class: center, middle, inverse, title-slide # ECON 3818 ## Chapter 3 ### Kyle Butts ### 27 September 2021 --- class: clear, middle <!-- Custom css --> <style type="text/css"> /* ------------------------------------------------------- * * !! This file was generated by xaringanthemer !! * * Changes made to this file directly will be overwritten * if you used xaringanthemer in your xaringan slides Rmd * ------------------------------------------------------- */ @import url(https://fonts.googleapis.com/css?family=Roboto&display=swap); @import url(https://fonts.googleapis.com/css?family=Roboto&display=swap); @import url(https://fonts.googleapis.com/css?family=Source+Code+Pro:400,700&display=swap); @import url(https://fonts.googleapis.com/css2?family=Atkinson+Hyperlegible&display=swap); :root { /* Fonts */ --text-font-family: 'Atkinson Hyperelegible'; --text-font-is-google: 1; --text-font-family-fallback: Roboto, -apple-system, BlinkMacSystemFont, avenir next, avenir, helvetica neue, helvetica, Ubuntu, roboto, noto, segoe ui, arial; --text-font-base: sans-serif; --header-font-family: 'Atkinson Hyperelegible' --header-font-is-google: 1; --header-font-family-fallback: Georgia, serif; --code-font-family: 'Source Code Pro'; --code-font-is-google: 1; --base-font-size: 20px; --text-font-size: 1rem; --code-font-size: 0.9rem; --code-inline-font-size: 1em; --header-h1-font-size: 1.75rem; --header-h2-font-size: 1.6rem; --header-h3-font-size: 1.5rem; /* Colors */ --text-color: #131516; --text-color-light: #555F61; --header-color: #FFF; --background-color: #FFF; --link-color: #107895; --code-highlight-color: rgba(255,255,0,0.5); --inverse-text-color: #d6d6d6; --inverse-background-color: #272822; --inverse-header-color: #f3f3f3; --inverse-link-color: #107895; --title-slide-background-color: #272822; --title-slide-text-color: #d6d6d6; --header-background-color: #FFF; --header-background-text-color: #FFF; } html { font-size: var(--base-font-size); } body { font-family: var(--text-font-family), var(--text-font-family-fallback), var(--text-font-base); font-weight: normal; color: var(--text-color); } h1, h2, h3 { font-family: var(--header-font-family), var(--header-font-family-fallback); color: var(--text-color-light); } .remark-slide-content { background-color: var(--background-color); font-size: 1rem; padding: 24px 32px 16px 32px; width: 100%; height: 100%; } .remark-slide-content h1 { font-size: var(--header-h1-font-size); } .remark-slide-content h2 { font-size: var(--header-h2-font-size); } .remark-slide-content h3 { font-size: var(--header-h3-font-size); } .remark-code, .remark-inline-code { font-family: var(--code-font-family), Menlo, Consolas, Monaco, Liberation Mono, Lucida Console, monospace; } .remark-code { font-size: var(--code-font-size); } .remark-inline-code { font-size: var(--code-inline-font-size); color: #000; } .remark-slide-number { color: #107895; opacity: 1; font-size: 0.9em; } a, a > code { color: var(--link-color); text-decoration: none; } .footnote { position: absolute; bottom: 60px; padding-right: 6em; font-size: 0.9em; } .remark-code-line-highlighted { background-color: var(--code-highlight-color); } .inverse { background-color: var(--inverse-background-color); color: var(--inverse-text-color); } .inverse h1, .inverse h2, .inverse h3 { color: var(--inverse-header-color); } .inverse a, .inverse a > code { color: var(--inverse-link-color); } img, video, iframe { max-width: 100%; } blockquote { border-left: solid 5px lightgray; padding-left: 1em; } @page { margin: 0; } @media print { .remark-slide-scaler { width: 100% !important; height: 100% !important; transform: scale(1) !important; top: 0 !important; left: 0 !important; } } /* Modified metropolis */ .clear{ border-top: 0px solid #FAFAFA; } h1 { margin-top: -5px; margin-left: -00px; margin-bottom: 30px; color: var(--text-color-light); font-weight: 200; } h2, h3, h4 { padding-top: -15px; padding-bottom: 00px; color: #1A292C; text-shadow: none; font-weight: 400; text-align: left; margin-left: 00px; margin-bottom: -10px; } .title-slide .inverse .remark-slide-content { background-color: #FAFAFA; } .title-slide { background-color: #FAFAFA; border-top: 80px solid #FAFAFA; } .title-slide h1 { color: var(--text-color); font-size: 40px; text-shadow: none; font-weight: 400; text-align: left; margin-left: 15px; } .title-slide h2 { margin-top: -15px; color: var(--link-color); text-shadow: none; font-weight: 300; font-size: 35px; text-align: left; margin-left: 15px; } .title-slide h3 { color: var(--text-color-light); text-shadow: none; font-weight: 300; font-size: 25px; text-align: left; margin-left: 15px; margin-bottom: 0px; } .title-slide h3:last-of-type { font-style: italic; font-size: 1rem; } /* Remove orange line */ hr, .title-slide h2::after, .mline h1::after { content: ''; display: block; border: none; background-color: #e5e5e5; color: #e5e5e5; height: 1px; } hr, .mline h1::after { margin: 1em 15px 0 15px; } .title-slide h2::after { margin: 10px 15px 35px 0; } .mline h1::after { margin: 10px 15px 0 15px; } /* turns off slide numbers for title page: https://github.com/gnab/remark/issues/298 */ .title-slide .remark-slide-number { display: none; } /* Custom CSS */ /* More line spacing */ body { line-height: 1.5; } /* Font styling */ .hi { font-weight: 600; } .mono { font-family: monospace; } .ul { text-decoration: underline; } .ol { text-decoration: overline; } .st { text-decoration: line-through; } .bf { font-weight: bold; } .it { font-style: italic; } /* Font Sizes */ .bigger { font-size: 125%; } .huge{ font-size: 150%; } .small { font-size: 95%; } .smaller { font-size: 85%; } .smallest { font-size: 75%; } .tiny { font-size: 50%; } /* Remark customization */ .clear .remark-slide-number { display: none; } .inverse .remark-slide-number { display: none; } .remark-code-line-highlighted { background-color: rgba(249, 39, 114, 0.5); } /* Xaringan tweeks */ .inverse { background-color: #23373B; text-shadow: 0 0 20px #333; /* text-shadow: none; */ } .title-slide { background-color: #ffffff; border-top: 80px solid #ffffff; } .footnote { bottom: 1em; font-size: 80%; color: #7f7f7f; } /* Lists */ li { margin-top: 4px; } /* Mono-spaced font, smaller */ .mono-small { font-family: monospace; font-size: 16px; } .mono-small .mjx-chtml { font-size: 103% !important; } .pseudocode, .pseudocode-small { font-family: monospace; background: #f8f8f8; border-radius: 3px; padding: 10px; padding-top: 0px; padding-bottom: 0px; } .pseudocode-small { font-size: 16px; } .remark-code { font-size: 68%; } .remark-inline-code { background: #F5F5F5; /* lighter */ /* background: #e7e8e2; /* darker */ border-radius: 3px; padding: 4px; } /* Super and Subscripts */ .super{ vertical-align: super; font-size: 70%; line-height: 1%; } .sub{ vertical-align: sub; font-size: 70%; line-height: 1%; } /* Subheader */ .subheader{ font-weight: 100; font-style: italic; display: block; margin-top: -25px; margin-bottom: 25px; } /* 2/3 left; 1/3 right */ .more-left { float: left; width: 63%; } .less-right { float: right; width: 31%; } .more-right ~ * { clear: both; } /* 9/10 left; 1/10 right */ .left90 { padding-top: 0.7em; float: left; width: 85%; } .right10 { padding-top: 0.7em; float: right; width: 9%; } /* 95% left; 5% right */ .left95 { padding-top: 0.7em; float: left; width: 91%; } .right05 { padding-top: 0.7em; float: right; width: 5%; } .left5 { padding-top: 0.7em; margin-left: 0em; margin-right: -0.4em; float: left; width: 7%; } .left10 { padding-top: 0.7em; margin-left: -0.2em; margin-right: -0.5em; float: left; width: 10%; } .left30 { padding-top: 0.7em; float: left; width: 30%; } .right30 { padding-top: 0.7em; float: right; width: 30%; } .thin-left { padding-top: 0.7em; margin-left: -1em; margin-right: -0.5em; float: left; width: 27.5%; } /* Example */ .ex { font-weight: 300; color: #555F61 !important; font-style: italic; } .col-left { float: left; width: 47%; margin-top: -1em; } .col-right { float: right; width: 47%; margin-top: -1em; } .clear-up { clear: both; margin-top: -1em; } /* Format tables */ table { color: #000000; font-size: 14pt; line-height: 100%; border-top: 1px solid #ffffff !important; border-bottom: 1px solid #ffffff !important; } th, td { background-color: #ffffff; } table th { font-weight: 400; } /* Attention */ .attn { font-weight: 500; color: #e64173 !important; font-family: 'Zilla Slab' !important; } /* Note */ .note { font-weight: 300; font-style: italic; color: #314f4f !important; /* color: #cccccc !important; */ font-family: 'Zilla Slab' !important; } /* Question and answer */ .qa { font-weight: 500; /* color: #314f4f !important; */ color: #e64173 !important; font-family: 'Zilla Slab' !important; } /* Figure Caption */ .caption { font-size: 0.8888889em; line-height: 1.5; margin-top: 1em; color: #6b7280; } </style> <!-- From xaringancolor --> <div style = "position:fixed; visibility: hidden"> $$ \require{color} \definecolor{purple}{rgb}{0.337254901960784, 0.00392156862745098, 0.643137254901961} \definecolor{navy}{rgb}{0.0509803921568627, 0.23921568627451, 0.337254901960784} \definecolor{ruby}{rgb}{0.603921568627451, 0.145098039215686, 0.0823529411764706} \definecolor{alice}{rgb}{0.0627450980392157, 0.470588235294118, 0.584313725490196} \definecolor{daisy}{rgb}{0.92156862745098, 0.788235294117647, 0.266666666666667} \definecolor{coral}{rgb}{0.949019607843137, 0.427450980392157, 0.129411764705882} \definecolor{kelly}{rgb}{0.509803921568627, 0.576470588235294, 0.337254901960784} \definecolor{jet}{rgb}{0.0745098039215686, 0.0823529411764706, 0.0862745098039216} \definecolor{asher}{rgb}{0.333333333333333, 0.372549019607843, 0.380392156862745} \definecolor{slate}{rgb}{0.192156862745098, 0.309803921568627, 0.309803921568627} \definecolor{cranberry}{rgb}{0.901960784313726, 0.254901960784314, 0.450980392156863} $$ </div> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ TeX: { Macros: { purple: ["{\\color{purple}{#1}}", 1], navy: ["{\\color{navy}{#1}}", 1], ruby: ["{\\color{ruby}{#1}}", 1], alice: ["{\\color{alice}{#1}}", 1], daisy: ["{\\color{daisy}{#1}}", 1], coral: ["{\\color{coral}{#1}}", 1], kelly: ["{\\color{kelly}{#1}}", 1], jet: ["{\\color{jet}{#1}}", 1], asher: ["{\\color{asher}{#1}}", 1], slate: ["{\\color{slate}{#1}}", 1], cranberry: ["{\\color{cranberry}{#1}}", 1] }, loader: {load: ['[tex]/color']}, tex: {packages: {'[+]': ['color']}} } }); </script> <style> .purple {color: #5601A4;} .navy {color: #0D3D56;} .ruby {color: #9A2515;} .alice {color: #107895;} .daisy {color: #EBC944;} .coral {color: #F26D21;} .kelly {color: #829356;} .jet {color: #131516;} .asher {color: #555F61;} .slate {color: #314F4F;} .cranberry {color: #E64173;} </style> ## Chapter 3: The Normal Distribution --- # Normal Distribution Normal curve is symmetric about the mean and bell-shaped: <img src="data:image/png;base64,#ch3_files/figure-html/normal-1.svg" width="60%" style="display: block; margin: auto;" /> Lots of data naturally follow this distribution - heights of people, blood pressure, grades on a test --- # Galton Board .center[ <iframe width="560" height="315" src="https://www.youtube.com/embed/EvHiee7gs9Y" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> ] --- # Sample Probability <img src="data:image/png;base64,#ch3_files/figure-html/unnamed-chunk-1-1.svg" width="80%" style="display: block; margin: auto;" /> - What's the probability that the x value is less than -2.5 .hi[in our sample]? --- # Population Probability <img src="data:image/png;base64,#ch3_files/figure-html/unnamed-chunk-2-1.svg" width="80%" style="display: block; margin: auto;" /> - What's the probability that the x value is less than -2.5 .hi[in our population distribution]? --- # Parameters of Normal Distribution Normal distribution is described .it.bf[completely] by two parameters-- its mean `\(\mu\)` and variance `\(\sigma^2\)` - The mean is located at the center of the symmetric curve - It is the same as the median - Changing `\(\mu\)` (without changing `\(\sigma^2\)`), moves the curve along the horizontal axis - The variance describes the variability of the curve - Higher variance means a flatter and wider distribution --- # Different Variances <img src="data:image/png;base64,#ch3_files/figure-html/multiple-vars-1.svg" width="90%" style="display: block; margin: auto;" /> --- # 68-95-99 Rule <img src="data:image/png;base64,#ch3_files/figure-html/68-95-99-1.svg" width="75%" style="display: block; margin: auto;" /> .small[ - 68.2% of data is within `\(\pm 1\)` standard deviation of the mean - 95.4% of data is within `\(\pm 2\)` standard deviation of the mean - 99.6% of data is within `\(\pm 3\)` standard deviation of the mean ] --- # Clicker Question Suppose that the mean birthweight in the sample is 113 oz. with a standard deviation of `\(\sqrt{484} \approx 22\)` oz. Assuming babies' birthweight is normally distributed, how heavy are the middle 95% of babies? <ol type = "a"> <li>47 to 179 oz</li> <li>69 to 157 oz</li> <li>91 and 135 oz</li> <li>111 to 120 oz</li> </ol> --- # Normal Distribution Notation If X is distributed normally, we denote it the following way: `$$X \sim N(\coral{\mu}, \kelly{\sigma^2})$$` - This notation tells us everything we need to know about the normal distribution - The distribution has mean `\(\coral{\mu}\)` - The distribution has variance `\(\kelly{\sigma^2}\)` --- # Standard Normal Distribution Standard normal distribution is a specific type of normal distribution If a variable X follows a normal distribution with `\(\coral{\mu} = 0\)` and `\(\kelly{\sigma^2} = 1\)`, we say that X follows the .hi.purple[standard normal distribution] - Since it is so common, it is denoted as `\(Z \sim N(0,1)\)` - It is easier to find out probabilities about normal distributions if they are in the standard form - Therefore we often will .hi.purple[standardize] any general normal distribution to be a standard normal --- # Properties of Standard Normal Graph of the standard normal distribution has two important properties Symmetric `$$P(Z < -1) = P(Z > 1)$$` <img src="data:image/png;base64,#ch3_files/figure-html/symmetric-1.svg" width="50%" style="display: block; margin: auto;" /> Area under the curve sums to one `$$P(Z < 1) + P(Z > 1) = 1$$` --- # Probabilities: Cumulative Proportions Suppose we want to know the likelihood of a baby being born underweight (less than 88 oz). The data suggests `\(BW \sim N(113, 22^2)\)`, that is a mean of 113 and a standard deviation of 22. The probability of a baby being underweight is equal to `\(P(BW \leq 88)\)`. Graphically: --- # Left-tail probability <img src="data:image/png;base64,#ch3_files/figure-html/example-left-tail-1.svg" width="75%" style="display: block; margin: auto;" /> This probability is called the .hi.ruby[left-tail probability] as it's every value .ruby[to the left]. --- # Right-tail Probability <img src="data:image/png;base64,#ch3_files/figure-html/example-right-tail-1.svg" width="75%" style="display: block; margin: auto;" /> If you want the .hi.ruby[right-tail probability], `\(P(BW > 88)\)`, you can use `$$P(BW > 88) = 1 - P(BW < 88)$$` --- # Standardization If a variable X has any normal distribution, `\(X\sim N(\mu,\sigma^2)\)`, then the standardized variable: `$$Z= \frac{X-\coral{\mu}}{\kelly{\sigma}} \sim N(0,1)$$` We call the standardized value the .hi.purple[Z-score]. The Z-score is equivalent to the number of .hi.kelly[standard deviations] that `\(X\)` is away from the .hi.coral[mean]. --- # Standardization Since Z-scores are measured in number of standard deviations, we can compare across samples without having to worry about units. For example: - SAT scores are `\(X\sim N(1500, 250^2)\)` - ACT scores are `\(Y \sim N(20.8, 2.8^2)\)` You scored an 1860 on the SAT, your neighbor scored a 29 on the ACT. Who did better? Just compare Z-scores! --- # Calculating Probabilities Coming back to the birth-weight example, let's do a little standardizing. How do we actually calculate `\(P(BW\leq 88)\)` (when `\(BW\sim N(113,22^2)\)`) First, standardize the distribution `$$P(BW\leq88)=P(\frac{BW-\mu}{\sigma} \leq \frac{88-113}{22}) = P(Z \leq -1.14)$$` Then, we actually have a big table of left-tail probabilities for the .it[standard] normal distribution - Table is either left-tail or right-tail (.hi.purple[Z table on exam is left-tailed]) --- # Standard Normal Tables <img src="data:image/png;base64,#stdnormtableex.png" width="90%" style="display: block; margin: auto;" /> Standard normal tables show the cumulative probability of different z-scores - A table like this shows the .hi.purple[left-tail] probabilities. (One is available on the course site.) - .large.hi[Be Careful!] Some (but not many) tables display .hi.purple[right-tail] probabilities. --- class: clear .pull-left[.center[ <img src="data:image/png;base64,#neg_z.png" width="80%" style="display: block; margin: auto;" /> ]] .pull-right[.center[ <img src="data:image/png;base64,#pos_z.png" width="80%" style="display: block; margin: auto;" /> ]] --- # Using a Z-Table Back to our birth-weight example. We want `$$P(Z < -1.14)$$` .hi[Method 1]: if you have negative values in Z-Table: - Look up Z = -1.14 in z-table .hi[Method 2]: If you have only positive values in Z-Table: `\begin{aligned} P(Z \leq -1.14) &= P(Z \geq 1.14) \\ &= 1 - P(Z \leq 1.14) \\ &= 1 - .8729 \\ &= 0.1271 \end{aligned}` --- # Normal Example A company chooses its new entry-level employees from a pool of recent college graduates. The cumulative GPA of the candidates is used as a tie-breaker. GPAs for the successful interviewees are normally distributed, with a mean of 3.3 and a standard deviation of 0.4. What proportion of candidates have a GPA under 3.0? <ol type="a"> <li style="float:left; width: 150px">2.3%</li> <li style="float:left; width: 150px">22.7%</li> <li style="float:left; width: 150px">55.1%</li> <li style="float:left; width: 150px">77.3%</li> </ol> --- # Clicker Question Consider the scenario on the previous slide, where `\(GPA \sim N(3.3,0.4^2)\)`. What percent of candidates have a `\(GPA\)` above 3.9? <ol type="a"> <li style="float:left; width: 150px">2.3%</li> <li style="float:left; width: 150px">6.7%</li> <li style="float:left; width: 150px">93.3%</li> <li style="float:left; width: 150px">97.7%</li> </ol> --- # Area In Between Z-Scores Suppose we want to calculate `\(P(-1.13 \leq Z \leq 0.3)\)` Graphically we want to calculate the following shaded area: <img src="data:image/png;base64,#ch3_files/figure-html/example-area-between-1.svg" width="75%" style="display: block; margin: auto;" /> --- # Area In Between Z-Scores In order to calculate the area between two z-scores, `$$P(-1.13 \leq Z \leq 0.3) = P(Z \leq 0.3) - P(Z \leq -1.13)$$` So we calculate: - `\(P(Z \leq 0.3) = 0.6179\)` - `\(P(Z \leq -1.13) = 0.1292\)` `\begin{aligned} P(-1.13 \leq Z \leq 0.3) &= P(Z \leq 0.3) - P(Z \leq -1.13) \\ &= 0.6179 - 0.1292 \\ &= 0.4887 \end{aligned}` --- # Clicker Question A typical college freshman spends an average of `\(\mu=150\)` minutes per day with a standard deviation of `\(\sigma=50\)` minutes, on social media. The distribution of time on social media is known be Normal. What is the probability a college freshman spends between 2 and 3 hours on social media? <ol type="a"> <li style="float:left; width: 150px">72.57%</li> <li style="float:left; width: 150px">27.43%</li> <li style="float:left; width: 150px">45.14%</li> </ol> --- # Using probability to calculate Z-score So far, we've used z-scores to calculate probabilities (values inside the table) In some cases, we will use probabilities to calculate z-scores (values outside the table) --- # Example Scores on the SAT verbal test follow approximately the `\(N(515,109^2)\)` distribution. How high must a student score in order to place in top 5% of all students taking the SAT? --- # Example Back to the example discussing the distribution of GPAs, where GPA `\(\sim N(3.3, 0.4^2)\)`. If the company is interviewing 163 people, but only 121 can be hired, then what cut-off GPA should the company use? --- # Clicker Question Suppose that `\(P(Z\leq z^*) = 0.025\)`. Using a standard normal table, find `\(z^*\)` <ol type="a"> <li style="float:left; width: 150px">0.5478</li> <li style="float:left; width: 150px">-0.5478</li> <li style="float:left; width: 150px">1.96</li> <li style="float:left; width: 150px">-1.96</li> </ol> --- # Review of Normal Distribution Consider men's height to be distributed normally with a mean of 5.9 feet and a standard deviation or 0.4 feet. Calculate the following: - `\(P(X>6.5)\)` - `\(P(X>5)\)` - What is the top 10% of men's height? - What is the bottom 20% of men's height?