## The Classical Linear Regression Model EC 339

Marcio Santetti Fall 2022

# Motivation

- The goal when using OLS is to obtain **unbiased**, **efficient**, and **consistent** estimators.
- Moreover, we want to be able to do hypothesis testing.
- All these properties are made possible through **7 assumptions**.
- This set of assumptions is known as the **Classical Linear Regression Model** (CLRM).

# The Classical Assumptions

**1**. The regression model is **linear**, **correctly specified**, and has an **additive** stochastic error term.

- **2**. The stochastic error term  $(u_i)$  has a **zero** population mean.
- **3**. All explanatory variables  $(x_i)$  are **uncorrelated** with the error term.
- **4**. Observations of the error term are **uncorrelated** with each other.
- **5**. The error term has a **constant variance**.
- **6**. No explanatory variable is a **perfect linear function** of any other explanatory variable.
- 7. The error term is **normally distributed**.

"The regression model is **linear**, **correctly specified**, and has an **additive** stochastic error term."

- Linear means linear in **parameters**  $(\beta_i)$ ;
- Correctly specified means that it has the correct **functional form** and **no** omitted variables.
- And an **additive** error term implies **no** other form in which  $u_i$  appears in a model.

• Examples:

$$y_i = eta_0 eta_1 x_{1i} + eta_2 x_{2i} + u_i 
onumber \ y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} u_i 
onumber \ y_i = eta_0 + log(eta_1) x_{1i} + eta_2 x_{2i} + u_i$$

One of the main reasons for a *violation* of CLRM Assumption I is an **incorrectly specified** model.

- This may happen due to
  - Incorrect **functional form** (data visualization matters!);
  - **Omitted** variables (leading to omitted variables bias).

A regression's error term may sometimes be a **black box**.

• Recall that any potentially omitted variable(s) lie(s) there!

Therefore, our models must have a **theoretical** motivation.

## What is bias?

An estimator is **biased** if its expected value is different from the *true* population parameter.

When considering our slope coefficients  $(\hat{\beta}_i)$ , we expect that they, on average, are close to the **"true"** population parameter,  $\beta_{pop}$ .

Unbiased: 
$$\mathbb{E}\left[\hat{\beta}_{OLS}\right] = \beta_{pop}$$
 Biased:  $\mathbb{E}\left[\hat{\beta}_{OLS}\right] \neq \beta_{pop}$ 





"The stochastic error term  $(u_i)$  has a **zero** population mean."

- Values of the stochastic error term are defined by **pure chance**.
- It follows a probability **distribution** centered around zero.
- Also known as the **exogeneity** assumption.

From standard Microeconomic theory, recall:

- Factors that influence the **demand** for a given good:
  - Price of the good itself, price of substitutes, preferences...

"The stochastic error term  $(u_i)$  has a **zero** population mean."

In practice, what is the difference between  $\mathbb{E}[u \mid x] = 0$  and  $\mathbb{E}[u \mid x] \neq 0$ ?

"All explanatory variables  $(x_i)$  are **uncorrelated** with the error term."

- Observed values of the independent variable are determined **independently** of the values contained in the error term
- $Cor(x_i, u_i) \neq 0 \implies$  **violation** of CLRM Assumption III.
- A possible reason: a variable correlated with some  $x_i$  being **omitted** from the model.

"Observations of the error term are **uncorrelated** with each other."

- Also known as **autocorrelation**.
- Common in **time-series** data.
- Occurs when the model's disturbances are correlated **over time**, i.e.,  $Cor(u_t, u_j) \neq 0$  for  $t \neq j$ .

Behavior of  $u_t$  over time (positive serial correlation)



#### Behavior of $u_t$ over time (negative serial correlation)



"The error term has a **constant variance**."

- Also known as the **homoskedasticity** assumption.
- If violated, we have **heteroskedasticity**.
- Extremely **common** in cross-section data sets (also in financial time-series data)

• This assumption implies that the error term has the **same variance** for each value of the independent variable.

 $\circ \; Var(u|x) = \sigma^2$ 

• Homoskedastic residuals:



• Heteroskedastic residuals:



"No explanatory variable is a **perfect linear function** of any other explanatory variable."

- Also known as the **no perfect multicollinearity** assumption.
- Only completely **violated** if an independent variable  $x_i$  is a **deterministic** function of another variable  $x_j$ , for  $i \neq j$

Examples:

- $x_3 = x_1 1,000$
- $x_2 = 50 + x_1$

"The error term is **normally distributed**."

• Summarized by  $u_i \sim \mathcal{N}(0, \sigma^2)$ .

OLS **still works** without this assumption!

But crucial for hypothesis testing and inference.

#### The Gauss-Markov theorem

From CLRM Assumptions **I through VI**, we guarantee that OLS is **BLUE**.

We will learn how to deal with the most common **violations** of CLRM Assumption after the Midterm exam.

## Next time: CLRM in practice