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Introduction

Now that we know how to run, interpret, and test hypotheses
from our regression models, it is time to go a little beyond its
assumptions. What if one (or more) Classical Assumptions
are violated? Two things about it. First, OLS will no longer be
BLUE, that is, the best linear unbiased estimator, and our estimated
coefficients will not be valid. Second, there is no need to worry.
We can fix several mistakes with simple tests and procedures.
We will learn the most common violations and solutions.

The first OLS problem we investigate regards omitting impor-
tant independent variables from a regression model, known as
Omitted Variables Bias (OVB). As the name already anticipates,
such issue causes bias in our estimated coefficients, the β̂′s.
Thus, the expected value of our slope coefficients are no longer
equal to the “true” population parameters.

However, since day 1 you are aware that we almost never have
access to the “true” model. We can never be sure whether we
are close to the population specification or not, and this is a
serious challenge. As said before, theory is our best guide, and
based on that we try to estimate the best model possible. Since
in practice this problem is very common and hard to deal with,
we first need to understand its theoretical details, and then
evaluate what to do from there.

Omitted variables bias (OVB)

Before any regression estimation, our model must be well
specified. This is part of CLRM Assumption I, and this means
that the model must:

• Have the correct covariates (xi);
• Have the correct functional form (whether or not to use

logs, quadratic terms, interactions, etc.);
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• Have the correct form of the stochastic error term (which
must be additive).

If any of these requirements is not met, the regression model is
misspecified. The last item is easy to address; the other two
are more complicated.

Deciding whether a variable belongs in an equation should be
based on theory. If it supports its inclusion, then the variable
should be explicitly on the right-hand side of the regression.
However, if there is a theoretical ambiguity, a dilemma arises.
Leaving a relevant variable out of a model will likely bias
OLS estimates, while including unnecessary regressors tends
to inflate estimates’ variances and standard errors, harming
inference from our models.

Let us start with the first case. Suppose a relevant independent
variable is left out of an econometric model, either because you
have forgotten it, or perhaps there is no available data. This
situation is known as an omitted variable case. The most serious
problem associated with this fact is the bias such omission
causes in the estimated coefficients, our β̂′s. Analytically, this
means

E(β̂i) ≠ βtrue
i

That is, the expected value of the estimated coefficient deviates
from the “true” value of the population parameter.

Consequences of OVB

What happens if a relevant variable is omitted from a model?
For theoretical and presentation purposes, we will assume
knowledge of the “true” model, at least for now. Say the
population model is
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ytrue
i = β0 + β1x1i + β2x2i + ui

Now suppose we omit x2 in our sample regression model
(regardless of the reason). Then, it becomes

yi = β0 + β1x1i + u∗
i

Now, we have the error term denoted by u∗
i
. Given the “true”

and the estimated models, we can represent u∗
i

as

u∗
i = ui + β2x2i

The impact of x2 then goes to u∗
i
, so x2 and u∗

i
will be correlated.

If x2 and x1 have some type of correlation—which is usually
the case—, x1 and u∗

i
will change as x2 changes. Therefore, the

error term is no longer independent of the explanatory variable,
as stated by CRLM Assumption III. As a consequence, the
Gauss-Markov theorem is violated and OLS is no longer BLUE,
since

E(β̂1) ≠ βtrue
1

The estimated coefficient of β1 will compensate for the fact that
x2 is missing from the equation. If x1 and x2 are correlated,
the estimated model will attribute to x1 variations in y actually
caused by x2, denoting a bias in x1’s coefficient.

Let us look at an example:

Ŷi = 27.7 − 0.11PCi + .03PBi + .23 YDi

n = 29 R̄2 = .99
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This is a standard demand model for chicken (Yi), controlling
for its price (PCi), the price of a substitute—in this case beef
(PBi)—, and per capita disposable income (YDi). Notice that
the model’s adjusted R2 is excellent (0.99), and it follows what
standard microeconomic theory recommends for normal goods,
such as chicken.

Now, suppose we leave PBi out of the model:

Ŷi = 30.68 − 0.08PCi + .25 YDi

n = 29 R̄2 = .98

Let us compare the β̂ coefficients from both models:

• β̂PC =⇒ from -0.11 to -0.08
• β̂YD =⇒ from 0.23 to 0.25

Notice that the coefficient for PCi becomes biased upward (i.e., it
gets less negative), and the same happens with YD’s. Further-
more, despite still having a good adjusted R2, it is lower than
before. Thus, we were better off with the first model.

This is a clear case of OVB. Even though we cannot be 100% sure
that the first model is the “true” one, it was estimated based
on what microeconomic theory recommends,1 and once one 1 Could the model be improved by

adding a variable representing prefer-
ences? Food for thought.

of these recommended variables was removed, the coefficients
became biased and the goodness-of-fit of the model was also
affected.

Correcting for OVB

As said before, it is hard to precisely detect OVB, since it is
impossible to assess the “true” population model. Furthermore,
the best indications come from theory, guiding us with respect
to the following questions:
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• What variables must be included?
• What signs do we expect?
• What is the range of acceptable values for the β̂’s?

As a practical recommendation, we should always invest time
thinking about our model, before any data collection and es-
timation begin. This way, we know what the literature says
and recommends, and we are less likely to be surprised with
any results. In addition, if you know that your model suffers
from OVB, it is always preferable to have a parsimonious model
(i.e., preferring simpler specifications, as opposed to complex
models), and let theory guide your next steps before crowding
the model with any new variable(s).

Including irrelevant regressors

Adding variables in models where these do not belong does
not necessarily cause bias, but tends to inflate the variances and
standard errors of estimated coefficients.

Let us assume once again we know the “true” model governing
y:

ytrue
i = β0 + β1x1i + ui

Now suppose we get excited with Econometrics and include x2
in our sample regression model. Then, it becomes

yi = β0 + β1x1i + β2x2i + u∗∗
i

And we have a residual term denoted by u∗∗
i

. Now, u∗∗
i

is

u∗
i = ui − β2x2i
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Now, our regression’s error term is underrepresented, since it
now has a term that should not be in the model at all. This
inclusion will not cause bias if the “true” coefficient of the
additional (irrelevant) variable is zero (βtrue

2 = 0). Then, β̂1 will
be unbiased. But, since we don’t know the “true” value of β2,
why take the risk?

What is almost impossible to avoid is that the inclusion of
this irrelevant variable will likely increase the variance of the
estimated coefficients, whose main consequence is a decrease
in the absolute magnitude of t-scores, thus affecting inference.
Lastly, the adjusted R2 may also fall.

Let us look at an example:

Ŷi = 27.6 − 0.58PCi + .012PBi + .24 YDi − .14Rt

n = 29 R̄2 = .98

The model above adds the interest rate (Rt) to our chicken
demand model. Why would someone add the interest rate to a
demand model for chicken? Unless a consumer is considering
taking a loan to buy dinner, the inclusion of Rt is very question-
able. In addition to a drop in R̄2, the coefficients have slightly
changed, relative to the ideal model. Thus, we have a proof
that inflating our models with irrelevant variables only brings
more problems than necessary.

Four important specification criteria

Based on what we have seen so far in this lecture, as well as pre-
vious contents, we can consider four model specification criteria
that are necessary to think about when doing Econometrics in
practice, as well as comparing different models:
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1. Theory: is it theoretically recommended to add a variable
to the model?

2. Statistical significance: are our coefficients (β̂k) statistically
significant? Are their signs as expected? Did adding a
new independent variable change the statistical significant
of other control variables?

3. Goodness-of-fit: when a new variable is added (removed),
is the overall fit (measured by the adjusted R2) improved?

4. Bias: how do the coefficients behave when adding new
variables to a model?

The RESET test for functional form
misspecification

Suppose the true model representing a dependent variable is
known as

ytrue
i = β0 + β1x1i + β2x2i + β3(x2i)2 + β4x1ix2i + ui

And, instead, we estimate

yi = β0 + β1x1i + β2x2i + u∗
i

You already know that the error term from the latter model,
u∗
i
, will include β3(x2i)2 and β4x1ix2i, which are part of the

“true” specification. But can functional forms of independent
variables also be considered potential omitted variables?

The answer is yes. I know, this adds another layer of complexity
regarding OVB, but, if that is the case, at least we do not need
to look for new data; we just work with what we already have.
With this in mind, it is possible to test for possible omitted
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variables. And one of the most popular tests for OVB and
model misspecification is Ramsey’s Regression Specification Error
Test, also known as the RESET test.

In previous sections, we have observed how the adjusted R2

changes as we include/remove covariates from a regression
model. This is a good start, but if we want to be more robust,
the RESET test also checks for model misspecification. Put
simply, it measures whether the fit of a given model can be
significantly improved by the addition of squared, cubed or
even higher powers of the estimated dependent variable, ŷ. As
will be more evident in a moment, the basic intuition of this
test is to include additional terms as proxies for any possibly
omitted variable(s) or incorrect functional forms being present
in a regression model.

We will look at a more analytical explanation of the test now,
and in our applied lecture, we will apply this test to real data.
The RESET test has basically three steps. The first is to estimate
our regression model using OLS, which is what we have been
doing so far. After the model is estimated, we end up with (for
our example purposes, we have a regression model with only 2
regressors):

ŷi = β̂0 + β̂1x1i + β̂2x2i (1)

The second step is to take the fitted values for y, i.e., ŷi, from
the above estimated model and create new variables, namely
ŷ2
i
, ŷ3

i
, and even ŷ4

i
. Then, we use these terms as independent

variables and re-estimate the model once again using OLS:

yi = β0 + β1x1i + β2x2i + β3ŷ
2
i + β4ŷ

3
i + β5ŷ

4
i + ui (2)

Equation (2) can be considered an auxiliary regression. Usually,
using the second and third powers is enough for RESET test
purposes. The third and last step is to compare the fits of models
(1) and (2) using an F-test. If the two models are significantly
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different from each other, then model (1) may be misspecified.
The RESET test, however, does not specifically inform in what
variable lies the problem, or what functional may have been
omitted from the model. Despite this fact, it is a great way to
diagnose possibly omitted variables and/or functional forms.

Okay, these are the steps of the RESET test. But what is the logic
contained in the second and third steps? A few lines ago, I
said that ŷ2

i
, ŷ3

i
, and other powers of the estimated values of the

dependent variable may serve as proxies for omitted variables.
That is true. Now, look once again at equation (1). If you square
the left-hand side, you’ll get ŷ2

i
. To maintain equality between

both sides, you are also squaring the right-hand side, obtaining
(β̂0 + β̂1x1i + β̂2x2i)2. I will not ask you to solve this latter term,
since it looks ugly, but I am sure you have at least some idea
of what it will look like. It will generate several squared and
interaction terms. Likewise, the same logic applies if we raise ŷi

to higher powers.

The newly generated terms will act as proxies for potentially
omitted variables, especially functional forms (such as squared
and interaction terms) that may not have been included in
the original model. But why do we use ŷ2

i
, ŷ3

i
and perhaps

other powers, and not the right-hand side of equation (1)
raised to these powers? Ramsey was well aware of degrees-of-
freedom, and since the LHS must equal the RHS, we are able to
save several DOFs by using functional forms of the estimated
dependent variable, instead of flooding the auxiliary regression
with an enormous amount of additional regressors.

Then, what we do in the third step is running an F-test on the
new coefficients included in the auxiliary regression. For our
example, it would be

• H0 : β̂3 = β̂4 = β̂5 = 0
• Ha : H0 is not true

Thus, the RESET test is nothing but an F-test applied to an
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auxiliary regression that includes higher powers of ŷ to identify
possibly omitted variables, especially related to functional
forms. The above null and alternative hypotheses can be
translated for the RESET test as

• H0 : the model is well specified
• Ha : the model is not well-specified

In case we do not reject H0, our model does not suffer from
functional form misspecification, since the “new” coefficients
are not jointly significant. In case we reject H0, then our model
suffers from a type of omitted variables problem. A good
starting point to fix this is testing different functional forms of
the independent variables, such as x2

1, x1 · x2, an so on. Then,
we can run this test again and see whether the problem was
fixed.

This test’s procedure will be made clearer as we practice this
with real data. However, it is important that you capture the
intuition behind this test, so performing it with real-world data
will be really simple.
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