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New functional forms

There is more to OLS than linear-in-variables models or log-transformed models.

But do these models preserve OLS Classical Assumptions?

They do!

But under what conditions?

As long as the model remains linear in parameters, everything is �ne.
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New functional forms

1. Regression through the origin

2. Regression with quadratic terms

3. Inverse forms

4. Interaction terms

5. Binary (dummy) variables

4 / 35



Regression through the originRegression through the origin



Regression through the origin

It is used whenever we need to impose the restriction that, when , the expected value of  is also
zero.

It should be applied only when theory recommends to do so.

x = 0 y

yi = β1x1i + ui
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Regression through the origin
Consi = β1Inci + ui
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Using quadratic termsUsing quadratic terms



Using quadratic terms

Many times, the effect of a variable  on  also depends on the level of that independent variable.

We can also apply quadratic terms when the effect of  on  changes after a given threshold.

xi y

xi y

yi = β0 + β1x1i + β2(x1i)
2 + ⋅ ⋅ ⋅ + βkxki + ui
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Using quadratic terms
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Using quadratic terms
wagei = β0 + β1experi + β2exper

2
i + ui
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Using quadratic terms
wagei = β0 + β1experi + β2exper

2
i + ui
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Using quadratic terms
wagei = β0 + β1educi + β2educ

2
i + ui
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Using quadratic terms
wagei = β0 + β1educi + β2educ

2
i + ui
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Using quadratic terms
Interpretation

yi = β0 + β1x1i + β2x
2
1i + ui

= β1 + 2  ⋅  β2  ⋅  x1
∂ y

∂ x1

wagei = β0 + β1educi + β2educ
2
i + ui

= β1 + 2  ⋅  β2  ⋅  educ
∂ wage

∂ educ
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Inverse formsInverse forms



Inverse forms

Inverse forms are used whenever the effect of an independent variable on  is expected to approach
zero as its value approaches in�nity.

As always, but especially important to this category, economic theory should strongly recommend the
use of such functional form.

yi
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Inverse forms

qchickeni = β0 + β1 + ui
1

pchickeni
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Inverse forms

qchickeni = β0 + β1 + ui
1

pchickeni
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Inverse forms
Interpretation

yi = β0 + β1 + ui
1

x1i

=
∂ y

∂ x1

−β1

x2
1

qchickeni = β0 + β1 + ui
1

pchickeni

=
∂ qchicken

∂ pchicken

−β1

pchicken2
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Interaction termsInteraction terms



Interaction terms
Whenever the effect of one variable on  depends on the level of another variable, the best modeling
strategy is to use interaction terms.

For example, do we believe that an individual's wage depends on their education?

If so, is this effect the same or different for two individuals with, e.g., a college degree, but with
different years of experience on the job market?

Then, we represent a model by

y

wagei = β0 + β1educi + β2experi + β3educi ⋅ experi + ui
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Interaction terms

In more general terms, regression estimates  describe average effects.

Some of these average effects may "hide" heterogeneous effects that differ by group or by the level of
another variable.

Interaction terms help us in modeling such heterogeneous effects.

For instance, it is plausible to consider that returns on education will differ by gender, race, region,
etc.

(β̂ i)
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Interaction terms
Interpretation

yi = β0 + β1x1i + β2x2i + β3x1ix2i + ui

= β1 + β3  ⋅  x2
∂ y

∂ x1

wagei = β0 + β1educi + β2experi + β3educi ⋅ experi + ui

= β2 + β3  ⋅  educ
∂ wage

∂ exper
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Binary variablesBinary variables



Binary variables

Categorical variables are used to translate qualitative information into numbers.

For instance, race, gender, being employed or not, enrolled in EC 339 or not, etc.

The easiest way to work with qualitative information is by using binary (dummy) variables.

For example,

where  if the criterion is ful�lled, and  otherwise.

yi = β0 + β1Di + ui

Di = 1 Di = 0
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Binary variables
When interpreting regression coef�cients associated with dummy variables, the intercept's
interpretation changes slightly.

Moreover, the slope coef�cient on  is not interpreted in the same way we are used to.

Consider:

where

 is the number of interviews a candidate is called for in a given period;
 equals 1 if she has graduated from college, and 0 otherwise.

Di

interviewsi = β0 + β1graduatei + ui

interviewsi

graduatei
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Binary variables

For this model,

 is the expected number of interviews when  (non-graduates);
 is the expected difference in interview calls between graduates and non-graduates;

And  is the expected number of interviews for graduates (when ).

In this case, non-graduates are the reference group.

interviewsi = β0 + β1graduatei + ui

β0 graduatei = 0

β1

β0 + β1 graduatei = 1
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Binary variables

The model above is an example of an intercept dummy variable.

We only have different intercepts when comparing two groups, but slopes are the same.

In order to allow for different slopes, we appeal to interaction terms involving categorical variables

i.e., slope dummy variables.

interviewsi = β0 + β1graduatei + ui
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Log-Level Model
Important! If you have a log-linear model with a binary variable, the interpretation of the coef�cient on
that variable changes.

with  being a dummy variable.

Interpretation of :

When ,  will increase by  percent.
When ,  will decrease by  percent.

log(yi) = β0 + β1Di + ui

D

β1

D = 1 y 100 × (eβ1 − 1)

D = 0 y 100 × (e−β1 − 1)

30 / 35



Log-Level Example
Binary explanatory variable: inlf

inlf �� 1  if the  individual is in the labor force.
inlf �� 0  if the  individual is not in the labor force.

How do we interpret the coef�cient on inlf ?

Labor force participants sleep 36.65%  less than non-participants.

Individuals that are not in the labor force sleep 36.92%% more than participants.

ith

ith

ˆlog(sleepi) = 8.08 − 0.00365 inlfi
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Slope dummy variables
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Slope dummy variables
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Slope dummy variables
Interpretation

yi = β0 + β1x1i + β2Di + β3Dix1i + ui

= β1 + β3  ⋅  D
∂ y

∂ x1

= β2 + β3  ⋅  x1
∂ y

∂ D

wagei = β0 + β1educi + β2femalei + β3educi ⋅ femalei + ui

= β1 + β3  ⋅  female
∂ wage

∂ educ

= β2 + β3  ⋅  educ
∂ wage

∂ female
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Next time: Functional forms in practiceNext time: Functional forms in practice


