Prof. Fernando de Souza Bastos
10 de Novembro de 2018
library("ExpDes.pt")
##
## Attaching package: 'ExpDes.pt'
## The following object is masked from 'package:stats':
##
## ccf
#Experimento Fatorial - Exercício 8.1 da Apostila
(croqui = expand.grid(rep=1:3, Cal=c("Cal0","Cal1"),Irrig=c("Ir0","Ir1")))
## rep Cal Irrig
## 1 1 Cal0 Ir0
## 2 2 Cal0 Ir0
## 3 3 Cal0 Ir0
## 4 1 Cal1 Ir0
## 5 2 Cal1 Ir0
## 6 3 Cal1 Ir0
## 7 1 Cal0 Ir1
## 8 2 Cal0 Ir1
## 9 3 Cal0 Ir1
## 10 1 Cal1 Ir1
## 11 2 Cal1 Ir1
## 12 3 Cal1 Ir1
#Fator 1 - Irrigação
#Irrig<-gl(2,6,label=c(paste("A",0:1,sep="")))
#Fator 2 - Calagem
#Cal<-rep(gl(2,3,label=c(paste("B",0:1,sep=""))),2)
#Variável Resposta - Dados
Resp<-c(25,32,27,
35,28,33,
41,35,38,
60,67,59)
#Tabela com os tratamentos e os dados
#tab<-data.frame(Irrig,Cal,dados)
(dados<-data.frame(croqui,Resp))
## rep Cal Irrig Resp
## 1 1 Cal0 Ir0 25
## 2 2 Cal0 Ir0 32
## 3 3 Cal0 Ir0 27
## 4 1 Cal1 Ir0 35
## 5 2 Cal1 Ir0 28
## 6 3 Cal1 Ir0 33
## 7 1 Cal0 Ir1 41
## 8 2 Cal0 Ir1 35
## 9 3 Cal0 Ir1 38
## 10 1 Cal1 Ir1 60
## 11 2 Cal1 Ir1 67
## 12 3 Cal1 Ir1 59
attach(dados)
## The following object is masked _by_ .GlobalEnv:
##
## Resp
(dados$trat = factor(rep(c('T1','T2','T3','T4'), each=3)))
## [1] T1 T1 T1 T2 T2 T2 T3 T3 T3 T4 T4 T4
## Levels: T1 T2 T3 T4
# ou
(dados$Trat = with(dados, interaction(Irrig, Cal)))
## [1] Ir0.Cal0 Ir0.Cal0 Ir0.Cal0 Ir0.Cal1 Ir0.Cal1 Ir0.Cal1 Ir1.Cal0
## [8] Ir1.Cal0 Ir1.Cal0 Ir1.Cal1 Ir1.Cal1 Ir1.Cal1
## Levels: Ir0.Cal0 Ir1.Cal0 Ir0.Cal1 Ir1.Cal1
head(dados)
## rep Cal Irrig Resp trat Trat
## 1 1 Cal0 Ir0 25 T1 Ir0.Cal0
## 2 2 Cal0 Ir0 32 T1 Ir0.Cal0
## 3 3 Cal0 Ir0 27 T1 Ir0.Cal0
## 4 1 Cal1 Ir0 35 T2 Ir0.Cal1
## 5 2 Cal1 Ir0 28 T2 Ir0.Cal1
## 6 3 Cal1 Ir0 33 T2 Ir0.Cal1
tail(dados)
## rep Cal Irrig Resp trat Trat
## 7 1 Cal0 Ir1 41 T3 Ir1.Cal0
## 8 2 Cal0 Ir1 35 T3 Ir1.Cal0
## 9 3 Cal0 Ir1 38 T3 Ir1.Cal0
## 10 1 Cal1 Ir1 60 T4 Ir1.Cal1
## 11 2 Cal1 Ir1 67 T4 Ir1.Cal1
## 12 3 Cal1 Ir1 59 T4 Ir1.Cal1
str(dados)
## 'data.frame': 12 obs. of 6 variables:
## $ rep : int 1 2 3 1 2 3 1 2 3 1 ...
## $ Cal : Factor w/ 2 levels "Cal0","Cal1": 1 1 1 2 2 2 1 1 1 2 ...
## $ Irrig: Factor w/ 2 levels "Ir0","Ir1": 1 1 1 1 1 1 2 2 2 2 ...
## $ Resp : num 25 32 27 35 28 33 41 35 38 60 ...
## $ trat : Factor w/ 4 levels "T1","T2","T3",..: 1 1 1 2 2 2 3 3 3 4 ...
## $ Trat : Factor w/ 4 levels "Ir0.Cal0","Ir1.Cal0",..: 1 1 1 3 3 3 2 2 2 4 ...
#---------------------------
# Estatísticas descritivas -
#---------------------------
summary(dados)
## rep Cal Irrig Resp trat Trat
## Min. :1 Cal0:6 Ir0:6 Min. :25.0 T1:3 Ir0.Cal0:3
## 1st Qu.:1 Cal1:6 Ir1:6 1st Qu.:31.0 T2:3 Ir1.Cal0:3
## Median :2 Median :35.0 T3:3 Ir0.Cal1:3
## Mean :2 Mean :40.0 T4:3 Ir1.Cal1:3
## 3rd Qu.:3 3rd Qu.:45.5
## Max. :3 Max. :67.0
(medias.trat = with(dados, tapply(Resp, trat, mean)))
## T1 T2 T3 T4
## 28 32 38 62
(medias.Irrig = with(dados, tapply(Resp, Irrig, mean)))
## Ir0 Ir1
## 30 50
(medias.Cal = with(dados, tapply(Resp, Cal, mean)))
## Cal0 Cal1
## 33 47
(medias = with(dados, tapply(Resp, list(Irrig, Cal), mean)))
## Cal0 Cal1
## Ir0 28 32
## Ir1 38 62
(variancias = with(dados, tapply(Resp, list(Irrig, Cal), var)))
## Cal0 Cal1
## Ir0 13 13
## Ir1 9 19
(desvios = with(dados, tapply(Resp, list(Irrig, Cal), sd)))
## Cal0 Cal1
## Ir0 3.605551 3.605551
## Ir1 3.000000 4.358899
#--------------------------------------------------------------
# Em experimentos fatoriais é importante verificar se existe -
# interação entre os fatores. Inicialmente vamos fazer isto -
# graficamente e mais a frente faremos um teste formal para -
# presença de interação. Os comandos a seguir são usados para -
# produzir os gráficos. -
#--------------------------------------------------------------
par(mai=c(1, 1, .2, .2))
with(dados, interaction.plot(Irrig, Cal, Resp, las=1, xlab='Irrigação',
ylab='Alturas médias (cm)', col=c('red','blue'),
bty='l', trace.label=deparse(substitute(Calagem)),
lwd=2.5))
with(dados, interaction.plot(Cal, Irrig, Resp, las=1, xlab='Calagem',
ylab='resp médias (cm)', col=c('red','blue'),
bty='l', trace.label=deparse(substitute(Irrigação)),
lwd=2.5))
#-----------------------------------------------------------------
# Seguindo o modelo adequado, o análise de variância para este -
# experimento inteiramente casualizado em esquema fatorial pode -
# ser obtida com o comando: -
#-----------------------------------------------------------------
mod.1 = with(dados, aov(Resp ~ trat))
summary(mod.1)
## Df Sum Sq Mean Sq F value Pr(>F)
## trat 3 2088 696.0 51.56 1.41e-05 ***
## Residuals 8 108 13.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod.1)
## Analysis of Variance Table
##
## Response: Resp
## Df Sum Sq Mean Sq F value Pr(>F)
## trat 3 2088 696.0 51.556 1.411e-05 ***
## Residuals 8 108 13.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mod.2 = with(dados, aov(Resp ~ Irrig + Cal + Irrig*Cal))
summary(mod.2)
## Df Sum Sq Mean Sq F value Pr(>F)
## Irrig 1 1200 1200.0 88.89 1.32e-05 ***
## Cal 1 588 588.0 43.56 0.000169 ***
## Irrig:Cal 1 300 300.0 22.22 0.001514 **
## Residuals 8 108 13.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#--------------------------------------------------------------
# Entretanto o comando acima pode ser simplificado produzindo -
# os mesmos resultados com o comando: -
#--------------------------------------------------------------
mod.2 = with(dados, aov(Resp ~ Irrig*Cal))
summary(mod.2)
## Df Sum Sq Mean Sq F value Pr(>F)
## Irrig 1 1200 1200.0 88.89 1.32e-05 ***
## Cal 1 588 588.0 43.56 0.000169 ***
## Irrig:Cal 1 300 300.0 22.22 0.001514 **
## Residuals 8 108 13.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(médias.fat = model.tables(mod.2, ty="means"))
## Tables of means
## Grand mean
##
## 40
##
## Irrig
## Irrig
## Ir0 Ir1
## 30 50
##
## Cal
## Cal
## Cal0 Cal1
## 33 47
##
## Irrig:Cal
## Cal
## Irrig Cal0 Cal1
## Ir0 28 32
## Ir1 38 62
#------------------------------
# Verificação de pressupostos -
#------------------------------
#
# Normalidade dos erros
plot(mod.2, which=c(2:2), pch=19, col='red', las=1)
shapiro.test(mod.2$res)
##
## Shapiro-Wilk normality test
##
## data: mod.2$res
## W = 0.91171, p-value = 0.2244
# Homogeneidade das variâncias
with(dados, bartlett.test(mod.2$res ~ Trat))
##
## Bartlett test of homogeneity of variances
##
## data: mod.2$res by Trat
## Bartlett's K-squared = 0.23039, df = 3, p-value = 0.9725
# Independência dos erros
with(dados, plot(mod.2$res, las=1, pch=20, col='red', ylab='Resíduos'))
#Comando para rodar a Anova
fat2.dic(Cal,Irrig, Resp, quali = c(TRUE, TRUE), mcomp = "tukey", fac.names = c( "Cal","Irrig"), sigT = 0.05, sigF = 0.05)
## ------------------------------------------------------------------------
## Legenda:
## FATOR 1: Cal
## FATOR 2: Irrig
## ------------------------------------------------------------------------
##
##
## Quadro da analise de variancia
## ------------------------------------------------------------------------
## GL SQ QM Fc Pr>Fc
## Cal 1 588 588.0 43.556 0.00016945
## Irrig 1 1200 1200.0 88.889 0.00001315
## Cal*Irrig 1 300 300.0 22.222 0.00151375
## Residuo 8 108 13.5
## Total 11 2196
## ------------------------------------------------------------------------
## CV = 9.19 %
##
## ------------------------------------------------------------------------
## Teste de normalidade dos residuos (Shapiro-Wilk)
## valor-p: 0.2244004
## De acordo com o teste de Shapiro-Wilk a 5% de significancia, os residuos podem ser considerados normais.
## ------------------------------------------------------------------------
##
##
##
## Interacao significativa: desdobrando a interacao
## ------------------------------------------------------------------------
##
## Desdobrando Cal dentro de cada nivel de Irrig
## ------------------------------------------------------------------------
## ------------------------------------------------------------------------
## Quadro da analise de variancia
## ------------------------------------------------------------------------
## GL SQ QM Fc Pr.Fc
## Irrig 1 1200 1200.0000 88.8889 0
## Cal:Irrig Ir0 1 24 24.0000 1.7778 0.2191
## Cal:Irrig Ir1 1 864 864.0000 64 0
## Residuo 8 108 13.5000
## Total 11 2196 199.6364
## ------------------------------------------------------------------------
##
##
##
## Cal dentro do nivel Ir0 de Irrig
##
## De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
## ------------------------------------------------------------------------
## Niveis Medias
## 1 1 28
## 2 2 32
## ------------------------------------------------------------------------
##
##
## Cal dentro do nivel Ir1 de Irrig
## ------------------------------------------------------------------------
## Teste de Tukey
## ------------------------------------------------------------------------
## Grupos Tratamentos Medias
## a 2 62
## b 1 38
## ------------------------------------------------------------------------
##
##
##
## Desdobrando Irrig dentro de cada nivel de Cal
## ------------------------------------------------------------------------
## ------------------------------------------------------------------------
## Quadro da analise de variancia
## ------------------------------------------------------------------------
## GL SQ QM Fc Pr.Fc
## Cal 1 588 588.0000 43.5556 2e-04
## Irrig:Cal Cal0 1 150 150.0000 11.1111 0.0103
## Irrig:Cal Cal1 1 1350 1350.0000 100 0
## Residuo 8 108 13.5000
## Total 11 2196 199.6364
## ------------------------------------------------------------------------
##
##
##
## Irrig dentro do nivel Cal0 de Cal
## ------------------------------------------------------------------------
## Teste de Tukey
## ------------------------------------------------------------------------
## Grupos Tratamentos Medias
## a 2 38
## b 1 28
## ------------------------------------------------------------------------
##
##
## Irrig dentro do nivel Cal1 de Cal
## ------------------------------------------------------------------------
## Teste de Tukey
## ------------------------------------------------------------------------
## Grupos Tratamentos Medias
## a 2 62
## b 1 32
## ------------------------------------------------------------------------
library("ExpDes")
##
## Attaching package: 'ExpDes'
## The following objects are masked from 'package:ExpDes.pt':
##
## anscombetukey, bartlett, ccboot, ccf, duncan, ginv, han,
## lastC, layard, levene, lsd, lsdb, oneilldbc, oneillmathews,
## order.group, order.stat.SNK, plotres, reg.nl, reg.poly,
## samiuddin, scottknott, snk, tapply.stat, tukey
## The following object is masked from 'package:stats':
##
## ccf
#Experimento Fatorial - Exercício 8.2 da Apostila
#Fator 1 - Nitrogênio
Nit<-gl(2,10,label=c(paste("N",0:1,sep="")))
#Fator 2 - Fósforo
Fos<-rep(gl(2,5,label=c(paste("P",0:1,sep=""))),2)
dados<-c(10.5,11,9.8,11.2,9.9,
11.2,11,10.4,13.1,10.6,
11.5,12.4,10.2,12.7,10.4,
14,14.1,13.8,13.5,14.2)
#Tabela com os tratamentos e os dados
tab<-data.frame(Nit,Fos,dados)
#Comando para rodar a Anova
fat2.crd(Nit, Fos, dados, quali = c(TRUE, TRUE), mcomp = "tukey", fac.names = c("F1", "F2"), sigT = 0.05, sigF = 0.05)
## ------------------------------------------------------------------------
## Legend:
## FACTOR 1: F1
## FACTOR 2: F2
## ------------------------------------------------------------------------
##
##
## Analysis of Variance Table
## ------------------------------------------------------------------------
## DF SS MS Fc Pr>Fc
## F1 1 16.380 16.3805 22.4775 0.000221
## F2 1 13.285 13.2845 18.2292 0.000587
## F1*F2 1 3.613 3.6125 4.9571 0.040699
## Residuals 16 11.660 0.7288
## Total 19 44.938
## ------------------------------------------------------------------------
## CV = 7.25 %
##
## ------------------------------------------------------------------------
## Shapiro-Wilk normality test
## p-value: 0.7498233
## According to Shapiro-Wilk normality test at 5% of significance, residuals can be considered normal.
## ------------------------------------------------------------------------
##
##
##
## Significant interaction: analyzing the interaction
## ------------------------------------------------------------------------
##
## Analyzing F1 inside of each level of F2
## ------------------------------------------------------------------------
## ------------------------------------------------------------------------
## Analysis of Variance Table
## ------------------------------------------------------------------------
## DF SS MS Fc Pr.Fc
## F2 1 13.2845 13.2845 18.2292 6e-04
## F1:F2 P0 1 2.3040 2.304 3.1616 0.0944
## F1:F2 P1 1 17.6890 17.689 24.2731 2e-04
## Residuals 16 11.6600 0.72875
## Total 19 44.9375
## ------------------------------------------------------------------------
##
##
##
## F1 inside of the level P0 of F2
##
## According to the F test, the means of this factor are statistical equal.
## ------------------------------------------------------------------------
## Levels Means
## 1 1 10.48
## 2 2 11.44
## ------------------------------------------------------------------------
##
##
## F1 inside of the level P1 of F2
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a 2 13.92
## b 1 11.26
## ------------------------------------------------------------------------
##
##
##
## Analyzing F2 inside of each level of F1
## ------------------------------------------------------------------------
## ------------------------------------------------------------------------
## Analysis of Variance Table
## ------------------------------------------------------------------------
## DF SS MS Fc Pr.Fc
## F1 1 16.3805 16.3805 22.4775 2e-04
## F2:F1 N0 1 1.5210 1.521 2.0871 0.1678
## F2:F1 N1 1 15.3760 15.376 21.0991 3e-04
## Residuals 16 11.6600 0.72875
## Total 19 44.9375
## ------------------------------------------------------------------------
##
##
##
## F2 inside of the level N0 of F1
##
## According to the F test, the means of this factor are statistical equal.
## ------------------------------------------------------------------------
## Levels Means
## 1 1 10.48
## 2 2 11.26
## ------------------------------------------------------------------------
##
##
## F2 inside of the level N1 of F1
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a 2 13.92
## b 1 11.44
## ------------------------------------------------------------------------
#Experimento Fatorial - Exercício 8.3 da Apostila
#Fator 1 - Ração
racao<-gl(2,12,label=c(paste("R",0:1,sep="")))
#Fator 2 - Ambiente à noite
luz<-rep(gl(2,6,label=c(paste("L",0:1,sep=""))),2)
#Variável Resposta - Dados
dados<-c(50,52,48,54,52,50,
49,52,50,48,46,45,
42,44,46,43,44,45,
40,40,38,39,41,43)
#Tabela com os tratamentos e os dados
tab<-data.frame(racao,luz,dados)
#Comando para rodar a Anova
fat2.crd(racao, luz, dados, quali = c(TRUE, TRUE), mcomp = "tukey", fac.names = c("F1", "F2"), sigT = 0.05, sigF = 0.05)
## ------------------------------------------------------------------------
## Legend:
## FACTOR 1: F1
## FACTOR 2: F2
## ------------------------------------------------------------------------
##
##
## Analysis of Variance Table
## ------------------------------------------------------------------------
## DF SS MS Fc Pr>Fc
## F1 1 345.04 345.04 86.081 0.00000
## F2 1 63.38 63.38 15.811 0.00074
## F1*F2 1 2.04 2.04 0.509 0.48366
## Residuals 20 80.17 4.01
## Total 23 490.63
## ------------------------------------------------------------------------
## CV = 4.36 %
##
## ------------------------------------------------------------------------
## Shapiro-Wilk normality test
## p-value: 0.8826623
## According to Shapiro-Wilk normality test at 5% of significance, residuals can be considered normal.
## ------------------------------------------------------------------------
##
## No significant interaction: analyzing the simple effect
## ------------------------------------------------------------------------
## F1
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a R0 49.66667
## b R1 42.08333
## ------------------------------------------------------------------------
##
## F2
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a L0 47.5
## b L1 44.25
## ------------------------------------------------------------------------
#Experimento Fatorial - Exercício 8.10 da Apostila
#Fator 1 - B
b<-gl(3,12,label=c(paste("B",1:3,sep="")))
#Fator 2 - A
a<-rep(gl(4,3,label=c(paste("A",1:4,sep=""))),3)
#Variável Resposta - Dados
dados<-c(12,14,16,
15,17,18,20,21,23,23,24,26,
18,17,20,22,23,23,25,26,28,29,30,32,
22,21,20,30,31,32,29,32,32,34,35,37)
#Tabela com os tratamentos e os dados
tab<-data.frame(b,a,dados)
#Comando para rodar a Anova
fat2.crd(b, a, dados, quali = c(TRUE, TRUE), mcomp = "tukey", fac.names = c("F1", "F2"), sigT = 0.05, sigF = 0.05)
## ------------------------------------------------------------------------
## Legend:
## FACTOR 1: F1
## FACTOR 2: F2
## ------------------------------------------------------------------------
##
##
## Analysis of Variance Table
## ------------------------------------------------------------------------
## DF SS MS Fc Pr>Fc
## F1 2 661.56 330.78 154.649 0.000000
## F2 3 714.97 238.32 111.424 0.000000
## F1*F2 6 46.44 7.74 3.619 0.010654
## Residuals 24 51.33 2.14
## Total 35 1474.31
## ------------------------------------------------------------------------
## CV = 6 %
##
## ------------------------------------------------------------------------
## Shapiro-Wilk normality test
## p-value: 0.02773403
## WARNING: at 5% of significance, residuals can not be considered normal!
## ------------------------------------------------------------------------
##
##
##
## Significant interaction: analyzing the interaction
## ------------------------------------------------------------------------
##
## Analyzing F1 inside of each level of F2
## ------------------------------------------------------------------------
## ------------------------------------------------------------------------
## Analysis of Variance Table
## ------------------------------------------------------------------------
## DF SS MS Fc Pr.Fc
## F2 3 714.97222 238.32407 111.4242 0
## F1:F2 A1 2 74.88889 37.44444 17.5065 0
## F1:F2 A2 2 310.88889 155.44444 72.6753 0
## F1:F2 A3 2 140.22222 70.11111 32.7792 0
## F1:F2 A4 2 182.00000 91 42.5455 0
## Residuals 24 51.33333 2.13889
## Total 35 1474.30556
## ------------------------------------------------------------------------
##
##
##
## F1 inside of the level A1 of F2
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a 3 21
## a 2 18.33333
## b 1 14
## ------------------------------------------------------------------------
##
##
## F1 inside of the level A2 of F2
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a 3 31
## b 2 22.66667
## c 1 16.66667
## ------------------------------------------------------------------------
##
##
## F1 inside of the level A3 of F2
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a 3 31
## b 2 26.33333
## c 1 21.33333
## ------------------------------------------------------------------------
##
##
## F1 inside of the level A4 of F2
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a 3 35.33333
## b 2 30.33333
## c 1 24.33333
## ------------------------------------------------------------------------
##
##
##
## Analyzing F2 inside of each level of F1
## ------------------------------------------------------------------------
## ------------------------------------------------------------------------
## Analysis of Variance Table
## ------------------------------------------------------------------------
## DF SS MS Fc Pr.Fc
## F1 2 661.55556 330.77778 154.6494 0
## F2:F1 B1 3 192.91667 64.30556 30.0649 0
## F2:F1 B2 3 236.25000 78.75 36.8182 0
## F2:F1 B3 3 332.25000 110.75 51.7792 0
## Residuals 24 51.33333 2.13889
## Total 35 1474.30556
## ------------------------------------------------------------------------
##
##
##
## F2 inside of the level B1 of F1
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a 4 24.33333
## a 3 21.33333
## b 2 16.66667
## b 1 14
## ------------------------------------------------------------------------
##
##
## F2 inside of the level B2 of F1
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a 4 30.33333
## b 3 26.33333
## c 2 22.66667
## d 1 18.33333
## ------------------------------------------------------------------------
##
##
## F2 inside of the level B3 of F1
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a 4 35.33333
## b 2 31
## b 3 31
## c 1 21
## ------------------------------------------------------------------------
#Experimento Fatorial - Exercício 8.17 da Apostila
#Fator 1 - A
a<-gl(2,9,label=c(paste("A",1:2,sep="")))
#Fator 2 - B
b<-rep(gl(3,3,label=c(paste("B",1:3,sep=""))),2)
#Variável resposta - dados
dados<-c(12,14,16,15,17,18,12,11,13,
14,13,16,11,12,11,12,12,13)
#Comando para rodar a Anova
fat2.crd(a, b, dados, quali = c(TRUE, TRUE), mcomp = "tukey", fac.names = c("F1", "F2"), sigT = 0.05, sigF = 0.05)
## ------------------------------------------------------------------------
## Legend:
## FACTOR 1: F1
## FACTOR 2: F2
## ------------------------------------------------------------------------
##
##
## Analysis of Variance Table
## ------------------------------------------------------------------------
## DF SS MS Fc Pr>Fc
## F1 1 10.889 10.8889 6.3226 0.027184
## F2 2 14.778 7.3889 4.2903 0.039295
## F1*F2 2 32.111 16.0556 9.3226 0.003605
## Residuals 12 20.667 1.7222
## Total 17 78.444
## ------------------------------------------------------------------------
## CV = 9.76 %
##
## ------------------------------------------------------------------------
## Shapiro-Wilk normality test
## p-value: 0.8243212
## According to Shapiro-Wilk normality test at 5% of significance, residuals can be considered normal.
## ------------------------------------------------------------------------
##
##
##
## Significant interaction: analyzing the interaction
## ------------------------------------------------------------------------
##
## Analyzing F1 inside of each level of F2
## ------------------------------------------------------------------------
## ------------------------------------------------------------------------
## Analysis of Variance Table
## ------------------------------------------------------------------------
## DF SS MS Fc Pr.Fc
## F2 2 14.77778 7.38889 4.2903 0.0393
## F1:F2 B1 1 0.16667 0.16667 0.0968 0.7611
## F1:F2 B2 1 42.66667 42.66667 24.7742 3e-04
## F1:F2 B3 1 0.16667 0.16667 0.0968 0.7611
## Residuals 12 20.66667 1.72222
## Total 17 78.44444
## ------------------------------------------------------------------------
##
##
##
## F1 inside of the level B1 of F2
##
## According to the F test, the means of this factor are statistical equal.
## ------------------------------------------------------------------------
## Levels Means
## 1 1 14.00000
## 2 2 14.33333
## ------------------------------------------------------------------------
##
##
## F1 inside of the level B2 of F2
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a 1 16.66667
## b 2 11.33333
## ------------------------------------------------------------------------
##
##
## F1 inside of the level B3 of F2
##
## According to the F test, the means of this factor are statistical equal.
## ------------------------------------------------------------------------
## Levels Means
## 1 1 12.00000
## 2 2 12.33333
## ------------------------------------------------------------------------
##
##
##
## Analyzing F2 inside of each level of F1
## ------------------------------------------------------------------------
## ------------------------------------------------------------------------
## Analysis of Variance Table
## ------------------------------------------------------------------------
## DF SS MS Fc Pr.Fc
## F1 1 10.88889 10.88889 6.3226 0.0272
## F2:F1 A1 2 32.88889 16.44444 9.5484 0.0033
## F2:F1 A2 2 14.00000 7 4.0645 0.0449
## Residuals 12 20.66667 1.72222
## Total 17 78.44444
## ------------------------------------------------------------------------
##
##
##
## F2 inside of the level A1 of F1
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a 2 16.66667
## ab 1 14
## b 3 12
## ------------------------------------------------------------------------
##
##
## F2 inside of the level A2 of F1
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a 1 14.33333
## ab 3 12.33333
## b 2 11.33333
## ------------------------------------------------------------------------
#Experimento Fatorial - Exercício 8.19 da Apostila
#Fator 1 - Tipos de Colhetadeira
t<-gl(2,15,label=c(paste("T",1:2,sep="")))
#Fator 2 - Horários de Colheita
h<-rep(gl(3,5,label=c(paste("H",1:3,sep=""))),2)
#Variável Resposta - dados
dados<-c(35,40,45,49,39,
43,41,47,38,48,
52,57,58,56,59,
54,58,56,61,59,
67,59,62,65,64,
71,73,74,77,75)
#Tabela com os niveis dos fatores e os dados
tab<-data.frame(t,h,dados)
#Comando para rodar a Anova
fat2.crd(t, h, dados, quali = c(TRUE, TRUE), mcomp = "tukey", fac.names = c("F1", "F2"), sigT = 0.05, sigF = 0.05)
## ------------------------------------------------------------------------
## Legend:
## FACTOR 1: F1
## FACTOR 2: F2
## ------------------------------------------------------------------------
##
##
## Analysis of Variance Table
## ------------------------------------------------------------------------
## DF SS MS Fc Pr>Fc
## F1 1 2394.1 2394.13 189.011 0.00000
## F2 2 1323.5 661.73 52.242 0.00000
## F1*F2 2 20.3 10.13 0.800 0.46095
## Residuals 24 304.0 12.67
## Total 29 4041.9
## ------------------------------------------------------------------------
## CV = 6.35 %
##
## ------------------------------------------------------------------------
## Shapiro-Wilk normality test
## p-value: 0.9874
## According to Shapiro-Wilk normality test at 5% of significance, residuals can be considered normal.
## ------------------------------------------------------------------------
##
## No significant interaction: analyzing the simple effect
## ------------------------------------------------------------------------
## F1
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a T2 65
## b T1 47.13333
## ------------------------------------------------------------------------
##
## F2
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a H3 65.2
## b H2 53.4
## b H1 49.6
## ------------------------------------------------------------------------
#Experimento Fatorial - Exercício 8.23 da Apostila
#Fator 1 - Suplementos Minerais
a<-gl(3,8,label=c(paste("A",1:3,sep="")))
#Fator 2 - Suplementos Vegetais
b<-rep(gl(2,4,label=c(paste("B",1:2,sep=""))),3)
#Variável Resposta - dados
dados<-c(35.2,36,35,35.4,
32.8,34.6,36.7,35.2,
34.7,36.3,35.1,36.4,
28.6,31.1,29,28.6,
33.8,29.4,28.8,29.2,
30.8,31.4,32.8,31.3)
#Tabela com os niveis dos fatores e os dados
tab<-data.frame(a,b,dados)
#Comando para rodar a Anova
fat2.crd(a, b, dados, quali = c(TRUE, TRUE), mcomp = "tukey", fac.names = c("F1", "F2"), sigT = 0.05, sigF = 0.05)
## ------------------------------------------------------------------------
## Legend:
## FACTOR 1: F1
## FACTOR 2: F2
## ------------------------------------------------------------------------
##
##
## Analysis of Variance Table
## ------------------------------------------------------------------------
## DF SS MS Fc Pr>Fc
## F1 2 71.336 35.668 19.113 0.0000353
## F2 1 20.907 20.907 11.203 0.0035876
## F1*F2 2 62.386 31.193 16.715 0.0000788
## Residuals 18 33.590 1.866
## Total 23 188.218
## ------------------------------------------------------------------------
## CV = 4.16 %
##
## ------------------------------------------------------------------------
## Shapiro-Wilk normality test
## p-value: 0.07782912
## According to Shapiro-Wilk normality test at 5% of significance, residuals can be considered normal.
## ------------------------------------------------------------------------
##
##
##
## Significant interaction: analyzing the interaction
## ------------------------------------------------------------------------
##
## Analyzing F1 inside of each level of F2
## ------------------------------------------------------------------------
## ------------------------------------------------------------------------
## Analysis of Variance Table
## ------------------------------------------------------------------------
## DF SS MS Fc Pr.Fc
## F2 1 20.90667 20.90667 11.2033 0.0036
## F1:F2 B1 2 72.55500 36.2775 19.4402 0
## F1:F2 B2 2 61.16667 30.58333 16.3888 1e-04
## Residuals 18 33.59000 1.86611
## Total 23 188.21833
## ------------------------------------------------------------------------
##
##
##
## F1 inside of the level B1 of F2
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a 2 35.625
## a 1 35.4
## b 3 30.3
## ------------------------------------------------------------------------
##
##
## F1 inside of the level B2 of F2
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a 1 34.825
## b 3 31.575
## b 2 29.325
## ------------------------------------------------------------------------
##
##
##
## Analyzing F2 inside of each level of F1
## ------------------------------------------------------------------------
## ------------------------------------------------------------------------
## Analysis of Variance Table
## ------------------------------------------------------------------------
## DF SS MS Fc Pr.Fc
## F1 2 71.33583 35.66792 19.1135 0
## F2:F1 A1 1 0.66125 0.66125 0.3543 0.5591
## F2:F1 A2 1 79.38000 79.38 42.5377 0
## F2:F1 A3 1 3.25125 3.25125 1.7423 0.2034
## Residuals 18 33.59000 1.86611
## Total 23 188.21833
## ------------------------------------------------------------------------
##
##
##
## F2 inside of the level A1 of F1
##
## According to the F test, the means of this factor are statistical equal.
## ------------------------------------------------------------------------
## Levels Means
## 1 1 35.400
## 2 2 34.825
## ------------------------------------------------------------------------
##
##
## F2 inside of the level A2 of F1
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a 1 35.625
## b 2 29.325
## ------------------------------------------------------------------------
##
##
## F2 inside of the level A3 of F1
##
## According to the F test, the means of this factor are statistical equal.
## ------------------------------------------------------------------------
## Levels Means
## 1 1 30.300
## 2 2 31.575
## ------------------------------------------------------------------------
#Experimento Fatorial - Exercício 8.25 da Apostila
#Fator 1 - Recipiente
rec<-gl(3,8,label=c(paste("R",1:3,sep="")))
#Fator 2 - Espécie
esp<-rep(gl(2,4,label=c(paste("E",1:2))),3)
#Variável Resposta - dados
dados<-c(26.2,26,25,25.4,
24.8,24.6,26.7,25.2,
25.7,26.3,25.1,26.4,
19.6,21.1,19,18.6,
22.8,19.4,18.8,19.2,
19.8,21.4,22.8,21.3)
#Tabela com os niveis dos fatores e os dados
tab<-data.frame(rec,esp,dados)
#Comando para rodar a Anova
fat2.crd(rec, esp, dados, quali = c(TRUE, TRUE), mcomp = "tukey", fac.names = c("F1", "F2"), sigT = 0.05, sigF = 0.05)
## ------------------------------------------------------------------------
## Legend:
## FACTOR 1: F1
## FACTOR 2: F2
## ------------------------------------------------------------------------
##
##
## Analysis of Variance Table
## ------------------------------------------------------------------------
## DF SS MS Fc Pr>Fc
## F1 2 92.861 46.430 36.195 0.00000049
## F2 1 19.082 19.082 14.875 0.00115535
## F1*F2 2 63.761 31.880 24.853 0.00000664
## Residuals 18 23.090 1.283
## Total 23 198.793
## ------------------------------------------------------------------------
## CV = 4.93 %
##
## ------------------------------------------------------------------------
## Shapiro-Wilk normality test
## p-value: 0.09401682
## According to Shapiro-Wilk normality test at 5% of significance, residuals can be considered normal.
## ------------------------------------------------------------------------
##
##
##
## Significant interaction: analyzing the interaction
## ------------------------------------------------------------------------
##
## Analyzing F1 inside of each level of F2
## ------------------------------------------------------------------------
## ------------------------------------------------------------------------
## Analysis of Variance Table
## ------------------------------------------------------------------------
## DF SS MS Fc Pr.Fc
## F2 1 19.08167 19.08167 14.8753 0.0012
## F1:F2 E 1 2 87.12167 43.56083 33.9582 0
## F1:F2 E 2 2 69.50000 34.75 27.0896 0
## Residuals 18 23.09000 1.28278
## Total 23 198.79333
## ------------------------------------------------------------------------
##
##
##
## F1 inside of the level E 1 of F2
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a 2 25.875
## a 1 25.65
## b 3 20.05
## ------------------------------------------------------------------------
##
##
## F1 inside of the level E 2 of F2
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a 1 25.325
## b 3 21.325
## b 2 19.575
## ------------------------------------------------------------------------
##
##
##
## Analyzing F2 inside of each level of F1
## ------------------------------------------------------------------------
## ------------------------------------------------------------------------
## Analysis of Variance Table
## ------------------------------------------------------------------------
## DF SS MS Fc Pr.Fc
## F1 2 92.86083 46.43042 36.1952 0
## F2:F1 R1 1 0.21125 0.21125 0.1647 0.6897
## F2:F1 R2 1 79.38000 79.38 61.8813 0
## F2:F1 R3 1 3.25125 3.25125 2.5345 0.1288
## Residuals 18 23.09000 1.28278
## Total 23 198.79333
## ------------------------------------------------------------------------
##
##
##
## F2 inside of the level R1 of F1
##
## According to the F test, the means of this factor are statistical equal.
## ------------------------------------------------------------------------
## Levels Means
## 1 1 25.650
## 2 2 25.325
## ------------------------------------------------------------------------
##
##
## F2 inside of the level R2 of F1
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a 1 25.875
## b 2 19.575
## ------------------------------------------------------------------------
##
##
## F2 inside of the level R3 of F1
##
## According to the F test, the means of this factor are statistical equal.
## ------------------------------------------------------------------------
## Levels Means
## 1 1 20.050
## 2 2 21.325
## ------------------------------------------------------------------------