Multicollinearity

EC 339

Marcio Santetti Fall 2022

Motivation

Linear relationships

Let us recall **CLRM Assumption VI**:

No explanatory variable is a *perfect linear function* of any other explanatory variable.

This assumption implies a **deterministic** relationship between two independent variables.

 $x_1=lpha_0+lpha_1 x_3$

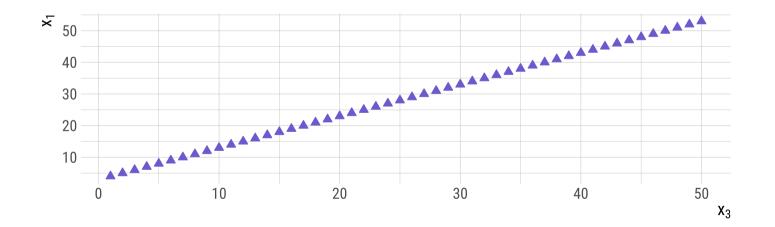
However, in practice we should worry more about strong **stochastic** relationships between two independent variables.

$$x_1=lpha_0+lpha_1x_3+\epsilon_i$$

Linear relationships

What does a linear relationship between two independent variables mean in practice?

- If two variables (say, x_1 and x_3) move **together**, then how can OLS **distinguish** between the effects of these two on *y*?
 - It **cannot**!



Perfect multicollinearity

CLRM Assumption VI only refers to **perfect** multicollinearity.

With its presence, OLS estimation is **indeterminate**.

• Why?

How to disentangle the effect of each independent variable on *y*?

The *ceteris paribus* assumption no longer holds.

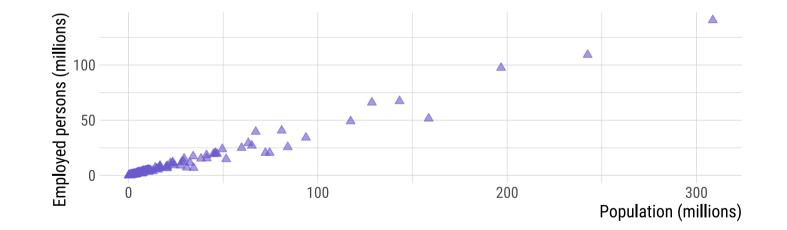
• Good news: rare to occur in practice.

Imperfect multicollinearity

Imperfect multicollinearity

Even though CLRM Assumption VI **does not** contemplate this version of multicollinearity, it is an actual problem within OLS estimation.

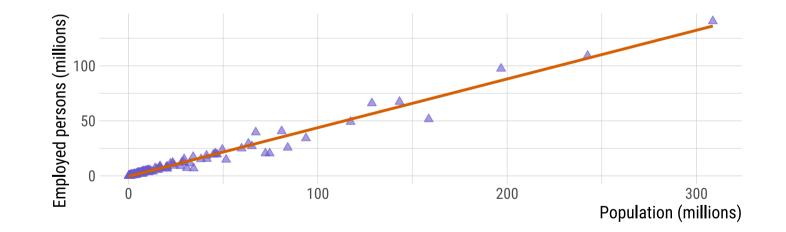
Strong **stochastic** relationships imply strong **correlation coefficients** between two independent variables.



Imperfect multicollinearity

Even though CLRM Assumption VI **does not** contemplate this version of multicollinearity, it is an actual problem within OLS estimation.

Strong **stochastic** relationships imply strong **correlation coefficients** between two independent variables.



Consequences of multicollinearity

Consequences of multicollinearity

By itself, multicollinearity **does not** cause **bias** to OLS β coefficients.

However, it affects OLS standard errors.

Recall that standard errors are part of the **t-test formula**:

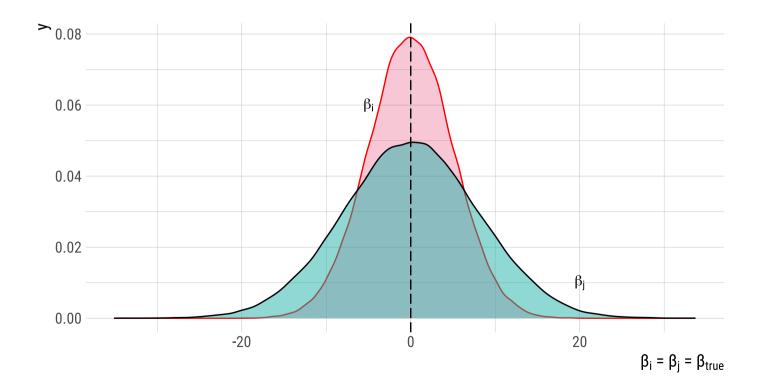
$$t = rac{{{\hat eta }_k}}{{SE({{\hat eta }_k})}}$$

Therefore, it affects OLS inference.

Consequences of multicollinearity

Visually:

• Which estimate is *relatively more efficient*?



Consider the following model:

 $log(rgdpna_i) = eta_0 + eta_1 pop_i + eta_2 emp_i + eta_3 ck_i + eta_4 ccon_i + u_i$

where (for each country *i*):

- rgdpna: real GDP (millions 2011 USD)
- pop: population (millions)
- emp: number of employed persons (millions)
- ck: capital services levels (index, USA = 1)
- ccon: real consumption (households and government)

		#>
#>		
#>		Dependent variable:
#>		
#>		log(rgdpna)
#>		
#>	рор	0.050***
#>		(0.018)
#>	emp	-0.069
#>		(0.042)
#>	ck	26.632***
#>		(6.518)
#>	ccon	-0.00000***
#>		(0.00000)
#>	Constant	10.785***
#>		(0.145)
#>		
#>	Observations	130
#>	R2	0.478
#>	Adjusted R2	0.461
#>	Residual Std. Error	1.404 (df = 125)
#>	F Statistic	28.605*** (df = 4; 125)
#>		
#>	Note:	*p<0.1; **p<0.05; ***p<0.01

A little modification:

$$log(rgdpna_i) = eta_0 + eta_1 log(emp_i) + eta_3 ck_i + eta_4 log(ccon_i) + u_i$$

		#>
#>		
#>		Dependent variable:
#>		
#>		log(rgdpna)
#>		
#>	log(emp)	-0.059**
#>		(0.029)
#>	ck	-0.206
#>		(0.288)
#>	log(ccon)	1.076***
#>		(0.027)
#>	Constant -0.487*	
#>		(0.275)
#>		
#>	Observations	130
#>	R2	0.979
#>	Adjusted R2	0.979
#>	Residual Std. Error	0.277 (df = 126)
#>	F Statistic	2,001.826*** (df = 3; 126)
#>		
#>	Note:	*p<0.1; **p<0.05; ***p<0.01

Checking **correlation** coefficients:

- *Corr*(*pop*_{*i*}, *emp*_{*i*}) = 0.987
- *Corr*(*ccon_i*, *emp_i*) = 0.980

• *Corr*(*log*(*ccon*_{*i*}), *emp*_{*i*}) = 0.584

A recommended procedure is to always check out the **correlation coefficient** among the chosen independent variables.

• In addition, we can calculate Variance Inflation Factors (VIFs):

$$VIF(\hat{eta}_i) = rac{1}{(1-R_i^2)}$$

where R_i^2 is the coefficient of determination of the *auxiliary regression* models.

- The procedure is to estimate one auxiliary regression model for *each* independent variable.
- Then, store the R^2 for each regression.
- A VIF greater than 5 is already sifficient to imply high multicollinearity.

In R... model_1 %>% vif() #> pop emp ck ccon #> 42.68883 48.52425 30.43790 27.30301 model_2 %>% vif() #> log(emp) ck log(ccon) #> 3.717818 1.516566 4.236570

• What do we conclude?

In Stata...

reg lrdgpna pop emp ck ccon

vif

Variable	VIF	1/VIF
+		
emp	48.52	0.020608
pop	42.69	0.023425
ck	30.44	0.032854
ccon	27.30	0.036626
+		
Mean VIF	37.24	

• What do we conclude?

In Stata...

reg lrdgpna lemp ck lccon

vif

Variable	VIF	1/VIF
lccon	4.24	0.236040
lemp	3.72	0.268975
ck	1.52	0.659385
Mean VIF	3.16	

• What do we conclude?

Next time: Multicollinearity in practice