Compensating Wage Differentials

EC 350: Labor Economics

Kyle Raze

Winter 2022

Jardim et al. (2017)

Discussion about the Seattle minimum wage study

Q₁: What data did the authors bring to bear? How do these data differ from other studies?

Q₂: How did the authors estimate the impact of Seattle's minimum wage increase?

Q₃: What did the authors find?

Q₄: How do the findings compare to other studies?

Q₅: What are the weaknesses of the study? How might those weaknesses affect the results?

Q₆: What are the policy implications of the study?

Q₇: Did the study make you update your beliefs about the minimum wage? Why or why not?

Compensating wage differentials

Compensating wage differentials

Q: Why are some workers paid more than others?

- Differences in preferences?
- Differences in human capital?
- Discrimination?
- Differences in working conditions?

Even within the same industry, some jobs are riskier than others!

Compensating wage differentials

The idea? Wages can compensate for non-monetary aspects of a job.

The whole of the advantages and disadvantages of different employment of labour and stock must, in the same neighbourhood, be either perfectly equal or continually tending to equality.

Adam Smith

Examples?

- Hazard pay for grocery store workers during the pandemic
- Wage premium for risky jobs (e.g., Deadliest Catch)
- Wage penalty for fun/fulfilling occupations (e.g., art, music, "lifestyle PhDs", etc.)

Market for risky jobs

Supply

Workers care about wages w and the risk of injury ρ :

$$U = f(w, \rho)$$

- Workers are risk averse.
 - Wages are a "good:" U increases with w.
 - Injury risk is a "bad:" U decreases with ho.
- An employer would need to pay a wage premium to convince a worker to take a riskier job.

Demand

Employers care about profit, which depends on compensation bundles of wages w and injury risk ρ .

- Both wages and safe working conditions are costly.
 - To increase wages and keep the same profit, an employer would need to cut back on safety initiatives.
 - To reduce injury risk and keep the same profit, an employer would need to cut wages.

Risk preferences

An **indifference curve** shows all of the wage-risk bundles that yield the same utility.

- 1. **Upward sloping:** Additional risk requires additional pay to keep the same utility.
- 2. Convex
- 3. Wage-risk bundles on **higher indifference curves** yield **higher utility**.

Risk preferences

Different workers can have **different risk preferences**.

- Some workers dislike injury risk more than others.
 - Workers with steeper indifference curves are more risk-averse.
 - Workers with flatter indifference curves are less risk-averse.

Profit

An **iso-profit curve** shows all of the wage-risk bundles that yield the same profit.

- 1. **Upward sloping:** Safety and wages are costly.
 - To keep the same profit, increasing one requires reducing the other.
- 2. **Concave:** Diminishing returns to safety lead to increasing marginal cost of risk abatement.
- 3. Wage-risk bundles on **higher iso-profit curves** yield **lower profit**.

Equilibrium

In equilibrium, workers **match** with employers.

- Most risk-averse worker ←→ safest employer
- Least risk-averse worker ←→ riskiest employer

The **Hedonic wage function** describes the relationship between wages and job characteristics (*e.g.*, injury risk).

- Upward sloping for "disamenities."
- Downward sloping for amenities (e.g., generosity of health insurance plan).

Safety regulation

Case 1: Workers fully aware of workplace hazards.

Safety regulation

Case 2: Workers misinformed about workplace hazards.

Q: How much money are workers willing to give up in exchange for a marginal reduction in fatality risk?

• **Q:** Or, how much money would workers willingly accept in exchange for a marginal increase in fatality risk?

Other things being equal, riskier occupations tend to pay more than safer occupations.

• **Example:** Employer Y has a riskier work environment than Employer X, but workers at Y willingly accept this added risk because they are paid a compensating differential of \$7,600 per year.

Employer	Probability of fatal injury	Annual wage earnings
Χ	$ ho_{X}$	WX
Υ	$\rho_{\rm X}$ + 0.001	w _X + \$7,600

The **value of a statistical life**[†] (VSL) describes the strength of the relationship between fatality risk and wages.

- The hypothetical amount of money a person would accept to increase their probability of death from 0 to 1.
- Despite its dismal name, VSL is estimated from observed responses to small changes in fatality risk.

How is this useful? Helps governments weigh the tradeoffs of safety regulations and environmental policies.

- Safety regulations can save lives (benefit) in exchange for reduced economic activity (cost).
- Easy to ignore benefits when they aren't directly comparable to the costs!

[†] A prime example of how *not* to brand a useful concept.

Estimation

Using data on wages and fatality risk for different occupations, a researcher can estimate a **Hedonic** regression:

$$\mathrm{Wage}_i = \alpha + \beta \, \mathrm{Risk}_i + \mathrm{other} \, \mathrm{variables} + \varepsilon_i$$

- Wage_i represents the annual wage for occupation i.
- $Risk_i$ represents the annual probability of death in occupation i.
- β represents the value of a statistical life.

^{*} Previously published VSL estimates range from 1 to 12 million dollars. The Environmental Protection Agency uses a VSL of \$10 million for cost-benefit analysis.

Discussion

$$\mathrm{Wage}_i = \alpha + \beta \, \mathrm{Risk}_i + \mathrm{other} \, \mathrm{variables} + \varepsilon_i$$

 $\mathbf{Q_1}$: Estimates of β are often *negative* when researchers fail to include "other variables." Why?

Q₂: What "other variables" should a researcher include to isolate the causal effect of risk on wages?

Housekeeping

Assigned reading for Wednesday: The effect of human capital on earnings: Evidence from a reform at Colombia's top university by Carolina Arteaga (2018).

- Reading Quiz 8 is due by Wednesday, February 23rd at 12:00pm (noon).
- The quiz instructions will include a reading guide.

Problem Set 3 is due by Friday, February 25th at 11:59pm.