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Introduction

In this lecture, we will study in more detail one of the most
common violations of CLRM assumptions: heteroskedasticity.
Assumption V states that observations of the error term are
drawn from a distribution that has a constant variance. This is
also known as homoskedasticity.1 When the variance of the error 1 homo = equal; skedasticity = spread.
term is no longer constant, we have heteroskedasticity.

Such violation arises from the fact that the variance of the
regression’s residual term varies as regressor values change. In
analytical terms, this means

Var(ui |xi) = σ2
i ∀ i = 1, 2, 3, ...,n

Translating the above statement, the conditional variance of the
error term, by having the i subscript, is now dependent on
observations of other regressors’ values. It often occurs in data
sets where there is a wide disparity between the largest and the
smallest observed value of the dependent variable. The larger
the disparity, the more likely ui will be heteroskedastic. Such
violation is very common in cross-sectional data, as well as in
some kinds of time series, such as financial data.

Consider the following example. Assume we want to investigate
the relationship between test scores and the student-to-teacher
ratio for a given state. In Figure 1’s left panel, notice that, as the
student-to-teacher ratio increases, the range of test scores also
increases. In other words, as this ratio increases, the variance
of test scores also increases. If we fit a regression line to this
panel, the distance between the data points and the OLS line
will increase as we move from left to right.

In the right panel, we fit this OLS regression line (in red), and
we add a box plot according to a few student-teacher ratios
(10, 15, 20, and 25), helping us to visualize how the spread of
test results increases. This is in accordance to reality, since it
is straightforward to assume that, the more students the same

2



number of teachers must give attention to, the more it will
reflect on their performance.

Figure 1: Heteroskedasticity in two ways.

Another example concerns the wage-education relationship. The
next figure presents data and OLS fit for a simple regression
model of hourly earnings and years of education for college-
educated full-time US workers in 2004, according to the Current
Population Survey (CPS). Notice that we have a similar behavior
as the one observed in the previous example: as years of
education increase, the range of hourly earnings also increases.
Using the OLS regression line makes it easier to see how the
distance between the data points and the red line increases,
reflecting in a more likely non-constant variance of the error
term.

A non-constant variance in the error term implies serious issues
for OLS estimation, if not properly addressed. Before looking
at ways to overcome this problem, let us study its consequences
in more detail.
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Figure 2: Hourly earnings vs. education.

Consequences of heteroskedasticity

First of all, heteroskedasticity does not cause bias in OLS
estimates. As with mulicollinearity and serial correlation, het-
eroskedasticity affects the standard errors of OLS β estimates,
undermining proper inference from our models.

As a consequence, under heteroskedasticity, OLS estimates will
no longer be BLUE. Since the standard errors are affected, there
is no way in which OLS will yield minimum variance coefficients.
Lastly, goodness-of-fit measures (R2 and R̄2) are not affected.

Fortunately, we can still make our models robust to heteroskedas-
ticity within the OLS spectrum. We first look at a couple of
statistical tests we can perform to detect heteroskedasticity, and
later we will try to make up for this problem.
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Testing for heteroskedasticity

The is no universally agreed upon method for testing for het-
eroskedasticity, given that there are several different techniques.
As with previous violations of CLRM assumtpions, no statistical
test has the power to prove the presence of heteroskedasticity in
a model, but some can indicate its likelihood.

Before any test begins, a great starting point is trying to visually
detect the presence of heteroskedasticity. In addition to the
figures shown in the previous section, we can also plot the
model’s residuals, both in levels and in squared form. From the
earnings-education model, we plot the error term in both forms
in Figure 3. A dashed red line was added at the error’s mean
of zero (in accordance with CLRM Assumption II). Notice how
most of the observations are concentrated around this mean,
but several deviate from it, creating a non-constant variance
across its entire support. The advantage of also visualizing
squared residuals is that, in addition to removing negative signs,
higher deviations from the mean will have greater magnitude,
and thus will be more visually clear, as it is possible to see in
the right panel.

The Breusch-Pagan test

In order to conduct a Breusch-Pagan (BP) test for heteroskedas-
ticity, we start from the original regression model:

yi = β0 + β1x1i + β2x2i + ... + βkxki + ui

After the model is estimated, we store its residuals, ûi, and
estimate the following auxiliary regression, with its squared, û2

i
,

form as the dependent variable:

û2
i = δ0 + δ1x1i + δ2x2i + ... + δkxki + vi
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Figure 3: Regression residuals: in levels (left), squared (right).

That is, we regress the estimated squared residuals on all the
original model’s independent variables.

The Breusch-Pagan test’s null hypothesis is that CLRM As-
sumption V is true, that is, the model does not suffer from
heteroskedasticity. Translating this assumption to an F-test
procedure, we have:

• H0 : δ1 = δ2 = ... = δk = 0 (homoskedasticity)
• H1 : H0 is not true (heteroskedasticity)

Then, we can either calculate F or LM (Lagrange-multiplier)
statistics for this null hypothesis:

F =
R2
û2/k

1 − R2
û2/(n − k − 1)

or LM = n · R2
û2

where R2
û2 is the R-squared coefficient from the auxiliary re-

gression. The BP test is evaluated through the LM test statistic,
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which is Chi-squared distributed with k degrees-of-freedom,
where k is the number of slope coefficients in the auxiliary
regression.

In case we reject the null hypothesis, CLRM Assumption V
is violated and we have evidence of heteroskedasticity in our
regression model.

The White test

White (1980)2 proposed a more general form of the Breusch- 2 White, H. (1980). A Heteroskedasticity-
Consistent Covariance Matrix Estimator
and a Direct Test for Heteroskedasticity.
Econometrica, 48(4): pp. 817–838.

Pagan test, allowing for û2 to be correlated with squares, cubes,
interaction terms, among other functional forms of all indepen-
dent variables.

Following the same reasoning we adopted when studying the
RESET test for functional form misspecification, including all
these terms in a regression model would consume several
degrees-of-freedom. To circumvent it, we use instead func-
tional forms of the estimated dependent variable, such as ŷ2, ŷ3,
etc. Usually, including squares of the dependent variable will
suffice.

The basic difference regarding the White test, relative to the BP
procedure, is to estimate the auxiliary regression by adding these
functional forms of ŷ:

û2
i = δ0 + δ1ŷi + δ2ŷ

2
i + vi

In this specification ŷi captures the entire right-hand side of the
BP test’s auxiliary regression, and we augment this equation
by adding higher powers of the estimated dependent variable
according to our needs. In the above regression, we have
just added its squared form. Then, the null and alternative
hypotheses become:

• H0 : δ1 = δ2 = 0 (homoskedasticity)
• H1 : H0 is not true (heteroskedasticity)
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In case we reject the White test’s null hypothesis, we violate
CLRM Assumption V and there is evidence of heteroskedastic-
ity.

Dealing with heteroskedasticity: Robust
standard errors

Since heteroskedasticity causes problems to our coefficients’
standard errors, we must be able to improve their estimation,
while maintaining the unbiasedness of our β̂s. Given that
inference is a crucial component of any econometric estimation,
we would like to have more reliable standard errors in the
presence of heteroskedasticity.

For a given multiple regression model

yi = β0 + β1x1i + β2x2i + ... + βkxki + ui

We compute the standard errors of a β̂i coefficient in the
following way:

SE(β̂j) =
RSS/(n − k − 1)√

TSSj(1 − R2
j
)

where RSS is the residual sum of squares of the original regres-
sion model, and TSSj and R2

j
are the total sum of squares and

coefficient of determination from a regression of xj on all the
other independent variables.

Beyond its ugliness, the main problem with this estimator
is that it does not work properly when the model presents
heteroskedasticity. Thus, we need heteroskedasticity-robust pro-
cedures to perform proper inference when Assumption V is
violated. For the same regression model above, if we calculate
the variance of β̂j in the following way,
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Var(β̂i) =
n∑
i=1

r̂2
ijû

2
i

/
RSS2

j

its square root is called the heteroskedasticity-robust standard
error for β̂j. From the formula above, r̂ij is the ith residual
from regressing xj on all the other independent variables, RSSj
is the residual sum of squares from this regression, and ûi is
the estimated residual from the original regression model.

You don’t need to wrap your head too much around these
formulas, since we will not compute these values manually.
What is important here is to get the idea behind this procedure:
since we cannot trust in the standard errors when a regression
model presents heteroskedasticity, we address this issue by
using robust standard errors. The SEs derived from the last
formula are known as the Eicker-Huber-White standard errors.
A correction for degrees-of-freedom was later suggested to
these standard errors by MacKinnon and White (1985)3. Since 3 MacKinnon, J. G., and White,

H. (1985). Some heteroskedasticity-
consistent covariance matrix estimators
with improved finite sample properties.
Journal of Econometrics, 29(3), 305–
325.

both of these procedures are consistent, in the sense to have
adequate large-sample properties, no form is preferred over the
other.

Let us apply these procedures to an actual example. Consider
the following estimated model for wages (in logs), controlling
for education, experience, tenure, marital status, and gender:

�log(wage)i = .321 + .213 marriedi − 1.98 marriedi · femalei − .11 femalei + .0789 educi+
0269 experi − .00054exper2

i + 0.291 tenurei − .00053tenure2
i

The next table summarizes the 3 kinds of standard errors for
each slope coefficient. Compare and contrast the ones from
the original regression, along with Eicker-Huber-White and
MacKinnon-White standard errors. Notice that both robust
procedures produce similar values. Furthermore, the largest
relative change occurs to the SE on educi: from .0067 in the
original to .0074 with MacKinnon-White SEs. This model,
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however, does not have heteroskedasticity, according to the
BP and White tests. Let us next look at an example with
non-constant residual variance.

Variable Original SEs Eicker-Huber-White MacKinnon-White

married .055 .057 .057
married · female .058 .072 .058

female .056 .057 .057
educ .0067 .007 .0074
exper .0055 .0051 .0051
exper2 .00011 .0001 .00011
tenure .0068 .0069 .0069
tenure2 .00023 .00024 .00024

Recall the earnings-education model analyzed before. Let us
estimate it via OLS:

�earningsi = −3.13
(0.959)

+ 1.47
(0.069)

educationi

n = 2, 950 R̄2 = .13

When we plotted the two variables together, we had good
reasons to believe that heteroskedasticity is present. Indeed,
both Breusch-Pagan and White tests reject the null hypothesis
of homoskedasticity, thus violating Assumption V.

Let us next re-estimate this model, this time using MacKinnon-
White robust standard errors:

�earningsi = −3.13
(0.926)

+ 1.47
(0.072)

educationi

Notice how the original model was underestimating the slope
coefficients’ standard errors. In other words, it was 0.069 in the
original, and it becomes 0.072 when correcting for heteroskedas-
tic residuals. Now, we can properly perform inference for this
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model. The coefficient on education is statistically significant
at α = 1%, which we could not confirm with more certainty
without robust standard errors.

What happens if we log-transform the dependent variable from
this model? Let’s see:

�log(earnings)i = 1.48
(0.051)

+ 0.088
(0.0037)

educationi

Are our standard errors reliable for inference? BP and White
tests for heteroskedasticity on this model do not reject the null
hypothesis of homoskedasticity. But what just happened here?
The main reason for this model not having heteroskedasticity
is that log-transforming a dependent variable tends to decrease
its variance, thus leading to a decreased distance between the
data points and the regression line.

Therefore, when the case allows for it, log-transforming the de-
pendent variable not only brings interpretation benefits, but
also decreases the likelihood of heteroskedasticity.

We will apply these procedures addressing heteroskedasticity
in our applied lecture. After that, dealing with this violation
will be made very accessible.
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