Serial Correlation

EC 339

Marcio Santetti Fall 2022

Motivation

The road so far

Over the past weeks, we have learned:

- That *omitting* relevant variables from a model causes **bias**;
- That deterministic/strong stochastic *linear relationships* between two independent variables harm regression **standard errors**, and, therefore, OLS **inference**.

This week and the next, we turn our attention to the **residual** term, *u*.

- We begin by investigating what happens when observations within *u* share some sort of **linear relationship**.
- This problem is *extremely common* in time-series data, given that the **order** of observations matters, which is not true for cross-section data.

Pure serial correlation

Pure serial correlation

Recall **CLRM Assumption IV**:

"Observations of the error term are uncorrelated with each other."

$$\mathbb{E}(r_{u_i,uj})=0 \quad ext{ with } i
eq j$$

In a **well-specified** model, autocorrelation can be characterized in the following way:

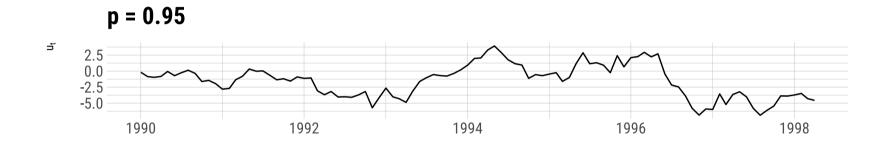
$$u_t =
ho u_{t-1} + e_t$$

where ρ is known as the *autocorrelation coefficient*.

As $\rho \rightarrow |1|$, the higher the *degree* of serial correlation.

If $\rho > |1|$, we have an *explosive* trajectory.

Pure serial correlation



p = -1.2

Impure serial correlation

Impure serial correlation

The **"impure"** version of serial correlation occurs in *misspecified models*.

Whenever the error term contains a relevant variable that has been omitted from the model, which in turn is **serially correlated** itself, we have a case of impure serial correlation.

- A simple *example*: suppose we are interested in a person's wealth over time. In case we omit their *credit score* measure, for instance, it will be part of the error term.
 - Do you believe one's credit score *today* is dependent on their *last year*'s credit score?
 - If you *do*, then this omitted variable is affecting the error term, thus causing serial correlation, even if the error term, *by itself*, is not serially correlated.

Impure serial correlation

Recall what happens when we omit a relevant variable from a model:

• Suppose we have the "true" population model:

$$y_t=eta_0+eta_1x_{1t}+eta_2x_{2t}+u_t$$

• And instead we estimate:

$$y_t=eta_0+eta_1x_{1t}+u_t^*$$

with $u_t^* = u_t + \beta_2 x_{2t}$.

In case x_2 is serially correlated, it will affect the residual term, which in turn will be serially correlated.

Consequences of serial correlation

Consequences of serial correlation

Firstly, autocorrelation **does not** cause **bias** to OLS estimates.

However, it affects OLS **standard errors**, undermining **inference** from OLS models.

• Since it usually **underestimates** SEs, we end up being *more likely* to *reject* null hypotheses, increasing the likelihood of *Type I error*.

This way, OLS is no longer **BLUE**.

- Why? Its **B** part is affected.
- "Best" refers to minimum variance, which is not achieved with serial correlation.

Dealing with serial correlation

In addition to **visualizing** OLS residuals, there are several **tests** for serial correlation.

The most common ones are the **Durbin-Watson** and **Breusch-Godfrey** tests.

Moreover, we can use the **Cochrane-Orcutt** estimator to correct for serial correlation.

We will study these procedures through an **applied example**.

Okun's law

Okun's law illustrates the relationship between **unemployment** and **growth** in an economy over time.

In a very *basic* form, it can be expressed as follows:

$$u_t-u_{t-1}=-\gamma(g_t-g_n)$$

- where u_t and u_{t-1} are the unemployment rate at time t and t-1, respectively;
- g_t is the output growth rate at time t, and g_n is the "normal" output growth rate, which can be assumed as constant.
- The γ coefficient measures this relationship. If the growth of output is *above* the normal rate, unemployment falls; a growth rate *below* the normal rate leads to an increase in unemployment.

We can rewrite Okun's law as:

$$\Delta u_t = -\gamma \ g_t$$
 ,

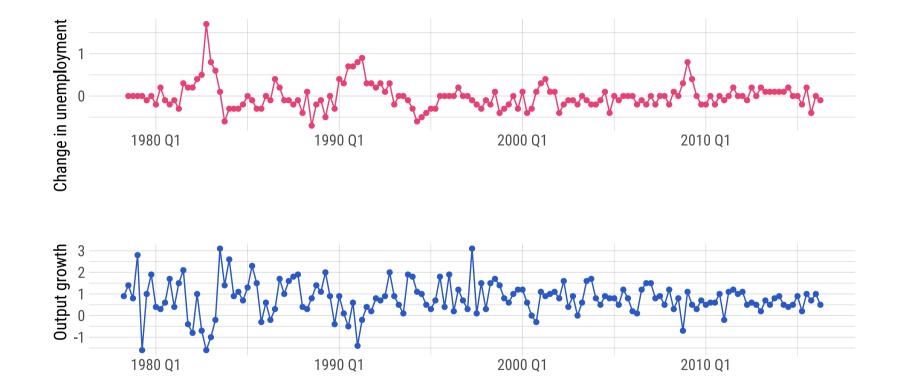
where Δu_t denotes the *change* in unemployment from t-1 to t.

As an *econometric model*, we can write it as follows:

$$\Delta u_t = eta_0 + eta_1 g_t + arepsilon_i$$

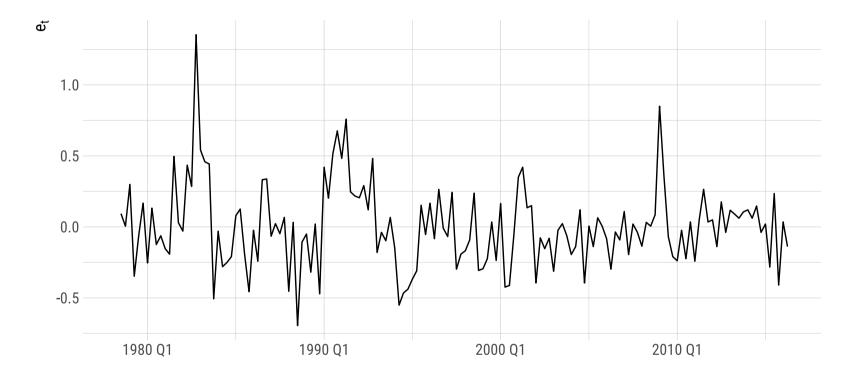
Let's throw some *data* in!

Okun's law: data for Australia (1978Q2—2016Q2):



Okun's law

A quick check at the model's **residuals**:



Does it look **autocorrelated**?

The Durbin-Watson test

The **Durbin-Watson** test for autocorrelation is used to test for **first-degree** serial correlation.

Provided that the regression model contains an *intercept* term (β_0) and has *no lagged* independent variable (*e. g.*, $x_{1, t-1}$), this test can be implemented.

$$d = \sum_{t=2}^T (arepsilon_t - arepsilon_{t-1})^2 \Big/ \sum_{t=1}^T (arepsilon_t)^2$$

with $0 \leq d \leq 4$.

It can be approximated by $2(1-\hat{\rho})$.

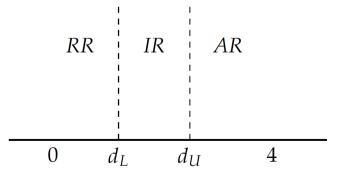
The **recipe** 🕱 😨:

- 1. Estimate the regression model via OLS, storing its residuals;
- 2. Calculate the d test statistic;
- 3. Based on k, the number of slope coefficients, and on n, the sample size, consult the DW table for critical values.
- 4. The test's null hypothesis is of no serial correlation in the residuals. In case we reject H_{0} , we have evidence of serial correlation.

The Durbin-Watson test

```
okun_model %>%
dwtest()

#>
    Durbin-Watson test
#>
    data: .
#> data: .
#> DW = 1.331, p-value = 1.562e-05
#> alternative hypothesis: true autocorrelation is greater than 0
```

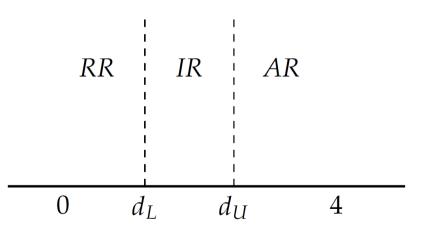



The Durbin-Watson test

. estat dwatson

Durbin-Watson d-statistic(2, 152) = 1.330972

The Durbin-Watson test decision regions



The Breusch-Godfrey test

The **Breusch-Godfrey** test follows a similar procedure as the Durbin-Watson test's.

Its main *difference* involves the **auxiliary regression** estimated to find the autocorrelation coefficient, ρ . It must also include all **independent variables** from the original model.

 $LM=(n-q)R_{\hat{arepsilon}}^2$

where n is the sample size from the original regression model;

q is the order of autocorrelation we wish to test for;

and $R_{\hat{\varepsilon}}^2$ is the coefficient of determination from the auxiliary regression.

The Breusch-Godfrey test

```
okun_model %>%
  bgtest(order = 1, fill = NA)
```

```
#>
#>
Breusch-Godfrey test for serial correlation of order up to 1
#>
#> data:
#> LM test = 18.154, df = 1, p-value = 2.037e-05
```

What is our *inference*?

The Breusch-Godfrey test

. estat bgodfrey, lag(1) nomiss0

Breusch-Godfrey LM test for autocorrelation								
lags(p)	chi2	df	Prob > chi2					
1	18.154	1	0.0000					
	H0: no seri	al correlation						

What is our *inference*?

From the two previous tests, we can infer that our Okun's law model suffers from serial correlation.

So what do we do?

The **Cochrane-Orcutt** procedure allows for the estimation of a *modified* version of the original regression model, allowing for serially *uncorelated* residuals.

The **recipe** 🕱 😨:

- 1. Estimate the regression model via OLS, storing its residuals;
- 2. Estimate a first-order Markov scheme for \hat{u}_t , storing $\hat{
 ho}$;
- 3. Transform the variables from the original regression into quasi-differenced terms, using $\hat{\rho}\,;$
- 4. Re-estimate the model via OLS using the quasi-differenced variables from step 4.

Step 3: Transform the variables from the original regression into quasi-differenced terms, using $\hat{
ho}$.

For our Okun's law model, we have:

$$egin{aligned} & ilde{g}_t = g_t - \hat{
ho} g_{t-1} \ & ilde{\Delta u}_t = \Delta u_t - \hat{
ho} \Delta u_{t-1} \end{aligned}$$

Step 4: Re-estimate the model via OLS using the quasi-differenced variables from step 4.

$$\widetilde{\Delta u}_t = { ilde eta}_0 + eta_1 { ilde g}_t + e_t$$

where ${ ilde{eta}}_0 = (1-{\hat{
ho}}) eta_0.$

library(orcutt)

```
summary(cochrane.orcutt(okun_model))
```

```
#> Call:
#> lm(formula = du ~ g, data = okun data)
#>
     Estimate Std. Error t value Pr(>|t|)
#>
#> (Intercept) 0.0035386 0.0510639 0.069 0.9448
             -0.0107379 0.0245295 -0.438 0.6622
#> g
#>
#> Residual standard error: 0.2554 on 149 degrees of freedom
#> Multiple R-squared: 0.0013 , Adjusted R-squared: -0.0054
#> F-statistic: 0.2 on 1 and 149 DF, p-value: < 6.622e-01
#>
#> Durbin-Watson statistic
#> (original): 1.33097 , p-value: 1.562e-05
#> (transformed): 2.27044 , p-value: 9.558e-01
```

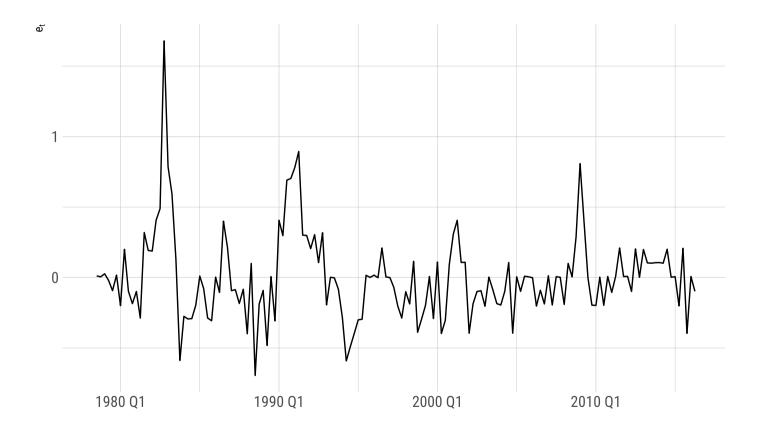
So what?

. prais du g, corc

Cochrane-Orcutt AR(1) regression with iterated estimates

Source	SS	df	MS	Number of obs	=	151
+				F(1, 149)	=	0.19
Model	.0124954	1	.0124954	Prob > F	=	0.6622
Residual	9.71553772	149	.065204951	R-squared	=	0.0013
+				Adj R-squared	=	-0.0054
Total	9.72803312	150	.064853554	Root MSE	=	.25535
						· · · · · · · · · · · · · · · · · · ·
du				P> t [95% co	nt.	interval]
g	010/38	.0245295	-0.44 (9.662059208	6	.0377326
_cons	.0035386	.0510639	0.07 (9.945097364	4	.1044416
+						
rho	.5612189					
Durbin-Watson statistic (original) = 1.330972						
Durbin-Watson statistic (transformed) = 2.270438						

Now, the residuals from the **Cochrane-Orcutt** procedure:



Next time: Serial correlation in practice