
-1

Constraint Based Type Inferencing in

Jurriaan Hage Bastiaan Heeren

S. Doaitse Swierstra

Institute of Information and Computing Science

Utrecht University

e-mail: {jur,bastiaan,doaitse}@cs.uu.nl

May 14, 2004



WS on Immediate Applications of CP 1

The Helium compiler

I Haskell is a higher-order functional programming language similar to
Miranda and ML.

I Helium is a maintainable Haskell 98 compiler with a few restrictions.

I A major design criterion is the ability to give good error messages.

I Used in a first year functional programming course.

I Compiled programs are logged.

I Can be used to verify the usefulness of the system.



WS on Immediate Applications of CP 2

Types and type systems

I Reasons for type checking

• discovery of errors before testing,

if (very-likely) then
x+1

else
x+True

• efficiency (memory, time), and

• documentation.

I Type systems are practically motivated: type checking should be fast.

I Programmer writes types in his program, compiler checks these.

I Type inferencing allows programmer to drop type annotations.

I Expressiveness of the programming language often leads to cryptic error
messages.



WS on Immediate Applications of CP 3

A correct program

main as bs =
let

reverse [] = []
reverse (x:xs) = (reverse xs) ++ [x]

in
(reverse as) : (reverse bs)

I In Haskell, : means cons, ++ is concatenation.

I We can infer that reverse :: [a] -> [a].

I The type variable ’a’ can be any type.



WS on Immediate Applications of CP 4

Example 1: avoiding left-to-right bias

main as bs =
let

reverse [] = True
reverse (x:xs) = (reverse xs) ++ [x]

in
(reverse as) : (reverse bs)

Line 4: ghc (and Hugs)
Couldn’t match ‘[a]’ against ‘Bool’

Expected type: [a]
Inferred type: Bool

In the application ‘reverse xs’
In the first argument of ‘(++)’, namely ‘(reverse xs)’

Line (3,10): Type error in right hand side Helium
term : True

type : Bool
does not match : [a]



WS on Immediate Applications of CP 5

Example 2: giving hints

main as bs =
let reverse [] = []

reverse (x:xs) = (reverse xs) . [x]
in (reverse as) : (reverse bs)

Rev3.hs:3: ghc
Couldn’t match ‘b -> c’ against ‘[a]’

Expected type: b -> c
Inferred type: [a]

Probable cause: ‘reverse’ is applied to too many arguments
in the call (reverse xs)

In the first argument of ‘(.)’, namely ‘(reverse xs)’

(3,23): Type error in variable Helium
expression : .

type : (a -> b) -> (c -> a) -> c -> b
expected type : [d] -> [e] -> [d]

probable fix : use ++ instead



WS on Immediate Applications of CP 6

Our contributions

I Separation of type inference process into three different phases:

1. Generate the constraints in the abstract syntax tree.

2. Order the constraints into a list.

3. Solve the constraints.

I There is no single best type inferencer: phase 2 and 3 can be tuned.

I Development of special constraints to deal efficiently and elegantly with
let-polymorphism (and explicit types).

I Global approach to solving constraints.

I The use of heuristics for deciding the most likely source of an error.

I Implementing this for a full blown programming language.

I An aside: need not be limited to Haskell.



WS on Immediate Applications of CP 7

Equality constraints example

\b -> if b then 0 else not b

v3

v5 v6

v4

v2

App

Var ”not” Var ”b”

v7

v8 v9

Var ”b”

Var ”b” Lit 0

If

Abs
v2 ≡ v3 → v4

v4 ≡ v6

v3 ≡ v9
v3 ≡ v5

Bool ≡ v5

v4 ≡ v7

v8 ≡ v9 → v7Int ≡ v6

v8 � Bool → Bool



WS on Immediate Applications of CP 8

Implicit instance constraints for lets

I ’let i = \x -> x in ..i..i..’ ⇐⇒ ’..(\x -> x)..(\x -> x)..’

I Types of both abstractions derive from the same type ∀a.a → a, but are
generally independent.

I Two choices:

1. Duplicate constraints for definition of i.

2. Introduce special constraints for this situation.

I Drawbacks first solution:

• Duplication of effort.

• Departure from original source makes it more difficult to give good error
messages.

I Drawbacks second solution:

• New sort of constraint is needed (more programming effort).

• Bias is introduced, because we need to know the (polymorphic) type of i
before we consider its instances in the body.



WS on Immediate Applications of CP 9

Let example: let i = \ x → x in i i

v9 ≤ v3

Var ”i”

v8 ≤ v3

Var ”x”Var ”x”

AbsVar ”i”

v5

v6

v4

v4 ≡ v5 → v6

v3 ≡ v4

v6

=

v3

App

Let
v2 ≡ v7

v2
v8 ≡ v9 → v7

v7

v8 v9

Var ”i”

v5 ≡ v6



WS on Immediate Applications of CP 10

Ordering the constraints

I Treewalk on constraint tree yields an ordered list of constraints

I Example: post-order, pre-order,...

I Implicit instance constraints like v3 ≤ v8 are solved by turning them into
equality constraints at the right time.

I Doing it after the constraints for the definition of ’i’ are solved works well
enough.

I Every treewalk considers constraints of let definitions before those of the body.

I This introduces some bias: we blame the use of a let definition, not the
definition itself.



WS on Immediate Applications of CP 11

Post-order for \ b → if b then 0 else not b

v3

v5 v6

v4

v2

App

Var ”not” Var ”b”

v7

v8 v9

Var ”b”

Var ”b” Lit 0

If

Abs

v8 � Bool → Bool

v4 ≡ v6

Int ≡ v6 v8 ≡ v9 → v7

v4 ≡ v7

Bool ≡ v5

v3 ≡ v5

v2 ≡ v3 → v4
v3 ≡ v9

Int ≡ v6,
v8 ≡ v9 → v7,
Bool ≡ v5, v4 ≡ v6,v4 ≡ v7,
v2 ≡ v3 → v4, v3 ≡ v5, v3 ≡ v9,
v8 � Bool → Bool.



WS on Immediate Applications of CP 12

Greedy constraint solving

I Take a list of constraints.

I Consider the constraints one by one.

I Update a substitution along the way.

I Inconsistent constraints are ignored, but

I error messages are generated for them.

I Int ≡ v6,
v8 ≡ v9 → v7,
Bool ≡ v5, v4 ≡ v6, v4 ≡ v7,
v2 ≡ v3 → v4, v3 ≡ v5, v3 ≡ v9,
v8 � Bool → Bool.

I We find fault at v8 � Bool → Bool, because Int ≡ v6 ≡ v4 ≡ v7 ≡ Bool.

I A different order may find it sooner: postpone v2 ≡ v3 → v4.



WS on Immediate Applications of CP 13

Global constraint solving

I Type graph solver: build a graph from a set of constraints

I Don’t forget the order imposed by the lets!

I So we actually build a sequence of such graphs.

I Heuristics work on type graph, yielding a ’most likely source of inconsistencies’

• Siblings

• Majority voting

• Permuting arguments



WS on Immediate Applications of CP 14

Type graph example

\b -> if b then 0 else not b

−>

v9 v5

v3

v7 v4

v6

v2

Int

−>
(2)

(1)

BoolBool

(2)

−>

Bool

(1)

(2)

(1)

v8

condition

then

b declaration

b in call

not

else

I Cutting v4 from v7: the else part is incorrect.

I The constraint v4 ≡ v7 generates an error message to this effect.



WS on Immediate Applications of CP 15

Future work

I Type inferencing in chunks: combines the speed of the greedy solver with the
precision of the type graph solver.

I Adding type inference directives for newly added constructs

I Analyzing logger information

I Adding different kinds of program analysis which may use the same
infrastructure/solver.

I Programming environment, possibly including

• type explanation

• history sensitive type inferencing

• easy tuning of the compiler

I Apply our ideas to other programming languages and compilers


