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Introduction

So far, we have studied in detail the nuts and bolts of linear
regression, as well as the assumptions such models have to
undertake in order to make OLS the “best” method among all
linear estimators. Now, it is about time to draw inferences
from our models. You for sure know by now how to interpret
OLS coefficients, and this is a crucial quality. However, recall
that we work with samples, and we want to use them with our
models to describe population parameters as precisely as possible.
How to know whether our OLS coefficients are valid for this
purpose? Only inference will tell us that.

The two main tools for statistical inference are confidence
intervals and hypothesis testing. For econometric purposes,
usually the second is more widely used, so we will not spend
too much time on confidence intervals. But we will keep doing
different statistical tests throughout the semester. Moreover,
after this week’s content you will be able to fully interpret what
your statistical software of use informs you regarding your
estimated model. The last bit of information that we need to
cover regards different tests of hypotheses about our coefficients.
The applied lecture will complement the theory we will go over
now.

Confidence intervals

A confidence interval is a range which contains the true value of
an estimate a specified percentage of time, assuming a sampling
distribution of that estimate. Such percentage is the level of
confidence, denoted by (1 − α), with α being the significance
level. This terminology must have been present in your Stats
courses, and it remains the same, in case you still have some
memories of that time.

For confidence intervals, we use Student’s t-distribution. The
good news is that we will not use tables with critical values
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anymore. The computer will handle that for us, but we need to
ask the right questions. Recall that for standard sample statistics,
such as a sample mean (x̄), we would calculate a confidence
interval (CI) for the population mean in the following way:

CI = x̄ ± tc · σ

where tc is the critical value given by the t-distribution’s table,
and σ is the population standard deviation, which is assumed
to be known. In case we do not know the population’s standard
deviation for that variable, we use

CI = x̄ ± tc · s√
n

where s is the sample standard deviation, divided by the square
root of the sample size, n. The critical value given by the t-table
depends on two factors: the significance level (α), and the
number of degrees-of-freedom, which in this case is given by
n − 1.

For our purposes, however, we are not interested in sample
statistics anymore, such as the sample mean. Our objects of
interest are β coefficients, estimated through OLS regression.
The CI “analog” to the above is the following:

CI = β̂k ± tc · SE(β̂k)

where now we replace the sample statistic by our estimated βk

coefficient (k = 0, 1, 2, ..., k), and SE(β̂k) is the standard error
of our estimate.

Deriving the mathematical expression for the standard error
would require some detour, and you should feel free to let me
know if you want a formal presentation of it, since I’d be happy
to present it to you. However, for now, the most important
thing is to present the intuition of this measure: the SE(·) of a
regression estimate basically tells us how precise it is. Therefore,
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it is an analog for the standard deviation of any sample statistic
that you are used to.

Figure 1 aims to refresh your memory about how the
t-distribution looks. It is very similar to the standard
“bell-shaped” curve from the Normal distribution, and, as the
sample size increases, these two distributions are basically
indistinguishable. The t-distribution is also centered around 0,
and the figure shows the two tails in pink, each one having an
area of α/2, and the area in gray is denoted by 1−α. Recall that
the total area under the curve of any probability distribution
is equal to 1 (or 100%), and we partition this total area for
inference purposes. Thus, for example, if our significance level
is α = 10%, the area in gray will be equal to 1 − .1 = .9, and
each tail will have an area of α/2 = .1/2 = 0.05.

The next bit of information we need in order to calculate tc

is the number of degrees-of-freedom. Remember that we are in
the regression world now, so our DOF equals n − k − 1, that
is, we subtract the number of slope coefficients (k) and the
intercept (1) from our total sample size (n). Suppose we have a
large sample, say n = 400, and we estimate a regression with
3 independent variables, thus k = 3. Then, our degrees-of-
freedom are 400 − 3 − 1 = 396. Feel free to check on the t-table,
and it wil give you tc = 1.645 for the two-tailed case.

Let us look at an applied example. Consider the following
regression output. Here, the standard errors are presented in
parentheses, right below the actual β̂ coefficients. This how
usually such results are presented in papers and books.

Ŝi = 102, 192 − 9.075
(2,053)

Ni + 0.3547
(.0727)

Pi − 1.288
(.543)

Ii

n = 33 R̄2 = .579

where Si is the gross sales volume at each ith location of a
restaurant chain (in thousands); Ni is the number of close
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Figure 1: The t distribution.

competitors; Pi is the population within a 3-mile radius (in
hundreds), and Ii is the average income per household.

Before we exercise our new content, make sure you are comfort-
able interpreting each β̂ coefficient, as well as the adjusted R2,
displayed below the regression output. After that, let’s do new
business.

Say we want to construct a 90% confidence interval for the
coefficient on Pi, that is, the effect of a one-hundred increase
in the population that lives close by the restaurant on its gross
sales volume. To do it, we need 3 pieces of information: β̂P,
SE(β̂P), and tc.

β̂P and SE(β̂P) are already given by the regression output:
.3547 and .0727, respectively. Let us consult the table once
again—do not worry, you will say farewell to these tables after
you learn how to do this with the computer—, with α = 10%,
and DOF = 33 − 3 − 1 = 29. This is a two-tailed procedure,
so t.1,29 = 1.699.1 Once again, make sure you feel comfortable 1 Recall that the t-table already distin-

guishes between one- and two-tailed
procedures. In case you need to refresh
your memory, you can take a look at
one here.

looking for critical values in the table. Any issues, please reach
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out.

Now, we just plug in these three pieces into the formula:

CI = .3547 ± 1.699 · (.0727)

Our confidence interval for β̂P is [.2312; .4782]. This means
that, 90% of the time, the “true” coefficient for Pi will fall between
.2312 and .4782. And our estimated coefficient, whose value is
.3547, is included in this interval.

Informally, you can reproduce the latter interpretation out loud
with no problem. However, if we want to be technically precise,
the correct interpretation for this confidence interval is: there is
a 90% probability that the estimated coefficient will be equal to a value
such that the interval [.2312; .4782] will include the “true” parameter
βP. For exams and assignments, feel free to use any of these
interpretations. Just be aware of the technical interpretation, in
case someday you need it. Who knows?

As stated in the Introduction, confidence intervals tend to be
secondary, at least for our purposes in this course. We will
see some applications of it in the future, but our inference
bread-and-butter will be hypothesis testing.

Hypothesis testing

Hypothesis testing determines what we can learn about the real
world from sample data, through simple statistical tests. Even
though we would like to prove that a given hypothesis about a
theory being supported by empirical estimation is correct, what
hypothesis testing provides is that we can often reject a given
hypothesis with a certain level of significance.

As explained in the previous section, our interest lies in the
estimated coefficients from our regression, the β̂′s. We use
these to test hypotheses about population parameters, the βtrue
coefficients. Thus, in case we want to test whether the true
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coefficient for some variable xi is different from zero, we have our
null and alternative hypotheses, H0 and Ha, respectively:

• H0: βi,true = 0
• Ha: βi,true ≠ 0

Notice that we use the “true” parameter in our hypotheses
statement, and not the estimated coefficients.

In Econometrics, a test like the one above is known as a test for
statistical significance, or a significance test. This is straight-
forward, since if we do not reject the null hypothesis that a
coefficient (statistically) equals zero, this means that the latter is
not statistically significant, given the chosen significance level
(α). In case we reject this null hypothesis, then the coefficient
is statistically significant, and the variable may be considered as
relevant for our regression model, given α.

As another example, consider a simple wage-education
model:

wagei = β0 + β1educi + ui

Our standard expectation would be that the more an individual
is educated, the better they will be paid. Translating this
expectation into a test of hypothesis, we set:

• H0: β1 = 0

• Ha: β1 > 0

In case we rejectH0, our expectation is met, and thus our sample
regression model meets the research hypothesis (at least with
respect to the sign of β1) for the entire population. Notice that
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this is a one-tailed test, while the previous significance test is a
two-tailed one.

However, hypothesis testing is not free from error, and being
aware of the possible pitfalls is relevant for inference. From
hypothesis testing, we may have two types of error:

• Type I error: when a true null hypothesis (H0) is rejected.
Its probability is given by α.

• Type II error: when a false alternative hypothesis (Ha) is
not rejected. Its probability cannot generally be calculated,
since knowing the “true” parameter would be required.2 2 Of course, we can set values for

population parameters, but we will
not do this in our course. A use-
ful measure concerning the probabil-
ity of Type II errors is known as the
power of a hypothesis test, which is
1−P(type II error). We will not study
it here, but feel free to catch up with
this concept in any Stats book.

The t-test

The t-test is usually used to test hypotheses about individual
regression slope coefficients. Consider the following multiple
regression model:

yi = β0 + β1x1i + β2x2i + ui

The form of the t-statistic for the kth coefficient is:

tk =
β̂k − βH0

SE(β̂k)

where βH0 is the value for the population parameter that
appears in the tests’s null hypothesis (H0). The rest of the test’s
components you know from before. In case you are running a
signifiance test, βH0 is automatically 0, so tk becomes

tk =
β̂k

SE(β̂k)
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For our example, k = 2 slope coefficients. Suppose we want to
test whether the coefficient on x2 is statistically significant in our
model. Th only information we need are β̂2 and its standard
error. Thus, t2 = β̂2/SE(β̂2).

Now, let us go back to the sales volume example introduced
in the previous section. I will just reproduce its output once
again, so you do not need to look back there.

Ŝi = 102, 192 − 9.075
(2,053)

Ni + 0.3547
(.0727)

Pi − 1.288
(.543)

Ii

n = 33 R̄2 = .579

Let us test whether the “true” parameter reflecting the change
in sales volume due to population growth (βP) is statistically
greater than zero (i.e., positive). The estimated coefficient from
the regression model is indeed positive, but it is simply a point es-
timate. Ideally, we would like to have several different estimates
for βP, using different samples of the same size. However, in
reality such procedure is almost never possible. Therefore, we
use hypothesis tests, based on sampling distributions, to evaluate
this conjecture.

Our null and alternative hypotheses are:

• H0: βP = 0

• Ha: βP > 0

Since βH0 = 0, we have

tP =
β̂k

SE(β̂k)
=

.3547

.0727 = 4.88

Our test statistic is 4.88. So what? We compare this number to
a critical value, given by the t-table. Assuming this time α = 5%,
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we look for the corresponding critical value for t0.05,29. Notice
that this is a one-tailed test, so we do not divide α by 2.

The table gives us t0.05,29 = 1.699. Now, we compare tP with
this critical value. Is 4.88 greater than 1.699? Yes, it is. So, we
reject the null hypothesis, and the effect of population growth
on the gross volume of sales for this particular restaurant chain
is statistically positive and significant (with 95% of confidence),
given the sample used in our model. Visually, the procedure
worked like this:

Figure 2: Rejection region for a right-tailed t-test.

Since the test statistic fell inside the rejection region (area in
pink), we reject the null hypothesis.

As an exercise, repeat this procedure, this time changing the
significance level to α = 10%. Does your statistical decision
change? Does it stay the same?
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Choosing a level of significance (α)

As you probably know, the standard significance level adopted
by almost every applied field is α = 5%. Unless informed
otherwise, keep this level as a standard for our course as well.

The p-value method

In most econometric applications, we may also resort to p-
values in order to evaluate our hypothesis testing. As you
have probably seen, a regression output usually returns both
t-statistics and their respective p-values.

p-values can be understood as the lowest possible significance
level at which a null hypothesis cannot be rejected. In other words,
if a test’s p-value falls below a given significance level, a null
hypothesis is rejected; otherwise, we cannot reject it.

For practical purposes, the rule-of-thumb for statistical decisions
using p-values is really simple:

• If the p-value is lower than the significance level (α):
Reject H0.

• If the p-value is greater than the significance level (α): Do
not reject H0.

Limitations of the t-test

By definition, the t-test is already limited, since it only evaluates
hypotheses for individual coefficients. In case we want to test
hypotheses on a group of coefficients, we use F-tests, which will
appear in the next section.

However, beyond limitations imposed by its very definition,
t-tests may also be misleading if we lose sight of what our
regression procedure is about. In a nutshell, the fact that our
regression coefficients are statistically significant does not
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imply that these are theoretically valid. Recall: the computer
accepts any regression model, and it will spit out numbers that
we need to make sense of. But we need to go beyond that:
are the values from our regression outputs consistent with our
theoretical assumptions? Let me illustrate this situation with
an example. Consider the following model:

ĈPIt = 10.9 − 3.2
(.23)

Ct + .39
(.02)

C2
t

n = 21 R̄2 = .982

where CPIt is the consumer price index, at time t, and Ct is
the cumulative amount of rainfall, also at time t in the United
Kingdom. Notice that Ct is also squared in this model, and we
will look at these augmented models later on, but for now this
is not relevant.

Notice that the adjusted R2 for this model is almost 100%, and
the coefficient on Ct is statistically significant (that is, we reject
H0: βCt = 0). However, despite this fantastic result in terms
of significance and goodness-of-fit, this model does not make
any theoretical sense: how can rainfall significantly affect an
economy’s inflation?

This does not make sense. Therefore, if we are not aware of the
model’s underlying theory, as well as our previous expectations
with respect to signs and coefficients, we are just throwing
numbers in a computer and asking our statistical package to
do boring matrix algebra for us. Once again: statistical signifi-
cance does not imply theoretical and empirical validity!

This blog presents hilarious examples of what we call spurious
correlations. In other words, relationships that exist numerically,
but do not come from any reasonable theoretical prior. Have a
look at it and you will laugh.
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The F-test

The last section gave a spoiler on the purpose of the F-test: testing
multiple hypotheses simultaneously, or testing a single hypothe-
sis about a group of parameters. In Econometrics, we usually
use F-tests for the second option, and such joint null hypothe-
ses are appropriate whenever the underlying economic theory
specifies values for multiple coefficients simultaneously.

As the name already reveals, the F-test uses the F-distribution as
a reference. You have probably been introduced to it in your
Stats courses, but in case you have not, no need to worry. Take a
quick look at its shape, and in the applied lecture for this topic
everything will be clear.

Our usual procedure in this course will be to use the F-test
to evaluate joint significance, that is, simultaneously testing
the statistical significance of two or more slope coefficients.
Suppose we have the following model, with k independent
variables:

yi = β0 + β1x1i + β3x2i + β3x3i + ... + βkxki + ui

Now, suppose we want to evaluate, with a single test, whether
all coefficients for the independent variables are jointly signifi-
cant. The null and alternative hypotheses are

• H0 : β1 = β2 = ... = βk = 0
• Ha : H0 is not true

Such procedure requires the computation of an F-test. The
simplified formula to obtain the F-statistic is:

F =
R2

unr − R2
rest

1 − R2
unr

· (n − k − 1)
q

13



It is better to break down the components of this formula by
using an example. Below, we estimate a model to predict salaries
of Major League Baseball (MLB) players (in logs), controlling
for the number of years in the league (yearsi), games played
per year (gamesyri), career batting average (bavgi), career
home-runs (hrunsi), and RBIs per year (rbisyri). Our sample
size is 353 individuals.

log(salaryi) = β0+β1yearsi+β2gamesyri+β3bavgi+β4hrunsi+β5rbisyri+ui

We want to run a joint significance test on the coefficients β3,
β4, and β5. In other words, we want to test whether the effects
of career batting average, career home-runs, and RBIs per year are
jointly significant to explain variations in players’ salaries:

• H0 : β3 = β4 = β5 = 0
• Ha : H0 is not true

Thus, we need an F-test. First, we estimate this regression,
and extract its R2. For the test’s purposes, this regression is an
unrestricted model, whose R2 will be R2

unr. After running this
model via OLS, we obtain R2

unr = 0.627.

Next, we estimate a restricted model, that is, the regression
without the variables whose coefficients we will run the F-test
on. Then, we estimate the following model:

log(salaryi) = β0 + β1yearsi + β2gamesyri

and compute its R2, which is R2
rest = 0.597. To complete the

F-statistic’s formula, we need q and (n−k− 1). q is the number
of restrictions imposed to estimate the restricted model, that is,
the number of dropped β coefficients to estimate the restricted
regresion. Thus, in our example, q = 3. And (n − k − 1) is
simply the number of degrees-of-freedom from the unrestricted
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model. Therefore, n − k − 1 = 353 − 5 − 1 = 347. Let’s plug in
all values in the formula:

F =
R2

unr − R2
rest

1 − R2
unr

· (n − k − 1)
q

=
0.627 − 0.597

1 − 0.627 · 347
3 = 9.55

Now, we compare this test statistic with a critical value provided
by the F-distribution table. If you recall, it requires three bits of
information: the significance level, the DOF in the numerator,
and the DOF in the denominator. Let’s use α = 10%. The
number of DOF in the numerator is q, and in the denominator
is (n − k − 1)3. The table gives us Fc = 4.353 for the right tail 3 The formula shown here is a simpli-

fied version of the “original” F-statistic
formula. In the original, q lies in the
numerator, and (n − k − 1) in the de-
nominator.

and Fc = 0.023 for the left tail4. Our test statistic is greater than

4 Recall that we have to divide the
significance level by 2, since this is a
two-tailed test.

these critical values, so we reject the null hypothesis. We may
thus infer, with 90% of confidence, that these 3 variables are
jointly significant to explain MLB players’ salaries, based on our
sample.

In our applied lecture, we will say goodbye to looking for critical
values in tables. The software gives you everything, with our
job being performing the appropriate inferences.
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