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Introduction

Last week, we studied the basic regression model. We started
from its simple version, with only one regressor, and later we
made it more complex by adding a larger number of control
variables, so that we mitigate the influence of the error term in
our estimations, as well as allowing for empirical analyses that
are more consistent with theoretical priors.

Our baseline method for estimating the coefficients of interest is
Ordinary Least Squares (OLS). It is a powerful—and incredibly
simple—technique that allows for diverse applications. How-
ever, as you are probably familiar with, all economic models are
built upon a set of theoretical assumptions that are necessary for
its functioning. Some of these assumptions are hard to wrap our
heads around, and that’s natural. But this fact does not imply
that we should throw away the techniques and only use those
100% consistent with our views. I used to think like that as an
early graduate studuent, but reality is not that simple; instead,
it is preferable to be aware of the pros and cons of every model,
so that we can use it for our purposes, but at the same time
being able to criticize it and discuss its weaknesses whenever
necessary. As we have been trying to do in the lectures, the
most important thing to pay attention is the intuition behind
models, procedures, and theories. The assumptions and math
behind these become secondary as soon as we concentrate on
the intuitive properties of our models.

Econometric theory is no different than Macro or Micro models.
It is built upon several assumptions, and we will investigate
those pertaining mostly to OLS this week. Some of these
assumptions are straightforward, and others are easily broken.
The good part is that we will learn how to deal with these failures
later on in the course, more specifically after the Midterm exam.
And we can fix some of these problems still using OLS as our
main method.

But before we mess around with some classical assumptions,
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we must know each one of them. Books usually differ with
respect to the number of assumptions, given that some authors
prefer to split one assumption into two or three separate ones.
Here, we will compress the classical assumptions into 7.

The classical assumptions

The term classical refers to a set of assumptions required for
OLS to hold, in order to be the “best”1 estimator available 1 You will see why the term best lies

around quotation marks in a moment,
hold on.

for regression models. One of the most important tasks in
Econometrics is to decide whether these assumptions hold for
a model or not. Let us investigate these further.

• Assumption I: The regression model is linear, correctly speci-
fied, and has an additive stochastic error term.

Consider the following model with k independent variables:

yi = β0 + β1x1i + β2x2i + ... + βkxki + ui

This OLS model is linear, since all parameters (that is, the β′s)
are all linear, not assuming any functional form other than its
original level form.

A model like this, for example,

log(yi) = β0 + β1log(x1i) + β2x2i + ... + βkxki + ui

is still linear, since the log(·) functional form is only applied
to some of the model’s variables. A model that violates the
linearity assumption looks something like this:

log(yi) = β0 + log(β1)x1i + (β2)2x2i + ... + βkxki + ui
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In this particular case, β1 is log-transformed, and β2 is squared.
That is, these two parameters are no longer linear, and OLS can
no longer estimate such model. Of course, this model can still
be estimated—and may be useful in some contexts—, but it will
no longer be so through OLS, which is our standard technique
for Econometrics.

Assumption I still has two other parts: one concerns the model
being correctly specified, and the other concerns its residual.
Starting with the latter, it states that the error term must be
included in the model through addition. This simply means that
the residual cannot be multiplied/divided by other variable(s),
and must appear only by itself in the model.

The basic definition of a well-specified model is that it has no
omitted variables and no incorrect functional form. These
two are hard to determine precisely, since we do not have access
to the “true” underlying population model for our problem at
hand. What we can do, however, is estimate our sample model
according to theory, since it tries to map the “true” model as
precisely as possible.

• Assumption II: The stochastic error term has a zero population
mean.

This was already introduced last week, but we need to formalize
the expected value of the stochastic error term as a classical
assumption. The specific value of the error term ui for each
observation is determined purely by chance, since it is a random
variable that follows a given probability distribution. What
OLS assumes is that each observation of u is being drawn from
a distribution whose mean (expected value) is zero.

The graph below illustrates the distribution of a given residual
term. Notice that it is centered around a mean of zero. Thus,
from this assumtpion the E(u) = 0 from last week is derived.
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Figure 1: The residual’s distribution.
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• Assumption III: All explanatory variables (xi) are uncor-
related with the error term ui.

This assumption states that observed values of control variables
are determined independently of the values contained in the error
term. In case there is correlation between one independent
variable and the error term—that is, cor(xi ,ui) ≠ 0—, OLS
estimates would likely attribute to xi some of the variation in y

that actually pertains to ui.

What this means, in practice, is that the slope coefficient refer-
ring to xi will likely be over or underestimating the effect of xi on
yi, when part of this change is actually due to the error term.
Such problem will likely happen whenever a variable that is
correlated with xi has been omitted from the model, therefore
lying in ui. This can also refer to functional forms of xi, as we
will see later.

Therefore, this assumption once again reinforces the importance
of having a well-specified model, so that problems like this one
are avoided.

• Assumption IV : Observations of the error term are uncorre-
lated with each other.

Given that we assume that observations of the error term are
drawn independently from each other, if a correlation exists
between one observation of ui and another, it will be difficult
for OLS to get accurate estimates of the standard errors (SEs) of
coefficients, harming inference capabilities.2 2 We will study in more detail what

standard errors mean. For now, you
may consider these the same way as
what standard deviation means to sam-
ple statistics. Standard errors refer to
the precision of our β estimates.

In a nutshell, this assumption only reinforces what was pre-
sented in Assumption II, adding that all draws from the error’s
distribution are independent.

• Assumption V : The error term has a constant variance.
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This assumption is also known as the homoskedasticity as-
sumption. In analytical terms, this assumption implies

Var(ui) = σ2

The above means that the residual from our regression has an
equal spread across observations, since σ2 is just a constant value.
In case we violate this assumption, we have a heteroskedastic
error term. Analytically, an example of the latter may be

Var(ui) = σ2 · xi

If xi is not a constant (which is hard to imagine), then ui’s
variance is a function of an independent variable, thus not
being constant anymore. Such violation is problematic for OLS,
and we will deal with that in a few weeks. Especially in cross-
sectional data, where in many cases the variables tend to vary a
lot across individuals, the homoskedasticity assumption will
likely be violated. Figure 2 illustrates an example of residuals
with non-constant variance. As you already know, the distance
between each data point and the OLS regression line denotes
the residual for each observation i. Notice that this distance
increases as the values of x and y increase; thus, the pattern
of spread of these residuals is changing across observations,
meaning that the variance is not constant. Of course, we could
represent this situation in a number of different ways, but this
should be enough for now.

• Assumption VI: No explanatory variable is a perfect linear
function of any other explanatory variable.

This assumption, also known as the no perfect multicollinearity
assumption, is better exposed through a simple example. Con-
sider, for example, the definition of an independent variable we
denote by x1:
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Figure 2: Heteroskedastic residuals.

x1 = 50 + x2

or, even,

x1 = 10 · x2

In both examples, x1 is a linear, deterministic function of another
independent variable, x2. For modeling purposes, x1 and x2
basically represent the same variable. In other words, relative
movements of one will be precisely matched by the other control
variable, even though their absolute magnitudes might differ.
If this is the case, how can OLS distinguish between x1 and x2
to explain changes in the dependent variable?

It can’t. Thus, we can no longer rely on OLS to have a precise
model. Of course, it is wrong to assume that our explanatory
variables would not have some sort of relationship. What
this assumption rules out are deterministic associations be-
tween them. That is why we call it the perfect multicollinearity
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assumption. We will deal with such problem in detail later
on.

• Assumption VII: The error term is normally distributed.

This last assumption is not strongly required for OLS estimation,
but of major importance for one of our next topics, hypothesis
testing. Significance tests, such as t- and F-tests are heavily based
on the normal distribution, and assuming so for the error term
facilitates inference for our models.

Thus, joining Assumptions II and V, we summarize VII with
the following statement:

ui ∼ 𝒩(0, σ2)

This is a simple way of compressing information about a random
variable’s distribution. In case it is normally distributed, we use
the mean and the variance to define it. Thus, the statement above
should be read as: “the error term ui is normally (𝒩) distributed
(~), with a mean of 0, and variance σ2.”

These are the theoretical assumptions that define the Classical
Linear Regression Model (CLRM). Some of them are easy
to obey, but some others require serious work around them.
We will analyze each one of them in detail after the Midterm
exam.

The sampling distribution of β̂

Similar to the error term, the estimates of our regression co-
efficients, the β̂′s, also follow probability distributions. Such
distributions, when evaluated across different samples of the
same size, are known as sampling distributions.
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Given that Assumption VII defines the error term following
a Normal distribution, it logically follows that our estimated
coefficients will also be normally distributed. To illustrate the
latter point and what a sampling distribution means in practice,
suppose we want to estimate the following model:

salaryi = β0 + β1GPAi + ui

where salaryi is the starting salary of the ith graduate from last
year, andGPAi is their GPA from high school. We are interested
in β̂1, that is, the coefficient capturing how an additional GPA
point changes a graduate’s salary.

Suppose we collect information from a sample n = 35, and use
OLS to run our regression. After running the model, OLS gives
β̂1 = 8.6. But what if we select a second sample of 35 individuals?
Will β̂1 be the same as the first model’s?

If your answer was no, then you haven’t slept throughout
your Stats classes (or at least not too much). Given that our
samples are random, we surely do not expect equal estimates
for β1. These will depend on the sample we collect. Since we have
different samples, we have different students, with different
GPAs. Therefore, we will have different estimates for this
second sample, and a third, a fourth, and so on.

Now, suppose that for our second sample, our regression model
gives us β̂1 = 8.1. For a third, β̂1 = 11.3; for a fourth, β̂1 = 6.9;
and for a fifth sample, β̂1 = 8.5. The average for β̂1 across these
5 different samples of size 35 is 8.68. This means that we can
construct a sampling distribution out of these 5 coefficients,
obtained from each different sample. And this distribution
would be centered around its mean, 8.68.

The distribution of the β̂ coefficients across all possible samples
has its own mean and variance. For an adequate estimation,
we would want the mean of the sampling distribution of these
β̂’s to be equal to its true population value, βpop. Suppose
this true value for our β̂1 from before is 8.4. Our mean from
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the 5 samples of size 35, equal to 8.68, does not match the true
value, but it is likely that if enough samples of the same size
are taken, the average β̂1 would eventually approach the true
average value, 8.4.

Properties of the mean

When using OLS to estimate our regression models, we desire
that the distribution of β̂′s centers around a mean that equals (or
at least gets as close as possible) to the true mean of the coefficient
being estimated. Such property is called unbiasedness, and it
should not be a new word to you.

An estimator β̂ is an unbiased estimator if its sampling dis-
tribution has as its expected value the true value of β. That
is,

E(β̂) = βtrue

Here, true and population values are the same. If an estimator
produces β̂′s that are not centered around the true β, we have
a biased estimator. In practical terms, the coefficients we are
estimating are not representative of the population parameter
we would like to obtain from our study. We will see reasons for
that in a few lectures.

Properties of the variance

In addition to the mean of our estimated β coefficients, we
also want their distributions to be as narrow (i.e., precise) as
possible. We compare some distributions in Figure 3:

In the figure above, we have the distributions of two β̂ coeffi-
cients: one in orange and one in green. In case we assume the true
parameter value to be 0, we see that both sampling distributions
are centered pretty close to 0, thus being unbiased. However,
which one has the highest variance? The distribution with the
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Figure 3: Distribution of two slopes.

widest density is for the β̂ in green, meaning that it is more
likely to be far from the true average value of 0, since its range
comprehends a much greater area then that of β̂ in orange. In
other words, β̂ in orange is more precise than β̂ in green.

The statistical jargon for this precision feature is called relative
efficiency. It serves to compare two unbiased estimators: the
one with the smallest variance is said to be relatively more efficient
than another with a wider sampling distribution. Now, let’s
mix once again the unbiasedness and efficiency properties by
analyzing Figure 4.

Here, once again we assume that the true value of the β pa-
rameter is 0. Now, we present three sampling distributions:
β̂, in orange, β̂, in green, and β̂, in blue. Try to compare these 3
distributions in terms of unbiasedness and relative efficiency.

Given that we know the true value ofβ, both β̂ in orange and β̂ in
green are unbiased, since their distributions are centered around
this true value. And β̂ in orange is relatively more efficient than
β̂ in green, since it has a lower variance (i.e., a thinner density
curve). With respect to β̂ in blue, it is a biased estimator, since its
sampling distribution centers around 10, far from the true value.
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Figure 4: Distribution of three slopes.

Thinking in practical terms, the samples collected to estimate β̂

in blue’s distribution likely come from a a problematic sampling
process. And this can have several reasons, such as a poor data
collection, and even a failure to capture the accurate sample
that the study targets.

The Gauss-Markov theorem

Given the Classical Assumptions I through VI, the OLS estima-
tor of a given coefficient βk is the “minimum variance estimator
from among the set of all linear unbiased estimators of βk, for
k = 0, 1, 2, 3, ..., k.”

The Gauss-Markov theorem is summarized by the statement
“OLS is BLUE.” The latter term means Best Linear Unbiased
Estimator. Let’s break down each component of this acronym.

“Best” refers to minimum variance. That is, provided that As-
sumptions I to VI are satisfied, OLS will produce estimates
with the lowest possible variance (i.e., the “thinnest” possible
sampling distribution). “Linear” is just a reassessment of the
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linearity assumption contained in Assumption I. “Unbiased”
is simply summarized by E(β̂) = βtrue, discussed in detail
in the last section. Lastly, you know from last week what an
“Estimator” means.

In case we add Assumption VII to the Gauss-Markov theorem,
then OLS becomes the best of all estimators, not just out of the
linear ones. Then, BLUE becomes BUE.

However, as we will see in future lectures, it is not easy to fulfill
all of these assumptions. But we will learn how to deal with the
main violations of CLRM, and many of the possible corrections
can be applied still using OLS. Therefore, it is a really powerful
and flexible technique, which we will keep exploring until our
semester is done.

Properties of OLS estimators

Summarizing what we have seen in this lecture, let us specify
the four main properties of OLS estimators:

1. Unbiased: Our β̂i estimates are centered around the true
population values of βi.

2. Minimum variance: The sampling distribution of β̂i

estimates are as narrowly concentrated as possible around
the true value, given that the estimator is unbiased.

3. Consistent: As our sample size increases (i.e., n → ∞),
OLS estimates converge to the true population parameters.

4. Normally distributed: The distribution of β̂i estimates
can be summarized by

β̂i ∼ 𝒩[βtrue ,Var(β̂i)]

That is, our estimates are normally distributed, with the mean
equal to its true value, and a given, constant variance.
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