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A critique

Here, we are dealing with the so-called frequentist approach to Statistics/Econometrics.

It assumes that there exists an underlying true population parameter in nature.

Therefore, while this population parameter value is �xed in nature, samples are variable.

And using samples is the best we can do.

But this is not the only approach!
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There are more ways to think Inference
Bayesian inference is a completely different animal!
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Con�dence IntervalsCon�dence Intervals



Con�dence intervals

In practical terms, a regression returns a point estimate of our desired parameter(s).

Supposedly, it represents, to the best of our efforts, the "true" population parameter.

But wouldn't it be better if we could have a range of values for ?

Given a con�dence level , we can easily construct a con�dence interval for .

βi

(1 − α) βi
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Con�dence intervals
From Stats, we know:

And now:

where .

It denotes the  quantile of a t distribution, with n-k-1 degrees-of-freedom.

CI = x̄ ± tc ⋅ σ

CI = x̄ ± tc ⋅
s

√n

CI = β̂k ± tc ⋅ SE(β̂k)

tc = t1−α/2, n−k−1

1 − α/2
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Con�dence intervals
The standard error (SE) of an estimate:

where  is the variance of .

The standard error of an estimate is nothing but its standard deviation.

SE(β̂2) = √ .
s2

u

∑
n
i=1(xi − x̄)2

s2
u =

∑i û
2
i

n − k − 1
ui
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Con�dence intervals
Informal interpretation:

The con�dence interval is a region in which we are able to place some trust for containing the
parameter of interest.

Formal interpretation:

With repeated sampling from the population, we can construct con�dence intervals for each of
these samples. Then  percent of our intervals (e.g., 95%) will contain the population
parameter somewhere in this interval.

(1 − α) ⋅ 100
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Con�dence intervals - An example
#> 

#> ===============================================
#>                         Dependent variable:    
#>                     ---------------------------
#>                               lsalary          
#> -----------------------------------------------
#> age                           -0.001           
#>                               (0.005)          
#> lsales                       0.225���          
#>                               (0.028)          
#> Constant                     5.005���          
#>                               (0.303)          
#> -----------------------------------------------
#> Observations                    177            
#> R2                             0.281           
#> Adjusted R2                    0.273           
#> Residual Std. Error      0.517 (df = 174)      
#> F Statistic           34.004��� (df = 2; 174)  
#> ===============================================
#> Note:               �p<0.1; ��p<0.05; ���p<0.01
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Con�dence intervals - An example

From the previous regression output, we have:

: 0.225

: 0.0277

In addition, the sample size (n) is 177.

β̂ lsalesi

SE(β̂ lsalesi
)
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Con�dence intervals - An example
Then, we can calculate a 95% con�dence interval for :

 -1.973691

The interval is [0.17, 0.28] .

βlsalesi

CI = β̂ lsalesi
± tc ⋅ SE(β̂ lsalesi

)

CI = 0.225  ±  t1−0.05/2, 177−2−1  ⋅  0.0277

CI = 0.225  ±  t1−0.05/2, 174  ⋅  0.0277

t1−0.05/2, 174 =
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Con�dence intervals - An example

With repeated sampling from the population, 95% of our intervals will contain the population
parameter somewhere in this [0.17, 0.28] interval.
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Con�dence intervals - An example

If we estimate a 99% con�dence interval, we have:

 2.604379
The interval is [0.15, 0.29] .

CI = 0.225  ±  t1−0.01/2, 174  ⋅  0.0277

t1−0.01/2, 174 =
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Hypothesis TestingHypothesis Testing



Hypothesis testing
When doing hypothesis testing, our aim is to determine whether there is enough statistical
evidence to reject a hypothesized value or range of values.

In Econometrics, we usually run two-sided (tailed) tests about regression parameters.

The above testing procedure is a test of statistical signi�cance.

If we do not reject , the coef�cient is not statistically signi�cant.
If we reject , we have enough evidence to support the coef�cient's statistical signi�cance.

H0 : βi = 0

Ha : βi ≠ 0

H0

H0
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Hypothesis testing
In R...

wage_model �� lm(wage ~ educ + exper + tenure, data = wage2)
wage_model %>% 
  tidy()

#> # A tibble: 4 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)  -276.      107.       -2.59 9.78e� 3
#> 2 educ           74.4       6.29     11.8  3.28e-30
#> 3 exper          14.9       3.25      4.58 5.33e� 6
#> 4 tenure          8.26      2.50      3.31 9.83e� 4
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Hypothesis testing
In Stata...
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Hypothesis testing
Where does the 11.8  t value come from?

Where does the 4.58  t value come from?

t = = = 11.8283
β̂k − βH0

SE(β̂k)

74.4 − 0

6.29

t = = = 4.584615
β̂k − βH0

SE(β̂k)

14.9 − 0

3.25
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teduc = 11.8
texper = 4.58
ttenure = 3.31

tcritical value = t.05/2, 931 = 1.962515

Hypothesis testing
What are we supposed to do with these test statistics?
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Hypothesis testing

Interpretation

At 5% of signi�cance, we have enough evidence to reject the null hypothesis that educ  is not
statistically signi�cant.

At 5% of signi�cance, we have enough evidence to reject the null hypothesis that exper  is not
statistically signi�cant.

At 5% of signi�cance, we have enough evidence to reject the null hypothesis that tenure  is not
statistically signi�cant.

Therefore, all coef�cients are (individually) statistically signi�cant.
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Hypothesis testing

The F-test
Sometimes, a coef�cient on a speci�c variable may not be statistically signi�cant.

However, it may be of use in the model's context.

Thus, a test of joint signi�cance is appropriate to evaluate whether all slope coef�cients are jointly
signi�cant within the model.

F = ⋅
R2

unr − R2
rest

1 − R2
unr

(n − k − 1)

q
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The F-test
Still with our wage model:

Suppose we want to test whether educ  and exper  are jointly signi�cant.

For the purpose of this test, our previous model is the unrestricted (full) model.

Then, we estimate a restricted model, excluding educ  and exper .

Its R-squared is 0.0165; while the unrestricted's is 0.146.

We have imposed 2 restrictions to the full model. Thus, q=2.

And the sample size is n=935, which gives n-k-1 = 931 for the full model.
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The F-test

70.588 is the test statistic for the F-test

Then, we compare the above value with the critical values given by the F-distribution table.

Right-tail critical value:

 3.703535
Thus, we reject the null hypothesis, meaning that we have enough evidence to infer that educ
and exper  are jointly signi�cant in this model.

F = ⋅

= ⋅ = 70.588

R2
unr − R2

rest

1 − R2
unr

(n − k − 1)

q

0.146 − 0.0165

1 − 0.146

935 − 3 − 1

2

F1−.05/2, 2, 931 =
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Next time: Inference in practiceNext time: Inference in practice


