class: center, middle, inverse, title-slide # Data and Causation ## EC 350: Labor Economics ###
Kyle Raze
### Winter 2022 --- # Data and Causation 1. The rise of empirical evidence 2. Making *other-things-equal* comparisons 3. Causal identification - Average treatment effects - Selection bias 4. Randomized control trials 5. *Thinking Fast and Slow*, Chicago edition --- class: inverse, middle # The rise of empirical evidence --- class: clear-slide .center[**The fading *American dream***] <img src="03-Data_Causation_files/figure-html/unnamed-chunk-1-1.svg" style="display: block; margin: auto;" /> .footnote[*Source:* Raj Chetty et al. (2017), [The fading American dream: Trends in absolute income mobility since 1940](https://science.sciencemag.org/content/356/6336/398.abstract), *Science*.] --- # Why is the *American dream* fading? **Policy Question:** Why is a child's chance of climbing the income ladder decreasing in the United States? - What can we do to reverse this trend? Difficult to answer with historical data on macroeconomic trends. - **That other things change over time makes it difficult** to separately identify the roles of alternative explanations --- # Theoretical social science Historically, the social sciences had **limited data** to study policy questions. **The result?** Social sciences were .pink[theoretical] fields - Some researchers developed .pink[mathematical models] - Some developed .pink[qualitative theories] - Both used their theories to make policy recommendations (*e.g.,* to improve upward mobility) -- **The problem?** Without data, even falsifiable theories are never tested! - Five researchers could have five different answers to the same question - Can lead to a politicization of questions that, in principle, have scientific answers (*e.g.,* do minimum wage laws reduce employment?) --- class: clear-slide .center[**Economics is becoming more data-driven** <br>.slate[Empirical articles in the top three economics journals over time]] <img src="03-Data_Causation_files/figure-html/unnamed-chunk-2-1.svg" style="display: block; margin: auto;" /> .footnote[*Source:* Daniel S. Hamermesh (2013), [Six Decades of Top Economics Publishing: Who and How?](https://www.aeaweb.org/articles?id=10.1257/jel.51.1.162) *Journal of Economic Literature*.] --- # The rise of empirical evidence Today, the social sciences are increasingly **empirical** thanks to the growing availability of data and computational power. - Gives us **the ability to test** existing theories - Gives us **the ability to refine** theory to (i) better explain decision making and (ii) better fit real-world data -- The social sciences have caught up to the natural sciences in terms of scientific rigor, arguably surpassing the natural sciences in sophistication. - Given the complexity of human decision making, inability to experiment in controlled environments, *etc.*? --- class: inverse, middle # Making *other-things-equal* comparisons --- # *Other-things-equal* comparisons **The policy?** In 2017, the University of Oregon started requiring first-year students to live on campus. **The rationale?** First-year students who live on campus outperform those who live off campus. - Average 2.super[nd]-year retention rate _5 percentage points higher_ - _80 percent more likely to graduate_ in four years - GPA _0.13 points higher_ -- **Q:** Do these comparisons suggest that the policy will improve student outcomes? -- **Q:** Do they describe the effect of living on campus? **Q:** Do they describe *something else?* --- # *Other-things-equal* comparisons **Healthy skepticism** should leave us questioning the UO's interpretation. - The **decision** to live on campus is likely related to family wealth and interest in school. - Family wealth and interest in school are also related to academic achievement. -- **The difference in outcomes** between those on and off campus **does not offer an *other-things-equal* comparison**. - Without further evidence, one should not attribute the difference in outcomes to living on campus. - Not without considering those things that both (i) correlate with living on campus (*e.g.,* family wealth) and (ii) correlate with outcomes (*e.g.,* graduation) --- # *Other-things-equal* comparisons Statistical comparisons can only identify causal relationships between variables **when all other factors are "held constant."** - *Causal* relationship .mono[=] How a change in one variable *induces* a change in another -- Economists have developed a *comparative advantage*.super[.hi-pink[<span>†</span>]] in understanding where **other-things-equal** comparisons can (and cannot) be made. .footnote[.super[.hi-pink[<span>†</span>]] *Comparative advantage* .mono[=] Ability of an individual or group to perform an activity at lower cost relative to another individual or group.] - Anyone can retort "_correlation doesn't imply causation!_" -- - Understanding why it doesn't? The conditions under which it actually does imply causality? - Difficult, but necessary for learning from data! --- class: inverse, middle # Causal identification --- # Causal identification ## The objective Identify the effect of a .hi[treatment] on an .hi[outcome]. -- ## The ideal comparison Ideally, we could calculate the **treatment effect** *for each individual* as `$$Y_{1,i} - Y_{0,i}$$` - `\(Y_{1,i}\)` is the outcome for person `\(i\)` when `\(i\)` receives the treatment - `\(Y_{0,i}\)` is the outcome for person `\(i\)` when `\(i\)` does not receive the treatment - Known as **potential outcomes** --- # Causal identification The **ideal data** for 10 people .pull-left[ ``` #> i treat Y_1i Y_0i #> 1 1 1 5.01 4.56 #> 2 2 1 8.85 4.53 #> 3 3 1 6.31 4.67 #> 4 4 1 5.97 4.79 #> 5 5 1 7.61 6.34 #> 6 6 0 7.63 4.15 #> 7 7 0 4.75 0.56 #> 8 8 0 5.77 3.52 #> 9 9 0 7.47 4.49 #> 10 10 0 7.79 1.40 ``` ] -- .pull-right[ We could calculate the treatment effect for each individual `\(i\)`, $$ `\begin{align} \tau_i = Y_{1,i} - Y_{0,i}~, \end{align}` $$ and we would be inclined to think of it as the causal effect. ] --- count: false # Causal identification The **ideal data** for 10 people .pull-left[ ``` #> i treat Y_1i Y_0i effect_i #> 1 1 1 5.01 4.56 0.45 #> 2 2 1 8.85 4.53 4.32 #> 3 3 1 6.31 4.67 1.64 #> 4 4 1 5.97 4.79 1.18 #> 5 5 1 7.61 6.34 1.27 #> 6 6 0 7.63 4.15 3.48 #> 7 7 0 4.75 0.56 4.19 #> 8 8 0 5.77 3.52 2.25 #> 9 9 0 7.47 4.49 2.98 #> 10 10 0 7.79 1.40 6.39 ``` ] .pull-right[ We could calculate the treatment effect for each individual `\(i\)`, $$ `\begin{align} \tau_i = Y_{1,i} - Y_{0,i}~, \end{align}` $$ and we would be inclined to think of it as the causal effect. ] --- count: false # Causal identification The **ideal data** for 10 people .pull-left[ ``` #> i treat Y_1i Y_0i effect_i #> 1 1 1 5.01 4.56 0.45 #> 2 2 1 8.85 4.53 4.32 #> 3 3 1 6.31 4.67 1.64 #> 4 4 1 5.97 4.79 1.18 #> 5 5 1 7.61 6.34 1.27 #> 6 6 0 7.63 4.15 3.48 #> 7 7 0 4.75 0.56 4.19 #> 8 8 0 5.77 3.52 2.25 #> 9 9 0 7.47 4.49 2.98 #> 10 10 0 7.79 1.40 6.39 ``` ] .pull-right[ We could calculate the treatment effect for each individual `\(i\)`, $$ `\begin{align} \tau_i = Y_{1,i} - Y_{0,i}~, \end{align}` $$ and we would be inclined to think of it as the causal effect. ] The mean of these individual treatment effects .mono[=] 2.82 - We call this the .hi-green[average treatment effect] (ATE) --- # Causal identification ## The fundamental problem of causal inference While the ideal comparison is $$ `\begin{align} \tau_i = \color{#e64173}{Y_{1,i}} &- \color{#9370DB}{Y_{0,i}}~, \end{align}` $$ this comparison is fundamentally challenged! -- - If we observe `\(\color{#e64173}{Y_{1}}\)` for `\(i\)`, then we cannot observe `\(\color{#9370DB}{Y_{0}}\)` for `\(i\)` - If we observe `\(\color{#9370DB}{Y_{0}}\)` for `\(i\)`, then we cannot observe `\(\color{#e64173}{Y_{1}}\)` for `\(i\)` - We only observe what *actually* happened—we cannot observe the **counterfactual** -- **The implication?** .hi-pink[ALL] .pink[causal inference is] .hi-pink[by assumption!] --- # Causal identification The data we *actually* see for these 10 people? .pull-left[ ``` #> i treat Y_1i Y_0i #> 1 1 1 5.01 NA #> 2 2 1 8.85 NA #> 3 3 1 6.31 NA #> 4 4 1 5.97 NA #> 5 5 1 7.61 NA #> 6 6 0 NA 4.15 #> 7 7 0 NA 0.56 #> 8 8 0 NA 3.52 #> 9 9 0 NA 4.49 #> 10 10 0 NA 1.40 ``` ] -- .pull-right[ We only observe `\(\color{#e64173}{Y_{1}}\)` for `\(i \in \{1, ..., 5\}\)` We only observe `\(\color{#9370DB}{Y_{0}}\)` for `\(i \in \{6, ..., 10\}\)` We do not observe both `\(\color{#e64173}{Y_{1,i}}\)` and `\(\color{#9370DB}{Y_{0,i}}\)` for anyone ] -- **Q:** How can we estimate the average treatment effect when we cannot observe individual treatment effects? --- # Causal identification Can we **compare the mean outcomes** of each group? - Take the average of `\(\color{#e64173}{Y_{1}}\)` for those who received the treatment (*i.e.,* the .pink[treatment-group mean]) - Take the average of `\(\color{#9370DB}{Y_{0}}\)` for those who didn't receive the treatment (*i.e.,* the .purple[control-group mean]) -- **Q:** Does .pink[treatment-group mean] .mono[-] .purple[control-group mean] isolate the causal effect of the treatment? --- # Causal identification .pull-left[ ``` #> i treat Y_1i Y_0i #> 1 1 1 5.01 NA #> 2 2 1 8.85 NA #> 3 3 1 6.31 NA #> 4 4 1 5.97 NA #> 5 5 1 7.61 NA #> 6 6 0 NA 4.15 #> 7 7 0 NA 0.56 #> 8 8 0 NA 3.52 #> 9 9 0 NA 4.49 #> 10 10 0 NA 1.40 ``` ] .pull-right[ .pink[Treatment group mean] .mono[=] 6.75 .purple[Control group mean] .mono[=] 2.82 Difference-in-means .mono[=] 3.93 ] -- Difference-in-means .mono[=] .hi-green[average treatment effect] .mono[+] .hi-orange[selection bias] -- <br> `\(\quad\)` .mono[=] .green[2.82] .mono[+] .orange[(3.93 .mono[-] 2.82)] -- .mono[=] .green[2.82] .mono[+] .orange[1.11] -- .orange[Selection bias] .mono[!=] 0 .mono[==>] people who "select into" treatment are different --- class: inverse, middle # Randomized control trials --- # Randomized control trials ## Overcoming selection bias **The problem?** The existence of selection bias precludes making *other-things-equal* comparisons. - To make valid comparisons that identify causal effects, we need to shut down the bias coming from selection. -- **The solution?** Conduct an experiment! - How? Assign treatment .hi-pink[randomly] - Hence the name, .hi-pink[*randomized* control trial] (RCT) --- # Randomized control trials ## Example: Effect of de-worming on attendance **Motivation:** Intestinal worms are common among children in less-developed countries. The symptoms of these parasites can keep school-aged children at home, disrupting human capital accumulation. **Policy question:** Do school-based de-worming interventions provide a cost-effective way to increase school attendance? --- # Randomized control trials ## Example: Effect of de-worming on attendance **Research question:** How much do de-worming interventions increase school attendance? **Q:** **Could we simply compare average attendance** among children with and without access to de-worming medication? -- - **A:** If we're after the causal effect, probably not. (Why not?) -- **Selection bias:** Families with access to de-worming medication probably have healthier children for other reasons, too (wealth, access to clean drinking water, *etc.*). - **We can't make an *all-else-equal* comparison** .mono[-->] in expectation, observed differences will deviate *systematically* from the ATE! --- # Randomized control trials ## Example: Effect of de-worming on attendance **Solution:** Run an experiment. -- Imagine an RCT where we have two groups: - .hi-slate[Treatment:] Villages where children get de-worming medication in school. - .hi-slate[Control:] Villages where children don't get de-worming medication in school (status quo). -- By randomizing villages into .hi-slate[treatment] or .hi-slate[control], we will, on average, include all kinds of villages (poor _vs._ less poor, access to clean water _vs._ contaminated water, hospital _vs._ no hospital, *etc.*) in both groups. -- *All else equal*! --- class: clear-slide .hi-slate[72 villages] <img src="03-Data_Causation_files/figure-html/plot1-1.svg" style="display: block; margin: auto;" /> --- class: clear-slide count: false .hi-slate[72 villages] .hi[of varying levels of development] <img src="03-Data_Causation_files/figure-html/plot2-1.svg" style="display: block; margin: auto;" /> --- class: clear-slide count: false .hi-slate[72 villages] .hi[of varying levels of development] .mono[+] .hi-orange[randomly assigned treatment] <img src="03-Data_Causation_files/figure-html/plot3_1-1.svg" style="display: block; margin: auto;" /> --- class: clear-slide count: false .hi-slate[72 villages] .hi[of varying levels of development] .mono[+] .hi-orange[randomly assigned treatment] <img src="03-Data_Causation_files/figure-html/plot3_2-1.svg" style="display: block; margin: auto;" /> --- class: clear-slide count: false .hi-slate[72 villages] .hi[of varying levels of development] .mono[+] .hi-orange[randomly assigned treatment] <img src="03-Data_Causation_files/figure-html/plot3_3-1.svg" style="display: block; margin: auto;" /> --- class: clear-slide count: false .hi-slate[72 villages] .hi[of varying levels of development] .mono[+] .hi-orange[randomly assigned treatment] <img src="03-Data_Causation_files/figure-html/plot3_4-1.svg" style="display: block; margin: auto;" /> --- class: clear-slide count: false .hi-slate[72 villages] .hi[of varying levels of development] .mono[+] .hi-orange[randomly assigned treatment] <img src="03-Data_Causation_files/figure-html/plot3_5-1.svg" style="display: block; margin: auto;" /> --- class: clear-slide count: false .hi-slate[72 villages] .hi[of varying levels of development] .mono[+] .hi-orange[randomly assigned treatment] <img src="03-Data_Causation_files/figure-html/plot3_6-1.svg" style="display: block; margin: auto;" /> --- class: clear-slide count: false .hi-slate[72 villages] .hi[of varying levels of development] .mono[+] .hi-orange[randomly assigned treatment] <img src="03-Data_Causation_files/figure-html/plot3_7-1.svg" style="display: block; margin: auto;" /> --- class: clear-slide count: false .hi-slate[72 villages] .hi[of varying levels of development] .mono[+] .hi-orange[randomly assigned treatment] <img src="03-Data_Causation_files/figure-html/plot3_8-1.svg" style="display: block; margin: auto;" /> --- class: clear-slide count: false .hi-slate[72 villages] .hi[of varying levels of development] .mono[+] .hi-orange[randomly assigned treatment] <img src="03-Data_Causation_files/figure-html/plot3_9-1.svg" style="display: block; margin: auto;" /> --- class: clear-slide count: false .hi-slate[72 villages] .hi[of varying levels of development] .mono[+] .hi-orange[randomly assigned treatment] <img src="03-Data_Causation_files/figure-html/plot3_10-1.svg" style="display: block; margin: auto;" /> --- class: clear-slide count: false .hi-slate[72 villages] .hi[of varying levels of development] .mono[+] .hi-orange[randomly assigned treatment] <img src="03-Data_Causation_files/figure-html/plot3_11-1.svg" style="display: block; margin: auto;" /> --- class: clear-slide count: false .hi-slate[72 villages] .hi[of varying levels of development] .mono[+] .hi-orange[randomly assigned treatment] <img src="03-Data_Causation_files/figure-html/plot3_12-1.svg" style="display: block; margin: auto;" /> --- # Randomized control trials ## Example: Effect of de-worming on attendance We can estimate the **causal effect** of de-worming on school attendance by **comparing the average attendance rates** in the .hi-pink[treatment group] (💊) with those in the .hi-purple[control group] (no 💊): .center[.hi-pink[Treatment group attendance rate] .mono[-] .hi-purple[Control group attendance rate]] -- **Result:** This was done in Kenya, where [attendance increased](https://www.povertyactionlab.org/case-study/deworming-schools-improves-attendance-and-benefits-communities-over-long-term) with the random assignment of treatment. - 25-percent decrease in absenteeism at a cost of $0.60 per child - Long term cost effectiveness: Additional 11.91 years of schooling per $100 spent on de-worming .footnote[*Source:* [Deworming to increase school attendance](https://www.povertyactionlab.org/case-study/deworming-increase-school-attendance), *Abdul Latif Jameel Poverty Action Lab*.] --- # Randomized control trials ## Example: Effect of de-worming on attendance We can estimate the **causal effect** of de-worming on school attendance by **comparing the average attendance rates** in the .hi-pink[treatment group] (💊) with those in the .hi-purple[control group] (no 💊): .center[.hi-pink[Treatment group attendance rate] .mono[-] .hi-purple[Control group attendance rate]] **Q:** Should we trust the results of the comparison? -- **A:** Even with healthy skepticism, we probably should? On average, randomly assigning treatment balances the treatment and control groups across other dimensions that could explain school attendance. --- class: clear-slide Balance ***on average*** .mono[!=] Balance ***every time*** <img src="03-Data_Causation_files/figure-html/fertilizer_plot3_bad-1.svg" style="display: block; margin: auto;" /> --- # Interpreting results ## Internal validity Addresses the question, ***should we believe the study?*** A study has high **internal validity** if, within the context of the study, we are confident that one variable has a **causal** influence on the outcome of interest (*e.g.,* there's **no selection bias**). -- ## External validity Addresses the question, ***how far can we generalize the results of the study?*** A study has high **external validity** to the extent that the results **apply to other contexts** (not just the local environment that generated the results). --- class: inverse, middle # *Thinking Fast and Slow*, Chicago edition --- # *Thinking Fast and Slow*, Chicago edition ## Background **Policy question:** How can we reduce violent crime among young men? **Research agenda:** What factors influence an individual's proclivity toward violent crime? - Self control? Social skills? Grit? - Economic hardship? - Police presesnce? - Early chilhood education? - Something else? --- # *Thinking Fast and Slow*, Chicago edition **Research question:** Can cognitive-behavioral therapy keep young men in school and out of trouble? - Proposed mechanism: Automaticity. .footnote[*Source:* Sara B Heller et al. (2017), [Thinking, Fast and Slow? Some Field Experiments to Reduce Crime and Dropout in Chicago](https://academic.oup.com/qje/article-abstract/132/1/1/2724542?redirectedFrom=fulltext), *The Quarterly Journal of Economics*.] -- **Experiment:** *Becoming a Man* 4804 young men in Chicago Public Schools randomly assigned to one of two groups: - .hi-pink[Treatment group:] Group cognitive-behavioral therapy program during school (once per week for 1-2 school years) - .hi-purple[Control group:] No intervention -- A similar experiment was also conducted in the Cook County Juvenile Temporary Detention Center. --- class: clear-slide .center[***Becoming a Man*: Experimental results**] <table class="table table-hover" style="font-size: 20.5px; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> Outcome </th> <th style="text-align:center;"> Control mean </th> <th style="text-align:center;"> Treatment mean </th> <th style="text-align:center;"> Effect of treatment assignment </th> <th style="text-align:center;"> Effect of participation </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;color: #272822 !important;line-height: 110%;font-style: italic;color: black !important;"> School engagement index </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> 0 </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> 0.04 </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> 0.04 </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> 0.088 </td> </tr> <tr> <td style="text-align:left;color: #272822 !important;color: #c2bebe !important;line-height: 110%;font-style: italic;color: black !important;"> </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> (0.016) </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> (0.034) </td> </tr> <tr> <td style="text-align:left;color: #272822 !important;line-height: 110%;font-style: italic;color: black !important;"> Total arrests per youth per year </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> 0.603 </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> 0.53 </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> -0.073 </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> -0.161 </td> </tr> <tr> <td style="text-align:left;color: #272822 !important;color: #c2bebe !important;line-height: 110%;font-style: italic;color: black !important;"> </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> (0.031) </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> (0.068) </td> </tr> <tr> <td style="text-align:left;color: #272822 !important;line-height: 110%;font-style: italic;color: black !important;">    Violent </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> 0.136 </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> 0.109 </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> -0.027 </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> -0.06 </td> </tr> <tr> <td style="text-align:left;color: #272822 !important;color: #c2bebe !important;line-height: 110%;font-style: italic;color: black !important;"> </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> (0.011) </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> (0.024) </td> </tr> <tr> <td style="text-align:left;color: #272822 !important;line-height: 110%;font-style: italic;color: black !important;">    Property </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> 0.069 </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> 0.072 </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> 0.003 </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> 0.006 </td> </tr> <tr> <td style="text-align:left;color: #272822 !important;color: #c2bebe !important;line-height: 110%;font-style: italic;color: black !important;"> </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> (0.008) </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> (0.018) </td> </tr> <tr> <td style="text-align:left;color: #272822 !important;line-height: 110%;font-style: italic;color: black !important;">    Drug </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> 0.132 </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> 0.127 </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> -0.005 </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> -0.011 </td> </tr> <tr> <td style="text-align:left;color: #272822 !important;color: #c2bebe !important;line-height: 110%;font-style: italic;color: black !important;"> </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> (0.012) </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> (0.027) </td> </tr> <tr> <td style="text-align:left;color: #272822 !important;line-height: 110%;font-style: italic;color: black !important;">    Other </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> 0.266 </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> 0.222 </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> -0.044 </td> <td style="text-align:center;color: #272822 !important;line-height: 110%;"> -0.097 </td> </tr> <tr> <td style="text-align:left;color: #272822 !important;color: #c2bebe !important;line-height: 110%;font-style: italic;color: black !important;"> </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> (0.019) </td> <td style="text-align:center;color: #272822 !important;color: #c2bebe !important;line-height: 110%;"> (0.040) </td> </tr> </tbody> </table> .smallest[*Notes:* 4804 observations. Standard errors in parentheses.]