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Introduction

When we studied the Classical Assumptions of OLS, we es-
tablished that our regression models are linear whenever the
linearity in parameters is preserved. This is why we are able to in-
corporate nonlinearities, such as applying log-transformations
to dependent and independent variables. But there’s more we
can do with our variables. In case we expect or detect possible
nonlinear behaviors when plotting a scatter diagram of two
variables, we can model those nonlinearities in many ways.
Here, we will look at the most popular functional forms, so you
can add these to your arsenal.

Regression though the origin

There are occasions when the population regression model
assumes the following form:

yi = β1x1i + ui

Note that the regression is estimated without an intercept. In
these cases, when x1 = 0, E(y) = 0. Although a rare case, there
are certain relationships for which this is reasonable.

As an example, consider income tax revenues. When income (x)
is zero, tax revenues (y) will also be zero, and it is reasonable to
assume that these will not go below zero, only taking values over
the positive domain of income. In case we assume a progressive
taxation regime, we can illustrate it with Figure 1.

Unless recommended by theory, estimating a regression with-
out an intercept is not usually recommended. Such practice
is also more common in simple regression models, where the
intercept having a value of 0 tends to make more practical
sense.

2



Figure 1: A progressive taxation regime.

Using squared terms

In some cases, the slopes of a regression model are expected
to depend also on the level of the independent variable itself.
For such cases, polynomial functional forms may be adequate.
Consider the following quadratic model:

yi = β0 + β1x1i + β2(x1i)2 + β3x2i + ui

Before we move on, you have probably already noticed that
interpreting slope coefficients is nothing but computing the partial
derivative of yi with respect to the desired variable, xi. So, if we
want to compute the effect on y of a one-unit increase in, say,
x2, we are basically calculating a partial derivative:

∂y

∂x2
= β3

where the “∂” symbol denotes a partial derivative.
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Now, what if we want to compute the effect on y of a one-unit
increase in x1? We do the same thing:

∂y

∂x1
= β1 + 2 · (β2 · x1)

Since x1 appears in the model both in levels and squared, we
have to calculate the partial effect accordingly. Thus, we see
that the effect of x1 on y also depends on the level of x1: as it
changes, the effect on y will also change. This is something that
is not captured in models with a lower polynominal order. Let
us look at another example.

Earningsi = β0 + β1agei + β2(agei)2 + ui

As a worker gets older, the difference between age and age2

increases dramatically. So, agewould be more important at lower
values than it would be at higher ones. In other words, the
earning gains tend to decrease over time, as an employee gets
older. This does not mean that wages will necessarily fall; but
the increase in those gains tend to fall over time. In case we want
to model for such behavior, we should use quadratic terms in
our regression model.

As you are probably aware, this functional form produces
parabolas, as illustrated in Figure 2. The panel on the left shows
a convex function, where β1 < 0 and β2 > 0, whereas in the
right panel, β1 > 0 and β2 < 0, generating a concave function.
The fitted curves are shown in red, and for comparison we plot
regression lines in blue for both situations where the quadratic
term is not included. Notice how the red curve fits better the
data than the blue straight line. This is the gain in explanatory
power we obtain by improving our functional form.

As another example, consider the following model for housing
prices (in logs):
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Figure 2: Quadratic relationships.

�log(pricei) = 11.26+0.23 log(disti)−0.82 roomsi+0.089 rooms2
i

n = 506 R̄2 = .5

where log(disti) is the weighted distance between house i and
downtown (in logs), and roomsi is the average number of
rooms per house.

Let us interpret the effect of rooms on price:

∂ price

∂ rooms
= [β̂2 + 2 · (β̂3 · rooms)] × 100

Recall that, since this interpretation is in a log-level setting, we
have to multiply the partial effect by 100. We already have the
estimated coefficients for β2 and β3. But what to do with the
rooms term that remains after the partial derivative calculation?
Just plug in some value for it!

Let’s work on this last sentence a bit more. In theory, we can
plug in any value for rooms, and we will obtain a final partial
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effect to interpret. However, we should use a valid number of
rooms, in order to have a consistent analysis. One interesting
value to use is the average number of rooms in the sample. It
can also be the median, or the mode, or any reasonable value.
What matters is that the value you choose is consistent with
the used sample and with the problem at hand. For now, we’ll
stick with the mean. From this sample, the average number of
rooms is 6.28. So, we use rooms = 6:

∂ price

∂ rooms
= [−0.82 + 2 · (0.089 · 6)] × 100 = 24.8

Therefore, all else constant, and starting from a house with 6
rooms, one additional room in a house increases the price of
a house, on average, by 24.8%, based on our sample. Thus, in
our model we have included the actual number of rooms into
the interpretation of its effect on housing prices by including a
quadratic term. Nice, isn’t it?

Inverse form

The next functional form is the inverse form. It is used whenever
the impact of a particular independent variable is expected to
approach zero as the variable approaches infinity. Note: the
effect (that is, the associated β coefficient) approaches zero, not
the variable itself.

To model this effect, we use the reciprocal (or inverse) of one or
more of the control variables. Let us look at an example:

yi = β0 + β1

(
1
x1i

)
+ β2x2i + β3x3i + ui

Here, we are assuming that the effect of x1 on y approaches
zero as x1 increases. Depending on the sign of its associated
coefficient, in this case β1, we have different curves. In Figure 3,
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we represent the fit of the model to both situations: when
β1 > 0, in red, and when β1 < 0, in blue.

Figure 3: Inverse form.

To calculate the partial effect of x1 on y, we once again use a
partial derivative, appealing to the quotient rule:

∂y

∂x1
=

−β1

x2
1

Lastly, an example. If we suppose the unemployment rate’s
(ut) effect on wages (wt), after certain levels, tends to be zero,
we can model this situation as follows:

ŵt = .00679 + .1842
(

1
ut

)
Assuming an unemployment rate of 5%, the partial effect will
be
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∂wt

∂ut
=

−β̂1

u2
t

=
−(0.1842)
(0.05)2 = −73.68

Thus, all else constant, if the unemployment rate increases by
1 percentage point, wages will, on average, decrease by 73.68
dollars.

Interaction terms

Sometimes, it is natural for the partial effect, elasticity, or semi-
elasticity of the depedent variable with respect to an explanatory
variable to depend on the magnitude of another independent
variable.

Consider housing prices once again. A house’s number of rooms
definitely affects its price, but don’t you think that such effect
is also dependent on the size of the house? For instance, it is
likely that a house with a larger square-footage will be more
expensive than a smaller house, but with the same number of
bedrooms, at least on average and ceteris paribus.

In case we want to model such situation, we use interaction
terms, that is, we multiply two independent variables together.
Consider the following example:

pricei = β0+β1sqrfti+β2bdrmsi+β3sqrfti·bdrmsi+β4bthrmsi+ui

where sqrfti is the average square-footage, bdrmsi is the aver-
age number of bedrooms, and bthrmsi is the average number
of bathrooms for each house i.

The partial effect of bdrmsi on pricei is calculated by

∂price

∂bdrmsi
= β̂2 + β̂3 · sqrft
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Once again, to complete the interpretation, we simply plug
in a useful value of sqrft. Usually, the a measure such as the
mean is mostly recommended. For this example, if β̂3 > 0,
an additional bedroom yields a higher increase in prices for
larger houses. In other words, if statistically significant, there is
an interaction effect between a house’s square-footage and the
number of bedrooms.

Using dummy variables

Not every variable that we consider including in a regression
model can be quantitatively measured. For example, how do
we measure factors such as gender, race, religious beliefs, an
so on? These are qualitative variables, which are not easily
translated into numerical values. However, such covariates can
aggregate several interesting features to our models, and that
is the reason we are able to include these by using binary (or
dummy) variables.

A dummy variable, by definition, takes on the values of 0 or 1,
depending on a qualitative attribute. For example, we could then
model gender as taking the value of 1 if the individual is female,
and 0 if male; for for religion, 1 if LDS, and 0 otherwise, and so
on. Furthermore, we could use binary variables to model for a
variable fulfilling some kind of criterion, such as whether an
individual has attended college or not, committed felony, etc.

In our course, we will restrict our analysis of qualitative variables
to the binary case, but be aware that it is possible to include
more categories for qualitative variables.

Let us consider regression models that include binary covariates.
These can appear in two forms: intercept and slope dummy
variables.
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Intercept dummy variables

Let us start with the simplest case for including dummy vari-
ables in a regression model. When the binary variable appears
by itself in a model, we have an intercept dummy variable.
Here’s an example:

yi = β0 + β1x1i + β2x2i + β3Di + ui

where

Di =

{
1, if the ith observation meets a particular criterion
0, otherwise

Since we will be working with binary cases, we always want
to use one fewer dummy variable than the number of condi-
tions. Thus, if 2 conditions, 1 dummy variable. The “omitted”
condition—that is, when Di = 0—, forms the basis against
which the included condition—Di = 1—is compared.

Lastly, the coefficient on Di, β̂3, is interpreted as the effect
of the included condition, relative to the omitted condition.
Therefore, notice that we do not interpret binary variables the
same way we do with “regular” variables. When interpreting
dummy variables, we are comparing the category/criterion
representing Di = 1 to the “base” category/criterion, Di = 0,
and its effect on the dependent variable, and not the outcome
of a 1-unit increase in the criterion/category on the dependent
variable.

Let us look at a more specific example, relating participating
in a committee and the number of new articles written in a
semester for faculty members:
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Âi = .37 + .81ppi − .38Ci

n = 25 R̄2 = .45

where

Ci =

{
1, if the ith faculty member is part of a committee
0, otherwise

and ppi is the amount of papers written by faculty member i
before joining the committee.

The effect of joining a committee is calculated by

∂A

∂C
= β̂2 = −.38

This means that, all else constant, faculty members who have
joined a committee write, on average, .38 papers less than those
who do not join a committee. Thus, the negative sign indicates
a relative disadvantage for those who commit to a faculty group,
having less time to write. In case the sign of β̂2 were positive, it
would be the opposite case.

The next figure illustrates how only the intercept changes when
Ci = 1 and whenCi = 0. We plotAi againstppi, and depending
on the value the dummy variable takes on, only the intercept
changes, with the slope (β̂1 = .81) remaining the same. That is
why we call the dummy variable here as an intercept variable.

The blue line depicts the effect of previous papers written on the
amount of new ones when Ci = 0, while the red line illustrates
when Ci = 1. The distance between these two lines is given by
β2, that is, the dummy variable’s estimated coefficient.
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Figure 4: Intercept dummy variable.

Slope dummy variables

You have already been introduced to interaction terms, that
is, when we multiply two independent variables together. A
slope dummy variable is nothing but an interaction term, this
time multiplying a dummy variable with another independent
variable. And the latter may be a continuous, discrete, or even
another dummy variable. The choice depends on our research
question.

When including slope dummy variables, we usually do so also
including the dummy by itself in the model, thus including an
intercept dummy variable as well. Let us look at an example:

yi = β0 + β1x1i + β2Di + β3x1iDi + ui

Now, in addition to having an intercept, we also have a slope
dummy variable, with the interaction between x1 and D. We
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should set up our regression like this whenever we consider
that the effect of an independent variable on y also depends on
some qualitative factor.

Before we explain the latter sentence in more detail with an
example, consider Figure 5, where we depict two regression
lines for the above model: the one in blue when Di = 1, and the
one in red when Di = 0. Notice that the slopes are now different.
Where do these different slopes come from? Let us investigate
the partial effect of x1 on y:

∂y

∂x1
= β̂1 + β̂3Di

Nothing surprising here, right? But recall: Di can be either 0
or 1. Thus, when Di = 1,

∂y

∂x1
= β̂1 + β̂3

But when Di = 0, the derivative becomes

∂y

∂x1
= β̂1

That is why we have different slopes, as illustrated in the graph.

To wrap up these notes, let us consider a model for earnings,
controlling for experience and gender:

earningsi = β0 + β1expi + β2Gi + β3expiGi + ui

where

Gi =

{
1, if the ith individual is female
0, otherwise
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Figure 5: Slope dummy variable.

In case we consider that the effect of one additional year of
experience on a worker’s earnings is also dependent on gender,
we should include an interaction term, denoted by the slope
dummy variable with coefficient β3 in the above model.

The β3 coefficient captures the differential impact of an extra
year of experience on earnings between non-female and female
employees. In other words, if we select two individuals from
our sample, one non-female and one female, with the same years
of experience, is there an earnings differential between them?
β̂3 will tell us that, and if it is statistically significant, then we
have a gender differential between male and female workers,
based on our model and on our sample.

As an exercise, compute the effect of gender on earnings, and also
the effect of experience on earnings from the above regression.
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