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Introduction

Serial correlation, also known as autocorrelation, is a violation
of CLRM Assumption IV, which states that observations of
the error term are uncorrelated with each other. When this is
no longer the case, values of the error term depend in some
systematic way on observations from previous periods (in case
of time-series and panel data), or on previous observations
within the data set (for cross-section data).

Such problem is more frequent in time-series data, where the
order of observations matters. Thus, in this lecture we take a
break from cross-section to look at time-series data. When there
is correlation within a regression’s error term, our inference
capabilities from it are undermined, although not causing bias
to OLS coefficients.

In this lecture, we will see two “versions” of serial correla-
tion: one that appears when the model is correctly specified, and
another that is caused by a specification error such as omitted
variables or incorrect functional form. Then, we look at its
main consequences, and a few ways to deal with this prob-
lem. Regarding the latter point, we look at two tests to detect
autocorrelation, and a statistical procedure to correct for this
violation.

Pure serial correlation

Cases of “pure” serial correlation occur when CLRM Assump-
tion IV is violated in a correctly specified model. Analytically,
Assumption IV states that the expected value of the correlation
coefficient (r) between two observations, i and j, is zero:

E(rui ,uj) = 0 with i ≠ j
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In case this condition is not satisfied, the model suffers from
autocorrelation. Let us investigate the error term in more
detail:

ut = ρut−1 + et (1)

Notice that we are now using t subscripts, denoting time. Here,
time may be a day, a year, a quarter, etc. And the t − 1 subscript
simply means the value of a given variable in the previous period.
Thus, if t is today, t − 1 will be yesterday; if t is 2020, t − 1 is
2019, and so on.

In equation (1), et is a classical (not serially correlated and
normally distributed) stochastic residual term, and ρ is a pa-
rameter depicting the functional relationship between obser-
vations of the error term at time t and t − 1, known as the
autocorrelation coefficient.1 As it should not be surprising, ρ is 1 This term is the Greek letter rho.
the slope coefficient of equation (1), and is thus calculated by
ρ̂ = Cov(ut ,ut−1)/Var(ut).

The process described in (1) is known as a 1st order Markov
scheme. Thus, ρ is a 1st order autocorrelation coefficient. As
ρ approaches 1 (in absolute value), the higher the degree of
serial correlation—that is, the higher the dependence of ut on
past observations. If ρ > 1, we have an explosive (unstable)
trajectory.

It is also possible to model the dependency of the error term
on higher-order autocorrelation coefficients, such as the follow-
ing:

ut = ρ1ut−1 + ρ2ut−2 + et (2)

Equation (2) illustrates a 2nd order Markov scheme. We, how-
ever, will not go beyond the first-order case in our course. Just be
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aware that the error term can have deeper levels of dependence
with its previous observations.

Impure serial correlation

The “impure” version of serial correlation is more common to
observe in practice, and is usually caused by a specification error,
such as omitted variables and/or incorrect functional forms.
The good news is that it can often be corrected through a better
specification of the regression model.

Consider the following model, which we assume to be the “true”
specification of y:

yt = β0 + β1x1t + β2x2t + ut

And, instead, we estimate

yt = β0 + β1x1t + u∗
t

where, as you may already expect, u∗
t = ut + β2x2t.

Now, u∗
t can be serially correlated even if ut is not. The most

plausible explanation for this fact is when x2t itself is serially
correlated. An independent variable being autocorrelated does
not violate any classical assumption; however, when it is part
of the population model and is, for some reason, omitted from
our sample regression model, it is now part of the error term.
Given the presence of a serially correlated component in u∗

t, the
latter will be serially correlated, violating CLRM Assumption
IV.
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As an example, consider that x2t is disposable income. If you
consider that your disposable income in 2020 is dependent on
your disposable income from 2019, then this series is serially
correlated. If it is contained in the error term of a regression
where it should explicitly be present, then the error term will
be serially correlated, thus violating CLRM Assumption IV.

Consequences of serial correlation

After we have learned the difference between “pure” and “im-
pure” serial correlation, it is time to know its consequences in
more detail. Firstly, autocorrelation does not cause bias to OLS
estimates. Recall that impure serial correlation may be caused
by omitted variables, and these may cause bias, but this is not
due to serial correlation itself.

Secondly, the most important impact of serial correlation is
to β estimates’ standard errors (SEs). Autocorrelation tends to
underestimate standard errors, leading to higher t-scores. This
way, we are more likely to reject null hypotheses, even though
these are correct (type I error).

Thirdly, a direct consequence of the latter point is that OLS will
no longer be BLUE, given the lack of precision for its estimates’
standard errors.

Dealing with serial correlation

Serial correlation affects the standard errors of OLS β estimates.
Given that the nature of this problem arises from observations
of the error term being dependent on previous observations,
reordering a data set’s observations is not an option for time-
series data, since the ordering of observations matters for this
type of data. In case this problem appears in cross-section data,
reordering observations may be an option, but it is hard to
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believe a particular ordering of observations will be the source
of the issue.

More effective options concern a careful specification of the model
and statistical tests. Regarding the first, a model’s specification
must occur in accordance to the underlying theory, as always
highlighted when problems such as omitted variables and
incorrect functional form are possible. Therefore, thinking
before playing around with regression models is always a good
option.

With respect to the second point, we will look at two statis-
tical tests to detect serial correlation in a regression model:
the Durbin-Watson and the Breusch-Godfrey tests. These
procedures will help us in detecting this issue with more ro-
bustness, through hypothesis testing. In case these detect its
presence, what do we do? We will look at a new procedure,
the Cochrane-Orcutt estimator, which aims to correct fot this
problem and deliver more precise standard errors.

We will apply these procedures in the context of Macroeco-
nomics. More specifically, we will model the relationship
between inflation and the unemployment rate for the Australian
economy between 1987 and 2016.

An applied example: The Phillips curve

Contraty to the belief that either inflation or unemployment
should guide which macroeconomic policy to implement at
any given point in time, the seminal paper by A.W. Phillips,
called The Relation between Unemployment and the Rate of Change
of Money Wage Rates in the United Kingdom, 1861-1957 (1958),
pointed out that the existence of an inverse relationship between
changes in money wages and the unemployment rate for the
British economy.

Many versions of the Phillips curve exist in the literature, with
the most widely studied being the association between price
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inflation and changes in the unemployment rate. Equation 3
illustrates this relationship:

πt = πE
t − β(unempt − unempt−1) (3)

where πt is the inflation rate at time t, πE
t comprehends the

expected inflation for period t (assuming no change in unem-
ployment), and (unempt − unempt−1) is the change in unem-
ployment from time t − 1 to t. The hypothesis is that falling
changes in unemployment (unempt − unempt−1 < 0) puts a
pressure on prices (through the wage channel), due to an excess
demand for labor. On the other hand, if unemployment is rising
(unempt − unempt−1 > 0), an excess supply of labor pushes
the price level down. In case we set expectations as constant over
time, we can estimate the following simple regression model:

πt = β0 − β1t∆unempt + ut (4)

where now the intercept captures the constant expected inflation.
Moreover, ∆unempt is the change in the unemployment rate,
and ut is the error term.

The next step is to estimate (4). Here, we use quarterly data for
the Australian economy, for the 1987Q1–2016Q4 period, with a
total of n = 117 observations :

π̂t = 0.73 − 0.398
(0.21)

∆unempt (5)

Notice that the sign of β̂1 confirms the Phillips curve’s prediction
of a negative association between πt and ∆unempt. However,
this output does not inform anything about the error term. The
first thing we can do is plot ût:
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Figure 1: Model’s residual term.

There seems to be some degree of dependence between past and
present observations over time. For a more robust identification
of autocorrelation, we can also look at the Autocorrelation Func-
tion (ACF) plot. The latter basically plots the values of ρ̂, the
autocorrelation coefficient from equation (1), across different
lags (past values) of a variable. We look a it in Figure 2.

This plot shows the values for ρ̂ from t (lag 0) until t − 10
(lag 10). When its values exceed the dashed bands, these are
statistically different from zero (i.e., statistically significant) at
α = 5%. Notice how significant the autocorrelation is across
several lags.

After these visual inspections, it is time to run statistical tests for
serial correlation. Let us start with the Durbin-Watson test.
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Figure 2: Autocorrelation function plot for the residual.
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The Durbin-Watson d test

The Durbin-Watson (DW) test is implemented to determine
whether there is first-order serial correlation in the error term,
by examining the residuals of a model satisfying the following
criteria:

• The regression model must have an intercept term (β0);
• The model has no lagged independent variable (that is,

having a variable such as xi,t−1).

Its test statistic is computed with the following formula:

d =

T∑
t=2

(ut − ut−1)2
/ T∑

t=1
(ut)2

where d, the DW test statistc, lies between 0 and 4. When d = 0,
there is evidence of extremely positive serial correlation (values
of ut will have the same sign as ut−1); when d ≈ 4, there is
evidence of extremely negative serial correlation (values of ut

will have the opposite sign of ut−1); and when d ≈ 2, there is
no evidence of serial correlation.

Fortunately, the value for d can be approximated by 2(1 −
ρ̂), where ρ̂ is the first-order autocorrelation coefficient, as in
equation (1).

The DW test is a bit different from other procedures, since it can
sometimes be inconclusive. Thus, in addition to rejecting or not
rejecting the null hypothesis, we can also have an inconclusive
decision from this test.

Here are the steps of the DW test:

1. Obtain the OLS residuals from the regression model;
2. Calculate d;
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3. Based on k, the number of slope coefficients, and on n,
the sample size, consult the DW table (available in this
week’s module files) for critical values. The table provides
upper and lower critical values, dL and dU, respectively;

4. The test’s null hypothesis is of no serial correlation in the
residuals. In case we reject H0, we have evidence of
(first-order) serial correlation.

Below, we illustrate the decision regions for the DW test. RR is
the rejection region, while AR is the “acceptance” region. The
area in the middle is where the test is inconclusive (IR). Notice
that the d statistic lies between 0 and 4. When d < dL, we reject
H0; when d > dU, we do not reject H0; and when dL ⩽ d ⩽ dU,
the DW test is inconclusive.

The Durbin-Watson test decision regions

dL dU0 4

RR IR AR

Let us compute d for the Phillips curve example. For the
estimated model presented in equation (5), we extract the
residuals, ût, and estimate the following auxiliary regression:

ût = γ0 + ρût−1 + et (6)

where γ0 is an intercept term. We want to estimate ρ̂ from (6),
which equals 0.5000583. Next, we compute the approximate
value of the d statistic:
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2(1 − ρ̂) = 2(1 − 0.5000583) = 0.9998

Since we have only one dependent variable in our Phillips
curve model, k = 1. With n = 117, the DW table gives us
approximately dL = 165 and dU = 169, for a significance level
of 5%.2 Since our d statistic lies below the lower bound, it lies 2 Try to find these values in the Durbin-

Watson table for critical values. In case
you could not find the same values, do
not worry. We will also use the table
in the applied lecture.

within the rejection region. Thus, we reject the null hypothesis
of no serial correlation, and our Phillips curve model violates
CLRM Assumption IV.

The Breusch-Godfrey test

Another option to test for serial correlation is the Breusch-Godfrey
(BG) test. Its main difference from the Durbin-watson test lies
in the specification of the auxiliary regression. While equation
(6) includes only the first lag of ût, the auxiliary regression for
the BG test includes the explanatory variables of the regression
model, allowing for a relationship between a control variable
and the error term.

In addition, the BG procedure can be used to test for higher-
order serial correlation in the error term, which is a limitation
of the DW test. Here, however, we will stick to first-degree
autocorrelation, so we can compare the results from boh tests.

The test statistic for the BG test is a Lagrange Multiplier (LM) type
of test, which is simply

LM = (n − q)R2
û

where q denotes the order of serial correlation we wish to
test for, and R2

û
is the R-squared coefficient from its auxiliary

regression.

12



This test’s null hypothesis is also of no serial correlation, and it fol-
lows a Chi-squared distribution with q degrees-of-freedom.

Applying the BG test to our Phillips curve example, we estimate
the following auxiliary regression:

ût = γ0 + ρût−1 + γ1∆unempt + et (7)

This regression returns an R-squared of 0.255. Since we are
testing for first-degree autocorrelation, q = 1. Therefore,

LM = (117 − 1)0.255 = 29.6

With α = 5%, we once again reject the null hypothesis.

The Cochrane-Orcutt estimator

Okay, so our Phillips curve model suffers from serial correlation.
Even though the coefficient on ∆unempt has the expected sign,
we can no longer trust the model’s standard errors. This fact
undermines our inference, since the standard errors reflect the
precision of our β estimates. What to do, then?

A nice option would be to estimate our model such that the
error term is no longer serially correlated. The good news
is that the Cochrane-Orcutt procedure allows for that, using
many of the estimations we have already done here. It works
along the following steps:

1. Estimate the original regression model via OLS;
2. Store the residuals, ût, from step 1;
3. Estimate a first-order Markov scheme for ût, storing ρ̂;
4. Transform the variables from the original regression into

quasi-differenced terms, using ρ̂;
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5. Re-estimate the model via OLS using the quasi-differenced
variables from step 4.

Let’s break down the above steps. From 1–3, there should be no
surprises, since we have already done that a few pages ago. For
our Phillips curve mode, ρ̂ = 0.5000583. Now, we can proceed
to step 4.

We will transform the dependent and independent variables
by incorporating the autocorrelation coefficient ρ̂ into the story.
Now, instead of working with πt and ∆unempt, we will use
quasi-differenced versions of them. These are defined by:

π̃t = πt − ρ̂πt−1 (7)�∆unempt = ∆unempt − ρ̂∆unempt−1 (8)

Equations (7) and (8) are, then, quasi-differences of the original
dependent and independent variable, respectively. We will use
them to re-estimate the Phillips curve, then correcting for serial
correlation:

π̃t = β̃0 + β1 �∆unempt + et (9)

where β̃0 = (1 − ρ̂)β0, and et is the error term from equation
(6), which is assumed to be a classical error term, with no serial
correlation.

By estimating (9), we obtain:

ˆ̃πt = 0.702 − 0.383
(0.2086)

�∆unempt (10)

Equation (10) is computed using the Cochrane-Orcutt estimator,
and it delivers consistent standard errors. Let us compare

14



equations (5) and (10), that is, the original estimated model and
the one computed via Cochrane-Orcutt:

• Original model: β̂1 = −0.398; SE(β̂1) = 0.21
• Cochrane-Orcutt model: β̂1 = −0.383; SE(β̂1) = 0.2086

Notice that the estimated coefficients remain close to each other,
since bias is not a problem. The standard errors are different, and
even though it does not look as a huge change, let us check the
Durbin-Watson d statistics for each model:

• Original model: d = 0.9998
• Cochrane-Orcutt model: d = 2.24

Now, we do not reject the DW test’s null hypothesis for the model
using the Cochrane-Orcutt procedure. In a nutshell, we have
preserved the sign and estimate from the original regression,
but now we have reliable standard errors, as well as a serially
uncorrelated error term.

Okay, that was a lot of new content. When we move on to do
these tests and procedures in practice, we need not manually
run all these steps. The software has commands that will
do everything for us, we just need to interpret the output.
However, we must know what is happening behind all the tests
and commands the computer runs for us, so we do not lose
sight of what we are actually doing. We will look at more
examples, if there are any loose ends in your mind, so never
worry.
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