More on functional forms

EC 339

Marcio Santetti
Fall 2022

Motivation

New functional forms

There is more to OLS than linear-in-variables models or log-transformed models.

But do these models preserve OLS Classical Assumptions?

- They do!
- But under what conditions?

As long as the model remains linear in parameters, everything is fine.

New functional forms

1. Regression through the origin
2. Regression with quadratic terms
3. Inverse forms
4. Interaction terms
5. Binary (dummy) variables

Regression through the origin

Regression through the origin

It is used whenever we need to impose the restriction that, when $x=0$, the expected value of y is also zero.

It should be applied only when theory recommends to do so.

$$
y_{i}=\beta_{1} x_{1 i}+u_{i}
$$

Regression through the origin

$$
\text { Cons }_{i}=\beta_{1} \text { Inc }_{i}+u_{i}
$$

Income vs. Consumption

Using quadratic terms

Using quadratic terms

Many times, the effect of a variable x_{i} on y also depends on the level of that independent variable.
We can also apply quadratic terms when the effect of x_{i} on y changes after a given threshold.

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2}\left(x_{1 i}\right)^{2}+\cdots+\beta_{k} x_{k i}+u_{i}
$$

Using quadratic terms

Using quadratic terms

$$
\text { wage }_{i}=\beta_{0}+\beta_{1} \text { exper }_{i}+\beta_{2} \text { exper }_{i}^{2}+u_{i}
$$

Hourly wages vs. years of experience

Using quadratic terms

$$
\text { wage }_{i}=\beta_{0}+\beta_{1} \text { exper }_{i}+\beta_{2} \text { exper }_{i}^{2}+u_{i}
$$

Hourly wages vs. years of experience

Using quadratic terms

$$
\text { wage }_{i}=\beta_{0}+\beta_{1} e d u c_{i}+\beta_{2} e d u c_{i}^{2}+u_{i}
$$

Hourly wages vs. years of schooling

Using quadratic terms

$$
\text { wage }_{i}=\beta_{0}+\beta_{1} e d u c_{i}+\beta_{2} e d u c_{i}^{2}+u_{i}
$$

Hourly wages vs. years of schooling

Using quadratic terms

Interpretation

$$
\begin{gathered}
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{1 i}^{2}+u_{i} \\
\frac{\partial y}{\partial x_{1}}=\beta_{1}+2 \cdot \beta_{2} \cdot x_{1}
\end{gathered}
$$

$$
\begin{gathered}
\text { wage }_{i}=\beta_{0}+\beta_{1} e d u c_{i}+\beta_{2} e d u c_{i}^{2}+u_{i} \\
\frac{\partial \text { wage }}{\partial \text { educ }}=\beta_{1}+2 \cdot \beta_{2} \cdot \text { educ }
\end{gathered}
$$

Inverse forms

Inverse forms

Inverse forms are used whenever the effect of an independent variable on y_{i} is expected to approach zero as its value approaches infinity.

As always, but especially important to this category, economic theory should strongly recommend the use of such functional form.

Inverse forms

$$
\text { qchicken }_{i}=\beta_{0}+\beta_{1} \frac{1}{\text { pchicken }_{i}}+u_{i}
$$

Chicken consumption vs. price of chicken

Inverse forms

$$
\text { qchicken }_{i}=\beta_{0}+\beta_{1} \frac{1}{\text { pchicken }_{i}}+u_{i}
$$

Chicken consumption vs. price of chicken

Inverse forms

Interpretation

$$
\begin{gathered}
y_{i}=\beta_{0}+\beta_{1} \frac{1}{x_{1 i}}+u_{i} \\
\frac{\partial y}{\partial x_{1}}=\frac{-\beta_{1}}{x_{1}^{2}}
\end{gathered}
$$

$$
\begin{gathered}
\text { qchicken }_{i}=\beta_{0}+\beta_{1} \frac{1}{\text { pchicken }_{i}}+u_{i} \\
\frac{\partial q c h i c k e n}{\partial \text { pchicken }}=\frac{-\beta_{1}}{\text { pchicken }^{2}}
\end{gathered}
$$

Interaction terms

Interaction terms

Whenever the effect of one variable on y depends on the level of another variable, the best modeling strategy is to use interaction terms.

For example, do we believe that an individual's wage depends on their education?

- If so, is this effect the same or different for two individuals with, e.g., a college degree, but with different years of experience on the job market?
- Then, we represent a model by

$$
\text { wage }_{i}=\beta_{0}+\beta_{1} \text { educ }_{i}+\beta_{2} \text { exper }_{i}+\beta_{3} \text { educ }_{i} \cdot \text { exper }_{i}+u_{i}
$$

Interaction terms

In more general terms, regression estimates ($\hat{\beta}_{i}$) describe average effects.
Some of these average effects may "hide" heterogeneous effects that differ by group or by the level of another variable.

Interaction terms help us in modeling such heterogeneous effects.

- For instance, it is plausible to consider that returns on education will differ by gender, race, region, etc.

Interaction terms

Interpretation

$$
\begin{gathered}
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\beta_{3} x_{1 i} x_{2 i}+u_{i} \\
\frac{\partial y}{\partial x_{1}}=\beta_{1}+\beta_{3} \cdot x_{2} \\
\text { wage }_{i}=\beta_{0}+\beta_{1} e^{2} u c_{i}+\beta_{2} \text { exper }_{i}+\beta_{3} e d u c_{i} \cdot \text { exper }_{i}+u_{i} \\
\frac{\partial \text { wage }}{\partial \text { exper }}=\beta_{2}+\beta_{3} \cdot \text { educ }
\end{gathered}
$$

Binary variables

Binary variables

Categorical variables are used to translate qualitative information into numbers.

- For instance, race, gender, being employed or not, enrolled in EC 339 or not, etc.

The easiest way to work with qualitative information is by using binary (dummy) variables.

For example,

$$
y_{i}=\beta_{0}+\beta_{1} D_{i}+u_{i}
$$

where $D_{i}=1$ if the criterion is fulfilled, and $D_{i}=0$ otherwise.

Binary variables

When interpreting regression coefficients associated with dummy variables, the intercept's interpretation changes slightly.

Moreover, the slope coefficient on D_{i} is not interpreted in the same way we are used to.

Consider:

$$
\text { interviews }_{i}=\beta_{0}+\beta_{1} \text { graduate }_{i}+u_{i}
$$

where

- interviews $_{i}$ is the number of interviews a candidate is called for in a given period;
- graduate ${ }_{i}$ equals 1 if she has graduated from college, and 0 otherwise.

Binary variables

$$
\text { interviews }_{i}=\beta_{0}+\beta_{1} \text { graduate }_{i}+u_{i}
$$

For this model,

- β_{0} is the expected number of interviews when graduate $_{i}=0$ (non-graduates);
- β_{1} is the expected difference in interview calls between graduates and non-graduates;
- And $\beta_{0}+\beta_{1}$ is the expected number of interviews for graduates (when graduate $_{i}=1$).
- In this case, non-graduates are the reference group.

Binary variables

$$
\text { interviews }_{i}=\beta_{0}+\beta_{1} \text { graduate }_{i}+u_{i}
$$

The model above is an example of an intercept dummy variable.

- We only have different intercepts when comparing two groups, but slopes are the same.

In order to allow for different slopes, we appeal to interaction terms involving categorical variables

- i.e., slope dummy variables.

Log-Level Model

Important! If you have a log-linear model with a binary variable, the interpretation of the coefficient on that variable changes.

$$
\log \left(y_{i}\right)=\beta_{0}+\beta_{1} D_{i}+u_{i}
$$

with D being a dummy variable.

Interpretation of β_{1} :

- When $D=1, y$ will increase by $100 \times\left(e^{\beta_{1}}-1\right)$ percent.
- When $D=0, y$ will decrease by $100 \times\left(e^{-\beta_{1}}-1\right)$ percent.

Log-Level Example

Binary explanatory variable: inlf

- inlf $=1$ if the $i^{\text {th }}$ individual is in the labor force.
- inlf $=0$ if the $i^{\text {th }}$ individual is not in the labor force.

$$
\operatorname{log(\widehat {slee}p_{i})}=8.08-0.00365 \operatorname{inl}_{i}
$$

- How do we interpret the coefficient on inlf?
- Labor force participants sleep 36.65\% less than non-participants.
- Individuals that are not in the labor force sleep $\mathbf{3 6 . 9 2 \%} \%$ more than participants.

Slope dummy variables

Hourly wages vs. years of education (by gender)
Female=1, Non-female=0

Slope dummy variables

Hourly wages vs. years of education (by gender)
Female=1, Non-female=0

Slope dummy variables

Interpretation

$$
\begin{gathered}
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} D_{i}+\beta_{3} D_{i} x_{1 i}+u_{i} \\
\frac{\partial y}{\partial x_{1}}=\beta_{1}+\beta_{3} \cdot D \\
\frac{\partial y}{\partial D}=\beta_{2}+\beta_{3} \cdot x_{1}
\end{gathered}
$$

wage $_{i}=\beta_{0}+\beta_{1}$ educ $_{i}+\beta_{2}$ female $_{i}+\beta_{3}$ educ $_{i} \cdot$ female $_{i}+u_{i}$

$$
\begin{aligned}
& \frac{\partial w a g e}{\partial \text { educ }}=\beta_{1}+\beta_{3} \cdot \text { female } \\
& \frac{\partial \text { wage }}{\partial \text { female }}=\beta_{2}+\beta_{3} \cdot \text { educ }
\end{aligned}
$$

Next time: Functional forms in practice

