
An introduction to Ordinary
Least Squares (OLS):

Simple Linear Regression
Marcio Santetti

EC 339 | Fall 2022

Table of contents

The modern interpretation of regression 2

Deterministic vs. stochastic relationships 3

Regression vs. correlation 4

A note on terminology 6

Single-equation (simple) linear models 6

The stochastic error term 7
How are ε and X related? . . . . . . . . . . . . . . . . . 8

The regression function (finally!) 10
The population regression function . . . . . . . . . . . 11
The sample regression function . . . . . . . . . . . . . . 11

What is the best method to estimate the sample regres-
sion function? 12

1



After some quick review of statistical concepts, we will begin
our content with the basic—and most important—technique
in Econometrics: linear regression. You may have been intro-
duced to it in your Stats courses, but we need to go deeper
within its concept, in order to adapt it to real-world uses. The
key argument is that the world that surrounds us produces
diffuse and fuzzy data, and we are far from estimating empirical
models free from error. We need to live with this fact, and the
best way to treat this inherent error is by minimizing it.1 The 1 By minimizing something, keep in

mind that we will use its mathematical
meaning; that is, we try to make some-
thing (in this case, our error) not zero,
but as small as possible.

most popular method for that is Ordinary Least Squares (OLS),
and we introduce this technique in the context of simple linear
regression, that is, a model where we try to explain a variable
of interest’s behavior in terms of only one single explanatory
factor.

The modern interpretation of regression

For our purposes, the term regression is concerned with the
study of the dependence of one variable (dependent) on one—or
more—other variable (explanatory/independent). We do this
in order to predict the population mean or average effect of the
independent variable(s) on some other variable of interest.2 2 As a quick historical note, in case

you are curious to know more about
the historical origin of the term “re-
gression,” make sure to check out the
paper by J. Stanton listed on the “extra
readings” module on theSpring.

In other words, a statistical regression compresses a simple
model through which we wish to analyze how a change in one
or more independent variable affects a dependent variable of
interest. For example, in case we want to estimate the average
effect of education on wages, the simplest possible model would
be a simple regression, with wages as the dependent variable,
and education as the independent variable. But how do we do
this in practice? Keep going, we’ll get there.
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Deterministic vs. stochastic relationships

In statistical relationships, we generally deal with random
variables. This term should not be something new, but a quick
reminder does not hurt: a random variable is a variable whose
value is unknown until it is oberved, i.e., its outcomes are not
predictable, thus following a probability distribution.

As an example, consider the relationship between crop yield and
other variables, such as the amount of rainfall, sunshine, and
fertilizer use. Such association is statistical in nature: although
relevant, these factors will not enable an agronomist to exactly
predict crop yield, due to possible errors involved in measuring
these variables, as well as a host of other factors that collectively
affect the yield at a certain point in time. Therefore, the random
variability in the variable “crop yield” cannot be fully explained,
regardless of the amount of explanatory variables we list.3 3 What other variables would you con-

sider relevant to explain crop yield, in
addition to those already listed? And
why?

Therefore, most—if not all—relationships in Economics and
other Social Sciences involve uncertainty by definition. When
there is no uncertainty involved in an association between two
or more variables, we call it a deterministic relationship. The
equation of a straight line (y = ax + b) that you learned in
high school is an example. If you look at Figure 1, I have
just plotted a few x and y points and connected them with a
straight line. There is no uncertainty in this model, since all the
points are captured by the line. Your Math teacher may have
never told you this, but you were being taught deterministic
Mathematics.

If you consider the 10 points in this graph as data points, and
x and y as data variables, such relationship can be perfectly
explained by a simple straight line. This looks great, but when
we look at the real world, uncertainty is everywhere, so we
are surrounded by stochastic relationships. Econometrics is
concerned with these types of relations.

We cannot expect that real-world data behaves like a straight
line, especially in the Social Sciences, where data are diffuse
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Figure 1: A simple straight line.

and fluctuate according to several different factors. A typical
scatter diagram between two variables may look something
like Figure 2.

The left panel illustrates the relationship between x and y, while
the right panel fits a straight line to these points. Unlike the
high school case, we cannot capture all the points only with a
straight line. This is just a simple representation of how working
with data and trying to explain it through statistical models is
not an easy task. But we will do our best here.

Regression vs. correlation

Since in this course we will be mostly interested in statistical
relationships, it is important to remark one point: a statistical
relationship, in itself, cannot logically imply causation. The
only thing regression can do is testing whether a significant
relationship/association exists, as well as giving a quantitative
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Figure 2: A stochastic relationship.

assessment on how the variables are related. However, no
causality direction can be inferred from this methodology.

Furthermore, when we jump to regression analysis, the term
correlation may be a temptation, but you should actually dis-
card it when interpreting regression results. If you recall from
your Stats classes, correlation analysis does not imply setting
dependent or independent variables, i.e., x and y are treated
symmetrically. When we study regression, we assume an in-
herent asymmetry between x and y, since we will be trying to
explain changes in y in terms of changes in x. Even though
these variables may be correlated (that is, having a linear re-
lationship), our interests go way beyond simple correlation
coefficients. Therefore, keep correlation out of your future
regression interpretations.

Correlation implies a linear
association between two variables,
without an explicit call for which one
is dependent, which one is
independent. A more general
measure of association is covariance,
which computes how two variables
are associated, regardless of the shape.5



A note on terminology

The table below brings a few synonyms for both dependent and
independent variables. These terms can be used interchange-
ably, with no loss of generality or meaning.

Dependent (y) Independent (x)

Explained Explanatory
Regressand Regressor
Outcome Covariate
Endogenous Exogenous
Controlled Control
Predictand Predictor

Single-equation (simple) linear models

The simplest single-equation linear regression model can be
represented by:

Y = β0 + β1X

Let’s break down every component of this equation. Once
again, this should not be anything new up to this point, since
you were probably introduced to this type of equation in your
Stats courses. But let us review this topic and also implement
our future notation. First, X and Y are our familiar independent
and dependent variables, respectively. Moreover, we can see
that this is the equation of a line, right? Okay, good.

The stars of our model—so far—are the β coefficients: β0 and
β1. The first is called the intercept, or constant, term, and is
simply the value that Y assumes when X is set to zero. The
second is the slope coefficient, and represents the amount of
Y that changes when X changes by 1 unit. In other words, β1
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represents by how much the dependent variable changes, given
a marginal change in the independent variable.

For those familiar with calculus, β1 is
simply β1 = ∂y/∂x.

The stochastic error term

Now, we introduce something new (hopefully): besides the
variation in Y due to changes in X, it is almost certain that X
cannot fully explain changes in Y. This additional variation
comes in part from omitted independent variables (we will deal
with this issue later), but, even if these omitted variables were
added, do you think that only a chosen set of X covariates
would be able to explain 100% of the variation in our variable
of interest? If the answer is no, you are in the right place.

Such unexplained changes in Y may come from factors such as
measurement error, incorrect model specification, or purely random
events—that is, whose value is determined by chance. Does this
ring a bell?

Therefore, this intrinsic and inevitable lack of explanation is
fulfilled by the stochastic error term (also known as the residual
term), in order to account for the variation in Y that is not
explained by the independent variable(s). In simple language,
the error captures our ignorance or inability to model the entire
population model. However, its existence should not be an
excuse for estimating poor models. We need to do our best in
order to minimize this ignorance.

Let us, then, update our linear regression model by incor-
porating this error term, which we will denote, for now, by
ε:

Y = β0 + β1X + ε

Now, we have a complete regression model! And it has a deter-
ministic part, composed by “β0 + β1X,” as well as a stochastic
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part, represented by the residual, “ε.” Thus, the uncertain part
of any statistical/econometric model is represented by an error
term, which captures everything that the explanatory variables are
not capable of doing to explain variations in Y, our dependent
variable.

Since we will always be dealing with random variables in this
course, let us apply the expectations operator (that is, compute
the Expected Value, which you learned in your Stats course) to
both sides of this equation:4 4 Let us demystify what the term Ex-

pected Value means. It is simply the
long-run average (mean) value of a
random variable. Nothing else.E(Y |X) = β0 + β1X + 0

Put simply, we are just calculating the average value of Y, given
(that is what the “|” symbol stands for) values of X. On average,
the expected value of Y is given by the deterministic portion
of our regression model,5 while, on average, the value of our 5 If you do not recall the laws of Ex-

pected Value from your Stats class,
make sure to give it a quick review,
so you fully understand what is going
on at this point. It is an important step
to understand the basic foundations of
our class.

error term is zero. This is a crucial assumption we are making
here, concerning the distribution of our error term. Figure 3
illustrates this latter point, simply showing that the central
location of our ε friend is 0.

However, make sure you understand this point: this does not
mean that, when we get to apply this concept to real data, our
error term will show a value of zero. This is a statement about its
average, assuming we can run the same regression model with
several different samples of the same size for the same variables
X and Y. This is related to the sampling distribution of the
error term. If you do not recall what sampling distributions
mean, make sure to also give it a quick review from Stats.

How are ε and X related?

If ε and X are uncorrelated, then by definition these are not
linearly related. However, the error term can be correlated with
functions of X, such as X2, for example—we will deal with these
issues later. Therefore, correlation is not the most appropriate
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Figure 3: The residual’s distribution.

approach to define this relationship. Instead, we can define the
conditional distribution of ε, given any value of X. Let’s see
this:

E(ε|X) = E(ε)

The above equation simply states that, on average, the value of
ε does not depend on X. In other words, these are independent
of each other.

In order to make more sense of the above statement, let us look
at a more realistic model, relating wages and education:

wage = β0 + β1educ + ε

This is the simplest way to estimate how an individual’s wage is
affected by their education. But before we analyze the relation-
ship between the residual and the independent variable, it is
worth asking: since ε contains everything that is not explicitly
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accounted for in the model, what is contained in there? Think
about what is also relevant to explain wages.

Factors such as years of experience, innate ability, gender, race, and
many other variables are included in the error term, since the
only independent variable is education. To keep things simple,
assume that ε is only ability (abil), and assume it is lying on the
error term due to the impossibility of measuring it, or obtaining
data.

Then, going back to our previous assumption, it requires that
the average level of ability is the same, regardless of one’s years
of education. Illustrating:

E(abil|educ) = E(abil)

If this assumption is true, then

E(abil|educ = 8) = E(abil|educ = 16) = E(abil)

This means that years of education are independent, on average,
of what is contained in the error term, which is assumed to be
only ability.

In case you believe that ability increases with years of education,
congratulations, you are not a robot. However, this indepen-
dence assumption is often useful and theoretically necessary. We
will see this in more depth later on. If you are confused, that
is a sign that you are paying attention. When we look at some
applied examples, this will make sense.

The regression function (finally!)

The main goal of Statistics (and, therefore, Econometrics) is
estimating population parameters based on sample statistics.
In order to understand the latter, we begin with the former.
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The population regression function

So far, we have worked with the notion of a population regres-
sion function, denoting Y and X as the “true”population values
for the dependent and independent variables. Stating once
again:

Y = β0 + β1X

E(Y |X) = β0 + β1X

From these two equations, we know that the average value of Y
changes with X. In case we had access to data from the entire
population of interest, there would be no need for statistical
techniques, such as the ones we will cover in this course. The
solution is, then, working with an appropriate sample extracted
from the overall population.

The sample regression function

We almost never have access to the “true” regression model
defining Y. Rather, we work with samples. Let {(xi , yi) : i =
1, 2, 3, ...,n} denote a random sample pair of size n from the
whole population N. Then, we can write:

yi = β0 + β1xi + ui

for each i = 1, 2, 3, ...,n.

Notice a few changes in our notation. From now on, we will only
deal in practice with sample data. For this course, lower-case
letters, such asyi and xi will denote sample data, extracted from
the overall population data represented by Y and X, respectively.
You may have also noticed that the sample error term is denoted
by ui. We have also introduced i subscripts denoting each
individual from the sample. These individuals will depend
on the research we are conducting: these may be households,
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houses, cats, cities, etc. Conceptually, however, all the terms of
the sample regression functions are the same as before.

Additionally, we assume:

E(u) = 0

Cov(xi ,ui) = 0

That is, the expected value of the sample error term is zero,
and the covariance between the independent variable(s) and
the residual is zero. Recall that the covariance is a more general
concept than correlation: while the latter is only concerned with
linear relationships, the former defines relationships of any
form.

What is the best method to estimate the sample
regression function?

So far, we have only conceptually defined the regression func-
tion which will be the bread-and-butter of our class. But how
do we calculate the β coefficients? Moreover, what is the
best straight line that represents the relationships we want
to estimate in the future, regardless of our specific research
question?

As Econometrics practitioners, our main goal should be explain-
ing variations in yi due to changes in xi, with the role played by
our “ignorance,” ui, being as small as possible. So, how do we
translate these words (i) graphically and (ii) mathematically?

I will answer these questions in class. You may stop reading
this notes here. The rest will make sense after we discuss these
issues in person.
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Figure 4: Residuals vs. regression line.

After this graph makes sense in your mind, you can see that
Ordinary Least Squares (OLS) is the mathematical technique
for obtaining the estimates of yi, β0 and β1 that will make
the residuals, ui, as small as possible. In other words, it
calculates the β coefficients that minimize the sum of the
squared residuals of our model.6 6 Why OLS, though? Put simply, it

is easy to compute (both manual and
computationally); it is theoretically ap-
propriate for statistical work, and has a
great number of useful characteristics
that we will explore little by little in
our course.

OLS gives the “best” estimator possible for β̂0 and β̂1 under a
set of assumptions, that we will explore in a couple of weeks.
Also, pay attention to the “best” term stated in the previous
sentence. We will se what this means in future lectures.

Estimator: it is a mathematical
technique that is applied to a sample
to produce numerical estimates of the
“true” population parameters. Do not
confuse estimator with estimate:
estimator is the formula, and an
estimate is the final numerical value
generated by this formula. To be clear,
OLS is an estimator, as well as β0 and
β1. On the other hand, β̂0, β̂1, and û

are estimates.
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Now, we are all set to start playing with real-world data. OLS
will be our preferred estimator until the end of the semester.
Just be aware that there are many other estimators out there,
depending on the circumstances. However, the basic founda-
tions of Econometrics are built upon OLS, and it is important
to master it before moving on to more complex methods.

Keep these formulas in mind, we will use them!

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2 =
Cov(xi , yi)
Var(xi)

β̂0 = ȳ − β̂1x̄

Last question: refresh your memory
from your Stats class and interpret
the following regression model
estimates: ŷi = 103.4 + 6.38xi. This
interpretation routine will give you
many points in future assignments
and exams.
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