class: center, middle, inverse, title-slide # ECON 3818 ## Chapter 13 ### Kyle Butts ### 27 September 2021 --- class: clear, middle <!-- Custom css --> <style type="text/css"> /* ------------------------------------------------------- * * !! This file was generated by xaringanthemer !! * * Changes made to this file directly will be overwritten * if you used xaringanthemer in your xaringan slides Rmd * ------------------------------------------------------- */ @import url(https://fonts.googleapis.com/css?family=Roboto&display=swap); @import url(https://fonts.googleapis.com/css?family=Roboto&display=swap); @import url(https://fonts.googleapis.com/css?family=Source+Code+Pro:400,700&display=swap); @import url(https://fonts.googleapis.com/css2?family=Atkinson+Hyperlegible&display=swap); :root { /* Fonts */ --text-font-family: 'Atkinson Hyperelegible'; --text-font-is-google: 1; --text-font-family-fallback: Roboto, -apple-system, BlinkMacSystemFont, avenir next, avenir, helvetica neue, helvetica, Ubuntu, roboto, noto, segoe ui, arial; --text-font-base: sans-serif; --header-font-family: 'Atkinson Hyperelegible' --header-font-is-google: 1; --header-font-family-fallback: Georgia, serif; --code-font-family: 'Source Code Pro'; --code-font-is-google: 1; --base-font-size: 20px; --text-font-size: 1rem; --code-font-size: 0.9rem; --code-inline-font-size: 1em; --header-h1-font-size: 1.75rem; --header-h2-font-size: 1.6rem; --header-h3-font-size: 1.5rem; /* Colors */ --text-color: #131516; --text-color-light: #555F61; --header-color: #FFF; --background-color: #FFF; --link-color: #107895; --code-highlight-color: rgba(255,255,0,0.5); --inverse-text-color: #d6d6d6; --inverse-background-color: #272822; --inverse-header-color: #f3f3f3; --inverse-link-color: #107895; --title-slide-background-color: #272822; --title-slide-text-color: #d6d6d6; --header-background-color: #FFF; --header-background-text-color: #FFF; } html { font-size: var(--base-font-size); } body { font-family: var(--text-font-family), var(--text-font-family-fallback), var(--text-font-base); font-weight: normal; color: var(--text-color); } h1, h2, h3 { font-family: var(--header-font-family), var(--header-font-family-fallback); color: var(--text-color-light); } .remark-slide-content { background-color: var(--background-color); font-size: 1rem; padding: 24px 32px 16px 32px; width: 100%; height: 100%; } .remark-slide-content h1 { font-size: var(--header-h1-font-size); } .remark-slide-content h2 { font-size: var(--header-h2-font-size); } .remark-slide-content h3 { font-size: var(--header-h3-font-size); } .remark-code, .remark-inline-code { font-family: var(--code-font-family), Menlo, Consolas, Monaco, Liberation Mono, Lucida Console, monospace; } .remark-code { font-size: var(--code-font-size); } .remark-inline-code { font-size: var(--code-inline-font-size); color: #000; } .remark-slide-number { color: #107895; opacity: 1; font-size: 0.9em; } a, a > code { color: var(--link-color); text-decoration: none; } .footnote { position: absolute; bottom: 60px; padding-right: 6em; font-size: 0.9em; } .remark-code-line-highlighted { background-color: var(--code-highlight-color); } .inverse { background-color: var(--inverse-background-color); color: var(--inverse-text-color); } .inverse h1, .inverse h2, .inverse h3 { color: var(--inverse-header-color); } .inverse a, .inverse a > code { color: var(--inverse-link-color); } img, video, iframe { max-width: 100%; } blockquote { border-left: solid 5px lightgray; padding-left: 1em; } @page { margin: 0; } @media print { .remark-slide-scaler { width: 100% !important; height: 100% !important; transform: scale(1) !important; top: 0 !important; left: 0 !important; } } /* Modified metropolis */ .clear{ border-top: 0px solid #FAFAFA; } h1 { margin-top: -5px; margin-left: -00px; margin-bottom: 30px; color: var(--text-color-light); font-weight: 200; } h2, h3, h4 { padding-top: -15px; padding-bottom: 00px; color: #1A292C; text-shadow: none; font-weight: 400; text-align: left; margin-left: 00px; margin-bottom: -10px; } .title-slide .inverse .remark-slide-content { background-color: #FAFAFA; } .title-slide { background-color: #FAFAFA; border-top: 80px solid #FAFAFA; } .title-slide h1 { color: var(--text-color); font-size: 40px; text-shadow: none; font-weight: 400; text-align: left; margin-left: 15px; } .title-slide h2 { margin-top: -15px; color: var(--link-color); text-shadow: none; font-weight: 300; font-size: 35px; text-align: left; margin-left: 15px; } .title-slide h3 { color: var(--text-color-light); text-shadow: none; font-weight: 300; font-size: 25px; text-align: left; margin-left: 15px; margin-bottom: 0px; } .title-slide h3:last-of-type { font-style: italic; font-size: 1rem; } /* Remove orange line */ hr, .title-slide h2::after, .mline h1::after { content: ''; display: block; border: none; background-color: #e5e5e5; color: #e5e5e5; height: 1px; } hr, .mline h1::after { margin: 1em 15px 0 15px; } .title-slide h2::after { margin: 10px 15px 35px 0; } .mline h1::after { margin: 10px 15px 0 15px; } /* turns off slide numbers for title page: https://github.com/gnab/remark/issues/298 */ .title-slide .remark-slide-number { display: none; } /* Custom CSS */ /* More line spacing */ body { line-height: 1.5; } /* Font styling */ .hi { font-weight: 600; } .mono { font-family: monospace; } .ul { text-decoration: underline; } .ol { text-decoration: overline; } .st { text-decoration: line-through; } .bf { font-weight: bold; } .it { font-style: italic; } /* Font Sizes */ .bigger { font-size: 125%; } .huge{ font-size: 150%; } .small { font-size: 95%; } .smaller { font-size: 85%; } .smallest { font-size: 75%; } .tiny { font-size: 50%; } /* Remark customization */ .clear .remark-slide-number { display: none; } .inverse .remark-slide-number { display: none; } .remark-code-line-highlighted { background-color: rgba(249, 39, 114, 0.5); } /* Xaringan tweeks */ .inverse { background-color: #23373B; text-shadow: 0 0 20px #333; /* text-shadow: none; */ } .title-slide { background-color: #ffffff; border-top: 80px solid #ffffff; } .footnote { bottom: 1em; font-size: 80%; color: #7f7f7f; } /* Lists */ li { margin-top: 4px; } /* Mono-spaced font, smaller */ .mono-small { font-family: monospace; font-size: 16px; } .mono-small .mjx-chtml { font-size: 103% !important; } .pseudocode, .pseudocode-small { font-family: monospace; background: #f8f8f8; border-radius: 3px; padding: 10px; padding-top: 0px; padding-bottom: 0px; } .pseudocode-small { font-size: 16px; } .remark-code { font-size: 68%; } .remark-inline-code { background: #F5F5F5; /* lighter */ /* background: #e7e8e2; /* darker */ border-radius: 3px; padding: 4px; } /* Super and Subscripts */ .super{ vertical-align: super; font-size: 70%; line-height: 1%; } .sub{ vertical-align: sub; font-size: 70%; line-height: 1%; } /* Subheader */ .subheader{ font-weight: 100; font-style: italic; display: block; margin-top: -25px; margin-bottom: 25px; } /* 2/3 left; 1/3 right */ .more-left { float: left; width: 63%; } .less-right { float: right; width: 31%; } .more-right ~ * { clear: both; } /* 9/10 left; 1/10 right */ .left90 { padding-top: 0.7em; float: left; width: 85%; } .right10 { padding-top: 0.7em; float: right; width: 9%; } /* 95% left; 5% right */ .left95 { padding-top: 0.7em; float: left; width: 91%; } .right05 { padding-top: 0.7em; float: right; width: 5%; } .left5 { padding-top: 0.7em; margin-left: 0em; margin-right: -0.4em; float: left; width: 7%; } .left10 { padding-top: 0.7em; margin-left: -0.2em; margin-right: -0.5em; float: left; width: 10%; } .left30 { padding-top: 0.7em; float: left; width: 30%; } .right30 { padding-top: 0.7em; float: right; width: 30%; } .thin-left { padding-top: 0.7em; margin-left: -1em; margin-right: -0.5em; float: left; width: 27.5%; } /* Example */ .ex { font-weight: 300; color: #555F61 !important; font-style: italic; } .col-left { float: left; width: 47%; margin-top: -1em; } .col-right { float: right; width: 47%; margin-top: -1em; } .clear-up { clear: both; margin-top: -1em; } /* Format tables */ table { color: #000000; font-size: 14pt; line-height: 100%; border-top: 1px solid #ffffff !important; border-bottom: 1px solid #ffffff !important; } th, td { background-color: #ffffff; } table th { font-weight: 400; } /* Attention */ .attn { font-weight: 500; color: #e64173 !important; font-family: 'Zilla Slab' !important; } /* Note */ .note { font-weight: 300; font-style: italic; color: #314f4f !important; /* color: #cccccc !important; */ font-family: 'Zilla Slab' !important; } /* Question and answer */ .qa { font-weight: 500; /* color: #314f4f !important; */ color: #e64173 !important; font-family: 'Zilla Slab' !important; } /* Figure Caption */ .caption { font-size: 0.8888889em; line-height: 1.5; margin-top: 1em; color: #6b7280; } </style> <!-- From xaringancolor --> <div style = "position:fixed; visibility: hidden"> $$ \require{color} \definecolor{purple}{rgb}{0.337254901960784, 0.00392156862745098, 0.643137254901961} \definecolor{navy}{rgb}{0.0509803921568627, 0.23921568627451, 0.337254901960784} \definecolor{ruby}{rgb}{0.603921568627451, 0.145098039215686, 0.0823529411764706} \definecolor{alice}{rgb}{0.0627450980392157, 0.470588235294118, 0.584313725490196} \definecolor{daisy}{rgb}{0.92156862745098, 0.788235294117647, 0.266666666666667} \definecolor{coral}{rgb}{0.949019607843137, 0.427450980392157, 0.129411764705882} \definecolor{kelly}{rgb}{0.509803921568627, 0.576470588235294, 0.337254901960784} \definecolor{jet}{rgb}{0.0745098039215686, 0.0823529411764706, 0.0862745098039216} \definecolor{asher}{rgb}{0.333333333333333, 0.372549019607843, 0.380392156862745} \definecolor{slate}{rgb}{0.192156862745098, 0.309803921568627, 0.309803921568627} \definecolor{cranberry}{rgb}{0.901960784313726, 0.254901960784314, 0.450980392156863} $$ </div> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ TeX: { Macros: { purple: ["{\\color{purple}{#1}}", 1], navy: ["{\\color{navy}{#1}}", 1], ruby: ["{\\color{ruby}{#1}}", 1], alice: ["{\\color{alice}{#1}}", 1], daisy: ["{\\color{daisy}{#1}}", 1], coral: ["{\\color{coral}{#1}}", 1], kelly: ["{\\color{kelly}{#1}}", 1], jet: ["{\\color{jet}{#1}}", 1], asher: ["{\\color{asher}{#1}}", 1], slate: ["{\\color{slate}{#1}}", 1], cranberry: ["{\\color{cranberry}{#1}}", 1] }, loader: {load: ['[tex]/color']}, tex: {packages: {'[+]': ['color']}} } }); </script> <style> .purple {color: #5601A4;} .navy {color: #0D3D56;} .ruby {color: #9A2515;} .alice {color: #107895;} .daisy {color: #EBC944;} .coral {color: #F26D21;} .kelly {color: #829356;} .jet {color: #131516;} .asher {color: #555F61;} .slate {color: #314F4F;} .cranberry {color: #E64173;} </style> ## Chapter 13: General Rules of Probability --- # Basic Rules of Probability `\(\coral{A}\)` is an .coral[event/outcome] and `\(P(\coral{A})\)` is the .cranberry[probability] of that outcome, and `\(\kelly{S}\)` is that .kelly[state space] - `\(0 \leq P(\coral{A}) \leq 1\)` for all `\(\coral{A} \in \kelly{S}\)` - `\(P(\kelly{S})=1\)` - If `\(\coral{A}\)` and `\(\coral{B}\)` are disjoint events $$ \implies P(\coral{A} \cup \coral{B}) = P(\coral{A}) + P(\coral{B}) $$ - `\(P(\coral{A}^c) = 1 - P(\coral{A})\)` --- # Disjoint versus Not Disjoint Using Venn diagrams can help us visualize each of the probability rules <img src="data:image/png;base64,#venndiagram.png" width="90%" style="display: block; margin: auto;" /> --- # General Addition Rule If `\(\coral{A}\)` and `\(\coral{B}\)` are disjoint events: `\(P(\coral{A} \cup \coral{B})=P(\coral{A})+P(\coral{B})\)` For any two events (not necessarily disjoint): $$ P(\coral{A} \cup \coral{B}) = P(\coral{A}) + P(\coral{B})- P(\coral{A} \cap \coral{B}) $$ - Why does this make sense? What is `\(\coral{A} \cap \coral{B}\)` when `\(\coral{A}\)` and `\(\coral{B}\)` are disjoint? --- # Venn Diagram Example <img src="data:image/png;base64,#vd1.png" width="60%" style="display: block; margin: auto;" /> .small[ If we want to find Soccer `\(\cup\)` Tennis: - Soccer + Tennis = Alex, Casey, Drew, Hunter, Casey, Drew, Jade - Soccer `\(\cap\)` Tennis = Casey, Drew - Soccer `\(\cup\)` Tennis = Soccer + Tennis - (Soccer `\(\cap\)` Tennis) = Alex, Casey, Drew, Hunter, Jade ] --- # Clicker Question Let `\(P(\coral{A}) = 0.4\)`, `\(P(\coral{B}) = 0.3\)`, and `\(P(\coral{A}\cap \coral{B})=0.1\)` What is `\(P(\coral{A}\cup \coral{B})\)`? <ol type = "a"> <li>1.1</li> <li>0.9</li> <li>0.3</li> <li>0.6</li> </ol> --- # Independence Two events, `\(\coral{A}\)` and `\(\coral{B}\)`, are .hi.purple[independent] if knowing that one occurs does not change the probability that the other occurs - Die lands on a 4 & Broncos win the Super Bowl - Club is drawn from deck of cards & You get an A on the final exam If `\(\coral{A}\)` and `\(\coral{B}\)` are independent: $$ P(\coral{A} \cap \coral{B}) = P(\coral{A})P(\coral{B}) $$ --- # Clicker Question Let `\(P(\coral{A}) = 0.4\)`, `\(P(\coral{B}) = 0.3\)`, and `\(P(\coral{A}\cap \coral{B})=0.1\)` Which of the following statements is true: <ol type = "a"> <li>\(\coral{A}\) and \(\coral{B}\) are independent because \(P(\coral{A} \cap \coral{B}) = P(\coral{A})P(\coral{B})\)</li> <li>\(\coral{A}\) and \(\coral{B}\) are independent because \(P(\coral{A} \cap \coral{B}) \neq P(\coral{A})P(\coral{B})\)</li> <li>\(\coral{A}\) and \(\coral{B}\) are not independent because \(P(\coral{A} \cap \coral{B}) = P(\coral{A})P(\coral{B})\)</li> <li>\(\coral{A}\) and \(\coral{B}\) are not independent because \(P(\coral{A} \cap \coral{B}) \neq P(\coral{A})P(\coral{B})\)</li> </ol> --- # Independent vs. Disjoint Two events being independent is .hi[NOT] the same as them being disjoint: 1. Say event `\(\coral{A}\)` is being 18 or over, and `\(\coral{B}\)` is under 18 - I cannot be both 18 or over, and under 18. This means `\(\coral{A}\)` and `\(\coral{B}\)` are .it[disjoint] 2. If I am not 18 or over, then I am under 18. That means if `\(\coral{A}\)` isn't true then `\(\coral{B}\)` must be true. - Since event `\(\coral{A}\)` tells me about event `\(\coral{B}\)`, `\(\coral{A}\)` and `\(\coral{B}\)` are .it[not independent] --- # Conditional Probability Sometimes one event occurring tells us something about the probability of a different event .hi.purple[Conditional probability]: probability of an event, `\(\coral{A}\)`, given that another event, `\(\coral{B}\)`, has already occurred `$$P(\coral{A} \ \vert \ \coral{B})= \frac{P(\coral{A} \cap \coral{B})}{P(\coral{B})}$$` --- # Visualizing Conditional Probability <img src="data:image/png;base64,#simplevenndiagram.png" width="70%" style="display: block; margin: auto;" /> You throw a dart and land in `\(\coral{B}\)`. What is the probability that you landed in `\(\coral{A}\)` as well? `\(P(\coral{A} \ \vert \ \coral{B})\)`. We can now think of `\(\coral{B}\)` as the sample space which changes our likelihood of landing in `\(\coral{A}\)`. --- # Conditional Probability v. Intersection `\(P(\coral{\text{work in tech}} \cap \coral{\text{live in Boulder}})\)` vs. `\(P(\coral{\text{work in tech}} \ \vert \ \coral{\text{live in Boulder}})\)` `\(P(\coral{\text{work in tech}})\)` = work in tech/entire US population = relatively small, let's say `\(7\%\)`. `\(P(\coral{\text{live in Boulder}})\)` = Boulder population/entire US population = also small, `\(<1\%\)`. - This means the probability of BOTH happening is small, because both events are unlikely compared to the .i[state space of the entire US population] - But the `\(P(\coral{\text{work in tech}} \ \vert \ \coral{\text{live in Boulder}})\)` will be higher because now the .it[state space is Boulder population], which has a greater concentration of high-tech employees --- # Identifying Conditional Probabilities In Colorado, the DMV identifies individuals as having either blonde, brunette or red hair. It also has eyes color. For each of the following statements, identify if this is a conditional probability. 1. 2.1% of the drivers are redheads with alice eyes 2. 45% of blondes have alice eyes 3. 51% of people have brown hair or brown eyes 4. 77% of the population is brunette 5. 4.7% of people with alice eyes are redheads. --- # Clicker Question Lactose intolerance causes difficulty digesting dairy products that contain lactose. It is particularly common among people of African and Asian ancestry. In the United States, 82% of the population is white, 14% is black, and 4% is Asian. Moreover, 15% of whites, 70% of blacks, and 90% of Asians are lactose intolerance. Which of the following statements is true? <ol type = "a"> <li>\(P(\coral{\text{Asian}} \cap \coral{\text{Lactose Intolerant}}) = 0.9\)</li> <li>\(P(\coral{\text{Asian}} \ \vert \ \coral{\text{Lactose Intolerant}}) = 0.9\)</li> <li>\(P(\coral{\text{Lactose Intolerant}} \ \vert \ \coral{\text{Asian}}) = 0.9\)</li> <li>\(P(\coral{\text{Asian}} \cup \coral{\text{Lactose Intolerant}}) = 0.9\)</li> </ol> --- # Calculating Conditional Probability Consider light truck and car sales in the U.S.:
Automobile Accidents Cross-table
Domestic
Imported
Total
Light Truck
712,700
187,000
899,700
Car
472,100
155,500
627,600
Total
1,184,800
342,500
152,730
If we consider .it[only cars], what is the likelihood of a randomly selected sale being a domestic vehicle? `\begin{aligned} P(\coral{\text{domestic}} \ \vert \ \coral{\text{car}}) &= \frac{P(\coral{\text{domestic}} \text{ and } \coral{\text{car}})}{P(\coral{\text{car}})} \\ &= \frac{\frac{472,100}{1,527,300}}{\frac{627,600}{1,527,300}}=\frac{472,100}{627,600}=0.75 \end{aligned}` --- # General Multiplication Rule Can use the equation for conditional probability to find the probability of two events happening together: `$$P(\coral{A}\ \vert \ \coral{B})=\frac{P(\coral{A}\cap \coral{B})}{P(\coral{B})}$$` If we multiply both sides by `\(P(\coral{B})\)` we get: `$$P(\coral{A}\cap \coral{B})=P(\coral{B})P(\coral{A}\ \vert \ \coral{B})$$` --- # Clicker Question Lactose intolerance causes difficulty digesting dairy products that contain lactose. It is particularly common among people of African and Asian ancestry. In the United States, 82% of the population is white, 14% is black, and 4% is Asian. Moreover, 15% of whites, 70% of blacks, and 90% of Asians are lactose intolerance. What is the probability an individual is Asian and lactose intolerant? <ol type = "a"> <li>0.036</li> <li>0.044</li> <li>0.9</li> <li>0.004</li> </ol> --- # Conditional Prob. and Independence If `$$P(\coral{A}) = P(\coral{A} \ \vert \ \coral{B}),$$` then the probability of `\(\coral{A}\)` is the same conditional on `\(\coral{B}\)` or not, then the two events `\(\coral{A}\)` and `\(\coral{B}\)` are .hi.purple[independent] --- # Clicker Question Recall we calculated the probability of a car being domestic is 0.75. One event is that the vehicle is a car, another event is that the vehicle is domestic. Are these two events independent?
Automobile Accidents Cross-table
Domestic
Imported
Total
Light Truck
712,700
187,000
899,700
Car
472,100
155,500
627,600
Total
1,184,800
342,500
152,730
<ol type = "a"> <li>Yes, they are independent</li> <li>No, they are not independent</li> </ol> --- # Law of Total Probability Suppose we partition sample space into n different parts, `\(\coral{B_1}, \coral{B_2}, ..., \coral{B_n}\)` If there is an event `\(\coral{A}\)`, we can calculate its probability by adding all of its intersections with `\(\coral{B_i}\)`'s <img src="data:image/png;base64,#totalprob.png" width="90%" style="display: block; margin: auto;" /> --- # Law of Total Probability The .hi.slate[Law of Total Probability] states: `$$P(\coral{A})=\sum_{i=1}^nP(\coral{A} \cap \coral{B_i})$$` An equivalent formula, uses the multiplication rule to show: `$$P(\coral{A})=\sum_{i=1}^n P(\coral{A} \cap \coral{B_i}) = \sum_{i=1}^n P(\coral{A}\ \vert \ \coral{B_i})P(\coral{B_i})$$` --- # Law of Total Probability The .hi.purple[Law of Total Probability] says that we can calculate the probability of any event by <ol type="i"> <li>partitioning the entire sample space into disjoint events</li> <li>calculating the probabilities of those disjoint events</li> <li>multiply those by the conditional probabilities, and </li> <li>add them all together.</li> </ol> - Use the law of total probability when you don't know the probability of an event, but you know its occurrence under several disjoint scenarios and the probability of each scenario --- # Midterm Example Let `\(\coral{A}\)` be the event that a flight from New York to San Francisco arrives on time, and let `\(\coral{B}\)` be the event that it is a clear day in San Francisco. Suppose the probability of a clear day is `\(P(\coral{B})=0.6\)`, We also know that the probability that a plane arrives on a sunny day is 0.9, and on a cloudy day it is 0.5 <ol type = "a"> <li>What is the probability that the plan lands on time and it is a sunny day?</li> <li>What is the probability that the plane lands on time and it is .it[not] a sunny day?</li> <li>What is the probability the plan does not land on time?</li> </ol> --- # Clicker Question Lactose intolerance causes difficulty digesting dairy products that contain lactose. It is particularly common among people of African and Asian ancestry. In the United States, 82% of the population is white, 14% is black, and 4% is Asian. Moreover, 15% of whites, 70% of blacks, and 90% of Asians are lactose intolerance. What percent of the entire population is lactose intolerant? <ol type = "a"> - 22.5% - 25.7% - 0.04% - 0.036% </ol> --- # Bayes' Law .hi.purple[Bayes Law]: gives us a different way to calculate conditional probabilities Let `\(\coral{B_1}, \coral{B_2}, ..., \coral{B_n}\)` be a partition of `\(\kelly{S}\)`. Let `\(\coral{A}\)` be an event in `\(\kelly{S}\)`. Then: `$$P(\coral{B_i}\ \vert \ \coral{A})=\frac{P(\coral{A}\ \vert \ \coral{B_i})P(\coral{B_i})}{P(\coral{A}\ \vert \ \coral{B_1})P(\coral{B_1})+P(\coral{A} \ \vert \ \coral{B_2})P(\coral{B_2})+...+P(\coral{A} \ \vert \ \coral{B_n})P(\coral{B_n})}$$` - Bayes rule is used to "flip" a conditional probability --- # Bayes' Law: Example Suppose testing for a disease is 99% accurate, and 0.5% of people have the diseases. What is the probability that you have the disease, given that the test was positive? $$ P(Sick \ \vert \ Positive) = \frac{P(Positive \ \vert \ Sick)P(Sick)}{P(Positive \ \vert \ Sick)(Sick) + P(Positive \ \vert \ Healthy)P(Healthy)} $$ $$ P(Sick \ \vert \ Positive)= \frac{0.99*0.005}{(0.99*0.005)+(0.01*0.995)} = 0.332 $$