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MotivationMotivation



Linear relationships
Let us recall CLRM Assumption VI:

No explanatory variable is a perfect linear function of any other explanatory variable.

This assumption implies a deterministic relationship between two independent variables.

However, in practice we should worry more about strong stochastic relationships between two
independent variables.

x1 = α0 + α1x3

x1 = α0 + α1x3 + ϵi
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Linear relationships
What does a linear relationship between two independent variables mean in practice?

If two variables (say,  and ) move together, then how can OLS distinguish between the effects
of these two on ?

It cannot!

x1 x3

y
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Perfect multicollinearity

CLRM Assumption VI only refers to perfect multicollinearity.

With its presence, OLS estimation is indeterminate.

Why?

How to disentangle the effect of each independent variable on ?

The ceteris paribus assumption no longer holds.

Good news: rare to occur in practice.

y
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Imperfect multicollinearity
Even though CLRM Assumption VI does not contemplate this version of multicollinearity, it is an actual
problem within OLS estimation.

Strong stochastic relationships imply strong correlation coef�cients between two independent
variables.
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Consequences of multicollinearity

By itself, multicollinearity does not cause bias to OLS  coef�cients.

However, it affects OLS standard errors.

Recall that standard errors are part of the t-test formula:

Therefore, it affects OLS inference.

β

t =
β̂k

SE(β̂k)
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Consequences of multicollinearity
Visually:

Which estimate is relatively more ef�cient?
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Dealing with multicollinearity
Consider the following model:

where (for each country i):

rgdpna : real GDP (millions 2011 USD)
pop : population (millions)
emp : number of employed persons (millions)
ck : capital services levels (index, USA = 1)
ccon : real consumption (households and government)

log(rgdpnai) = β0 + β1popi + β2empi + β3cki + β4cconi + ui
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Dealing with multicollinearity
#> 

#> ===============================================
#>                         Dependent variable:    
#>                     ---------------------------
#>                             log(rgdpna)        
#> -----------------------------------------------
#> pop                          0.050���          
#>                               (0.018)          
#> emp                           -0.069           
#>                               (0.042)          
#> ck                           26.632���         
#>                               (6.518)          
#> ccon                        -0.00000���        
#>                              (0.00000)         
#> Constant                     10.785���         
#>                               (0.145)          
#> -----------------------------------------------
#> Observations                    130            
#> R2                             0.478           
#> Adjusted R2                    0.461           
#> Residual Std. Error      1.404 (df = 125)      
#> F Statistic           28.605��� (df = 4; 125)  
#> ===============================================
#> Note:               �p<0.1; ��p<0.05; ���p<0.01 15 / 23



Dealing with multicollinearity

A little modi�cation:

log(rgdpnai) = β0 + β1log(empi) + β3cki + β4log(cconi) + ui
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Dealing with multicollinearity
#> 

#> ===============================================
#>                         Dependent variable:    
#>                     ---------------------------
#>                             log(rgdpna)        
#> -----------------------------------------------
#> log(emp)                     -0.059��          
#>                               (0.029)          
#> ck                            -0.206           
#>                               (0.288)          
#> log(ccon)                    1.076���          
#>                               (0.027)          
#> Constant                      -0.487*          
#>                               (0.275)          
#> -----------------------------------------------
#> Observations                    130            
#> R2                             0.979           
#> Adjusted R2                    0.979           
#> Residual Std. Error      0.277 (df = 126)      
#> F Statistic         2,001.826��� (df = 3; 126) 
#> ===============================================
#> Note:               �p<0.1; ��p<0.05; ���p<0.01
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Dealing with multicollinearity

Checking correlation coef�cients:

Corr(popi, empi) = 0.987

Corr(cconi, empi) = 0.980

Corr(log(cconi), empi) = 0.584
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Dealing with multicollinearity
A recommended procedure is to always check out the correlation coef�cient among the chosen
independent variables.

In addition, we can calculate Variance In�ation Factors (VIFs):

where  is the coef�cient of determination of the auxiliary regression models.

The procedure is to estimate one auxiliary regression model for each independent variable.
Then, store the  for each regression.
A VIF greater than 5 is already sif�cient to imply high multicollinearity.

V IF(β̂i) =
1

(1 − R2
i )

R2
i

R2
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Dealing with multicollinearity
In R...

model_1 %>%
  vif()

#>      pop      emp       ck     ccon 
#> 42.68883 48.52425 30.43790 27.30301

model_2 %>% 
  vif()

#>  log(emp)        ck log(ccon) 
#>  3.717818  1.516566  4.236570

What do we conclude?
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Dealing with multicollinearity
In Stata...

reg lrdgpna pop emp ck ccon

vif

    Variable |       VIF       1/VIF  
-------------+----------------------
         emp |     48.52    0.020608
         pop |     42.69    0.023425
          ck |     30.44    0.032854
        ccon |     27.30    0.036626
-------------+----------------------
    Mean VIF |     37.24

What do we conclude?
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Dealing with multicollinearity
In Stata...

reg lrdgpna lemp ck lccon

vif

    Variable |       VIF       1/VIF  
-------------+----------------------
       lccon |      4.24    0.236040
        lemp |      3.72    0.268975
          ck |      1.52    0.659385
-------------+----------------------
    Mean VIF |      3.16

What do we conclude?
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Next time: Multicollinearity in practiceNext time: Multicollinearity in practice


