ECON 3818

Chapter 23

Kyle Butts

26 September 2021

Chapter 23: Comparing Two Proportions

Notation

We will use notation similar to that used in our study of two-sample t-statistics.

POPULATION	POP. PROPORTION	SAMPLE SIZE	SAMPLE PROPORTION
1	p_1	n_1	\hat{p}_1
2	p_2	n_2	${\hat p}_2$

Sampling Distribution of Sample Proportion Review

 $X \sim B(1,p)$ is the underlying variable.

$$\hat{p} = \frac{\sum \# \text{ of successes}}{n}$$

The sample distribution of \hat{p} with population proportion p_0 :

$$\hat{p} \sim N(p_0, rac{p_0(1-p_0)}{n})$$

Sampling Distribution of a Difference between Proportions

To use $\hat{p}_1 - \hat{p}_2$ for inference we use the following information:

- ullet When the samples are large, the distribution of $\hat{p}_1 \hat{p}_2$ is approximately normal
- The **mean** of the sampling distribution is: p_1-p_2
- Assuming the two populations are independent, the standard deviation of the distribution is:

$$\sqrt{rac{p_1(1-p_1)}{n_1}+rac{p_2(1-p_2)}{n_2}}$$

Normal Distribution Review

If $X_1\sim N(\mu_1,\sigma_1^2)$ and $X_2\sim N(\mu_2,\sigma_2^2)$ are normally distributed and indepdent, then X_1-X_2 is normally distributed,

$$E(X_1 - X_2) = \mu_1 - \mu_2, \ Var(X_1 - X_2) = \sigma_1^2 + \sigma_2^2$$

Large-Sample Confidence Intervals for Comparing Proportions

Using the equation for standard error:

$$SE = \sqrt{rac{\hat{p}_1(1-\hat{p}_1)}{n_1} + rac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

The confidence interval is constructed as:

$$\hat{p}_1 - \hat{p}_2 \pm Z^*SE$$
,

where Z^* is the associated critical value.

Example

Construct a 95\% confidence interval for the following difference in proportions:

POPULATION	NO. SUCCESSES	SAMPLE SIZE	SAMPLE PROPORTION
1	75	100	\hat{p}_1 = 0.75
2	56	100	\hat{p}_{2} = 0.56

$$SE = \sqrt{rac{(0.75)(0.25)}{100} + rac{(0.56)(0.44)}{100}} = 0.0659$$

Confidence interval = $(0.75-0.56)\pm(1.96)(0.0659) \implies [0.06,0.32]$

Significance Tests for Comparing Proportions

$$H_0: p_1 - p_2 = 0$$

$$H_1:p_1-p_2\neq 0$$

In order to test the hypothesis, we must first calculated the **pooled sample proportion**

$$\hat{p} = \frac{\text{number of successes in both samples combined}}{\text{number of individuals in both samples combined}}$$

Then we use the following z-statistic:

$$rac{\hat{p}_1-\hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(rac{1}{n_1}+rac{1}{n_2}
ight)}}$$

Example

POPULATION	NO. SUCCESSES	SAMPLE SIZE	SAMPLE PROPORTION
1	212	616	\hat{p}_1 = 0.344
2	7	49	\hat{p}_2 = 0.143

• Calculate \hat{p}

$$\hat{p} = rac{212 + 7}{616 + 49} = 0.329$$

• Calculate Z-statistic

$$Z = rac{0.344 - 0.143}{\sqrt{(0.329)(0.671)\left(rac{1}{616} + rac{1}{49}
ight)}} = 2.88$$

Example

Continued

The z-statistic was 2.88, and we have a two-tailed alternative hypothesis. Therefore:

p-value =
$$2 \cdot P(Z > 2.88) = 2 \cdot 0.002 = 0.004$$

Therefore we reject null at lpha=0.05, since p-value <lpha