76569 log likelihood = -401.76515 sion</pre>				

From this output, we cannot directly interpret the model's **coefficients**.

The **PDF** for this estimated model looks like this:

Average Marginal Effects:

#>		Variable	AME
#>	1	intercept	0.0759771297
#>	2	nwifeinc	-0.0038118135
#>	3	educ	0.0394965238
#>	4	exper	0.0367641056
#>	5	exper^2	-0.0005632587
#>	6	age	-0.0157193606
#>	7	kidslt6	-0.2577536551
#>	8	kidsge6	0.0107348186

How to **interpret** these coefficients?

Probit models are based on the **standard normal** distribution's **Cumulative Distribution Function** (CDF).

Consider a random variable Z that follows a standard normal distribution.

Then, its **Probability Density Function** (PDF) is given by

$$\phi(z) = rac{1}{\sqrt{2\pi}} \; e^{-s^2/2 \, z^2} \qquad -\infty < z < \infty$$

And its **Cumulative Density Function** (CDF) is given by

$$\Phi(z) = Pig[Z \leq zig] = \int_{-\infty}^z rac{1}{\sqrt{2\pi}} e^{-s^2/2\,u^2}\,du$$

31 / 44

In case x_k is a **continuous** explanatory variable, its marginal effect on $p(y_i = 1 | \mathbf{x}_i)$ is given by

$$egin{aligned} rac{\partial \ p(\mathbf{x}_i)}{\partial \ x_{ik}} &= rac{\partial \ \Phi(eta_0 + eta_1 x_{1i} + \dots + eta_k x_{ki})}{\partial \ eta_0 + eta_1 x_{1i} + \dots + eta_k x_{ki}} \cdot rac{\partial \ eta_0 + eta_1 x_{1i} + \dots + eta_k x_{ki}}{\partial \ x_{ik}} \ & \ rac{\partial \ p(\mathbf{x}_i)}{\partial \ x_{ik}} &= \phi(eta_0 + eta_1 x_{1i} + \dots + eta_k x_{ki})eta_k \end{aligned}$$

In case x_k is a **discrete explanatory variable** (such as a *dummy* variable):

$$egin{aligned} \Delta p(\mathbf{x}_i) &= p(\mathbf{x}_i \mid x_k = 1) - p(\mathbf{x}_i \mid x_k = 0) = \ &\Delta p(\mathbf{x}_i) &= \Phi(eta_0 + eta_1 x_{1i} + eta_k) - \Phi(eta_0 + eta_1 x_{1i}) \end{aligned}$$

For **Average Marginal Effects** (AME), the procedure is the same as with Logit coefficients.

The only **change** is in the CDF/PDF portions.

$$rac{\partial P(y_i=1\mid \mathbf{x}_i)}{\partial x_{ij}} = rac{\partial \Phi(\cdot)}{\partial x_{ij}} = rac{\sum_{i=1}^n \phi(\hat{eta}_0+\hat{eta}_1x_1+\hat{eta}_2x_2+\ldots+\hat{eta}_kx_k)}{n}\cdot\hat{eta}_j$$

#> # A tibble: 8 × 5 term estimate std.error statistic p.value #> <chr> <dbl> <dbl> <dbl> <dbl> #> #> 1 (Intercept) 0.270 0.508 0.532 5.95e- 1 #> 2 nwifeinc -0.0120 0.00494 -2.43 1.49e- 2 #> 3 educ 0.131 0.0254 5.15 2.55e- 7 0.0188 6.58 4.85e-11 #> 4 exper 0.123 #> 5 I(exper^2) -0.00189 0.000600 -3.15 1.66e- 3 #> 6 age -0.0529 0.00846 -6.25 4.22e-10 #> 7 kidslt6 -0.868 0.118 -7.34 2.21e-13 #> 8 kidsge6 0.818 4.14e- 1 0.0360 0.0440

As with the Logit case, these coefficients are **not** directly interpretable. Only their **signs**.

. probit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

Iteration 0:	log likeliho	od = -514 .	8732						
Iteration 1: log likelihood = -402.06651									
Iteration 2: log likelihood = -401.30273									
Iteration 3:	Iteration 3: log likelihood = -401.30219								
Iteration 4:	log likeliho	od = -401.3	0219						
Probit regress	Probit regression Number of obs = 753								
					Prob > chi2	= 0.0000			
Log likelihood	= -401.30219				Pseudo R2	= 0.2206			
5									
inlf	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]			
+									
nwifeinc	0120237	.0048398	-2.48	0.013	0215096	0025378			
educ	.1309047	.0252542	5.18	0.000	.0814074	.180402			
exper	.1233476	.0187164	6.59	0.000	.0866641	.1600311			
expersq	0018871	.0006	-3.15	0.002	003063	0007111			
age	0528527	.0084772	-6.23	0.000	0694678	0362376			
kidslt6	8683285	.1185223	-7.33	0.000	-1.100628	636029			
kidsge6	.036005	.0434768	0.83	0.408	049208	.1212179			
_cons	.2700768	.508593	0.53	0.595	7267473	1.266901			

As with the Logit case, these coefficients are **not** directly interpretable. Only their **signs**.

The **PDF** for this estimated model looks like this:

Average Marginal Effects:

#>		Variable	AME
#>	1	intercept	0.081226125
#>	2	nwifeinc	-0.003616176
#>	3	educ	0.039370095
#>	4	exper	0.037097345
#>	5	exper^2	-0.000567546
#>	6	age	-0.015895665
#>	7	kidslt6	-0.261153464
#>	8	kidsge6	0.010828887

How to **interpret** these coefficients?

Model comparison

In terms of **coefficients**:

#>		Coefficient	LPM	Logit	Probit
#>	1	(Intercept)	0.5855192249	0.425452376	0.270073573
#>	2	nwifeinc	-0.0034051689	-0.021345174	-0.012023637
#>	3	educ	0.0379953030	0.221170370	0.130903969
#>	4	exper	0.0394923895	0.205869531	0.123347168
#>	5	I(exper^2)	-0.0005963119	-0.003154104	-0.001887067
#>	6	age	-0.0160908061	-0.088024375	-0.052852442
#>	7	kidslt6	-0.2618104667	-1.443354143	-0.868324680
#>	8	kidsge6	0.0130122346	0.060112222	0.036005611

Model comparison

In terms of **Average Marginal Effects**:

#>		Variable	Logit	Probit
#>	1	intercept	0.0759771297	0.081226125
#>	2	nwifeinc	-0.0038118135	-0.003616176
#>	3	educ	0.0394965238	0.039370095
#>	4	exper	0.0367641056	0.037097345
#>	5	exper^2	-0.0005632587	-0.000567546
#>	6	age	-0.0157193606	-0.015895665
#>	7	kidslt6	-0.2577536551	-0.261153464
#>	8	kidsge6	0.0107348186	0.010828887

Goodness-of-fit

Goodness-of-fit

The usual R² and adjusted R² measures are not **satisfactory** for binary dependent variable models.

However, in case **goodness-of-fit** is of interest, we can use the **McFadden's pseudo R²** measure.

$$R^2 = 1 - rac{\ell(\hateta)}{\ell(ar y)}$$

where $\ell(\hat{\beta})$ is the log-likelihood of the fitted model, and $\ell(\bar{y})$ is the log-likelihood of a restricted model, only containing an intercept term.

For our estimated Logit and Probit models, the pseudo-R² measures are **0.219** and **0.2205**, respectively.

We will calculate these next time.

Next time: Binary models in practice