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Chapter 18: Inference in Practice



Making Inferences

So far we have discussed two ways to make inferences about the parameter using our
estimate

Confidence intervals

Hypothesis testing
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Cautions about Confidence Intervals

Important to note that the margin of error doesn't cover all errors

Address only the randomness due to grabbing a random sample

Does not address issues such as undercoverage, nonresponse, etc.
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Choosing Sample for Confidence Intervals

A researcher can determine the number of observations required in the sample in order to
achieve a desired margin of error.

where  is the desired margin of error, and  is the z-score associated with the confidence
interval level

m = z∗
⟹ n = ( )

2
σ

√n

z∗σ

m

m z∗
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Example

Say we are recording tip size of patrons when a waiter writes a message on the receipt. We
know . We want to estimate the mean percentage tip  for patrons who receive the
message within  with 90% confidence. How many patrons must we observe?

In other words we want :



σ = 2 μ

±0.5

m = 0.5

n = ( )
2

⟹ n = ( )
2

= 43.3
z∗σ

m

1.645 ⋅ 2

0.5
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Cautions about Hypothesis Testing

These tests of significance depend on:

The alternative hypothesis (left-tail, rigth-tail, two-tail)

The sample size, 

The level of significant, 

n

α
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Planning for Hypothesis Testing

How do we choose ?

Our choice of level of significance, , depends on whether we REALLY want not wrongly reject 
 or if we REALLY don't want to fail to reject 

Example: Are you NASA trying to land someone on the moon? small !!!

Example: Are you a business trying to figure out if an A/B test on your website went well?
can have a larger 

α

α

H0 H0

α

α
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Types of Error

In any statistical test there are four possible outcomes:

 TRUE  TRUE

Reject Type I Error Correct

Fail to Reject Correct Type II Error

H0 Ha

H0

H0

10 / 43



Type I Error
False Positive

Type I Error: We reject , even though  is true

False-positive on a covid test

: You do not have covid

Denote the probability of a type I error as 

Since our null hypothesis is typically that there is no effect, a type I error typically says there is
an effect when in reality there is not

H0 H0

H0

α
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Type II Error
False Negative

Type II Error: We fail to reject , even though  is false

False-negative on covid test

: You do not have covid

Denote the probability of type II error as 

Since our null hypothesis is typically that there is no effect, a type II error typically says there is
not an effect when in reality there is something different going on

H0 H0

H0

β
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How to remember

When the boy cried wolf, the village committed Type I and Type II errors, in that
order

There is no wolf

Village rejects correct null (Type I)

Village incorrectly fails to reject false null (Type II)
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Clicker Question

Suppose we have the following hypothesis test:

: Taking multivitamins does not impact your running speed

: Taking multivitamins will increase your running speed

If we make the claim "Taking vitamins in the morning will increase your running speed" and it is
not true, we have committed a:

a. Type I error

b. Type II error

H0

H1
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Errors in Hypothesis Testing

How do these errors happen?

Our conclusions are based on sample data and probabilities

p-value tells us probability of observing it. The p-value is $ >0$ so it is possible to
observe it

We do not have enough information (sample size)

We do not choose to be very rigorous (  )

In particular we control

Type I error is determined by the significance of the test 

Type II error depends on the true distribution when the null is false

However, we can mitigate it by increasing the sample size

α

α
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Improving power by increasing sample size
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Improving power by increasing sample size
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Size of a Test

Now that we've defined Type I error, lets define size:

The size of a test, , is the probability of making a Type I error.

Given a null hypothesis ; a test statistic ; and a rejection region R,

The size is:

α

H0 : θ = θ0 θ̂

α = P(Type I Error) = P(θ̂ ∈ R | θ = θ0)
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Calculating the Size of a Test

How do we actually calculate ?

Let's suppose we have  and , and we want to test :  vs. : .

Given a rejection region of , what is ?

α

n = 16 σ = 1 H0 μ = 3 Ha μ > 3

R = {X̄ | X̄ > 3.41} α

α = P(θ̂ ∈ R | θ = θ0) = P (X̄ > 3.41 | μ = 3)

= P ( > ) = Pr(Z > 1.64) = 0.05
X̄ − μ

σ/√n

3.41 − 3

1/√16
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Choosing Size

Note that we have to pick either the rejection region or the size

We generally pick a size and calculate the rejection region based off that size

Because the size is the probability of a rejecting a true null, by choosing  we are choosing
how much we are willing to risk incorrectly rejecting the null hypothesis

Higher  will mean more of the sample statistics are in the rejection region, meaning a
higher risk of rejecting the null even though it's true

α

α
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Power of a Test

While size deals with Type I Errors, power deals with Type II.

The power is the probability of correctly rejecting a false null, or 1 - P(Type II Error)

Intuitively, power is the likelihood of detecting a false null using your test statistic.

Power = 1 − P(Type II Error)
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Power and Probability of Type II Errors

A Type II error is the probability of failing to reject a false null

The power is the probability of correctly rejecting a false null

You can think of power as the probability of not making a Type II error

You can calculate power by doing  or by calculating the power directly.

P(Type II) = P(X̄ ∉ R | μ = μA)

Power = P(X̄ ∈ R | μ = μA)

1 − P(Type II)
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Power
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Calculating the Power of a Test

Back to previous example, where , , and . And we are
testing  vs. :

Power can be calculated in two ways:

n = 16 σ = 1 R = {X̄ | X̄ > 3.41}
H0 : μ = 3 H1 : μ > 3

Power = P(reject H0 | μ0 = μ∗) = P(X̄ ∈ R | H0 false)

Power = 1 − P(type II Error) = 1 − P(X̄ ∉ R | H0 false)
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Calculating the Power of a Test

In order to calculate the power of a test, we must assume a specific true mean, .

For example, what is the power of the test if the true mean is ?

μA

μA = 4

Power = P(X̄ ∈ R | μ = μA = 4)

P(X̄ > 3.41 | μ = 4) = P(Z > ) = 0.9908
3.41 − 4

1/√16
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Calculating the Power of a Test

We can also calculate the power of a test by subtracting the probability of making a Type II
error (( \beta ) from 1.

Meaning the power of the test is:

There is a 99.1% chance that in repeated sampling we reject the null that  if the true
mean is equal to 4.

β = P(X̄ < 3.41 | μ = μA = 4)

⟹ P(Z < ) = 0.0092
3.41 − 4

1/√16

Power = 1 − β = 1 − .0092 = .9908

μ = 3
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Group Question

Assume . From a sample size of , we wish to test the following at the 
 level

What is the power of your test if 

a. 0.85

b. 0.15

c. 0.64

d. 0.36

X ∼ N(μ, 52) n = 100
α = 0.05

H0 : μ = 3

H1 : μ > 3

μ = μA = 4?
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Interpreting Power

Power is the probability of correctly rejecting a false null hypothesis

Can be thought of as our ability to identify a true value from an alternative

In general, the power is a function of the true value*

It changes as we try out different possible true values

* Must specify a specific true  in order to calculate powerμ 35 / 43



Power
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Visualizing Underpowered Estimates
Imprecise Estimates
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Visualizing Underpowered Estimates
Small Relative Differences
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Spotting Underpowered Estimates

How can we avoid underpowered estimates? There are two main root causes:

Imprecise estimates

Low precision/high variance

Large standard errors interpreted as "no effect"

Small relative differences between  and 

Precise estimates can detect small relative differences

Imprecise estimates require large relative differences to detect the truth.

Watch for imprecise estimates! They are often interpreted as a true result when really they are
underpowered.

θ0 θA
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Example
Underpowered Estimates

Suppose from 10 observations you estimate that raising the minimum wage by 1% would lead
to only a 0.1% decline in employment on average with a standard deviation of 6%. Can you
reject the null that employment wouldn't decrease at the 5% significance level?

Since , we conclude there is not enough evidence to say that average
employment reduction is not 0% (no effect of minimum wage).

p-value = Pr(X̄ < −0.1 | μ = 0) = Pr( < )
X̄ − μ0

σ/√n

−0.1 − 0

6/√10

= Pr(Z < −0.053) = 0.479

p-value  α
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Example
Underpowered Estimates

Great news! Raising the minimum wage has no statistically discernible effect on employment,
right? Well.. hold on... If there is an effect on employment our statistic may be too
underpowered to detect it. Let's calculate the power of this test....
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Example
Underpowered Estimates

Calculate power by 

This means we must first calculate the rejection region

If , then the rejection region is .

P(X̄ ∈ R | μ0 = −0.5)

α = .05 R = {X̄ | X̄ < −3.12}
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Example
Underpowered Estimates

Let's assume a reasonable negative impact on employment of 0.5%. (So we're assuming the
true ).

Then the power is:

Our power to detect a measurable effect is a measly 8.4%!

μ = −0.5

P(Reject H0 | μ = −0.5)

P(Reject H0 | μ = −0.5)

P(Reject H0 | μ = −0.5) = P(Z < −1.38) ≈ 0.0836
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