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MotivationMotivation



Beyond simple regression

Simple regression models may not be sufficient to describe the relationships we are interested in.

A few reasons:

Avoiding bias due to omitted variables;

More consistency with economic theory;

Usually, relationships we study are a product of several different events.
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Multiple regression models
In standard notation:

From last week...

And now...

Important: even if we are only interested in the effect of educ on wage, the model above is more consistent
with theoretical priors.

yi = β0 + β1x1i + β2x2i + β3x3i+. . . +βkxki + ui  

∀ i = 1, 2, 3, . . . ,n

wagei = β0 + β1educi + ui

wagei = β0 + β1educi + β2experi + β3tenurei + β4genderi + ui
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An example
#> 

#> ===============================================
#>                         Dependent variable:    
#>                     ---------------------------
#>                                wage            
#> -----------------------------------------------
#> educ                         0.541***          
#>                               (0.053)          
#>                                                
#> Constant                      -0.905           
#>                               (0.685)          
#>                                                
#> -----------------------------------------------
#> Observations                    526            
#> R2                             0.165           
#> Adjusted R2                    0.163           
#> Residual Std. Error      3.378 (df = 524)      
#> F Statistic          103.363*** (df = 1; 524)  
#> ===============================================
#> Note:               *p<0.1; **p<0.05; ***p<0.01
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An example
#> 

#> ===============================================
#>                         Dependent variable:    
#>                     ---------------------------
#>                                wage            
#> -----------------------------------------------
#> educ                         0.572***          
#>                               (0.049)          
#> exper                         0.025**          
#>                               (0.012)          
#> tenure                       0.141***          
#>                               (0.021)          
#> female                       -1.811***         
#>                               (0.265)          
#> Constant                     -1.568**          
#>                               (0.725)          
#> -----------------------------------------------
#> Observations                    526            
#> R2                             0.364           
#> Adjusted R2                    0.359           
#> Residual Std. Error      2.958 (df = 521)      
#> F Statistic           74.398*** (df = 4; 521)  
#> ===============================================
#> Note:               *p<0.1; **p<0.05; ***p<0.01
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Interpreting multiple coefficientsInterpreting multiple coefficients



The ceteris paribus assumption
When interpreting multiple regression models, we isolate the effect of one independent variable on
the
dependent variable.

Therefore, the estimated slope parameters  inform the change in  resulting from a one-
unit change in , holding all other independent variables constant.

Mathematically speaking...

(β̂1, . . . , β̂k) y

xi

wagei = β0 + β1educi + β2experi + β3tenurei + β4genderi + ui

= β1
∂wagei
∂educi

= β2
∂wagei
∂experi
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Goodness-of-fitGoodness-of-fit



Goodness-of-fit

As more variables are added our model, R2 increases in a mechanical fashion.

Problem!

Simple regression wage model
0.16

Multiple regression wage model
0.36
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Goodness-of-fit

Let us add a construc  indicator variable, including it into our previous model.

construc == 1  if working in the construction sector;
construc == 0  otherwise.

wagei = β0 + β1educi + β2experi + β3tenurei + β4genderi + β5construci + ui
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Goodness-of-fit
#> 

#> ===============================================
#>                         Dependent variable:    
#>                     ---------------------------
#>                                wage            
#> -----------------------------------------------
#> educ                         0.577***          
#>                               (0.050)          
#> exper                         0.026**          
#>                               (0.012)          
#> tenure                       0.141***          
#>                               (0.021)          
#> female                       -1.788***         
#>                               (0.266)          
#> construc                       0.563           
#>                               (0.626)          
#> Constant                     -1.685**          
#>                               (0.736)          
#> -----------------------------------------------
#> Observations                    526            
#> R2                             0.365           
#> Adjusted R2                    0.358           
#> Residual Std. Error      2.958 (df = 520)      
#> F Statistic           59.658*** (df = 5; 520)  
#> ===============================================
#> Note:               *p<0.1; **p<0.05; ***p<0.01
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Goodness-of-fit

Before, the R2 was .364! Why?

Let us have a closer look at its formula:

The denominator will remain the same, but the numerator will, at most, remain the same.

Solution: the adjusted R2, R2:

 # independent variables;
 # degrees-of-freedom.

R2 = 1 − = 1 −
RSS

TSS

∑n
i=1 û

2
i

∑
n

i=1(yi − ȳ)2

R̄
2

= 1 −
∑

n

i=1 û
2
i /(n − k − 1)

∑n
i=1(yi − ȳ)2/(n − 1)

k =

(n − k − 1) =
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Goodness-of-fit

Multiple regression model without construc:

R-squared Adjusted R-squared
0.36354 0.35865

Multiple regression model with construc:

R-squared Adjusted R-squared
0.36453 0.35842

What happened?
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Functional formsFunctional forms



Nonlinear relationships
Many times, the relationships we are interested in do not follow a linear pattern.
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A level-level model

term estimate std.error statistic p.value
(Intercept) 53.955561 0.314995 171.29025 0
gdpPercap 0.000765 0.000026 29.65766 0

Interpretation:

A 10,000-dollar increase in GDP per capita increases life expectancy by 7.65 years.
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Nonlinear relationships
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A log-level model

term estimate std.error statistic p.value
(Intercept) 3.9666387 0.0058346 679.85339 0
gdpPercap 0.0000129 0.0000005 27.03958 0

Interpretation:

A one-unit increase in the explanatory variable increases the dependent variable by
approximately  percent, on average.

A 1,000-dollar increase in GDP per capita increases life expectancy by 1.29%.

β1 × 100
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Nonlinear relationships
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A log-log model

term estimate std.error statistic p.value
(Intercept) 2.864177 0.0232827 123.01718 0
log(gdpPercap) 0.146549 0.0028213 51.94452 0

Interpretation:

A one-percent increase in the independent variable results in a  percent change in the
dependent variable, on average.

A 1 % increase in GDP per capita increases life expectancy by 0.147 %.

β1
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Nonlinear relationships
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A level-log model

term estimate std.error statistic p.value
(Intercept) -9.100889 1.227674 -7.413117 0
log(gdpPercap) 8.405085 0.148762 56.500206 0

Interpretation:

A one-percent change in the independent variable leads to a  change in the dependent
variable, on average.

A 1 % increase in GDP per capita increases life expectancy by 0.0841 years.

β1 ÷ 100
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Quick summary

A nice interpretation reference*

Model's functional form How to interpret ?

Level-level 
  

A one-unit increase in  leads to a 


-unit increase in 

Log-level 
  

A one-unit increase in  leads to a 


-percent increase in 

Log-log 
  

A one-percent increase in  leads to a 


-percent increase in 

Level-log 
  

A one-percent increase in  leads to a 


-unit increase in 

by Kyle Raze

β1

yi = β0 + β1xi + ui

Δy = β1 ⋅ Δx
x

β1 y

log(yi) = β0 + β1xi + ui

%Δy = 100 ⋅ β1 ⋅ Δx
x

β1 ⋅ 100 y

log(yi) = β0 + β1 log(xi) + ui

%Δy = β1 ⋅ %Δx
x

β1 Y

yi = β0 + β1 log(xi) + ui

Δy = (β1 ÷ 100) ⋅ %Δx

x
β1 ÷ 100 y
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The meaning of linear regression
If we are able to use these nonlinear functional forms, what does linear regression mean after all?

As long as the model remains linear in parameters, it will be linear.

This means that we cannot mess around with our  coefficients!

Examples:

Which one is not linear in parameters?

β

log(wagei) = β0 + β1educi + β2experi + β3tenurei + β4genderi + ui

log(wagei) = β0 + log(β1)educi + β2experi + β2
3 tenurei + β4genderi + ui
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Next time: Multiple Regression in practiceNext time: Multiple Regression in practice


