Linear Regression: Inference EC 339

Marcio Santetti Fall 2022

Motivation

A critique

Here, we are dealing with the so-called **frequentist** approach to Statistics/Econometrics.

It assumes that there exists an underlying **true population parameter** in nature.

Therefore, while this **population parameter** value is fixed in nature, **samples** are variable.

And **using samples** is the best we can do.

• But this is **not** the only approach!

There are more ways to think Inference

• **Bayesian** inference is a completely different animal!

Confidence Intervals

In practical terms, a regression returns a **point estimate** of our desired parameter(s).

Supposedly, it **represents**, to the best of our efforts, the "true" population parameter.

But wouldn't it be better if we could have a **range** of values for β_i ?

Given a **confidence level** $(1 - \alpha)$, we can easily construct a **confidence interval** for β_i .

Confidence intervals

From **Stats**, we know:

$$egin{aligned} \mathrm{CI} &= ar{x} \pm t_c \cdot \sigma \ \mathrm{CI} &= ar{x} \pm t_c \cdot rac{s}{\sqrt{n}} \end{aligned}$$

And now:

$$ext{CI} = \hat{eta}_k \pm t_c \cdot SE(\hat{eta}_k)$$

where $t_c = t_{1-lpha/2, \, n-k-1}.$

It denotes the $1 - \alpha/2$ quantile of a *t* distribution, with n-k-1 degrees-of-freedom.

Confidence intervals

• The **standard error** (SE) of an estimate:

$$\mathrm{SE}ig({\hateta}_2ig) = \sqrt{rac{s_u^2}{\sum_{i=1}^n (x_i-ar{x})^2}}.$$

where
$$s_u^2 = rac{\sum_i \hat{u}_i^2}{n-k-1}$$
 is the variance of u_i .

The standard error of an estimate is nothing but its **standard deviation**.

Confidence intervals

• Informal interpretation:

- The confidence interval is a region in which we are able to place some **trust** for containing the parameter of interest.
- Formal interpretation:
 - With **repeated sampling** from the population, we can construct confidence intervals for each of these samples. Then $(1 \alpha) \cdot 100$ percent of our intervals (*e.g.*, 95%) will contain the population parameter **somewhere in this interval**.

	#>
#> =================	
#>	Dependent variable:
#>	
#>	lsalary
#>	
#> age	-0.001
#>	(0.005)
#> lsales	0.225***
#>	(0.028)
#> Constant	5.005***
#>	(0.303)
#>	
<pre>#> Observations</pre>	177
#> R2	0.281
#> Adjusted R2	0.273
#> Residual Std. Error	0.517 (df = 174)
#> F Statistic	34.004*** (df = 2; 174)
#> ================	
<pre>#> Note:</pre>	*p<0.1; **p<0.05; ***p<0.01

From the previous regression output, we have:

- $\hat{\beta}_{lsales_i}$: 0.225
- $SE(\hat{\beta}_{lsales_i})$: 0.0277

In addition, the sample size (*n*) is 177.

• Then, we can calculate a 95% confidence interval for β_{lsales_i} :

$$egin{aligned} ext{CI} &= \hat{eta}_{lsales_i} \pm t_c \cdot SE(\hat{eta}_{lsales_i}) \ ext{CI} &= 0.225 \ \pm \ t_{1-0.05/2,\ 177-2-1} \ \cdot \ 0.0277 \ ext{CI} &= 0.225 \ \pm \ t_{1-0.05/2,\ 174} \ \cdot \ 0.0277 \end{aligned}$$

- $t_{1-0.05/2,\,174} =$ -1.973691
- The interval is [0.17, 0.28].

With **repeated sampling** from the population, 95% of our intervals will contain the population parameter **somewhere in this [0.17, 0.28] interval**.

• If we estimate a 99% confidence interval, we have:

$${
m CI} = 0.225 ~\pm~ t_{1-0.01/2,~174} ~\cdot~ 0.0277$$

- $t_{1-0.01/2,\,174}=$ 2.604379
- The interval is [0.15, 0.29].

- When doing *hypothesis testing*, our aim is to determine whether there is enough **statistical evidence** to reject a hypothesized value or range of values.
- In Econometrics, we usually run **two-sided (tailed)** tests about *regression parameters*.

$$\circ \,\, H_0:eta_i=0$$

 $\circ \; H_a: eta_i
eq 0$

- The above testing procedure is a test of **statistical significance**.
 - If we **do not reject** H_0 , the coefficient is not statistically significant.
 - If we **reject** H_0 , we have enough evidence to support the coefficient's statistical significance.

In R...

```
wage_model ← lm(wage ~ educ + exper + tenure, data = wage2)
wage_model %>%
tidy()
```

#> # A tibble: 4 × 5

#>		term	estimate	std.error	statistic	p.value
#>		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
#>	1	(Intercept)	-276.	107.	-2.59	9.78e- 3
#>	2	educ	74.4	6.29	11.8	3.28e-30
#>	3	exper	14.9	3.25	4.58	5.33e- 6
#>	4	tenure	8.26	2.50	3.31	9.83e- 4

In Stata...

. reg wage educ exper tenure

Source	SS	df	MS	Number of obs	=	935 53 00
Model Residual	22278193.8 130437974	3 931	7426064.59 140105.236	Prob > F R-squared	= =	0.0000
Total	152716168	934	163507.675	Adj R-squared Root MSE	=	0.1431 374.31

wage	Coefficient	Std. err.	t	P> t	[95% conf	. interval]
educ exper tenure	74.41486 14.89164 8.256811	6.286993 3.25292 2.497628	11.84 4.58 3.31	0.000 0.000 0.001	62.07654 8.507732 3.355178	86.75318 21.27554 13.15844
_cons	-276.2405	106.7018	-2.59	0.010	-485.6444	-66.83653

• Where does the 11.8 *t* value come from?

$$t=rac{{{\hat eta }_k}-{{eta }_{{H_0}}}}{{SE({{\hat eta }_k})}}=rac{{74.4 - 0}}{{6.29}}=11.8283$$

• Where does the 4.58 *t* value come from?

$$t=rac{{{\hat eta }_k}-{{eta }_{{H_0}}}}{{SE({{\hat eta }_k})}}=rac{{14.9-0}}{{3.25}}=4.584615$$

What are we supposed to do with these test statistics?

• t_{educ} = 11.8

• t_{critical value} = t_{.05/2, 931} = 1.962515

- t_{exper} = 4.58
- t_{tenure} = 3.31

Interpretation

At 5% of significance, we have enough evidence to **reject the null hypothesis** that educ is not statistically significant.

At 5% of significance, we have enough evidence to **reject the null hypothesis** that exper is not statistically significant.

At 5% of significance, we have enough evidence to **reject the null hypothesis** that tenure is not statistically significant.

Therefore, all coefficients are (individually) **statistically significant**.

The F-test

Sometimes, a coefficient on a **specific variable** may not be *statistically significant*.

However, it may be of use in the **model's context**.

Thus, a test of **joint** significance is appropriate to evaluate whether **all slope coefficients** are *jointly* significant within the model.

$$F=rac{R_{ ext{unr}}^2-R_{ ext{rest}}^2}{1-R_{ ext{unr}}^2}\cdotrac{(n-k-1)}{q}$$

Still with our **wage** model:

Suppose we want to test whether educ and exper are jointly significant.

For the purpose of this test, our previous model is the **unrestricted** (full) model.

Then, we estimate a **restricted** model, excluding educ and exper.

• Its R-squared is **0.0165**; while the unrestricted's is **0.146**.

We have imposed **2** restrictions to the full model. Thus, *q*=2.

```
And the sample size is n=935, which gives n-k-1 = 931 for the full model.
```

The F-test

$$F=rac{R_{ ext{unr}}^2-R_{ ext{rest}}^2}{1-R_{ ext{unr}}^2}\cdotrac{(n-k-1)}{q}$$

$$=\frac{0.146-0.0165}{1-0.146}\cdot\frac{935-3-1}{2}=70.588$$

- 70.588 is the **test statistic** for the F-test
- Then, we compare the above value with the **critical values** given by the F-distribution table.
- Right-tail critical value:
 - $\circ \ F_{1-.05/2,\,2,\,931}=$ 3.703535
 - Thus, we reject the null hypothesis, meaning that we have enough evidence to infer that educ and exper are jointly significant in this model.

Next time: Inference in practice