Omitted Variables Bias (OVB)

EC 339

Marcio Santetti
Fall 2022

Motivation

Well-specified models

Recall CLRM Assumption I:

"The regression model is linear, correctly specified, and has an additive stochastic error term."

The hardest part regarding this assumption is to have a well-specified model.
Suppose we have the following model:

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\beta_{3} x_{3 i}+u_{i}
$$

- How can we evaluate whether this is a well-specified model?
- Does it have the appropriate functional form?
- Is this model in accordance with economic theory?

Well-specified models

In fact, we can never know for sure if we have the most appropriate model.

Theory is always (and will always be) the best guide.

In addition, we must always visualize our data, knowing it better in order to define the model's functional form.

- A different functional form may also be an omitted variable!
- For instance, if the 'true' model contains a squared term, in case we omit it from our sample regression model, it will be misspecified.

The nature of the problem

Recalling bias

An estimator is biased if its expected value is different from the true population parameter.
When considering our slope coefficients $\left(\hat{\beta}_{i}\right)$, we expect that they, on average, are close to the "true" population parameter, $\beta_{\text {pop }}$.

Unbiased: $\mathbb{E}\left[\hat{\beta}_{O L S}\right]=\beta_{p o p}$
Biased: $\mathbb{E}\left[\hat{\beta}_{O L S}\right] \neq \beta_{p o p}$

Omitting a relevant variable

- Assume we know the true population model:

$$
y_{i}^{\text {true }}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+u_{i}
$$

- And we estimate the following model:

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+u_{i}^{*}
$$

with

$$
u_{i}^{*}=u_{i}+\beta_{2} x_{2 i}
$$

- Assuming that x_{1} and x_{2} (the omitted variable) share some degree of correlation (which is usually the case), the error term is no longer independent of an explanatory variable, as per CLRM Assumption III.

Omitting a relevant variable

- Consider a simple demand model:

$$
\log \left(\text { qchicken }_{i}\right)=\beta_{0}+\beta_{1} \text { pchicken }_{i}+\beta_{2} \text { pbeef }_{i}+\beta_{3} \operatorname{dispinc}_{i}+\beta_{4} \log \left(\text { xchicken }_{i}\right)+u_{i}
$$

- And we estimate it:

$$
\begin{aligned}
\log \left(\text { qchicken }_{i}\right)= & 2.95-0.23 \text { pchicken }_{i}+0.18 \text { pbeef }_{i}+ \\
& +0.000036 \text { dispinc }_{i}+0.75 \log \left(\text { xchicken }_{i}\right)
\end{aligned}
$$

Omitting a relevant variable

- And now we omit dispinc from the model:

$$
\log \left(\widehat{q c h i c k e n} n_{i}\right)=3.49-0.30 \text { pchicken }_{i}+0.25 \text { pbeef }_{i}+1.65 \log \left(x \text { chicken }_{i}\right)
$$

- This model's residual term contains dispinc.
- Let us check out the correlation coefficient between dispinc and other variables:

```
corr_y_pchicken corr_y_pbeef corr_y_x
\(-0.8552982-0.6940004\) NA
```


Omitting a relevant variable

| | 'True' model | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| term | estimate | std.error | statistic | p.value |
| (Intercept) | 2.9575599 | 0.0951466 | 31.084255 | 0.0000000 |
| p | -0.2342880 | 0.0176617 | -13.265322 | 0.0000000 |
| pb | 0.1814819 | 0.0509694 | 3.560608 | 0.0008732 |
| lexpts | 0.7526487 | 0.1404342 | 5.359440 | 0.0000026 |
| y | 0.0000361 | 0.0000052 | 6.986129 | 0.0000000 |

Biased model					
term	estimate	std.error	statistic	p.value	
(Intercept)	3.4926329	0.0801754	43.562414	0.0000000	
p	-0.3045472	0.0206204	-14.769222	0.0000000	
pb	0.2551898	0.0708221	3.603253	0.0007563	
lexpts	1.6504674	0.0804149	20.524400	0.0000000	

Including irrelevant variables

Including irrelevant variables

- Now assume that the true model is:

$$
y_{i}^{\text {true }}=\beta_{0}+\beta_{1} x_{1 i}+u_{i}
$$

- And, instead, we estimate

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+u_{i}^{*}
$$

with

$$
u_{i}^{*}=u_{i}-\beta_{2} x_{2 i}
$$

Including irrelevant variables

- Suppose we add popgro, a variable measuring population growth, to our original model:

$$
\begin{aligned}
{\log \left(\text { qchicken }_{i}\right)=} \begin{aligned}
& 2.89-0.23 \text { pchicken }_{i}+0.19 \text { pbeef }_{i}+ \\
& +0.000038 \text { dispinc }_{i}+0.69 \log \left(\text { xchicken }_{i}\right)+ \\
& +0.017 \text { popgro }_{t}
\end{aligned}
\end{aligned}
$$

Including irrelevant variables

'True' model				
term	estimate	std.error	statistic	p.value
(Intercept)	2.9575599	0.0951466	31.084255	0.0000000
p	-0.2342880	0.0176617	-13.265322	0.0000000
pb	0.1814819	0.0509694	3.560608	0.0008732
lexpts	0.7526487	0.1404342	5.359440	0.0000026
y	0.0000361	0.0000052	6.986129	0.0000000

	Model with irrelevant variable				
term	estimate	std.error	statistic	p.value	
(Intercept)	2.8951497	0.1353082	21.3967020	0.0000000	
p	-0.2369439	0.0211080	-11.2253171	0.0000000	
pb	0.1914541	0.0537460	3.5622008	0.0008984	
lexpts	0.6996547	0.1722889	4.0609386	0.0001978	
y	0.0000385	0.0000065	5.9044418	0.0000005	
popgro	0.0177147	0.0300050	0.5903904	0.5579493	

The RESET test

The RESET test

Knowing for sure whether our models suffer from Omitted Variables Bias (OVB) is hard. However, the RESET test for functional form misspecification can help us.

It consists of running an F-test on functional forms of the fitted values of the dependent variable (\hat{y}).
These functional forms $\left(\hat{y}^{2}, \hat{y}^{3}\right.$, etc. $)$ serve as proxies for potentially omitted variables.

Recall that functional forms of already included independent variables can also be omitted variables!

The RESET test

The recipe 煮傮:

1. Estimate the regression model via OLS;
2. Store the regression's fitted values $\left(\hat{y}_{i}\right)$;
3. Use functional forms of \hat{y}_{i} (squared, cubic terms, etc.) as independent variables in a new model;
4. Compare the fits of models from step 1 and 3 through an F-test;
5. In case these additional terms are not jointly significant, we do not suspect of omitted variables.
6. In case these terms are jointly significant, we should consider adding new regressors to the original model.

The RESET test

Estimate the regression model via OLS

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+u_{i}
$$

Store the regression's fitted values $\left(\hat{y}_{i}\right)$

$$
\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1 i}+\hat{\beta}_{2} x_{2 i}
$$

Use functional forms of \hat{y}_{i} (squared, cubic terms, etc.) as independent variables in a new model

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\beta_{3} \hat{y}_{i}^{2}+\beta_{4} \hat{y}_{i}^{3}+u_{i}
$$

Compare the fits of models from step 1 and 3 through an F-test

- $H_{0}: \hat{\beta}_{3}=\hat{\beta}_{4}=0$
- $H_{a}: H_{0}$ is not true

The RESET test

- In case the null hypothesis is rejected, then we have evidence of omitted variables.
- In case we do not reject H_{0}, then we can stick with the original model.

In R...
resettest(model_true, power = $2: 4$)
\#>
\#> RESET test
\#>
\#> data: model_true
\#> RESET = 1.6352, df1 = 3, df2 = 43, p-value = 0.1953

What do we conclude?

The RESET test

In Stata...
estat ovtest

Ramsey RESET test for omitted variables
Omitted: Powers of fitted values of lq
H0: Model has no omitted variables
$F(3,43)=1.64$
Prob >F $=0.1953$

What do we conclude?

Next time: OVB in practice

