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Motivation




New functional forms

There is more to OLS than linear-in-variables models or models.

But do these models preserve OLS Classical Assumptions?
e They do!

e But under what conditions?

As long as the model remains linear in parameters, everything is fine.
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New functional forms

1. Regression through the origin

2. Regression with quadratic terms
3. Inverse forms

4. Interaction terms

5. Binary (dummy) variables
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Regression through the origin




Regression through the origin

It is used whenever we need to impose the restriction that, when z = 0, the expected value of y is also
zero.

It should be applied only when theory recommends to do so.

Y, = b1z +
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Regression through the origin
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Using quadratic terms




Using quadratic terms

Many times, the effect of a variable x; on y also depends on the level of that independent variable.

We can also apply quadratic terms when the effect of x; on y changes after a given threshold.

y; = Bo + Bix1i + 52(33102 + -+ Brxr + uy
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Using quadratic terms
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Using quadratic terms

wage; = By + Breduc; + Breduc; + u;

Hourly wages vs. years of schooling
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Using quadratic terms

wage; = By + Breduc; + Breduc; + u;

Hourly wages vs. years of schooling
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Using quadratic terms

Interpretation

Y; = Bo + P11 + ﬁzwi- + Uy

0
851 =B1+2 - B2 23

wage; = By + Preduc; + ﬂzeduc% + u;

0 wage
0 educ

=B1+2 - By - educ
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Inverse forms




Inverse forms

Inverse forms are used whenever the effect of an independent variable on y; is expected to approach

zero as Its value approaches

As always, but especially important to this category, economic theory should strongly recommend the
use of such functional form.
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Inverse forms

1

qchicken; = By + b1 — + u;
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Inverse forms

1
qchicken; = By + b1 — + u;
pchicken;

Chicken consumption vs. price of chicken
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Inverse forms

Interpretation

L1

0y _ —p1
0 1 :13%
. 1
qchicken; = By + B1— + u;
pchicken;
0 gchicken — B4

O pchicken  pchicken?

20 / 35



Interaction terms




Interaction terms

Whenever the effect of one variable on y depends on the level of another variable, the best
IS to use Interaction terms.

For example, do we believe that an individual's wage depends on their ?

e If 50, IS this effect the same or for two individuals with, e.g., a college degree, but with
different years of experience on the job market?

e Then, we represent a model by

wage; = By + Preduc; + Baexper; + Bzeduc; - exper; + u;
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Interaction terms

A

In more general terms, regression estimates (8;) describe average effects.

Some of these average effects may "hide" heterogeneous effects that differ by or by the level of
another variable.
Interaction terms help us in modeling such effects.

e For instance, it is plausible to consider that returns on education will differ by gender, race, region,

etc.
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Interaction terms

Interpretation

Yi = Bo + Biz1i + Baza + BsT1iT2; + U
dy

5z, =B1+ B3 - x

wage; = By + Preduc; + Boexper; + Bseduc; - exper; + u;

Owage _ g\ 8 . educ

0 exper
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Binary variables




Binary variables

Categorical variables are used to translate qualitative information into
e For instance, race, gender, being employed or not, enrolled in EC 339 or not, etc.

The easiest way to work with qualitative information is by using variables.

For example,

y; = Bo + B1D; + u;

where D; = 1 if the criterion is fulfilled, and D; = 0 otherwise.
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Binary variables

When interpreting regression coefficients associated with dummy variables, the intercept's
Interpretation changes slightly.

Moreover, the coefficient on D; is not interpreted in the same way we are used to.

Consider:

interviews; = By + Prgraduate; + u;

where

o interviews; IS the number of interviews a candidate is called for in a given period;
e graduate; equals 1 if she has graduated from college, and 0 otherwise.
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Binary variables

interviews; = By + Prgraduate; + u;

For this model,

e By is the expected number of interviews when graduate; = 0 (non-graduates);
e (3 is the expected difference in interview calls between graduates and non-graduates;
e And By + B is the expected number of interviews for graduates (when graduate; = 1).

 In this case, non-graduates are the reference group.
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Binary variables

interviews; = By + Prgraduate; + u;

The model above is an example of an dummy variable.

o We only have different intercepts when comparing two groups, but are the same.

In order to allow for different slopes, we appeal to interaction terms involving categorical variables

e le, dummy variables.
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Log-Level Model

Important! If you have a log-linear model with a binary variable, the interpretation of the coefficient on
that variable

log(y;) = Bo + B1D; + u;

with D being a dummy variable.

Interpretation of By:

« When D =1, y will increase by 100 x (e”* — 1) percent.
« When D = 0, y will decrease by 100 x (e~ — 1) percent.
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Log-Level Example

Binary explanatory variable: inlf

e inlf = 1 ifthe 7" individual is in the labor force.
e inlf = 0 if the 3t individual is not in the labor force.

—

log(sleep;) = 8.08 — 0.00365 inl f;
e How do we interpret the coefficient on inlf?

o Labor force participants sleep 36.65% less than non-participants.

o Individuals that are not in the labor force sleep 36.92% % more than participants.
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Slope dummy variables

Hourly wages vs. years of education (by gender)

Female=1, Non-female=0
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Slope dummy variables

Hourly wages vs. years of education (by gender)

Female=1, Non-female=0
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Slope dummy variables

Interpretation

Y; = Bo + Bix1i + BoD; + B3Dix1; + u;

0

821/ =p1+PBs - D
L1

0

8—y:52+ﬁ3 |

wage; = By + Preduc; + B2 female; + Bseduc; - female; + u;

0 wage B+ B - female
0 educ

0 wage
0 female Pz + By - educ
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Next time: Functional forms in practice




