Omitted Variables Bias (OVB) EC 339

Marcio Santetti Fall 2022

Motivation

Well-specified models

Recall CLRM Assumption I:

"The regression model is linear, correctly specified, and has an additive stochastic error term."

The hardest part regarding this assumption is to have a **well-specified model**.

Suppose we have the following model:

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+eta_3x_{3i}+u_i$$

- How can we evaluate whether this is a well-specified model?
- Does it have the appropriate functional form?
- Is this model in accordance with economic theory?

Well-specified models

In fact, we can never know for sure if we have the most appropriate model.

Theory is always (and will always be) the best guide.

In addition, we must always **visualize** our data, knowing it better in order to define the model's functional form.

• A different functional form may also be an omitted variable!

• For instance, if the 'true' model contains a squared term, in case we omit it from our sample regression model, it will be **misspecified**.

The nature of the problem

Recalling bias

An estimator is **biased** if its expected value is different from the *true* population parameter.

When considering our slope coefficients $(\hat{\beta}_i)$, we expect that they, on average, are close to the "true" population parameter, β_{pop} .

Jnbiased:
$$\mathbb{E}\left[\hat{\beta}_{OLS}\right] = \beta_{pop}$$
 Biased: $\mathbb{E}\left[\hat{\beta}_{OLS}\right] \neq \beta_{pop}$

• Assume we know the **true** population model:

$$y_i^{true}=eta_0+eta_1x_{1i}+eta_2x_{2i}+u_i$$

• And we estimate the following model:

$$y_i=eta_0+eta_1x_{1i}+u_i^st$$

with

$$u_i^* = u_i + eta_2 x_{2i}$$

 Assuming that x₁ and x₂ (the omitted variable) share some degree of correlation (which is usually the case), the error term is no longer **independent** of an explanatory variable, as per CLRM Assumption III.

• Consider a simple demand model:

 $log(qchicken_i) = eta_0 + eta_1 pchicken_i + eta_2 pbeef_i + eta_3 dispinc_i + eta_4 log(xchicken_i) + u_i$

• And we estimate it:

$$\widehat{log(qchicken_i)} = 2.95 - 0.23 \ pchicken_i + 0.18 \ pbeef_i + 0.000036 \ dispinc_i + 0.75 \ log(xchicken_i)$$

• And now we omit dispine from the model:

 $\widehat{log(qchicken_i)} = 3.49 - 0.30 \ pchicken_i + 0.25 \ pbeef_i + 1.65 \ log(xchicken_i)$

• This model's residual term contains dispinc.

• Let us check out the correlation coefficient between dispine and other variables:

 corr_y_pchicken
 corr_y_pbeef
 corr_y_x

 -0.8552982
 -0.6940004
 NA

'True' model				
term	estimate	std.error	statistic	p.value
(Intercept)	2.9575599	0.0951466	31.084255	0.0000000
р	-0.2342880	0.0176617	-13.265322	0.0000000
pb	0.1814819	0.0509694	3.560608	0.0008732
lexpts	0.7526487	0.1404342	5.359440	0.0000026
у	0.0000361	0.0000052	6.986129	0.0000000

Biased model				
term	estimate	std.error	statistic	p.value
(Intercept)	3.4926329	0.0801754	43.562414	0.0000000
р	-0.3045472	0.0206204	-14.769222	0.0000000
pb	0.2551898	0.0708221	3.603253	0.0007563
lexpts	1.6504674	0.0804149	20.524400	0.0000000

Including irrelevant variables

Including irrelevant variables

• Now assume that the **true** model is:

$$y_i^{true}=eta_0+eta_1x_{1i}+u_i$$

• And, instead, we estimate

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+u_i^st$$

with

$$u_i^* = u_i - eta_2 x_{2i}$$

• Suppose we add popgro, a variable measuring population growth, to our original model:

$$\widehat{log(qchicken_i)} = 2.89 - 0.23 \ pchicken_i + 0.19 \ pbeef_i + 0.000038 \ dispinc_i + 0.69 \ log(xchicken_i) + 0.017 \ popgro_t$$

Including irrelevant variables

'True' model					
term	estimate	std.error	statistic	p.value	
(Intercept)	2.9575599	0.0951466	31.084255	0.0000000	
р	-0.2342880	0.0176617	-13.265322	0.0000000	
pb	0.1814819	0.0509694	3.560608	0.0008732	
lexpts	0.7526487	0.1404342	5.359440	0.0000026	
У	0.0000361	0.0000052	6.986129	0.0000000	

Model with irrelevant variable

term	estimate	std.error	statistic	p.value
(Intercept)	2.8951497	0.1353082	21.3967020	0.0000000
р	-0.2369439	0.0211080	-11.2253171	0.0000000
pb	0.1914541	0.0537460	3.5622008	0.0008984
lexpts	0.6996547	0.1722889	4.0609386	0.0001978
У	0.0000385	0.0000065	5.9044418	0.0000005
popgro	0.0177147	0.0300050	0.5903904	0.5579493

Knowing for sure whether our models suffer from Omitted Variables Bias (OVB) is hard.

However, the RESET test for functional form misspecification can help us.

It consists of running an **F-test** on **functional forms** of the **fitted values** of the dependent variable (\hat{y}) . These functional forms $(\hat{y}^2, \hat{y}^3, etc.)$ serve as **proxies** for potentially omitted variables.

Recall that functional forms of already included independent variables can also be omitted variables!

The **recipe** 🕱 😨:

- 1. Estimate the regression model via OLS;
- 2. Store the regression's fitted values (\hat{y}_i) ;
- 3. Use functional forms of \hat{y}_i (squared, cubic terms, etc.) as **independent variables** in a new model;
- 4. Compare the fits of models from step 1 and 3 through an F-test;
- 5. In case these additional terms are **not** jointly significant, we do not suspect of omitted variables.
- 6. In case these terms are *jointly significant*, we should consider adding new regressors to the original model.

Estimate the regression model via OLS

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+u_i$$

Store the regression's fitted values (\hat{y}_i)

$${\hat y}_i = {\hat eta}_0 + {\hat eta}_1 x_{1i} + {\hat eta}_2 x_{2i}$$

Use functional forms of \hat{y}_i (squared, cubic terms, etc.) as independent variables in a new model

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + eta_3 {\hat y}_i^2 + eta_4 {\hat y}_i^3 + u_i$$

Compare the fits of models from step $\mathbf{1}$ and $\mathbf{3}$ through an F-test

- $\bullet \hspace{0.2cm} H_{0}: \hat{\boldsymbol{\beta}}_{3} = \hat{\boldsymbol{\beta}}_{4} = 0$
- $H_a: H_0$ is not true

- In case the **null hypothesis** is **rejected**, then we have evidence of omitted variables.
- In case we **do not reject** H_0 , then we can stick with the original model.

In R...

```
resettest(model_true, power = 2:4)
```

```
#>
#>
RESET test
#>
#> data: model_true
#> RESET = 1.6352, df1 = 3, df2 = 43, p-value = 0.1953
```

What do we conclude?

In Stata...

estat ovtest

Ramsey **RESET test for** omitted **variables** Omitted: Powers **of** fitted **values of** lq

H0: Model has no omitted variables

F(3, 43) = 1.64 Prob > F = 0.1953

What do we conclude?

Next time: OVB in practice