Simple Linear Regression

EC 339

Marcio Santetti
Fall 2022

Motivation

On notation

In our course, we will adopt the following notation for a regression model:

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+u_{i}
$$

- where:
- y_{i} : dependent variable's value for the $i^{\text {th }}$ individual;
- x_{i} : independent variable's value for the $i^{t h}$ individual;
- β_{0} : intercept term;
- β_{1} : slope coefficient;
- u_{i} : residual/error term (the $i^{\text {th }}$ individual's random deviation from the population parameters).

Motivating regression models

Data are fuzzy

Life expectancy vs. GDP per capita (1952-2007):*

[^0]
Data are fuzzy

Now, including regression lines:

Data are fuzzy

Narrowing down to the Americas:

Data are fuzzy

Now, for the US...

Which method to use?

Ordinary Least Squares (OLS)

The Ordinary Least Squares (OLS) Estimator:

- OLS minimizes the squared distance between the data points and the regression line it generates.
- This way, we are minimizing error (ignorance) about our data and the relationship we are trying to better understand.
- In addition, it is easy to estimate and interpret.

Ordinary Least Squares (OLS)

The Ordinary Least Squares (OLS) Estimator:

$$
\mathrm{SSR}=\sum_{i=1}^{n} u_{i}^{2} \quad \text { where } \quad u_{i}=y_{i}-\hat{y}_{i}
$$

-Why squaring these residuals?

- Bigger errors, bigger penalties.

$$
\begin{array}{r}
\min _{\hat{\beta}_{0}, \hat{\beta}_{1}} \mathrm{SSR} \\
\min \left(y_{\hat{\beta}_{0}}, \hat{\beta}_{1}-\hat{y}_{i}\right)^{2} \\
\min _{\hat{\beta}_{0}, \hat{\beta}_{1}}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}
\end{array}
$$

Ordinary Least Squares (OLS)

The Ordinary Least Squares (OLS) Estimator:

- Slope coefficient:

$$
\hat{\beta}_{1}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)}
$$

- Intercept coefficient:

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
$$

"Best" regression lines

"Best" regression lines

For any line $-\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x$

"Best" regression lines

For any line $-\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x-$, we can calculate residuals: $u_{i}=y_{i}-\hat{y}_{i}$

"Best" regression lines

For any line $-\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x-$, we can calculate residuals: $u_{i}=y_{i}-\hat{y}_{i}$

"Best" regression lines

For any line $-\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x-$, we can calculate residuals: $u_{i}=y_{i}-\hat{y}_{i}$

"Best" regression lines

SSR squares the errors $\left(\sum u_{i}^{2}\right)$: bigger errors get bigger penalties.

"Best" regression lines

The OLS estimate is the combination of $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ that minimize SSR.

Interpretation

Interpreting OLS coefficients

- Slope coefficient: the change (increase/decrease) in the dependent variable (y) generated by a 1unit increase in the independent variable (x).
- Intercept term: the value of the dependent variable (y) when $x=0$.

Example:

- Interpret the following estimated regression models:

$$
\begin{aligned}
& \widehat{\text { wage }}_{i}=10+2.65 \text { educ }_{i} \\
& \widehat{\text { sleep }}_{i}=6.5-0.65 \text { kids }_{i}
\end{aligned}
$$

Next time: Simple regression in practice

[^0]: [*]: Data from Gapminder

