Discrimination

EC 350: Labor Economics

Kyle Raze

Winter 2022

Discrimination

What is it?

Labor market discrimination occurs when two or more **equally productive individuals** are **treated differently** on the basis of some other characteristic.

• Examples? Age, race, gender, etc.

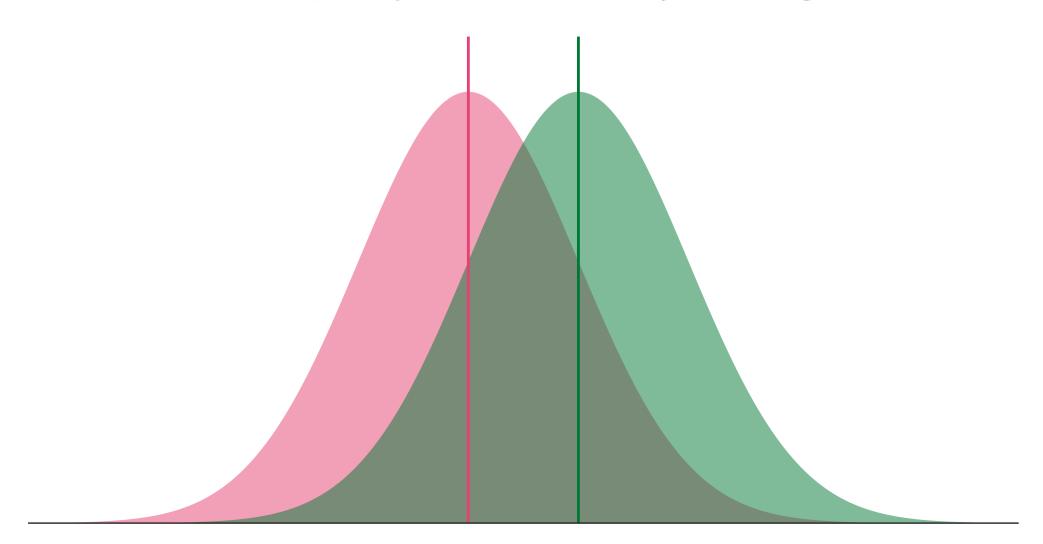
Why should we care?

Discrimination is...

- Morally objectionable.
- Illegal.
- A cause of inequality.
- Common.

Understanding group differences

Q: What do we mean when we say "Group A earns less than Group B, on average?"



Wage gaps

Data

The source? Current Population Survey (via IPUMS).

The sample? Nationally representative sample of employed working-age adults aged 16+.

- We will further restrict the sample to those who self-identify as Asian, Black, Hispanic (of any race), or White (non-Hispanic).
- We will first analyze the 2021 data through April (23,556 survey respondents), then incorporate data going back to 2010 (999,313 survey respondents).

The outcome? Hourly wages.

Wage gaps

Approach

Run regressions of the form

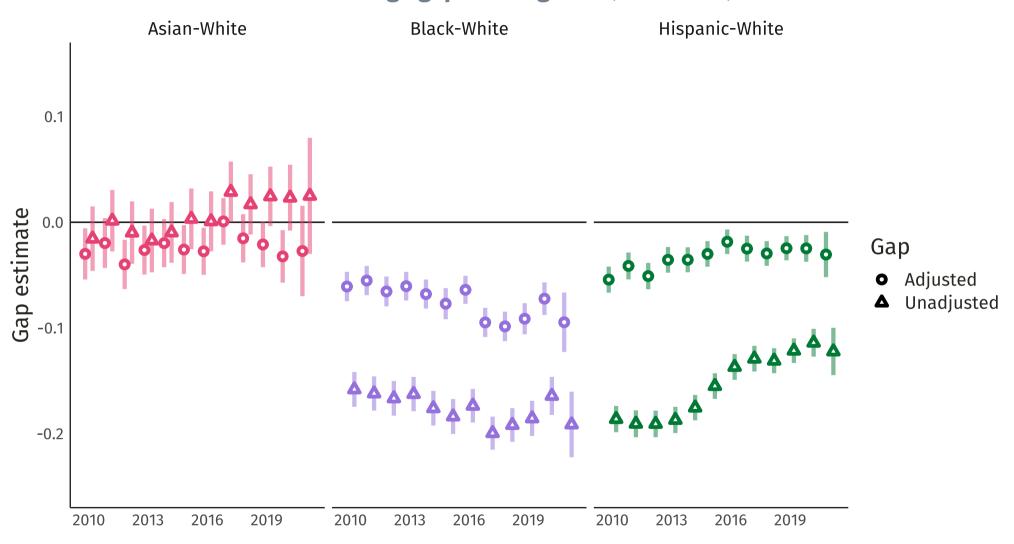
$$\log(\mathrm{Wage}_i) = lpha + eta \, \mathrm{Group}_i + X^{'} \Phi + arepsilon_i$$

- $Group_i$ is an indicator variable denoting race or gender.
- eta imes 100 is the wage gap, interpreted as a percentage difference.
 - Relative to a "reference group."
- X is a vector of control variables.

Racial wage gaps among men (2021)

	(1)	(2)	(3)	(4)	(5)	(6)
Asian	0.025	-0.022	-0.022	-0.002	0.004	-0.027
	(0.028)	(0.026)	(0.025)	(0.025)	(0.022)	(0.022)
Black	-0.191	-0.178	-0.175	-0.145	-0.115	-0.095
	(0.016)	(0.015)	(0.014)	(0.014)	(0.014)	(0.016)
Hispanic	-0.122	-0.051	-0.034	-0.032	-0.017	-0.011
	(0.011)	(0.011)	(0.011)	(0.010)	(0.010)	(0.015)
Education		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Experience			\checkmark	√	\checkmark	\checkmark
Industry				\checkmark	\checkmark	\checkmark
Occupation					\checkmark	\checkmark
State						\checkmark

Racial wage gaps among men (2010-2021)

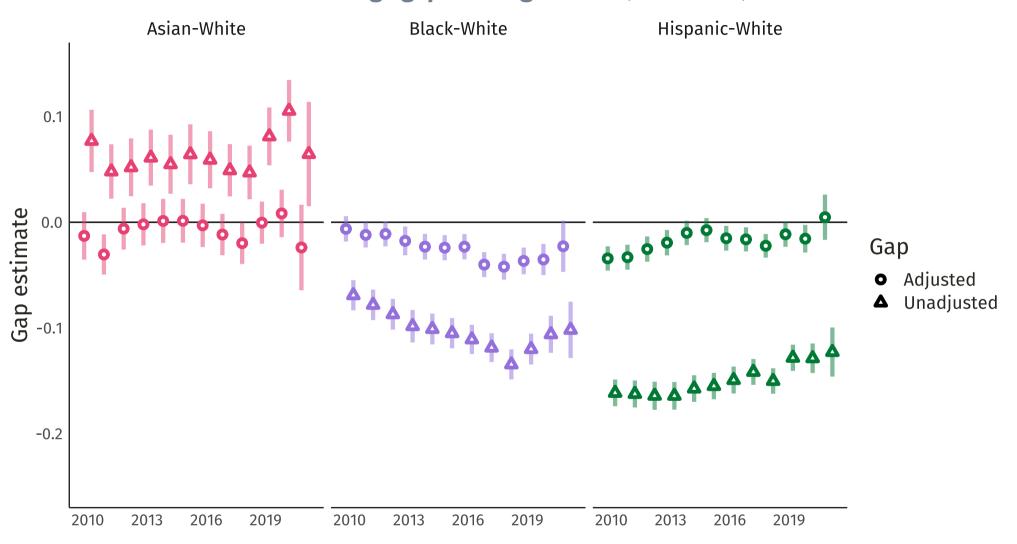


Notes: Outcome variable = log(hourly wage). Vertical bars outline 95% confidence intervals. Reference category = White men.

Racial wage gaps among women (2021)

	(1)	(2)	(3)	(4)	(5)	(6)
Asian	0.065	0.019	0.011	0.019	0.039	-0.024
	(0.025)	(0.022)	(0.022)	(0.021)	(0.020)	(0.021)
Black	-0.102	-0.063	-0.057	-0.069	-0.04	-0.023
	(0.014)	(0.012)	(0.012)	(0.012)	(0.012)	(0.012)
Hispanic	-0.123	-0.013	0.004	0.013	0.034	0.005
	(0.012)	(0.011)	(0.011)	(0.011)	(0.010)	(0.011)
Education		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Experience			\checkmark	\checkmark	\checkmark	\checkmark
Industry				\checkmark	\checkmark	\checkmark
Occupation					\checkmark	\checkmark
State						✓

Racial wage gaps among women (2010-2021)

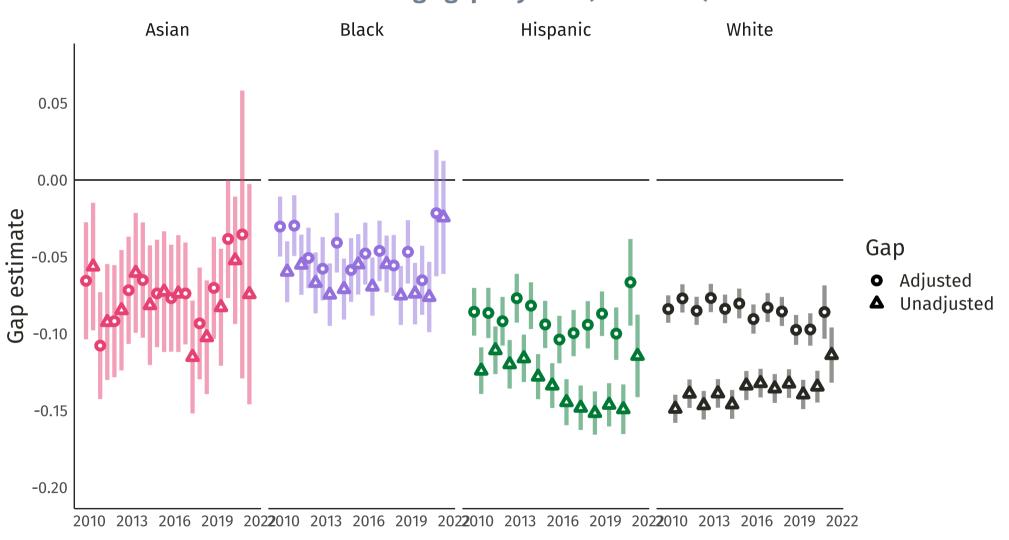


Notes: Outcome variable = log(hourly wage). Vertical bars outline 95% confidence intervals. Reference category = White women.

Gender wage gap among Whites (2021)

	(1)	(2)	(3)	(4)	(5)	(6)
Female	-0.114	-0.159	-0.167	-0.121	-0.09	-0.086
	(0.009)	(0.009)	(0.008)	(0.009)	(0.009)	(0.009)
Education		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Experience			\checkmark	\checkmark	\checkmark	\checkmark
Industry				\checkmark	\checkmark	\checkmark
Occupation					\checkmark	\checkmark
State						\checkmark

Gender wage gaps by race (2010-2021)



Notes: Outcome variable = log(hourly wage). Vertical bars outline 95% confidence intervals. Reference category = Men.

Wage gaps

Discussion

- Q: Do the adjusted gaps provide causal evidence of gender or race discrimination? Why or why not?
 - Do the adjusted gaps control for enough factors to make an all-else-equal claim?
 - Do the adjusted gaps adjust for too much?

Collider bias

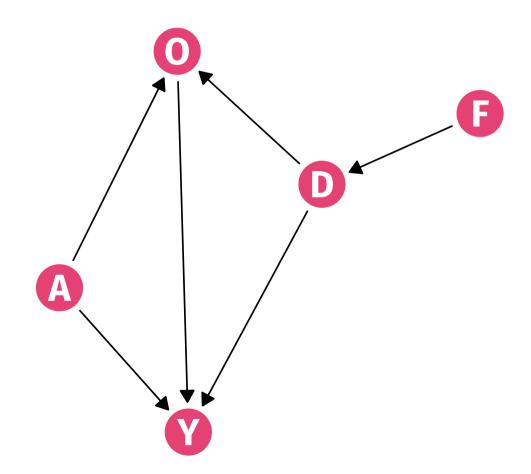
Example: Gender discrimination

Variables

- **F** = Gender
- D = Discrimination
- Y = Wages
- **0** = Occupation
- **U** = Unobserved ability

Causal paths

- $D \longrightarrow Y$ (path of interest)
- $D \longrightarrow O \longrightarrow Y$ (mediated path)
- $D \longrightarrow O \longleftarrow A \longrightarrow Y$

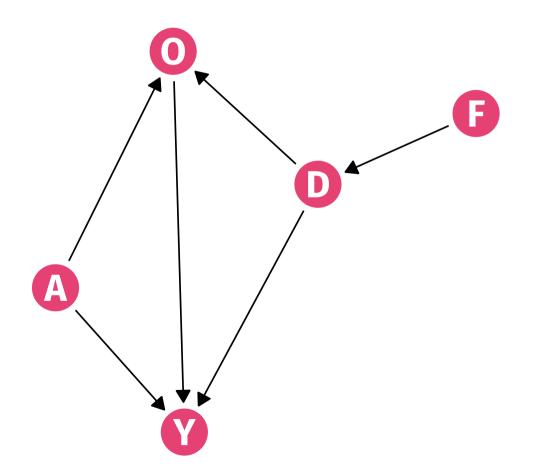


Collider bias

Example: Gender discrimination

Simulation

```
simulated data ← tibble(
  female = ifelse(runif(10000) \geq 0.5, 1, 0),
  ability = rnorm(10000),
  discrimination = female,
  occupation = 1 + 2 * ability + 0 * female - 2 * d
  wage = 1 - 1 * discrimination + 1 * occupation + 1
lm 1 \leftarrow lm(wage \sim female,
            data = simulated data)
lm 2 \leftarrow lm(wage \sim female + occupation,
            data = simulated data)
lm 3 \leftarrow lm(wage \sim female + occupation + ability,
            data = simulated_data)
```



Collider bias

Example: Gender discrimination

Simulation

```
simulated data ← tibble(
  female = ifelse(runif(10000) \geq 0.5, 1, 0),
  ability = rnorm(10000),
  discrimination = female,
  occupation = 1 + 2 * ability + 0 * female - 2 * d
 wage = 1 - 1 * discrimination + 1 * occupation + 1
lm 1 \leftarrow lm(wage \sim female,
            data = simulated data)
lm 2 \leftarrow lm(wage \sim female + occupation,
            data = simulated data)
lm_3 \leftarrow lm(wage \sim female + occupation + ability,
            data = simulated data)
```

Results

	(1)	(2)	(3)
Female	-3.05	0.58	-1.01
	(0.09)	(0.03)	(0.03)
Occupation		1.8	1
		(0.01)	(0.01)
Ability			2
			(0.02)
Intercept	1.95	0.2	1.01
	(0.06)	(0.02)	(0.02)

Notes: Outcome variable = wage. Standard errors in parentheses. Reference category = Men.

Bertrand and Mullainathan (2004)

Discussion

Q₁: How does the study measure discrimination in the labor market?

Q₂: What are the advantages of the research design?

Q₃: What are the weaknesses of the study?

Q₄: What are the main findings?

Q₅: What does the study tell us about employers?

Q₆: What did *you* find most interesting and/or depressing?

Housekeeping

Assigned reading for Wednesday: Ban the Box, Criminal Records, and Racial Discrimination: A Field Experiment by Amanda Agan and Sonja Starr (2017).

- Reading Quiz 10 is due by Monday, March 7th at 12pm (noon).
- The quiz instructions will include a reading guide.