Departamento de Economía
2023-11-08
Los paquetes que se van a utilizar en la sesión de hoy son:
vars
, ya que con ellos trabajaremos. Algo de lo que se muestra en está el libro de (Enders 2012) y desde luego el de (Hamilton 2020)Respecto a las especificaciones multivariadas en series de tiempo, hasta el momento se ha hablado de modelos de regresión que requieren la exogeneidad y estacionariedad de las variables, además de modelos VAR que permiten observar las relaciones dinámicas entre variables que presentan doble causalidad
Una evolución de una serie como:
En general una combinación lineal de variables I(1), también es I(1). Sin embargo, en algunas situaciones esa combinación puede ser I(0), es decir estacionaria. Si existe al menos una combinación lineal de este tipo, se dice que hay una ecuación o relación cointegración, o que las variables se “mueven a la vez”, es decir, están ligadas.
Así, existe cointegración cuando una combinación lineal tiene un orden de integración menor al de las variables!
\[\beta_1y_{1t}+\beta_2y_{2t}+\cdots+\beta_py_{tp}=\varepsilon_t\]
Si se tiene \[Y_{t}=\beta_{0}+\beta_{1}X_{t}+\epsilon_{t}\] Entonces si \(Y_{t}\) y \(X_{t}\) no son estacionarias pero \(\epsilon_{t}\)
Si, existe una relación de cointegración, dada por: \[\epsilon_{t}=Y_{t} -\beta_{0}-\beta_{1}X_{t}\]
Investigación de relación de largo plazo
Ingreso
medido en miles de millones de pesosRiqueza
Consumo
CONSUMO INGRESO RIQUEZA
1945 Q1 NA NA NA
1945 Q2 NA NA NA
1945 Q3 NA NA NA
1945 Q4 NA NA NA
1946 Q1 NA NA NA
1946 Q2 NA NA NA
$selection
AIC(n) HQ(n) SC(n) FPE(n)
2 2 1 2
$criteria
1 2 3 4 5 6 7
AIC(n) -2.80e+01 -2.81e+01 -2.81e+01 -2.81e+01 -2.80e+01 -2.80e+01 -2.79e+01
HQ(n) -2.80e+01 -2.80e+01 -2.79e+01 -2.78e+01 -2.77e+01 -2.76e+01 -2.75e+01
SC(n) -2.78e+01 -2.78e+01 -2.76e+01 -2.74e+01 -2.72e+01 -2.70e+01 -2.68e+01
FPE(n) 6.60e-13 6.00e-13 6.07e-13 6.40e-13 6.75e-13 6.91e-13 7.38e-13
8 9 10
AIC(n) -2.79e+01 -2.79e+01 -2.78e+01
HQ(n) -2.74e+01 -2.73e+01 -2.72e+01
SC(n) -2.66e+01 -2.64e+01 -2.62e+01
FPE(n) 7.72e-13 7.68e-13 8.20e-13
Call:
lm(formula = log(CONSUMO) ~ log(INGRESO) + log(RIQUEZA))
Residuals:
Min 1Q Median 3Q Max
-0.039395 -0.008729 0.000380 0.008936 0.076591
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.87064 0.10381 -18.02 <2e-16 ***
log(INGRESO) 0.83179 0.01338 62.15 <2e-16 ***
log(RIQUEZA) 0.18627 0.01266 14.71 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.01507 on 253 degrees of freedom
(28 observations deleted due to missingness)
Multiple R-squared: 0.9994, Adjusted R-squared: 0.9994
F-statistic: 2.261e+05 on 2 and 253 DF, p-value: < 2.2e-16
######################
# Johansen-Procedure #
######################
Test type: trace statistic , without linear trend and constant in cointegration
Eigenvalues (lambda):
[1] 2.729757e-01 9.616285e-02 3.146071e-02 5.221747e-16
Values of teststatistic and critical values of test:
test 10pct 5pct 1pct
r <= 2 | 6.07 7.52 9.24 12.97
r <= 1 | 25.28 17.85 19.96 24.60
r = 0 | 85.85 32.00 34.91 41.07
Eigenvectors, normalised to first column:
(These are the cointegration relations)
CONSUMO.l2 INGRESO.l2 RIQUEZA.l2 constant
CONSUMO.l2 1.0000000 1.0000000 1.0000000 1.000000
INGRESO.l2 -2.0264208 -0.8945170 0.1248299 3.733255
RIQUEZA.l2 0.6008952 -0.1434732 -0.9592107 -5.148551
constant -0.2971045 1.6758737 6.9265445 47.590938
Weights W:
(This is the loading matrix)
CONSUMO.l2 INGRESO.l2 RIQUEZA.l2 constant
CONSUMO.d 0.005316310 -0.07976867 0.001887740 9.250845e-17
INGRESO.d 0.005889581 0.09844058 -0.006623956 7.342351e-15
RIQUEZA.d 0.006723621 0.25020530 0.027788748 -7.025859e-15
ca.jo
tienen que ver con tendencia
######################
# Johansen-Procedure #
######################
Test type: trace statistic , with linear trend
Eigenvalues (lambda):
[1] 0.096742776 0.048966310 0.002287152
Values of teststatistic and critical values of test:
test 10pct 5pct 1pct
r <= 2 | 0.44 6.50 8.18 11.65
r <= 1 | 9.97 15.66 17.95 23.52
r = 0 | 29.31 28.71 31.52 37.22
Eigenvectors, normalised to first column:
(These are the cointegration relations)
CONSUMO.l2 INGRESO.l2 RIQUEZA.l2
CONSUMO.l2 1.0000000 1.0000000 1.000000
INGRESO.l2 -0.9005983 -0.2580060 2.569158
RIQUEZA.l2 -0.1391972 -0.6246733 -3.723030
Weights W:
(This is the loading matrix)
CONSUMO.l2 INGRESO.l2 RIQUEZA.l2
CONSUMO.d -0.06231639 -0.01097364 0.0007254128
INGRESO.d 0.11912232 -0.02174770 0.0003315896
RIQUEZA.d 0.25857159 0.02414901 0.0019970729
$rlm
Call:
lm(formula = substitute(form1), data = data.mat)
Coefficients:
CONSUMO.d INGRESO.d RIQUEZA.d
ect1 -0.06232 0.11912 0.25857
constant -0.09747 0.20309 0.43593
CONSUMO.dl1 0.07388 0.39748 0.42530
INGRESO.dl1 0.17114 -0.18616 -0.34362
RIQUEZA.dl1 0.10043 0.07936 0.07866
$beta
ect1
CONSUMO.l2 1.0000000
INGRESO.l2 -0.9005983
RIQUEZA.l2 -0.1391972
Response CONSUMO.d :
Call:
lm(formula = CONSUMO.d ~ ect1 + constant + CONSUMO.dl1 + INGRESO.dl1 +
RIQUEZA.dl1 - 1, data = data.mat)
Residuals:
Min 1Q Median 3Q Max
-0.0271749 -0.0040095 0.0001425 0.0038967 0.0141582
Coefficients:
Estimate Std. Error t value Pr(>|t|)
ect1 -0.06232 0.04059 -1.535 0.126470
constant -0.09747 0.06722 -1.450 0.148718
CONSUMO.dl1 0.07388 0.07927 0.932 0.352571
INGRESO.dl1 0.17114 0.06436 2.659 0.008526 **
RIQUEZA.dl1 0.10043 0.02687 3.738 0.000247 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.006256 on 185 degrees of freedom
Multiple R-squared: 0.6893, Adjusted R-squared: 0.6809
F-statistic: 82.09 on 5 and 185 DF, p-value: < 2.2e-16
Response INGRESO.d :
Call:
lm(formula = INGRESO.d ~ ect1 + constant + CONSUMO.dl1 + INGRESO.dl1 +
RIQUEZA.dl1 - 1, data = data.mat)
Residuals:
Min 1Q Median 3Q Max
-0.020226 -0.004563 -0.000573 0.003711 0.035144
Coefficients:
Estimate Std. Error t value Pr(>|t|)
ect1 0.11912 0.05076 2.347 0.0200 *
constant 0.20309 0.08405 2.416 0.0166 *
CONSUMO.dl1 0.39748 0.09912 4.010 8.8e-05 ***
INGRESO.dl1 -0.18616 0.08048 -2.313 0.0218 *
RIQUEZA.dl1 0.07936 0.03359 2.362 0.0192 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.007822 on 185 degrees of freedom
Multiple R-squared: 0.5788, Adjusted R-squared: 0.5674
F-statistic: 50.85 on 5 and 185 DF, p-value: < 2.2e-16
Response RIQUEZA.d :
Call:
lm(formula = RIQUEZA.d ~ ect1 + constant + CONSUMO.dl1 + INGRESO.dl1 +
RIQUEZA.dl1 - 1, data = data.mat)
Residuals:
Min 1Q Median 3Q Max
-0.057527 -0.008693 -0.000253 0.009406 0.060255
Coefficients:
Estimate Std. Error t value Pr(>|t|)
ect1 0.25857 0.11504 2.248 0.0258 *
constant 0.43593 0.19048 2.289 0.0232 *
CONSUMO.dl1 0.42530 0.22464 1.893 0.0599 .
INGRESO.dl1 -0.34362 0.18239 -1.884 0.0611 .
RIQUEZA.dl1 0.07866 0.07613 1.033 0.3029
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.01773 on 185 degrees of freedom
Multiple R-squared: 0.2524, Adjusted R-squared: 0.2322
F-statistic: 12.49 on 5 and 185 DF, p-value: 1.879e-10
[,1] [,2]
[1,] 1 0
[2,] 0 0
[3,] 0 1
######################
# Johansen-Procedure #
######################
Estimation and testing under linear restrictions on beta
The VECM has been estimated subject to:
beta=H*phi and/or alpha=A*psi
[,1] [,2]
[1,] 1 0
[2,] 0 0
[3,] 0 1
Eigenvalues of restricted VAR (lambda):
[1] 0.0491 0.0032
The value of the likelihood ratio test statistic:
9.77 distributed as chi square with 1 df.
The p-value of the test statistic is: 0
Eigenvectors, normalised to first column
of the restricted VAR:
[,1] [,2]
[1,] 1.0000 1.000
[2,] 0.0000 0.000
[3,] -0.8182 -1.067
Weights W of the restricted VAR:
[,1] [,2]
CONSUMO.d -0.0074 0.0019
INGRESO.d -0.0162 0.0027
RIQUEZA.d 0.0154 0.0113
[,1] [,2]
[1,] 1 0
[2,] 0 1
[3,] 0 0
######################
# Johansen-Procedure #
######################
Estimation and testing under linear restrictions on beta
The VECM has been estimated subject to:
beta=H*phi and/or alpha=A*psi
[,1] [,2]
[1,] 1 0
[2,] 0 1
[3,] 0 0
Eigenvalues of restricted VAR (lambda):
[1] 0.0719 0.0241
The value of the likelihood ratio test statistic:
5.16 distributed as chi square with 1 df.
The p-value of the test statistic is: 0.02
Eigenvectors, normalised to first column
of the restricted VAR:
[,1] [,2]
[1,] 1.0000 1.0000
[2,] -1.0673 -0.9805
[3,] 0.0000 0.0000
Weights W of the restricted VAR:
[,1] [,2]
CONSUMO.d -0.0071 -0.0221
INGRESO.d 0.0994 -0.0160
RIQUEZA.d 0.0548 0.0325
Impulse response coefficients
$CONSUMO
CONSUMO
[1,] 0.006172798
[2,] 0.007640963
[3,] 0.008138124
[4,] 0.008237730
[5,] 0.008254741
[6,] 0.008246862
[7,] 0.008235228
[8,] 0.008224056
[9,] 0.008214439
[10,] 0.008206382
[11,] 0.008199699
$INGRESO
CONSUMO
[1,] 0.000000000
[2,] 0.001315733
[3,] 0.001383194
[4,] 0.001497816
[5,] 0.001544576
[6,] 0.001583415
[7,] 0.001612896
[8,] 0.001637079
[9,] 0.001656900
[10,] 0.001673251
[11,] 0.001686747
$RIQUEZA
CONSUMO
[1,] 0.000000000
[2,] 0.001701022
[3,] 0.002337428
[4,] 0.002530839
[5,] 0.002598798
[6,] 0.002628421
[7,] 0.002645874
[8,] 0.002658337
[9,] 0.002668110
[10,] 0.002676038
[11,] 0.002682549
Lower Band, CI= 0.95
$CONSUMO
CONSUMO
[1,] 0.005335945
[2,] 0.006266286
[3,] 0.006421669
[4,] 0.006385752
[5,] 0.006340580
[6,] 0.006277441
[7,] 0.006273361
[8,] 0.006268744
[9,] 0.006263545
[10,] 0.006258741
[11,] 0.006252220
$INGRESO
CONSUMO
[1,] 0.000000e+00
[2,] 3.346801e-04
[3,] 7.759075e-05
[4,] -2.614855e-04
[5,] -3.952587e-04
[6,] -4.604307e-04
[7,] -5.166335e-04
[8,] -5.636159e-04
[9,] -6.026145e-04
[10,] -6.579131e-04
[11,] -7.145872e-04
$RIQUEZA
CONSUMO
[1,] 0.0000000000
[2,] 0.0009516230
[3,] 0.0012835783
[4,] 0.0013450226
[5,] 0.0012226592
[6,] 0.0011705740
[7,] 0.0011172879
[8,] 0.0010682538
[9,] 0.0010257559
[10,] 0.0009894036
[11,] 0.0009586073
Upper Band, CI= 0.95
$CONSUMO
CONSUMO
[1,] 0.006973769
[2,] 0.008533184
[3,] 0.009016550
[4,] 0.009267249
[5,] 0.009455751
[6,] 0.009509204
[7,] 0.009540653
[8,] 0.009558411
[9,] 0.009577052
[10,] 0.009604150
[11,] 0.009626831
$INGRESO
CONSUMO
[1,] 0.000000000
[2,] 0.002039816
[3,] 0.002570441
[4,] 0.003051673
[5,] 0.003422196
[6,] 0.003612129
[7,] 0.003738412
[8,] 0.003825452
[9,] 0.003895309
[10,] 0.003958168
[11,] 0.004010474
$RIQUEZA
CONSUMO
[1,] 0.000000000
[2,] 0.002474581
[3,] 0.003440555
[4,] 0.003729904
[5,] 0.003914284
[6,] 0.004019725
[7,] 0.004046613
[8,] 0.004072500
[9,] 0.004114521
[10,] 0.004151198
[11,] 0.004179626
CONSUMO INGRESO RIQUEZA
[1,] 1.0000000 0.00000000 0.00000000
[2,] 0.9542625 0.01712109 0.02861642
[3,] 0.9313098 0.02085862 0.04783155
[4,] 0.9178033 0.02343631 0.05876037
[5,] 0.9093186 0.02518529 0.06549610
[6,] 0.9034195 0.02655791 0.07002260
[7,] 0.8990237 0.02768605 0.07329023
[8,] 0.8955764 0.02864484 0.07577877
[9,] 0.8927744 0.02947530 0.07775031
[10,] 0.8904375 0.03020380 0.07935874
[11,] 0.8884510 0.03084857 0.08070045
[12,] 0.8867378 0.03142302 0.08183919
[13,] 0.8852434 0.03193752 0.08281906
[14,] 0.8839279 0.03240034 0.08367173
[15,] 0.8827611 0.03281826 0.08442067
[16,] 0.8817194 0.03319691 0.08508372
[17,] 0.8807842 0.03354104 0.08567473
[18,] 0.8799406 0.03385470 0.08620469
[19,] 0.8791762 0.03414137 0.08668241
[20,] 0.8784809 0.03440405 0.08711507
Universidad del Norte