Multiple Linear Regression EC 339

Marcio Santetti Fall 2022

Motivation

Simple regression models may not be **sufficient** to describe the relationships we are interested in.

A few reasons:

- Avoiding **bias** due to *omitted variables*;
- More consistency with **economic theory**;
- Usually, relationships we study are a product of **several different events**.

Multiple regression models

In **standard** notation:

$$egin{aligned} y_i &= eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + eta_3 x_{3i} + \ldots + eta_k x_{ki} + u_i \ &orall \, i = 1, 2, 3, \ldots, n \end{aligned}$$

• From last week...

$$wage_i = \beta_0 + \beta_1 educ_i + u_i$$

• And now...

$$wage_i = eta_0 + eta_1 educ_i + eta_2 exper_i + eta_3 tenure_i + eta_4 gender_i + u_i$$

Important: even if we are only interested in the effect of *educ* on *wage*, the model above is more consistent with theoretical priors.

An example

#>		
#>		Dependent variable:
#>		· · · · · · · · · · · · · · · · · · ·
#>		wage
#>		
#>	educ	0.541***
#>		(0.053)
#>		
#>	Constant	-0.905
#>		(0.685)
#>		
#>		
#>	Observations	526
#>	R2	0.165
#>	Adjusted R2	0.163
#>	Residual Std. Error	3.378 (df = 524)
#>	F Statistic	103.363*** (df = 1; 524)
#>	=======================================	
#>	Note:	*p<0.1; **p<0.05; ***p<0.01

#>

An example

		#>
#>	=======================================	
#>		Dependent variable:
#>		
#>		wage
#>		
#>	educ	0.572 ***
#>		(0.049)
#>	exper	0.025**
#>		(0.012)
#>	tenure	0.141***
#>		(0.021)
#>	female	-1.811***
#>		(0.265)
#>	Constant	-1.568**
#>		(0.725)
#>		
#>	Observations	526
#>	R2	0.364
#>	Adjusted R2	0.359
#>	Residual Std. Error	c 2.958 (df = 521)
#>	F Statistic	74.398*** (df = 4; 521)
#>		
#>	Note:	*p<0.1; **p<0.05; ***p<0.01

Interpreting multiple coefficients

The ceteris paribus assumption

When **interpreting** multiple regression models, we **isolate** the effect of one independent variable on the dependent variable.

Therefore, the estimated **slope parameters** $(\hat{\beta}_1, \dots, \hat{\beta}_k)$ inform the change in y resulting from a oneunit change in x_i , holding all other independent variables constant.

Mathematically speaking...

$$wage_i = eta_0 + eta_1 educ_i + eta_2 exper_i + eta_3 tenure_i + eta_4 gender_i + u_i$$

$$rac{\partial wage_i}{\partial educ_i} = eta_i$$
 $\partial wage_i$

$$\frac{\partial wage_i}{\partial exper_i} = \beta_2$$

Goodness-of-fit

Goodness-of-fit

As more variables are added our model, R^2 increases in a **mechanical** fashion.

• Problem!

Simple regression wage model

0.16

Multiple regression wage model

0.36

• Let us add a construc indicator variable, including it into our previous model.

- construc = 1 if working in the construction sector;
- construc = 0 otherwise.

 $wage_i = eta_0 + eta_1 educ_i + eta_2 exper_i + eta_3 tenure_i + eta_4 gender_i + eta_5 construc_i + u_i$

Goodness-of-fit

		#>
#>		
#>		Dependent variable:
#>		
#>		wage
#>		
#>	educ	0.577 ***
#>		(0.050)
#>	exper	0.026**
#>		(0.012)
#>	tenure	0.141***
#>		(0.021)
#>	female	-1.788***
#>		(0.266)
#>	construc	0.563
#>		(0.626)
#>	Constant	-1.685**
#>		(0.736)
#>		
#>	Observations	526
#>	R2	0.365
#>	Adjusted R2	0.358
#>	Residual Std. Error	2.958 (df = 520)
#>	F Statistic	59.658*** (df = 5; 520)
#>		
#>	Note:	*p<0.1; **p<0.05; ***p<0.01

Goodness-of-fit

Before, the R^2 was **.364**! Why?

Let us have a closer look at its **formula**:

$$R^2 = 1 - rac{RSS}{TSS} = 1 - rac{\sum_{i=1}^n \hat{u}_i^2}{\sum_{i=1}^n (y_i - ar{y})^2}$$

- The **denominator** will remain the same, but the **numerator** will, at most, remain the same.
- **Solution**: the *adjusted* R^2 , \overline{R}^2 :

$${ar R}^2 = 1 - rac{{\sum_{i=1}^n \hat u_i^2}/{(n-k-1)}}{{\sum_{i=1}^n (y_i - ar y)^2/(n-1)}}$$

- k = # independent variables;
- (n-k-1) = # degrees-of-freedom.

Multiple regression model **without** *construc*:

R-squared	Adjusted R-squared
0.36354	0.35865

Multiple regression model **with** *construc*:

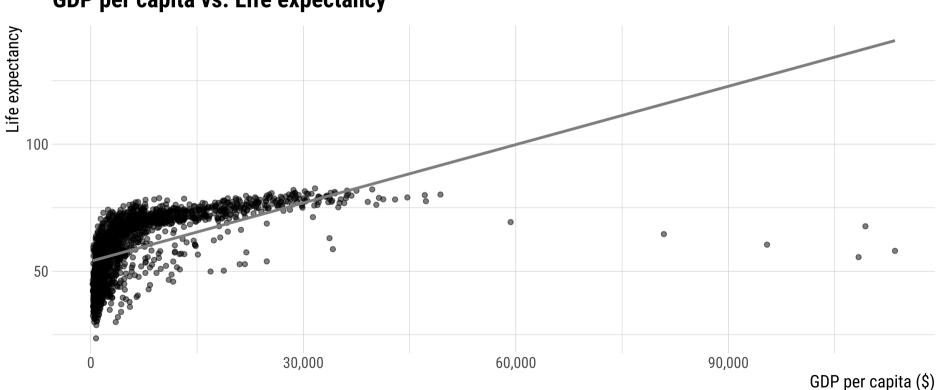
R-squared	Adjusted R-squared
0.36453	0.35842

What happened?

Functional forms

Nonlinear relationships

Many times, the relationships we are interested in **do not** follow a linear pattern.



GDP per capita vs. Life expectancy

A level-level model

term	estimate	std.error	statistic	p.value
(Intercept)	53.955561	0.314995	171.29025	0
gdpPercap	0.000765	0.000026	29.65766	0

• Interpretation:

• A 10,000-dollar increase in GDP per capita *increases* life expectancy by 7.65 years.

Nonlinear relationships

term	estimate	std.error	statistic	p.value
(Intercept)	3.9666387	0.0058346	679.85339	0
gdpPercap	0.0000129	0.0000005	27.03958	0

• Interpretation:

- A one-unit increase in the explanatory variable increases the dependent variable by approximately $\beta_1 \times 100$ percent, on average.
- A 1,000-dollar increase in GDP per capita *increases* life expectancy by 1.29%.

Nonlinear relationships

term	estimate	std.error	statistic	p.value
(Intercept)	2.864177	0.0232827	123.01718	0
log(gdpPercap)	0.146549	0.0028213	51.94452	0

• Interpretation:

- A one-percent increase in the independent variable results in a β_1 percent change in the dependent variable, on average.
- A 1 % increase in GDP per capita *increases* life expectancy by 0.147 %.

Nonlinear relationships

term	estimate	std.error	statistic	p.value
(Intercept)	-9.100889	1.227674	-7.413117	0
log(gdpPercap)	8.405085	0.148762	56.500206	0

• Interpretation:

- A one-percent change in the independent variable leads to a $\beta_1 \div 100$ change in the dependent variable, on average.
- A 1 % increase in GDP per capita *increases* life expectancy by 0.0841 years.

Quick summary

A nice interpretation reference $\!\!\!^{\star}$

Model's functional form	How to interpret β_1 ?
Level-level $y_i = eta_0 + eta_1 x_i + u_i$	$\Delta y = eta_1 \cdot \Delta x$ A one-unit increase in x leads to a eta_1 -unit increase in y
Log-level $\log(y_i) = eta_0 + eta_1 x_i + u_i$	$\%\Delta y = 100 \cdot eta_1 \cdot \Delta x$ A one-unit increase in x leads to a $eta_1 \cdot 100$ -percent increase in y
Log-log $\log(y_i) = eta_0 + eta_1\log(x_i) + u_i$	$\%\Delta y=eta_1\cdot\%\Delta x$ A one-percent increase in x leads to a eta_1 -percent increase in Y
Level-log $y_i = eta_0 + eta_1 \log(x_i) + u_i$	$\Delta y = (eta_1 \div 100) \cdot \% \Delta x$ A one-percent increase in x leads to a $eta_1 \div 100$ -unit increase in y

The meaning of linear regression

If we are able to use these nonlinear functional forms, what does *linear* regression mean after all?

- As long as the model remains **linear in parameters**, it will be linear.
- This means that we cannot **mess around** with our β coefficients!

• Examples:

$$log(wage_i) = eta_0 + eta_1 educ_i + eta_2 exper_i + eta_3 tenure_i + eta_4 gender_i + u_i \ log(wage_i) = eta_0 + log(eta_1) educ_i + eta_2 exper_i + eta_3^2 tenure_i + eta_4 gender_i + u_i$$

• Which one is **not** linear in parameters?

Next time: Multiple Regression in practice