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Introduction

Sometimes, a regression model with only one control variable
is enough for our analysis. However, we can give at least two
reasons for including more independent variables in our model:
first, we were introduced in the last lecture to the stochastic
error term, which includes all other variables and factors that
are not explicitly considered on the regression’s right-hand
side. If an omitted variable is important to explain variations
is the dependent variable, this brings many problems, which
we will investigate later on. Secondly, in the social sciences,
events change due to a myriad of other events, hardly so just
from one single event. Take the wage-education relationship, for
instance. Variables such as gender, experience, race, tenure, and
many others, must at least be considered to be included in our
models, in order to reduce the inherent amount of error that a
regression analysis comprises.

Recall that whatever a regression
model does not explicitly include will
be part of the stochastic error term.

The natural evolution of a simple regression are multiple regres-
sion models, which we will cover in this lecture. In addition,
we will discuss how to better assess the quality of any regression
model (regardless of having one or more independent variables),
as well as working with measurement unit transformations and
functional forms that can help us extract more information from
our OLS estimators.

How to interpret multiple slope coefficients?

A multivariate regression model with k independent variables
can be represented by the following equation:

yi = β0+β1x1i+β3x2i+β3x3i+...+βkxki+ui ∀ i = 1, 2, 3, ...,n

Notice that we are including two indexes (subscripts) next
to each independent variable. One indexes the number of
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each slope coefficient—and the order in which you include
your slope variables does not matter here—, and the other
indexes the variable to its respective individual (observation),
denoted by i. Thus, if our sample size is n, we will have one
observation of each variable (x1 , x2 , ..., xk) for each i individual
(from individual 1 until thenth individual). Lastly, the∀ symbol
next to the above equation is read as “for all.” Therefore, it
should be read as “for all i, ranging from the first until the nth

observation.”

If you are still struggling with this notation, consider your data
set as a spreadsheet. Each column represents a variable, while
each row brings individual information for the corresponding
variable. Thus, columns are the y and x variables, and rows
bring data on each i individual contained in your data set.
Using subscripts just compresses information, so we do not
need to write down n different regression equations. Notation
is important and it is meant to simplify our lives, and thus
I want to demystify many mathematical issues that you may
have come across in your life that could have been made much
simpler. Feel free to shoot me an email if any part of our
mathematical notation is not clear.

After we estimate β̂1 , β̂2 , ..., β̂k, how do we interpret these
coefficients, now that the model is a little more complex than
before? The answer is really simple: in the same way! These
coefficients still indicate the change in the dependent variable
associated with a 1-unit increase in the respective independent
variable, holding constant the other independent variables in the
equation. For example, if we want to interpret the β̂2 coefficient,
it represents the change in y associated with a 1-unit increase
in x2, holding x1 , x3 , ..., xk constant. This ceteris paribus (all else
constant) assumption is a partial equilibrium interpretation, and
you must have been introduced to this idea elsewhere. However,
a very important warning: this all else constant assumption does
not apply to any variables that might have been omitted from
the model, therefore lying in the residual term ui.

The intercept coefficient, β̂0, still could be interpreted in the
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same say as in the simple regression case, but it is not very
useful anymore. The role played by the intercept term in multi-
ple regression analyses is more mathematical than statistical,
and we usually do not even bother about its numerical value.
However, it is still really important to include it in our models.

Let us look at an example with k = 2 independent variables:

ĈBi = 37.4 − 0.88Pi + 11.9Yi

where CBi is beef consumption for individual i (in pounds), Pi
is the price of beef (in dollars) paid by individual i, and Yi is the
ith individual’s disposable income (in thousands of dollars).

The estimated value of β̂1 is -0.88. This means that, holding an
individual’s disposable income constant, a one-dollar increase
in the price of beef decreases beef consumption by .88 pounds,
on average. Likewise, β̂2 is 11.9, meaning that, ceteris paribus
(i.e., holding the price of beef constant), if an individual’s
disposable income increases by one thousand dollars, her beef
consumption will increase, on average, by 11.9 pounds. Notice
that we have to respect the measurement units by which the
variables are defined here, adapting the 1-unit change to the
respective way in which they are measured.

In the above interpretation, however, other factors, such as the
price of chicken, for instance, cannot be held constant, since it is
included in the error term, in case you believe this variable is
important to explain variations in beef consumption, and it is
omitted from the model.1 1 Recall from your Micro classes that

the price of substitutes, in addition to
other factors, is relevant to explain the
demand for one good.

The key detail from multiple regression models is that we
have one slope for each independent variable, as we can see in
Figure 1. This model, therefore, allows for a negative slope (with
respect to Pi), and for a positive slope (associated with Yi).
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Figure 1: Individual slopes.

Total, Explained, and Residual Sum of Squares

After our regression is estimated, we would like to assess how
well our model fits the data. You may have been introduced
to the coefficient of determination, R2, elsewhere, and it assesses
the variation in y caused by variations in our independent
variable(s). And you have probably learned that it is calculated
by squaring the correlation coefficient, usually known as r, thus
ranging between 0 and 1, or 0 and 100%.

We will now derive the R2 from a regression perspective: the
squared deviations of y around its mean are a measure of the
amount of variation to be explained by the regression model.
These are called Total Sum of Squares (TSS):

TSS =

n∑
i=1

(yi − ȳ)2

where ȳ denotes the mean of the dependent variable. The above
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formula simply calculates the deviation of each observation of
the dependent variable (yi) from its mean (ȳ). We add up this
squared difference—avoiding negative values—for our entire
sample, whose size is n.

For OLS models, the TSS has two components: one variation
that can be explained by the model, and one that cannot:

n∑
i=1

(yi − ȳ)2 =

n∑
i=1

(ŷi − ȳ)2 +
n∑
i=1

û2
i =⇒ TSS = ESS + RSS

The above procedure is known as decomposition of variance, and
it basically decomposes the deviations of y relative to its mean
between what is explained by our regression model and what
is not. The first is denoted as the Explained Sum of Squares
(ESS) and the second, as the Residual Sum of Squares (RSS).
The smaller the RSS is, relative to TSS, the better the model fits
the data.

The coefficient of determination, R2

The three estimates presented in the previous section can be
used to derive a regression’s coefficient of determination
(R2):

R2 =
ESS

TSS
= 1 − RSS

TSS

with R2 lying between 0 and 1. We can also present its value in
percentage units, therefore lying also between 0 and 100%.

The R2 measures the goodness-of-fit of a regression model.
In other words, the variation (%) in the dependent variable
explained by our regression model. In case the regression only
has one independent variable, the R2 illustrates the variation
(%) in the dependent variable explained by variations (%) in the
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dependent variable. Lastly, since OLS provides the parameters
that minimize the RSS, it provides the largest possible R2, given
our estimated model.

Next, we see examples of a low and a high R2. Notice that, the
more distant the data points are from the regression line, the
lowest a model’s goodness-of-fit.

Figure 2: Low and high R-squared coefficients.

The adjusted R2, R̄2

The R2, however, is not bulletproof. If one keeps adding control
variables (with many of them being, actually, unnecessary) to
a regression model, this will never decrease the R2. From the
formula:

R2 = 1 − RSS

TSS
= 1 −

∑n
i=1 û

2
i∑n

i=1(yi − ȳ)2
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If we keep adding regressors to our model, the formula’s
denominator remains the same, since nothing happens to y or
its mean. The numerator, on the other hand, can only decrease
or, at most, stay the same, since we are, in theory, “removing
elements” from the error term. Thus, the R2 does not fall. This
is not good to assess a model’s quality.

The addition of unnecessary variables to a model not only in-
flates it with useless regressors, but also requires the estimation
of additional β coefficients. This fact decreases the degrees-
of-freedom (DOF), i.e., the excess of observations (n) relative
to the number of estimated coefficients (k + 1). Given that we
denote the intercept with a “0” subscript, the total number of
coefficients a regression estimates is denoted by k + 1; thus, k
only refers to the slope coefficients of our model. Pay attention
to this fact, it will be important in a moment.

The act of adding another control variable to a model must
be compared to the decrease in degrees-of-freedom before a
decision can be made with respect to its statistical impact. To
address this problem, we compute a version of the R2 measure
that adjusts for degrees-of-freedom. We call it the adjusted R2,
denoted as R̄2:

R̄2 = 1 −
∑n

i=1 û
2
i
/(n − k − 1)∑n

i=1(yi − ȳ)2/(n − 1)

Notice that the formula is basically the same as the one for the
“standard”R2. The adjustment appears by adding denominators
to the RSS (n − k − 1) and the TSS (n − 1). We are basically
normalizing the RSS and TSS by their respective degrees-of-
freedom. If you carefully look at the right-hand side of the
formula above (ignoring the “1 -” part for now), you will
notice that the denominator is nothing but the variance of
y, the dependent variable. But what is the numerator? It
is nothing but the variance of the estimated error term, û.
The denominator of its variance is n − k − 1 because this is
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the number of degrees-of-freedom a regression requires to
be estimated: from all n observations, we estimate k slope
coefficients and 1 intercept. For y’s variance, our number of
degrees-of-freedom is n − 1 simply because we are just losing 1
observation to calculate its sample mean, ȳ, which is part of its
variance formula.

Thus, what the adjusted R2 calculates is the variance of our
model’s error term, weighted by (or relative to) our dependent
variable’s variance. Then, we subtract it from 1 and obtain the
variation (%) in the dependent variable, around its mean, that
is explained by the estimated regression model, adjusted for
degrees-of-freedom. Notice how its interpretation is similar to
the “standard” R2, only adding the terms “around y’s mean”
and “adjusted for degrees-of-freedom.” Do not forget these
terms, since these radically change your interpretation.

Assessing the quality of a regression equation

Now that we were introduced to the two main goodness-of-fit
measures, we are able to ask ourselves: How to assess the
validity of a regression’s estimates? Be aware that the statistical
package you are using to estimate your models accepts anything:
it does the “dirty job” of doing the math for you, but it does not
bother about how good or how bad it is. Moreover, it does not
interpret anything. This is our job.

As stated in our first week’s lecture, where the main features
of Econometrics were introduced, as well as the “classical”
workflow for an applied work, the key step is to spend time
thinking about what to expect before any estimation starts.
This way, we are more prepared to get any results from our
estimations.

Some aspects to ponder:

1. Is our model supported by theory?
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2. Does it fit well the data we have at hand?

3. Is our sample size good enough for our purposes?

4. Is OLS the best method to answer our research question?

5. Are all important (relevant) variables included in our
model?

6. Is the functional form appropriate to answer our questions?

Step 1 must always be your starting point. Your study will
never be relevant if solely based on personal conviction/beliefs.
These must be backed up by theory, and we have a pretty good
arsenal of theories in our discipline, don’t we? This step is
intimately connected with Step 5, since theory will inform you
what variables are worth including in your model, without
unnecessarily wasting DOF.

Step 2 is quickly assessed after the regression’s estimation. Now
that you are aware of the limitations of the “standard” R2, al-
ways pay more attention to the adjusted R2, playing around
with different specifications of your model to evaluate how R̄2

reacts; usually, more parsimonious (that is, simpler) models do
way better than models with too many regressors. Simplic-
ity is always preferred, relative to complexity, in regression
analysis.

For the sample size, a minimum of n = 30 observations is the
usual procedure, since it is in accordance with the Central Limit
Theorem (CLT). But the more data you can gather, the better the
properties of OLS will develop in your estimation. Regarding
Step 4, OLS will not always be the most appropriate estimator
for our purposes. For example, when our dependent variable
is binary (i.e., either taking on a value of 1 or 0, according to a
certain criterion), OLS does not work well. We will come back
to this issue in future weeks.

Lastly, Step 6: functional forms. This is the subject of the next
section.
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Units of measurement & functional forms

For this section, we address two questions:

• How does changing the units of measurement of y and/or
x affect OLS estimates?

• How to incorporate popular functional forms used in Eco-
nomics into regression analysis?

Changing the dependent variable’s measurement

Consider the following model:

salaryi = β0 + β1roei + ui

where salary is annual salary, in thousands of dollars, for
individual i, and roe is the return on equity for the CEO’s firm
for the previous 3 years. The latter is a profitability measure,
defined as net income as a percentage of common equity.

After we estimate the model, we have:

�salaryi = 963.191 + 18.501 roei

Now, suppose we decide to change the measurement of salary.
Let salardol be the salary measured in dollars. Thus, salardoli =
1, 000 · salaryi for all i individuals in the sample. Since we
changed the dependent variable’s measurement, we altered the
left-hand side of our regression. In order to keep both sides
equal, we simply perform the same operation on the right-hand
side. Therefore, if we multiplied the right-hand side by 1,000,
we do the same on the right-hand side. Then, the regression
output becomes:

11



�salardoli = 963, 191 + 18, 501 roei

The interpretation stays the same as before. We only have to
adjust it for the new coefficients and measurement units.

Generally, if the dependent variable
(y) is multiplied by a constant c, the β

coefficients are also multiplied by c.Changing an independent variable’s measurement

Let us go back to the original regression, with salary as the
dependent variable. Now, let roedeci be defined as the decimal
equivalent of roei. Thus, roedeci = roei/100. Given this
latter definition, cross-multiplying both sides gives roei =

100 · roedeci. Then, the estimated original coefficient on roei =

18.501 becomes roedeci = 18.501 · 100 = 1, 850.1.

Then, the regression output becomes:

�salaryi = 963.191 + 1, 850.1 roedeci

If an independent variable (xi) is
multiplied (divided) by some nonzero
constant c, then the corresponding
OLS slope coefficient is divided
(multiplied) by c.

For our example, the intercept coefficient (β0) remains the same,
since both roedeci = 0 and roei = 0 mean the exact same thing.
Lastly, the goodness-of-fit measures are unchanged by these
transformations (either to dependent or independent variables),
since the variables are just being normalized differently.

Incorporating nonlinearities in a regression model

Some economic relationships are nonlinear by nature. Take
the example of wages vs. years of experience. Consider the two
cases in Figure 3. Which one do you think better illustrates this
relationship: the first, where wage increases monotonically with
experience; or the second, in which we also observe an increas-
ing association, but with marginally decreasing increments?

If you chose “Case 2,” you live in the real world. In case we
lived in the world of “Case 1,” there would be no uncertainty:
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Figure 3: Linear and nonlinear relationships.

just stay on the job for the rest of your life, and your wage
will increase no matter what. We know that this is basically
impossible.

We will start playing around with different functional forms
slowly. But be aware: we are able to model situations as in
“Case 2” without compromising OLS properties. So far, we have
only dealt with models where the dependent and independent
variables are taken in levels, that is, without changing their
functional definitions. For now, we will study log-level, log-
log, and level-log models, and more functional forms are yet
to come.

Log-level models

Consider now the salary-education relationship. The following
regression model assumes a level-level functional form, that is,
with all variables in their non-transformed levels:
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�salaryi = 7.5 + .54 educi

The slope coefficient for educi is .54. This means that, for every
additional year of education, one’s salary will increase by 54
cents. It does not matter whether one is going from the 10th

to the 11th year of education, or from the 17th to the 18th.
This increment of 54 cents is constant. The sign makes sense,
but its interpretation does not correspond to one’s theoretical
expectations.

What we expect is that one’s salary at least increases by a con-
stant percentage, the more educated they become. Graphically,
it looks somewhat like the graph below, relating two variables,
x and y.

Figure 4: A nonlinear relationship.

We can still model this situation with OLS. We only have to
change the functional form of one of our variables to allow for
such interpretation: instead of using our dependent variable
in levels, we use its natural logarithm, ln(y).2 This allows us 2 I will use ln(·) and log(·) interchange-

ably, since in Econometrics, when one
talks about “logs,” they are referring
to the natural logarithm.
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to interpret our slope coefficients as constant percentage (%)
changes to the dependent variable.

Let us look at an example. First, the econometric model be-
comes:

log(salaryi) = β0 + β1educationi + ui

Then we estimate it:

�log(salaryi) = .584 + 0.083 educationi

Now, how do we interpret the slope coefficient on education?
It’s simple: just multiply the coefficient by 100%! In other
words, on average, for every additional year of education,
salaries increase by [100 · 0.083 =] 8.3%, all else constant. Now,
for every additional year of education an individual achieves,
their salary will increase by a constant percentage, always on
top of the previous salary. This may be not fully correspond to
reality, but it performs way better than the level-level version
of this model.

Be careful, though: this does not mean that level-level models
are useless. The functional form you will use depends on the
research question you have at hand, as well as the interpretation
that will work better for your problem/model.

Here’s the recipe for interpreting log-level models:

%∆y = (100 · βi)∆xi

where ∆y and ∆xi denote the changes in the dependent and in
the independent variable, respectively.

Lastly, notice that when you get to interpret the coefficients in a
log-level specification, you are not interpreting the dependent
variable in terms of logs, but in terms of its level. The log role
has already been passed to the mathematical calculation of the
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slope’s interpretation. So, you are interpreting the effect of
education on salary, and not on log(salary). However, when
interpreting the goodness-of-fit measures (R2 and R̄2), then
you are interpreting the variations in log(salary) explained by
your model. I know, it is a bit boring, but make sure to pay
attention to these details, so your interpretation is sharp.

Log-log models

Depending on our interpretation purposes, we can also log-
transform the independent variables of our model. If we decide
to keep y in log-form, then we have a log-log functional form.
This setting is known as constant elasticity models. Let’s look at
an example:

log(salaryi) = β0 + β1log(salesi) + ui

Since both the dependent and independent variables are in
logs, we can interpret β̂1 as the elasticity of salary with respect
to sales. You must recall the concept of elasticity from your
Microeconomics classes; if not, make sure to give it a quick
review.

Next, we interpret the estimated model:

log(salaryi) = 4.822 + .257 log(salesi)

For log-log models, we need not multiply the slope coefficient
by 100. We only take the value as a percentage. Thus, for
every 1% increase in sales, one’s salary increases by .257%, on
average.

Here’s the recipe:

%∆y = %∆xi
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Now, the “elasticity” meaning must be clear enough.

Level-log models

Level-log models are less common in our field, but it is worth
presenting them, in case it ever appears. In this case, the per-
centage only applies to changes in the independent variable, while
the dependent variable remains in levels. As an example,

Breadi = β0 + β1log(pricei) + ui

This is a simple demand function for bread, controlling for its
price. Let us look at its estimated version:

�Breadi = 7.5 − 15.2 log(pricei) + ui

Now, the interpretation is the following: for every 1% increase
in the price of bread, its quantity demanded will decrease by
[15.2/100 =] 0.152 units, on average. Here’s the recipe for
level-log models:

∆y = (βi/100)%∆xi

The meaning of “linear regression”

You have probably noticed that, by using natural logarithms,
our models become nonlinear. This is correct, but, as we will
see next week, the meaning of linear in linear regression does
not apply to variables, but to parameters. Put simply, as long
as our β coefficients are in linear form, we can transform our
variables in any desired way, thus preserving OLS properties.
Notice that the functional forms we have seen so far only apply
to variables, with the coefficients remaining linear. That is
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why we can keep using OLS for these apparently nonlinear
models.

Lastly, it is important to remark that a multiple regression
model can (and should) contain mixed functional forms. For
example, we can have a model like this:

log(yi) = β0 + β1x1i + β2log(x2i) + β3x3i + β4log(x4i) + ui

Here, β1 and β3 will be interpreted in a log-level way, whereas
β2 and β4 will be interpreted in a log-log setting. If the
intercept needs to be interpreted, it will always be a log-level
interpretation.
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