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The road so far
Over the past weeks, we have learned:

That omitting relevant variables from a model causes bias;

That deterministic/strong stochastic linear relationships between two independent variables harm
regression standard errors, and, therefore, OLS inference.

This week and the next, we turn our attention to the residual term, u.

We begin by investigating what happens when observations within u share some sort of linear
relationship.

This problem is extremely common in time-series data, given that the order of observations
matters, which is not true for cross-section data.
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Pure serial correlation
Recall CLRM Assumption IV:

"Observations of the error term are uncorrelated with each other."

In a well-speci�ed model, autocorrelation can be characterized in the following way:

where ρ is known as the autocorrelation coef�cient.

As ρ → |1|, the higher the degree of serial correlation.

If ρ > |1|, we have an explosive trajectory.

E(rui,uj) = 0 with i ≠ j

ut = ρut−1 + et

5 / 31



Pure serial correlation
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Impure serial correlation
The "impure" version of serial correlation occurs in misspeci�ed models.

Whenever the error term contains a relevant variable that has been omitted from the model, which in
turn is serially correlated itself, we have a case of impure serial correlation.

A simple example: suppose we are interested in a person's wealth over time. In case we omit their
credit score measure, for instance, it will be part of the error term.

Do you believe one's credit score today is dependent on their last year's credit score?

If you do, then this omitted variable is affecting the error term, thus causing serial correlation,
even if the error term, by itself, is not serially correlated.
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Impure serial correlation
Recall what happens when we omit a relevant variable from a model:

Suppose we have the "true" population model:

And instead we estimate:

with .

In case  is serially correlated, it will affect the residual term, which in turn will be serially correlated.

yt = β0 + β1x1t + β2x2t + ut

yt = β0 + β1x1t + u∗
t

u∗
t = ut + β2x2t

x2
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Consequences of serial correlation
Firstly, autocorrelation does not cause bias to OLS estimates.

However, it affects OLS standard errors, undermining inference from OLS models.

Since it usually underestimates SEs, we end up being more likely to reject null hypotheses,
increasing the likelihood of Type I error.

This way, OLS is no longer BLUE.

Why? Its B part is affected.

"Best" refers to minimum variance, which is not achieved with serial correlation.
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Dealing with serial correlation

In addition to visualizing OLS residuals, there are several tests for serial correlation.

The most common ones are the Durbin-Watson and Breusch-Godfrey tests.

Moreover, we can use the Cochrane-Orcutt estimator to correct for serial correlation.

We will study these procedures through an applied example.
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Okun's law
Okun's law illustrates the relationship between unemployment and growth in an economy over time.

In a very basic form, it can be expressed as follows:

where  and  are the unemployment rate at time  and , respectively;
 is the output growth rate at time , and  is the "normal" output growth rate, which can be

assumed as constant.
The  coef�cient measures this relationship. If the growth of output is above the normal rate,
unemployment falls; a growth rate below the normal rate leads to an increase in unemployment.

ut − ut−1 = −γ(gt − gn)

ut ut−1 t t − 1

gt t gn

γ
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Okun's law

We can rewrite Okun's law as:

where  denotes the change in unemployment from  to .

As an econometric model, we can write it as follows:

Let's throw some data in!

Δut = −γ gt

Δut t − 1 t

Δut = β0 + β1gt + εi
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Okun's law: data for Australia (1978Q2—2016Q2):
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Okun's law
A quick check at the model's residuals:

Does it look autocorrelated? 17 / 31



The Durbin-Watson test
The Durbin-Watson test for autocorrelation is used to test for �rst-degree serial correlation.

Provided that the regression model contains an intercept term  and has no lagged independent
variable , this test can be implemented.

with .

It can be approximated by .

😌

(β0)

(e. g. ,x1, t−1)

d =
T

∑
t=2

(εt − εt−1)2/
T

∑
t=1

(εt)
2

0 ≤ d ≤ 4

2(1 − ρ̂)
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The Durbin-Watson test

The recipe � �:

1. Estimate the regression model via OLS, storing its residuals;

2. Calculate the  test statistic;

3. Based on k, the number of slope coefficients, and on n, the sample size, consult the DW

table for critical values.

4. The test’s null hypothesis is of no serial correlation in the residuals. In case we

reject H0, we have evidence of serial correlation.

d
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The Durbin-Watson test
okun_model %>% 
  dwtest()

#> 
#>     Durbin-Watson test
#> 
#> data:  .
#> DW = 1.331, p�value = 1.562e-05
#> alternative hypothesis: true autocorrelation is greater than 0
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The Durbin-Watson test
. estat dwatson

Durbin–Watson d�statistic(  2,   152) =  1.330972
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The Breusch-Godfrey test
The Breusch-Godfrey test follows a similar procedure as the Durbin-Watson test's.

Its main difference involves the auxiliary regression estimated to �nd the autocorrelation coef�cient, .
It must also include all independent variables from the original model.

where  is the sample size from the original regression model;

 is the order of autocorrelation we wish to test for;

and  is the coef�cient of determination from the auxiliary regression.

ρ

LM = (n − q)R2
ε̂

n

q

R2
ε̂
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The Breusch-Godfrey test
okun_model %>% 
  bgtest(order = 1, fill = NA)

#> 
#>     Breusch-Godfrey test for serial correlation of order up to 1
#> 
#> data:  .
#> LM test = 18.154, df = 1, p�value = 2.037e-05

What is our inference?
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The Breusch-Godfrey test
. estat bgodfrey, lag(1) nomiss0

Breusch–Godfrey LM test for autocorrelation
---------------------------------------------------------------------------
    lags(p)  |          chi2               df                 Prob > chi2
-------------+-------------------------------------------------------------
       1     |         18.154               1                   0.0000
---------------------------------------------------------------------------
                        H0� no serial correlation

What is our inference?
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The Cochrane-Orcutt estimator

From the two previous tests, we can infer that our Okun's law model suffers from serial correlation.

So what do we do?

The Cochrane-Orcutt procedure allows for the estimation of a modi�ed version of the original
regression model, allowing for serially uncorelated residuals.
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The Cochrane-Orcutt estimator

The recipe � �:

1. Estimate the regression model via OLS, storing its residuals;

2. Estimate a first-order Markov scheme for , storing ;

3. Transform the variables from the original regression into quasi-differenced terms,

using ;

4. Re-estimate the model via OLS using the quasi-differenced variables from step 4.

ût ρ̂

ρ̂
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The Cochrane-Orcutt estimator
Step 3: Transform the variables from the original regression into quasi-differenced terms,

using .

For our Okun's law model, we have:

Step 4: Re-estimate the model via OLS using the quasi-differenced variables from step 4.

where .

ρ̂

~gt = gt − ρ̂gt−1

Δ̃ut = Δut − ρ̂Δut−1

Δ̃ut =
~
β0 + β1

~gt + et

~
β0 = (1 − ρ̂)β0
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The Cochrane-Orcutt estimator
library(orcutt)

summary(cochrane.orcutt(okun_model))

#> Call:
#> lm(formula = du ~ g, data = okun_data)
#> 
#>               Estimate Std. Error t value Pr(>|t|)
#> (Intercept)  0.0035386  0.0510639   0.069   0.9448
#> g           -0.0107379  0.0245295  -0.438   0.6622
#> 
#> Residual standard error: 0.2554 on 149 degrees of freedom
#> Multiple R-squared:  0.0013 ,  Adjusted R-squared:  -0.0054
#> F-statistic: 0.2 on 1 and 149 DF,  p�value: < 6.622e-01
#> 
#> Durbin-Watson statistic 
#> (original):    1.33097 , p�value: 1.562e-05
#> (transformed): 2.27044 , p�value: 9.558e-01

So what?
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The Cochrane-Orcutt estimator
. prais du g, corc

Cochrane–Orcutt AR(1) regression with iterated estimates

      Source |       SS           df       MS      Number of obs   =       151
-------------+----------------------------------   F(1, 149)       =      0.19
       Model |    .0124954         1    .0124954   Prob > F        =    0.6622
    Residual |  9.71553772       149  .065204951   R-squared       =    0.0013
-------------+----------------------------------   Adj R-squared   =   -0.0054
       Total |  9.72803312       150  .064853554   Root MSE        =    .25535

------------------------------------------------------------------------------
          du | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
           g |   -.010738   .0245295    -0.44   0.662    -.0592086    .0377326
       _cons |   .0035386   .0510639     0.07   0.945    -.0973644    .1044416
-------------+----------------------------------------------------------------
         rho |   .5612189
------------------------------------------------------------------------------
Durbin–Watson statistic (original)    = 1.330972
Durbin–Watson statistic (transformed) = 2.270438
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The Cochrane-Orcutt estimator
Now, the residuals from the Cochrane-Orcutt procedure:
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Next time: Serial correlation in practiceNext time: Serial correlation in practice


