class: center, middle, inverse, title-slide # ECON 3818 ## Chapter 20 ### Kyle Butts ### 08 February 2022 --- class: clear, middle <!-- Custom css --> <style type="text/css"> /* ------------------------------------------------------- * * !! This file was generated by xaringanthemer !! * * Changes made to this file directly will be overwritten * if you used xaringanthemer in your xaringan slides Rmd * ------------------------------------------------------- */ @import url(https://fonts.googleapis.com/css?family=Roboto&display=swap); @import url(https://fonts.googleapis.com/css?family=Roboto&display=swap); @import url(https://fonts.googleapis.com/css?family=Source+Code+Pro:400,700&display=swap); @import url(https://fonts.googleapis.com/css2?family=Atkinson+Hyperlegible&display=swap); :root { /* Fonts */ --text-font-family: 'Atkinson Hyperelegible'; --text-font-is-google: 1; --text-font-family-fallback: Roboto, -apple-system, BlinkMacSystemFont, avenir next, avenir, helvetica neue, helvetica, Ubuntu, roboto, noto, segoe ui, arial; --text-font-base: sans-serif; --header-font-family: 'Atkinson Hyperelegible' --header-font-is-google: 1; --header-font-family-fallback: Georgia, serif; --code-font-family: 'Source Code Pro'; --code-font-is-google: 1; --base-font-size: 20px; --text-font-size: 1rem; --code-font-size: 0.9rem; --code-inline-font-size: 1em; --header-h1-font-size: 1.75rem; --header-h2-font-size: 1.6rem; --header-h3-font-size: 1.5rem; /* Colors */ --text-color: #131516; --text-color-light: #555F61; --header-color: #FFF; --background-color: #FFF; --link-color: #107895; --code-highlight-color: rgba(255,255,0,0.5); --inverse-text-color: #d6d6d6; --inverse-background-color: #272822; --inverse-header-color: #f3f3f3; --inverse-link-color: #107895; --title-slide-background-color: #272822; --title-slide-text-color: #d6d6d6; --header-background-color: #FFF; --header-background-text-color: #FFF; } html { font-size: var(--base-font-size); } body { font-family: var(--text-font-family), var(--text-font-family-fallback), var(--text-font-base); font-weight: normal; color: var(--text-color); } h1, h2, h3 { font-family: var(--header-font-family), var(--header-font-family-fallback); color: var(--text-color-light); } .remark-slide-content { background-color: var(--background-color); font-size: 1rem; padding: 24px 32px 16px 32px; width: 100%; height: 100%; } .remark-slide-content h1 { font-size: var(--header-h1-font-size); } .remark-slide-content h2 { font-size: var(--header-h2-font-size); } .remark-slide-content h3 { font-size: var(--header-h3-font-size); } .remark-code, .remark-inline-code { font-family: var(--code-font-family), Menlo, Consolas, Monaco, Liberation Mono, Lucida Console, monospace; } .remark-code { font-size: var(--code-font-size); } .remark-inline-code { font-size: var(--code-inline-font-size); color: #000; } .remark-slide-number { color: #107895; opacity: 1; font-size: 0.9em; } a, a > code { color: var(--link-color); text-decoration: none; } .footnote { position: absolute; bottom: 60px; padding-right: 6em; font-size: 0.9em; } .remark-code-line-highlighted { background-color: var(--code-highlight-color); } .inverse { background-color: var(--inverse-background-color); color: var(--inverse-text-color); } .inverse h1, .inverse h2, .inverse h3 { color: var(--inverse-header-color); } .inverse a, .inverse a > code { color: var(--inverse-link-color); } img, video, iframe { max-width: 100%; } blockquote { border-left: solid 5px lightgray; padding-left: 1em; } @page { margin: 0; } @media print { .remark-slide-scaler { width: 100% !important; height: 100% !important; transform: scale(1) !important; top: 0 !important; left: 0 !important; } } /* Modified metropolis */ .clear{ border-top: 0px solid #FAFAFA; } h1 { margin-top: -5px; margin-left: -00px; margin-bottom: 30px; color: var(--text-color-light); font-weight: 200; } h2, h3, h4 { padding-top: -15px; padding-bottom: 00px; color: #1A292C; text-shadow: none; font-weight: 400; text-align: left; margin-left: 00px; margin-bottom: -10px; } .title-slide .inverse .remark-slide-content { background-color: #FAFAFA; } .title-slide { background-color: #FAFAFA; border-top: 80px solid #FAFAFA; } .title-slide h1 { color: var(--text-color); font-size: 40px; text-shadow: none; font-weight: 400; text-align: left; margin-left: 15px; } .title-slide h2 { margin-top: -15px; color: var(--link-color); text-shadow: none; font-weight: 300; font-size: 35px; text-align: left; margin-left: 15px; } .title-slide h3 { color: var(--text-color-light); text-shadow: none; font-weight: 300; font-size: 25px; text-align: left; margin-left: 15px; margin-bottom: 0px; } .title-slide h3:last-of-type { font-style: italic; font-size: 1rem; } /* Remove orange line */ hr, .title-slide h2::after, .mline h1::after { content: ''; display: block; border: none; background-color: #e5e5e5; color: #e5e5e5; height: 1px; } hr, .mline h1::after { margin: 1em 15px 0 15px; } .title-slide h2::after { margin: 10px 15px 35px 0; } .mline h1::after { margin: 10px 15px 0 15px; } /* turns off slide numbers for title page: https://github.com/gnab/remark/issues/298 */ .title-slide .remark-slide-number { display: none; } /* Custom CSS */ /* More line spacing */ body { line-height: 1.5; } /* Font styling */ .hi { font-weight: 600; } .mono { font-family: monospace; } .ul { text-decoration: underline; } .ol { text-decoration: overline; } .st { text-decoration: line-through; } .bf { font-weight: bold; } .it { font-style: italic; } /* Font Sizes */ .bigger { font-size: 125%; } .huge{ font-size: 150%; } .small { font-size: 95%; } .smaller { font-size: 85%; } .smallest { font-size: 75%; } .tiny { font-size: 50%; } /* Remark customization */ .clear .remark-slide-number { display: none; } .inverse .remark-slide-number { display: none; } .remark-code-line-highlighted { background-color: rgba(249, 39, 114, 0.5); } /* Xaringan tweeks */ .inverse { background-color: #23373B; text-shadow: 0 0 20px #333; /* text-shadow: none; */ } .title-slide { background-color: #ffffff; border-top: 80px solid #ffffff; } .footnote { bottom: 1em; font-size: 80%; color: #7f7f7f; } /* Lists */ li { margin-top: 4px; } /* Mono-spaced font, smaller */ .mono-small { font-family: monospace; font-size: 16px; } .mono-small .mjx-chtml { font-size: 103% !important; } .pseudocode, .pseudocode-small { font-family: monospace; background: #f8f8f8; border-radius: 3px; padding: 10px; padding-top: 0px; padding-bottom: 0px; } .pseudocode-small { font-size: 16px; } .remark-code { font-size: 68%; } .remark-inline-code { background: #F5F5F5; /* lighter */ /* background: #e7e8e2; /* darker */ border-radius: 3px; padding: 4px; } /* Super and Subscripts */ .super{ vertical-align: super; font-size: 70%; line-height: 1%; } .sub{ vertical-align: sub; font-size: 70%; line-height: 1%; } /* Subheader */ .subheader{ font-weight: 100; font-style: italic; display: block; margin-top: -25px; margin-bottom: 25px; } /* 2/3 left; 1/3 right */ .more-left { float: left; width: 63%; } .less-right { float: right; width: 31%; } .more-right ~ * { clear: both; } /* 9/10 left; 1/10 right */ .left90 { padding-top: 0.7em; float: left; width: 85%; } .right10 { padding-top: 0.7em; float: right; width: 9%; } /* 95% left; 5% right */ .left95 { padding-top: 0.7em; float: left; width: 91%; } .right05 { padding-top: 0.7em; float: right; width: 5%; } .left5 { padding-top: 0.7em; margin-left: 0em; margin-right: -0.4em; float: left; width: 7%; } .left10 { padding-top: 0.7em; margin-left: -0.2em; margin-right: -0.5em; float: left; width: 10%; } .left30 { padding-top: 0.7em; float: left; width: 30%; } .right30 { padding-top: 0.7em; float: right; width: 30%; } .thin-left { padding-top: 0.7em; margin-left: -1em; margin-right: -0.5em; float: left; width: 27.5%; } /* Example */ .ex { font-weight: 300; color: #555F61 !important; font-style: italic; } .col-left { float: left; width: 47%; margin-top: -1em; } .col-right { float: right; width: 47%; margin-top: -1em; } .clear-up { clear: both; margin-top: -1em; } /* Format tables */ table { color: #000000; font-size: 14pt; line-height: 100%; border-top: 1px solid #ffffff !important; border-bottom: 1px solid #ffffff !important; } th, td { background-color: #ffffff; } table th { font-weight: 400; } /* Attention */ .attn { font-weight: 500; color: #e64173 !important; font-family: 'Zilla Slab' !important; } /* Note */ .note { font-weight: 300; font-style: italic; color: #314f4f !important; /* color: #cccccc !important; */ font-family: 'Zilla Slab' !important; } /* Question and answer */ .qa { font-weight: 500; /* color: #314f4f !important; */ color: #e64173 !important; font-family: 'Zilla Slab' !important; } /* Figure Caption */ .caption { font-size: 0.8888889em; line-height: 1.5; margin-top: 1em; color: #6b7280; } </style> <!-- From xaringancolor --> <div style = "position:fixed; visibility: hidden"> $$ \require{color} \definecolor{purple}{rgb}{0.337254901960784, 0.00392156862745098, 0.643137254901961} \definecolor{navy}{rgb}{0.0509803921568627, 0.23921568627451, 0.337254901960784} \definecolor{ruby}{rgb}{0.603921568627451, 0.145098039215686, 0.0823529411764706} \definecolor{alice}{rgb}{0.0627450980392157, 0.470588235294118, 0.584313725490196} \definecolor{daisy}{rgb}{0.92156862745098, 0.788235294117647, 0.266666666666667} \definecolor{coral}{rgb}{0.949019607843137, 0.427450980392157, 0.129411764705882} \definecolor{kelly}{rgb}{0.509803921568627, 0.576470588235294, 0.337254901960784} \definecolor{jet}{rgb}{0.0745098039215686, 0.0823529411764706, 0.0862745098039216} \definecolor{asher}{rgb}{0.333333333333333, 0.372549019607843, 0.380392156862745} \definecolor{slate}{rgb}{0.192156862745098, 0.309803921568627, 0.309803921568627} \definecolor{cranberry}{rgb}{0.901960784313726, 0.254901960784314, 0.450980392156863} $$ </div> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ TeX: { Macros: { purple: ["{\\color{purple}{#1}}", 1], navy: ["{\\color{navy}{#1}}", 1], ruby: ["{\\color{ruby}{#1}}", 1], alice: ["{\\color{alice}{#1}}", 1], daisy: ["{\\color{daisy}{#1}}", 1], coral: ["{\\color{coral}{#1}}", 1], kelly: ["{\\color{kelly}{#1}}", 1], jet: ["{\\color{jet}{#1}}", 1], asher: ["{\\color{asher}{#1}}", 1], slate: ["{\\color{slate}{#1}}", 1], cranberry: ["{\\color{cranberry}{#1}}", 1] }, loader: {load: ['[tex]/color']}, tex: {packages: {'[+]': ['color']}} } }); </script> <style> .purple {color: #5601A4;} .navy {color: #0D3D56;} .ruby {color: #9A2515;} .alice {color: #107895;} .daisy {color: #EBC944;} .coral {color: #F26D21;} .kelly {color: #829356;} .jet {color: #131516;} .asher {color: #555F61;} .slate {color: #314F4F;} .cranberry {color: #E64173;} </style> ## Chapter 20: Inference about a Population Mean --- # Conditions for Inference about a Mean We've discussed using confidence intervals and tests of significance for the mean `\(\mu\)` of a population In general, our analysis relied on two conditions: - The data is from a .hi[simple random sample] from the population - Observations from the population have a .hi[normal distribution] with a mean, `\(\mu\)`, which is generally unknown and a variance `\(\sigma^2\)`, which we've been assuming is known. We'll now talk about the situation where `\(\mu\)` and `\(\sigma^2\)` are both unknown. --- # Important Reminder For a sample mean `\(\bar{X}_n\)`, the sampling distributino has the following variance and standard deviation: $$ \text{Variance} = \frac{\sigma^2}{n} $$ $$ \text{Standard Deviation} = \frac{\sigma}{\sqrt{n}} $$ --- # When `\(\sigma^2\)` is Known Whenever we know the population variance, `\(\sigma^2\)`, we base confidence intervals and tests for `\(\mu\)` with the z-statistic: $$ Z = \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \implies Z \sim N(0,1) $$ <img src="data:image/png;base64,#standard.png" width="90%" style="display: block; margin: auto;" /> --- # When `\(\sigma^2\)` is Unknown When we don't know the true variance, we must estimate it using the sample variance `\(s^2\)`. Again, since we're talking about sample means, the standard deviation of a sample mean, based of a .it[population with unknown variance] is: $$ \frac{\sigma^2}{n} \text{ which is estimated by } \frac{s^2}{n} $$ `\(\frac{s}{\sqrt{n}}\)` is called the .hi.alice[standard error]. --- # When `\(\sigma^2\)` is Unknown When we don't know `\(\sigma\)`, we estimate it by the .it[sample standard deviation], `\(s\)`. What happens when we standardize? $$ \frac{\bar{X}-\mu}{s/\sqrt{n}} \sim \quad ? $$ -- <br/> .center.it[This new statistic does not have a normal distribution!] --- # The `\(t\)` Distribution When we standardize based on the sample standard deviation, `\(s\)`, our statistic has a new distribution called a .hi.daisy[t-distribution] Consider a simple random sample of size `\(n\)`, the .hi.daisy[t-statistic]: $$ \daisy{t} = \frac{\bar{X}-\mu}{s/\sqrt{n}} $$ has the .daisy[t-distribution] with `\(n-1\)` degrees of freedom The .daisy[t-statistic] has the same interpretation as z-statistic: it says how far away `\(\bar{X}\)` is from its mean `\(\mu\)`, in standard deviation units. - The distribution is different because we have one aditional source of .it[uncertainty]: we estimate the standard deviation with `\(s\)`. --- # The `\(t\)`-Distribution There is a different `\(t\)` distribution for each sample size, specified by its .hi.coral[degrees of freedom] - We denote the `\(t\)` distribution with `\(n-1\)` degrees of freedom as `\(t_{n-1}\)` - The curve has a different shape than the standard normal curve - It is still symmetric about it's peak at 0 - But, it has more area in the tails. --- # "More Area in the Tails"? .ex[Example:] Let's say I want to predict the height of the class by selecting `\(n = 3\)` people and taking their mean. Sometimes I will pick 3 basketball players or 3 short people. - If I am using `\(n = 20\)` people, then it is much more rare to select only tall or only short people (this means that extreme sample means are more rare). - I might still select the tallest or shortest person in the class, but they're only one of 20 instead of one of 3. --- # Graphs of `\(t\)`-Distributions <img src="data:image/png;base64,#ch20_files/figure-html/unnamed-chunk-2-1.svg" width="90%" style="display: block; margin: auto;" /> --- # Graphs of `\(t\)`-Distributions Greater degree of dispersion in the `\(t\)` distribution - It has an additional source of random variability in the sample standard deviation `\(s\)` The variance from estimating `\(s\)` decreases when the sample size increases - This means the t-distribution looks more like the z-distribution as sample size grows to infinity - Once degrees of freedom exceeds 31, the t-distribution is close enough to standard normal to approximate probabilities using the z-distribution --- # Finding `\(t\)`-values <img src="data:image/png;base64,#t_table.png" width="90%" style="display: block; margin: auto;" /> --- # Finding `\(t\)`-values As you see, once we have more than 30 degrees of freedom, we can use the z-scores <br/> <img src="data:image/png;base64,#t_table2.png" width="90%" style="display: block; margin: auto;" /> --- # Confidence Interval with `\(t\)`-Distribution Calculating a confidence interval: If the variance, `\(\sigma^2\)`, is known: - Use Z-distribution If the variance, `\(\sigma^2\)`, is unknown: - 31 or more observations in sample, use Z-distribution - 30 or fewer observations in sample, use t-distribution --- # Example Say you want to construct a 95% confidence interval using 20 observations from population with unknown `\(\mu\)` and `\(\sigma\)`, with a sample mean, `\(\bar{X}=22.21\)` and a sample standard deviation, `\(s=1.963\)`. `\(\sigma\)` is unknown and `\(n \leq 31 \implies\)` use t-distribution: $$ CI = \bar{X} \pm t^* \frac{s}{\sqrt{n}} $$ where `\(t^*\)` is the critical value: $$ t^{\frac{1-C}{2}}_{df} = t_{19}^{0.025} $$ --- # Example Find `\(t^{0.025}_{19}\)` using t-distribution table: .pull-left[ <img src="data:image/png;base64,#t_table3.png" width="100%" style="display: block; margin: auto;" /> ] .pull-right[ `$$t^{0.025}_{19}=2.093$$` ] --- # Example `$$CI = \bar{X} \pm t^* \frac{s}{\sqrt{n}}$$` `$$CI = 22.21 \pm 2.093 \cdot \frac{1.963}{\sqrt{20}}$$` Which means the confidence interval is [21.29, 23.13]. We are 95\% confident that the population mean is between 21.29 and 23.13. --- # Clicker Question Which table would you use for the following confidence interval? 99% confidence interval with `\(n=1000\)` observations <ol type = "a"> <li>z-table</li> <li>t-table</li> </ol> --- # Clicker Question What critical value `\(t^*\)` would you use for the following confidence interval? 90% confidence interval with `\(n=2\)` observations <div class="pull-left"> <ol type = "a"> <li>2.92</li> <li>6.31</li> <li>3.08</li> <li>1.89</li> </ol> </div> <div class="pull-right"> <img src="data:image/png;base64,#t_table3.png" width="100%" style="display: block; margin: auto;" /> </div> --- # Clicker Question What critical value `\(t^*\)` would you use for the following confidence interval? 95% confidence interval with `\(n=16\)` observations <div class="pull-left"> <ol type = "a"> <li>1.753</li> <li>1.745</li> <li>2.13</li> <li>2.12</li> </ol> </div> <div class="pull-right"> <img src="data:image/png;base64,#t_table3.png" width="100%" style="display: block; margin: auto;" /> </div> --- # Clicker Question -- Midterm Example A randomly sampled group of patients at a major U.S. regional hospital became part of a nutrition study on dietary habits. Part of the study consisted of a 50-question survey asking about types of foods consumed. Each question was scored on a scale from one (most unhealthy behavior) to five (most healthy behavior). The answers were summed and averaged. The population of interest is the patients at the regional hospital. A sample of `\(n = 15\)` patients produced the following statistics `\(\bar{X}=3.3\)` and `\(s=1.2\)`. A 99% confidence interval is given by: <ol type = "a"> <li> \( (2.37, 4.22). \) </li> <li> \( (2.64, 3.97). \) </li> <li> \( (2.69, 3.91). \) </li> <li> \( (2.5, 4.1). \) </li> </ol> --- # Hypothesis Test with `\(t\)`-Distribution Like the confidence interval, the `\(t\)` test is very similar to the `\(Z\)` test introduced earlier. If we have SRS of size `\(n\)` from population with unknown `\(\mu\)` and `\(\sigma\)`. To test the hypothesis: `\(H_0: \mu = \mu_0\)`, compute the .hi.daisy[t-statistic]: $$ t=\frac{\bar{X}-\mu_0}{s/\sqrt{n}} $$ We then use this t-statistic to calculate the p-value - The p-values are exact if the population does happen to be normally distributed - Otherwise, they are approximately correct for large enough `\(n\)` --- # p-Values in `\(t\)`-Distribution <img src="data:image/png;base64,#pvalues_t.png" width="80%" style="display: block; margin: auto;" /> --- # Example Suppose we have a sample of 12 observations and calculate a sample mean `\(\bar{X}=113.75\)` and a sample standard deviation, `\(s=93.90\)`, and we want to test the following hypothesis at the `\(\alpha=0.10\)` level: $$ H_0: \mu=88 $$ $$ H_1: \mu > 88 $$ The set up is similar to how we've done hypothesis testing before, but we must use the t distribution. -- $$ P(\bar{X} > 113.75 \ \vert \ \mu = 88) $$ --- # Example When we "standardize", we are going to be using the t-distribution since we don't know the population variance and we have a small sample. `$$\begin{align*} P(\bar{X} > 113.75 \ \vert \ \mu=88) &= P(\frac{\bar{X}-\mu_0}{s/\sqrt{n}} > \frac{113.75-88}{93.90/\sqrt{12}}) \\ &= P(t_{11}>0.95) \end{align*}$$` --- # Example Our next step is to find the p-value associated with that t-statistic We can pin down the p-value between two points by using the t-table used earlier. - Look at the row, df=11 - See which columns 0.95 lies between, and look at their associated probabilities --- # Example <img src="data:image/png;base64,#t_table4.png" width="70%" style="display: block; margin: auto;" /> We see that along the row with 11 degrees of freedom, Our t-statistic (0.95) is between 0.25, which has a t-statistic of 0.697, and 0.10, which has a t-statistic of 1.36. We conclude that `\(0.10 \leq p-\text{value} \leq 0.25\)` --- # Example Our level of significance is `\(\alpha=0.10\)`, and we concluded that the p-value associated with this hypothesis is test is greater than 0.10. Therefore: $$ \alpha \leq p-\text{value} \implies \text{ Do not reject } H_0 $$ That main difference between solving a hypothesis test with z-statistic versus t-statistic is that we will generally only be able to find a range for the p-value with t-statistic, whereas we found an exact value with a z-statistic. - You would need 30 seperate `\(t\)` tables to have matching exactness of Z-table. --- # Clicker Question Say we have calculated a `\(t\)`-statistic of 1.6 from a sample of 24 observations. Do we reject at the `\(\alpha=0.10\)` level? What about the `\(\alpha=0.05\)` level? <ol type = "a"> <li>Reject at both \( \alpha=0.05 \) and \( \alpha=0.10\)</li> <li>Do not reject at both \( \alpha=0.05 \) and \( \alpha=0.10\)</li> <li>Reject at \( \alpha=0.05 \), but do not reject at \( \alpha=0.10\)</li> <li>Reject at \( \alpha=0.10 \), but do not reject at \( \alpha=0.05\)</li> </ol> --- # Hypothesis Testing with t-Distribution When we conduct a hypothesis test we follow these steps: 1. Calculate the test statistic `$$t=\frac{\bar{X}-\mu_0}{s/\sqrt{n}}$$` 2. Determine range of p-values associated with test statistic using t-table - Row is determined by degrees of freedom, `\(n-1\)` - Find which two columns your t-statistic lies between 3. Similar to hypothesis testing with a Z distribution, if using a two-tailed test, multiply `\(p\)`-value by 2. 4. Compare range of p-values to `\(\alpha\)` --- # Work in Groups A researcher collected a sample of 12 fish and measured gill length. They calculated `\(\bar{X} = 3.12\)` and `\(s = 0.7\)`. Test the following hypothesis at the `\(\alpha = 0.05\)` level: $$ H_0: \mu = 3.5 $$ $$ H_1: \mu < 3.5 $$ --- # Example Observe sample of 27 newborns in a hospital near Chernobyl and record number of fingers. You calculate `\(\bar{X} = 9.2\)` and `\(s = 1.8\)`. You want to test to the following hypothesis at the `\(\alpha=0.10\)` level: $$ H_0:\mu=10 $$ $$ H_1: \mu \neq 10 $$ --- # Rejection Region from `\(t\)`-Table Lookup the critical value `\(t^*\)`, based off the degrees of freedom and level of significance, `\(\alpha\)` Right tailed test: - Reject `\(H_0\)` when `\(t > t^*\)` Left tailed test: - Reject `\(H_0\)` when `\(t < -t^*\)` -- Can work back out the rejection region to find range for `\(\bar{X}\)` $$ \daisy{t} = \frac{\bar{X}-\mu}{s/\sqrt{n}} > t^* \implies \bar{X} > t^{*} \frac{s}{\sqrt{n}} + \mu $$ --- # Example Suppose you collect a sample of 17 family incomes. You calculate \(s = 6,000\). You want to test the following hypothesis: $$ H_0: \mu = \$29,000 $$ $$ H_1: \mu > \$29,000 $$ If we test at the `\(\alpha = 0.05\)` level, what is our rejection region? --- # Example Suppose you collect a sample of 25 students and record their test scores. You calculate `\(s=4.2\)`. If we're testing the following hypothesis: $$ H_0: \mu=82 $$ $$ H_1: \mu<82 $$ If we're testing at the `\(\alpha=0.01\)`, when do we reject the null hypothesis? --- # Example Back to our newborn example. Observe sample of 27 newborns in a hospital near Chernobyl and record number of fingers. You calculate `\(s = 1.8\)`. If we're testing the following hypothesis at the `\(\alpha = 0.05\)` level, what is the rejection region? $$ H_0:\mu=10 $$ $$ H_1: \mu \neq 10 $$ --- # When to Use Which Distribution If we have SRS, Normal X, and `\(\sigma\)` known: - Use Z distribution If we have SRS, Normal X, and `\(\sigma\)` unknown: - Use the t distribution .purple[What if we don't know that X is normal?] - `\(n<15 \implies\)` only use t if X looks very normally distributed. - `\(15 < n < 31 \implies\)` use t as long as there are no extreme outliers - `\(n>31\)`, probably okay using Z Recall Law of Large numbers that says as `\(n \to \infty\)`: $$ \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \to^d Z\sim(0,1) $$