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Introduction

In this second lecture covering possible violations of OLS
assumptions, we will study multicollinearity. CLRM Assump-
tion VI states that no independent variable is a perfect linear function
of one or more other covariates. Even though a perfect relationship
between xi variables is almost impossible, cases of imperfect
(i.e., stochastic) linear associations are not uncommon when
setting up econometric models. Even though Assumption VI
does not cover the latter case, we have to be prepared to deal
with it, since it may bring substantial problems to our estimated
models.

The real meaning of multicollinearity is that, the more highly
correlated two (or more) independent variables are, the more
difficult it becomes for OLS to accurately estimate the coefficients
close to the “true” regression model. If, for instance, x1 and x2
move identically, and both are present in a regression model,
how can OLS clearly disentangle the impact of each regressor on
the dependent variable? If the correlation coefficient between
x1 and x2 is low, we can still be fairly accurate; however, as it
increases, it is almost impossible to distinguish between these
two variables with respect to their effects on the variable of
interest.

We start studying the type of multicollinearity considered in
Assumption VI, known as perfect multicollinearity. Then, we
move on to its imperfect version, which is more commonly
seen in practice. Later, we will look at its major consequences for
OLS estimation, ways to detect, and treat this problem within
the range of Ordinary Least Squares.

Perfect multicollinearity

Cases of perfect multicollinearity directly violate CLRM Assump-
tion VI, since there is a perfect linear relationship between two
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or more independent variables. As an example, consider the
definition of an independent variable x1:

x1i = α0 + α1x2i

Notice that there is no stochastic term in x1’s definition. This
variable, then, shares a deterministic relationship with x2, with
no uncertainty involved. In other words, movements in x1 can
be completely explained by movements in x2. The next figure
illustrates an example of such relationship, with α0 = 3 and
α1 = 1.

Figure 1: A perfect linear relationship.

If both variables are included in a regression model, such as
the one below,

yi = β0 + β1x1i + β2x2i + β3x3i + ui

it will suffer from perfect multicollinearity.
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With perfect multicollinearity, OLS estimates tend to be indeter-
minate, since it cannot distinguish effects coming from x1 or x2
with enough precision, given that these basically describe the
same process. In other words, the ceteris paribus assumption no
longer holds, since it is not possible to assume x1 constant to
describe the partial effect of x2 on y, for example.

Fortunately, perfect multicollinearity is rare to occur in practice,
since theory tends to prevent it and such redundancies are
relatively easy to detect prior to any estimation.1 Given this 1 Also, statistical packages like R and

Stata will not let you estimate a model
with perfect multicollinearity.

fact, either x1 or x2 should be dropped from the regression
model—or one could generate a third variable, derived from a
combination of these two—, thus avoiding this violation.

Imperfect multicollinearity

The imperfect version of multicollinearity is defined as a linear
functional relationship between two or more independent vari-
ables, with the difference of not being a perfect linear association.
(That is, the correlation coefficient is less than 100%.) However,
depending on the strength of the relationship, it can significantly
affect the estimation of β coefficients if the related variables are
all included in the same model.

Consider again two linearly related variables x1 and x2:

x1i = α0 + α1x2i + ϵi

Notice that now x1 is not fully explained by x2, since we have
included a stochastic term ϵi that addresses some uncertainty to
this relation. In other words, x1 is determined by other factors
(included in ϵi), and not only by x2. The next figure illustrates
two example of such relationships. In the left panel, x1 and x2
have a correlation coefficient of 0.87, while in the right panel,
the correlation is 0.36. The more scattered the data points are
around the straight line, the less correlated the variables are.
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Figure 2: Two imperfect relationships.

Even though imperfect multicollinearity does not violate CLRM
Assumption VI, it can also bring several problems to the quality
of a regression model. We look at these consequences in the
next section.

Consequences of multicollinearity

Given that our model suffers from multicollinearity (either
perfect or imperfect), what happens to our β estimates?

Firstly, multicollinearity, by itself, does not cause bias. It is
possible that a model suffering from multicollinearity also has
some omitted variable, thus causing bias. But the latter problem
is not caused by multicollinearity.

Secondly, despite not causing bias, multicollinearity affects
the precision of β estimates. Although still unbiased, the β̂’s
will come from distributions with much larger variances. As a
consequence, the standard errors (SEs) tend to increase, given
the uncertainty regarding the respective effects of the collinear
variables.
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The next figure illustrates two unbiased β̂ coefficients (both are
centered around the “true” value, set to 1 for this example),
but with different variances, and thus different standard errors.
Assume that the coefficient βj (in blue) is estimated in a model
containing multicollinearity, while βi (in red) is the same slope
coefficient, estimated after removing a collinear variable. The
latter becomes more reliable than the former, since its distribution
is more tightly concentrated around the “true” value of 1.

Figure 3: Two density curves.

Thirdly, t-scores are likely to fall. Recall its formula:

tk =
β̂k − βH0

SE(β̂k)

If multicollinearity increases the standard errors of β coeffi-
cients, the above formula’s denominator will increase, while
the numerator remains constant, since there is no bias. As a
consequence, t-statistics will fall, and this may harm inference
from our model, both regarding statistical significance and any
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other individual test we may perform to our coefficients.

Lastly, the adjusted R2 of a model with multicollinearity is
not heavily affected, relative to a model without it. Therefore,
looking at this goodness-of-fit measure does not help when
trying to detect this problem.

Consider the following example (standard errors in parenthe-
ses):

Ĉi = −367.83 + .5113
(1.0307)

YDi − .0427
(.0942)

LAi

n = 45 R̄2 = .835

where

• Ci: consumption expenditures of the ith student;
• YDi: annual disposable income of the ith student;
• LAi: liquid assets (savings) of the ith student.

However, savings are a function of disposable income. It is likely,
though, that there are more factors affecting savings than the
level of disposable income alone. Therefore, this is a clear case
of imperfect multicollinearity.

What happens if we drop LAi from this model?

Ĉi = −471.43 + .9714
(.157)

YDi

n = 45 R̄2 = .861

R̄2 has slightly improved, and the standard error of β̂YD has
decreased, making it more precise. Notice that β̂YD also has
changed a lot. This does not mean that the model does not
suffer from OVB, though. If we consider that consumption is
not only determined by disposable income, we may find other
relevant variables to include in the model. However, the model
is free from multicollinearity for now.
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Detecting multicollinearity

How do we realize our model suffers from multicollinearity?
When working with real-world data, it is almost impossible
to set up a model where all explanatory variables are totally
uncorrelated with each other. The severity of this correlation
may change from sample to sample, even if the variables are
the same, but what matters is that the damage caused by
multicollinearity is a matter of degree, and there is no widely
accepted statistical test that can prove that a model suffers from
this problem.

We can use some tools, though. The first and most basic thing
to do is computing pairwise correlation coefficients for the
set of independent variables. In case the correlation between
two independent variables is high (usually, above 80% can be
considered high), it may be better to drop one covariate from
the model. However, the correlation coefficient is a bivariate
measure. In larger models, it may be easy to lose sight of the
pairwise measures.

Nevertheless, looking at correlations must be the starting point
for detecting multicollinearity, as well as looking at scatter
diagrams between the independent variables. After that is done,
we can move on to possible remedies for it.

Remedies for multicollinearity

If a high correlation coefficient between independent vaiables
is detected, dropping one of them may the the best thing to do.
Another solution may be to transform collinear variables in a
single variable, if the case allows for it.

In case theory recommends including the variables that are
highly correlated in your model, this may be a sample phe-
nomenon. In this case, increasing the sample size may be a solution,
even though its feasibility is not always straighforward.
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Variance Inflation Factors (VIFs)

An interesting tool that helps us to detect multicollinearity are
Variance Inflation Factors (VIFs). It looks at the extent to which
a given explanatory variable can be explained by all the other
explanatory variables in the regression equation.

The VIF is an index of how much multicollinearity has increased
the variance of an estimated coefficient. A high VIF indicates
that multicollinearity has increased the variance of the estimated
coefficient by quite a bit, yielding a decreased t-score. In a
nutshell, the VIF is simply the factor by which the variance of a
coefficient βi is inflated by the presence of correlation among
the independent variables of a regression model.

Suppose you want to use the VIF as an attempt to detect
multicollinearity in an original equation with k independent
variables:

yi = β0 + β1x1i + β2x2i + ... + βkxki + ui

Doing so requires calculating k different VIFs, one for each xi.
Calculating the VIF for a given xi involves two steps:

1. Run an OLS auxiliary regression that has xi as a function
of all the other explanatory variables in the equation. For
i = 1, this equation would be:

x1 = α0 + α1x2i + α2x3i + ... + αk−1xk−1i + vi

where v is a classical error term.

2. Calculate the Variance Inflation Factor for β̂i:

VIF(β̂i) =
1

(1 − R2
i
)
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where R2
i

is the coefficient of determination of the auxiliary
regression in the first step. There will be a different R2

i
and

VIF(β̂i) for each xi. The higher the VIF, the more severe the
effects of multicollinearity.

A common rule of thumb indicates that a VIF higher than 5
already indicates a high multicollinearity. If its value is 1, there
is nothing to worry about. If it goes beyond 10, then the model
definitely suffers from multicollinearity. It is also important to
remind that VIFs are not meant to be the ultimate measure to
detect multicollinearity, but indeed a simple tool to indicate its
presence and help us in our modeling decisions.
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