
Navigation and Flow Algorithms

Building a Navigation Framework

M.Sc. Thesis
INF/SCR-08-20

Wouter Penard, wrjpenard@gmail.com
Center for Algorithmic Systems - Utrecht University

December, 2008

Utrecht University

Daily Supervisor:
dr. Hans Bodlaender
hansb@cs.uu.nl

Second Supervisor:
dr. Jurriaan Hage
jur@cs.uu.nl

Logica

Daily Supervisor:
ir. Mark Olthof

mark.olthof@logica.com

Second supervisor:
drs. Herbert Leenstra

herbert.leenstra@logica.com

Abstract

Incited by the observation that in recent years positioning and navigation have become increas-
ingly pervasive, we designed and constructed a navigation framework. This framework aims to
provide advanced navigation functionality by solving various flow problem. In order to solve these
problems, it supports implementations of Dijkstra’s algorithm, the Push-Relabel and Successive-
approximation by Cost Scaling algorithms. These algorithms solve the shortest path, maximum
flow and minimum-cost flow problems respectively. The framework also contains functionality to
create a time-expanded graph. Solutions to dynamic problems, such as the quickest flow and earliest
arrival problems can be found by executing the Successive-approximation by Cost Scaling algorithm
on this time-expanded graph. Furthermore, the performance of the Push-Relabel and Successive-
approximation by Cost Scaling algorithms was studied empirically.

Based on the framework and these algorithms an application was constructed that simulates
an evacuation from a building. Such an evacuation can be modeled as quickest flow problem. The
application uses the framework to construct a model of the building and to calculate a solution to
this quickest flow problem. This simulation is created based on the solution of this problem. This
evacuation application shows that the framework itself and the algorithms that it implements can
be used in a practical application.

i

Contents

I Project 1

1 Introduction 2
1.1 Context . 2

1.1.1 Location Based Services . 2
1.1.2 Navigation . 3

1.2 Problem Description . 3
1.2.1 Navigation Framework . 4
1.2.2 Graph Algorithms . 5

1.3 Research Questions and Objectives . 5
1.3.1 Research Questions . 6
1.3.2 Objectives . 6

1.4 Project Environment and Scope . 7
1.4.1 Scope . 7

1.5 Evacuation Simulation . 8
1.6 Document Structure . 9

II Analysis 11

2 Literature Study 12
2.1 Graph Algorithms . 12

2.1.1 Preliminaries and Definitions . 12
2.2 Shortest Path Problem . 13

2.2.1 Definitions . 13
2.2.2 Dijkstra’s Shortest Path Algorithm . 14
2.2.3 Heuristics for Dijkstra . 14

2.3 Maximum Flow Problem . 16
2.3.1 Definition . 16
2.3.2 Overview . 17
2.3.3 Algorithms . 17
2.3.4 Empirical Results . 18

2.4 Minimum-Cost Flow Problem . 18
2.4.1 Definition . 18
2.4.2 Overview . 19

ii

2.4.3 Algorithms . 19
2.4.4 Empirical Results . 20

2.5 Dynamic Flows . 21
2.5.1 Definition . 21
2.5.2 Time Expanded Graphs . 21

2.6 Conclusion . 22

3 Architectural Design 23
3.1 Stakeholders and their Concerns . 24

3.1.1 Developer . 24
3.1.2 Acquirer . 25

3.2 Requirements . 27
3.2.1 Functional Requirements . 27
3.2.2 Quality Requirements . 30
3.2.3 Constraints . 31

3.3 Viewpoints . 32
3.3.1 Logical Viewpoint . 32
3.3.2 Process Viewpoint . 33
3.3.3 Development Viewpoint . 33
3.3.4 Physical Viewpoint . 34
3.3.5 Scenario Viewpoint . 34

3.4 Logical View . 34
3.4.1 General Structure . 34
3.4.2 Internal Structure . 35

3.5 Process View . 40
3.5.1 Framework Concurrency Model . 41
3.5.2 Future Improvements . 42

3.6 Development View . 43
3.6.1 Development of the Framework in Perspective 43
3.6.2 Development of the Framework . 44
3.6.3 Technologies Used . 45

3.7 Scenario View . 47
3.8 Conclusion . 48

III Implementation 51

4 Implementation of Algorithms 52
4.1 Graph Data Structure . 52
4.2 Push-Relabel . 52

4.2.1 Strategies and heuristics . 54
4.2.2 Implementation . 54

4.3 Successive Approximation by Cost Scaling . 54
4.3.1 Strategies and Heuristics . 56
4.3.2 Implementation . 57

4.4 Miscellaneous Algorithms . 57

iii

4.5 Summary . 58

5 Implementation of the Framework 60
5.1 Changeability . 60
5.2 Reliability . 61
5.3 Understandability . 61
5.4 Limitations . 61
5.5 Conclusion . 62

IV Evaluation 63

6 Empirical Study 64
6.1 General setup . 64
6.2 Push-Relabel . 64

6.2.1 Experimental Setup . 64
6.2.2 Results . 65

6.3 Successive Approximation . 66
6.3.1 Experimental Setup . 66
6.3.2 Results . 69
6.3.3 Discussion . 69

6.4 Conclusion . 70

7 Prototype Applications 82
7.1 Console Application . 82
7.2 Experimentation Application . 83
7.3 Evacuation Application . 84

7.3.1 Relation to Framework . 84
7.3.2 Functionality . 84
7.3.3 Evacuation Screenshots . 85

7.4 Discussion . 87
7.5 Conclusion . 88

8 Conclusion 89
8.1 Research Questions and Objectives . 89

8.1.1 Analysis . 89
8.1.2 Implementation . 90
8.1.3 Evaluation . 90
8.1.4 Objectives . 91

8.2 Future Work . 91
8.2.1 Algorithmic Improvements . 91
8.2.2 Framework . 92

8.3 Conclusion . 93

iv

V Appendices 94

A Acronyms 95

Bibliography 96

v

List of Tables

1.1 LBS segments . 2

3.1 Development Phase 1 . 46
3.2 Development Phase 2 . 46
3.3 Development Phase 3 . 46
3.4 Use Case: Request Graph . 47
3.5 Use Case: Instantiate Algorithm . 48
3.6 Use Case: Execute Algorithm . 49
3.7 Use Case: Request Algorithm Execution . 50

6.1 Problem Sizes for Maximum Flow Problems . 65
6.2 Execution times for rmf families . 66
6.3 Execution times for wlm family . 68
6.4 Problem Sizes for Minimum Cost Flow Problems . 68
6.5 Experiment parameter values for minimum-cost flow 68
6.6 Execution times for goto families . 71
6.7 Execution times for grid families . 72
6.8 Analysis of the lookahead heuristic . 80
6.9 Analysis of the relabel operation . 80
6.10 Analysis of ε-scale factor . 81

8.1 Objectives . 92

vi

List of Figures

1.1 Location Based Services (LBS) : estimated market revenues [56] 3
1.2 Document Structure . 9

3.1 Functional Requirements . 28
3.2 Quint2 model for software quality. 31
3.3 External Components . 35
3.4 Framework Internal Structure . 36
3.5 Thread Composition . 41
3.6 Request Navigation Sequence . 42
3.7 Development Phases . 43
3.8 Development Dependencies . 44

6.1 Mean execution times for the maximum flow families 73
6.2 Mean execution times for the goto8 family . 74
6.3 Mean execution times for the goto16 family . 75
6.4 Mean execution times for the gotoi family . 76
6.5 Mean execution times for the gridl family . 77
6.6 Mean execution times for the gridsq family . 78
6.7 Mean execution times for the gridw family . 79

7.1 Console FrontEnd screenshot. 83
7.2 Experimentation application screenshot . 83
7.3 Relation of evacuation prototype with framework . 84
7.4 Evacuation application: detail . 85
7.5 Evacuation application: overview . 86

vii

Part I

Project

1

Chapter 1

Introduction

This chapter provides the context of the problem, which is followed by a discussion of the problem
addressed by this thesis. Based on the problem description the research questions, objectives and
scope of the project are inferred. The chapter is concluded by an overview of the structure of the
document.

1.1 Context

1.1.1 Location Based Services

In the last decade mobile networks have become increasingly pervasive and with the introduction
of new broadband technologies for mobile network, new types of services become feasible. One
such type are Location Based Services (LBS). LBS are services that incorporate location informa-
tion with contextual data to provide a value-added experience to users on the web and wireless
devices[45]. A wide range of applications based on LBS is conceivable. A common classification is
shown in Table 1.1[55]. As shown in Figure 1.1 navigation services form a significant part of the
estimated LBS revenue. This thesis focuses on this particular application segment.

Table 1.1: LBS: application segments

Segment Description
Navigation: Map display, turn-by-turn navigation
Entertainment: Instant messaging, dating, games
Tracking: People, asset tracking, emergency services
Information: Local search, weather, traffic
Location Based Billing: Voice and data transfer at location dependent tariffs

2

Figure 1.1: LBS : estimated market revenues [56]

1.1.2 Navigation

Recent years have seen a rapid increase in the use of Global Positioning System (GPS) based nav-
igation for outdoor environments. First introduced within navigation system for cars, we now see
cellphones with GPS modules being introduced. However, the use of GPS for positioning and navi-
gation has shortcomings. Most importantly, its signal degrades easily [11] and is not usable indoors.
For this reason among others alternate methods for positioning are an active area of research. Pos-
sibilities include the use of terrestrial Radio Frequency (RF) signals (also called ”pseudolites”) to
augment GPS indoors; or the use of various wireless communication technologies, such as cellular
networks [32], WLAN [54, 44] or Bluetooth [34]. Rizos [57] gives an overview of positioning systems
and makes a key distinction between user-centric and network-centric positioning systems. In an
user-centric scenario the mobile device actively detects its own position, and as a result most of
the computational effort is located at the mobile device. On the other hand, in a network-centric
positioning system the network, or a system within the network, is responsible for determining the
device’s position. An example of the former is GPS, while the latter is typical for cellular networks,
WLAN and Bluetooth.

1.2 Problem Description

The observations that LBS and navigation services have great potential makes this an exciting area
of research. During an early brainstorming session it became clear there exist numerous applications
that contain a navigation element. Some examples include:

• Position someone with bluetooth and present a route to some destination within a building.
The destination could be a room or a moving person.

3

• Set within a themepark. Propose a route to an attraction based on the visitors preferences,
traveling time to attractions and the waiting queues in front of attractions.

• Track which booths have been visited by a visitor on a fair and propose routes to booths
which are of interest and have not been visited yet.

• Give people, that are present in a complex, directions, such that the time required to evacuate
the building is minimized.

1.2.1 Navigation Framework

We previously noted there exists a wide range of technologies based on which a users position can be
determined, while at the same time a number of applications can benefit from navigation support.
In order to provide this functionality we intend to construct a framework which is independent from
the specific method used to determine the user’s position. Hence, the framework will be applicable
for a wide range of applications. Apart from offering plain navigational functionality we wish to
make use of the additional possibilities enabled by network-centric positioning.

By exploiting the positioning information of groups of users the navigational feedback can be
enhanced. We envision using this position data to model traffic flows and anticipate future flows.
This anticipated state can then be used to update the navigational feedback. In addition to the
positioning method, we identify two more application specific aspects. The framework will abstract
away from these aspects. Specifically, the general map context, which is used to plan routes, and
the components which further processes the output of the framework. We motivate each shortly.

In order to plan routes the framework has to be supplied with map information, however there
exist a multitude of different data formats (for example shape files1 and GML2) and geographic
coordinate systems (such as WGS843, which is used worldwide, and the RD-system4 used in the
Netherlands). Applications using the framework have to provide a component which translates
data from the specific data sources to the internal model used within the framework. In this way
the framework provides maximum flexibility.

How a particular application uses the output of the framework is of course application specific.
Traditionally one can think of an application displaying a map of the environment and drawing a
route on this map. However, the information can be relayed by other media, such as SMS, MMS
or a web based service.

Finally, conventional navigation software execute on a static model of the environment, whereas
our framework will provide functionality to dynamically modify the model and properties of the
model. One can think of temporarily broken connections, for example due to road maintenance,
which trigger such a modification.

Fayad et al.[22] define a framework as a ”reusable, semi-complete application that can be spe-
cialized to produce custom applications.” Using our framework it is possible to create a custom
application by, minimally, providing a component which creates a to the framework understandable
model from a data source and a component which further processes the output as returned by the
framework.

1ESRI Shapefile [21]
2Geography Markup Language [51]
3World Geodetic System 84 [48]
4Rijksdriehoekscordinaten [16]

4

1.2.2 Graph Algorithms

In this section we give an informal introduction to graphs and relevant graph problems and how
our practical problem at hand relates to these. A formal description is given in Chapter 2 and
Chapter 4.

Informal Introduction

In common navigation systems the environment is modeled as a graph, and graph algorithms are
used to calculate the route from a source node to a destination. A graph is a collection of nodes
which are connected to other nodes by arcs. Properties can be associated with these nodes and
arcs. Dijkstra’s algorithm [62] is used to solve the problem of finding a shortest path between two
nodes in such a graph. A number of effective heuristics which speed-up Dijkstra’s algorithm are
known. These often employ pruning to reduce the search space by adding precomputed data in the
form of annotations to the graph [62].

To support the novel functionality proposed in Section 1.2.1 we require a more advanced problem
model, such as maximum flow or minimum-cost flow problem. While the shortest path (SP) problem
has weights associated with each arc. A capacity is associated with each arc in the maximum
flow problem. A flow can be send across such an arc. This flow can never exceed the capacity of
the concerned arc. The problem is to find the maximum amount of flow that can be send between
two distinct nodes in the graph. Specifically, from a flow source node, which produces flow, to a
sink node, which consumes flow. The minimum-cost flow problem associates a cost (or weight), in
addition to the capacity, with each arc. Here the source produces a fixed amount of flow, where as
this amount of flow was variable in the maximum flow problem. This fixed amount of flow is also
called demand, where a negative demand indicates a surplus. The minimum-cost flow problem is
to find a flow on the given graph of minimum cost.

Relation to Navigation Problem

Finding the shortest route between two places in the real world translates easily to a graph problem.
Locations are mapped onto nodes and arcs indicate a connection between two locations. The travel
time or distance between two locations can be modeled by the weight associated with each arc. The
relation with the maximum flow and minimum-cost flow problems is also intuitive. The capacity,
or maximum throughput of a connection can be modeled as the capacity of the corresponding arc.
We can represent the number of entities at a certain location as a negative demand (or surplus)
and their destination with a positive demand. The solution of the minimum-cost flow problem
corresponds to a routing of entities in the real world which minimizes (for example) travel time.

Changes in the real world situation can be reflected by modifying properties of arcs or even
the structure of the graph. One can think for example of changes in expected travel time or the
temporary closure of a road, leading to a modification of the cost associated with an arc or the
deletion of an arc respectively.

1.3 Research Questions and Objectives

The problem description in the previous section gives rise to the fundamental questions we aim to
address with this work. In this section we first discuss these research questions. Based on these

5

questions we formulate the objectives we intend to accomplish with the project and finally we define
the scope of the project.

1.3.1 Research Questions

The main question of this work is listed below and is derived from the earlier problem description
(Section 1.2). In the subsequent paragraph we further divide this question in more detailed sub-
questions.

Construct a navigational framework incorporating dynamic aspects as previously ex-
plained. How can existing theoretical graph algorithms be applied to support the required
functionality provided by the framework?

Central is the application of theoretic algorithms, this aspect is further emphasized by the following
subquestions.

1. What are the state-of-the-art algorithms and heuristics for the single-source shortest path,
maximum flow and minimum-cost flow problems?

2. Which of these algorithms are best suited to be implemented?

3. Can these algorithms be implemented such that they support the framework?

4. How can we introduce the notion of time in these algorithms?

5. In what way can we incorporate dynamic changes of structure and properties?

6. What is the measured performance of the maximum and minimum-cost flow algorithms that
are implemented?

7. What are the requirements for such a framework?

8. What design satisfies the requirements?

9. Can we construct such a framework?

Questions 1-6 are related to the algorithmic solution to the problem, while those after 6 concern
the design and construction of the framework.

1.3.2 Objectives

This section lists the main objectives of the project.

1. Determine and describe the state-of-the-art algorithms for the maximum flow and minimum
cost flow problems. Based on this description, the requirements and constraints of the frame-
work it will be decided which algorithms are best suited to be implemented in the framework.

6

2. Derive and describe requirements for a framework as described in the problem description
and produce a design based on these requirements.

3. Report on the algorithmic implementation details and how they address research questions
stated in the previous section.

4. Perform a first iteration in the development of the framework.

5. Report on the performance of the implemented algorithms by empirical study. The purpose of
this is two fold: first it provides insight into the implementation which can be used to improve
it. Secondly, it provides additional insight into the performance of theoretical algorithms in
a practical setting.

6. Construct a prototype application. Do this, with the purpose of gaining insight into the frame-
work and use this additional insight to identify and propose improvements to the framework.

1.4 Project Environment and Scope

The project is part of the Master of Science programme Applied Computing Science at Utrecht
University and will be conducted at Logica, division Energy, Utility and Telecom (EUT), within
the Working Tomorrow program. Logica is a leading IT and business services company and pro-
vides business consulting, system integration and IT and business process outsourcing services.
The Working Tomorrow program is intended for graduate students in Dutch higher professional
and scientific education. The program allows students to perform innovative projects in an open,
professional environment. In general these projects are not performed in collaboration with cus-
tomers, which allows for considerable freedom. The duration of the graduation project is 9 months,
starting at February 1st, 2008.

1.4.1 Scope

Our primary focus is the algorithmic realization of the project and in particular the utilization of
maximum and minimum-cost flow algorithms in a practical environment. We will extensively discuss
the state-of-the-art in the area of SP algorithms and heuristics used to improve their performance
in the domain of navigation. However, after implementing a basic SP algorithm, our attention will
shift to the implementation of the flow algorithms and we will leave the implementation of heuristics
for the SP problem to future iterations.

Am important limitation is the duration of the project. Fayad et al.[22] argue that the inception
of a framework is a complicated task which requires a thorough domain understanding and multiple
iterations. They advise to first use the framework to construct one or more relatively small pilot
projects and use the experience gained during these projects to further improve and refine the
framework. We view our project in this light. It is impossible to construct a mature framework in
the given time period. However in order to validate and gain insight into the practical applicability
of the framework we will construct a small prototype application.

In Section 1.2 we indicated several spots within the framework which require an application
specific implementation. It is not our intention to provide a default implementation for these,

7

and consequently a simulation or a minimal ad-hoc implementation will suffice in the prototype
application.

Finally, the project is a purely technical study, it is not the intention to perform a market
analysis or derive any business cases.

1.5 Evacuation Simulation

One of the objectives of this project is to construct a prototype application based on the framework.
In this section we further describe this application. It is our aim to construct an application which
simulates the evacuation of an office building. Because the application is intended to be a prototype,
no complete design is presented. However, some functional requirements are listed.

Description

In event of an emergency a building needs to be evacuated as quickly and efficiently as possible. A
mass stampeding through hallways and stairwells can easily cause catastrophic congestions. With
the purpose of preventing such a disaster, evacuation plans are devised and based on these directions
are offered to people present. Such a plan can be constructed based on evacuation simulations. An
evacuation scenario can be modeled as a graph problem, specifically as a quickest flow problem[12].
In a traditional case these simulations are run upfront (referred to as offline) for example during
construction of the building. It will result in a static evacuation plan and based on this plan
directions are fixed to walls of the building.

As an innovative approach we consider the use of novel technology to improve these directions.
Given the ability to determine the location of people present in the building we can use this
information to simulate an evacuation during the disaster (online). Based on the results of this
simulation we can present people with improved directions. Additionally, it is quite conceivable,
that certain routes are inaccessible due to the disaster. By, in a sense, constructing an evacuation
plan during the evacuation we can take these blocked routes into account and deliver more accurate
directions to the evacuees and update these directions as the situation changes. The directions can
be presented to people by means of auditive signals (which might also be given by rescue workers),
dynamic signs based on for example LCD screens, or individually to people by means of their
cellphone.

Requirements

• The prototype should be a demonstrable graphical application.

• Load and visualize a graph from a file.

• Able to save the current graph to a file.

• Connect the graph with a map of the building and show this map.

• Modification to the graph structure and properties can be made using the GUI.

• It is possible to assign ’people’ to various rooms within the building.

• Multiple exits can be created.

8

• The application can show the simulation of the evacuation from the building.

These requirements impose no further requirements on the framework itself, other then that
algorithms have to be implemented that are able to solve such an evacuation problem.

1.6 Document Structure

It is possible to identify two aspects in this thesis project. First the tasks related to the algorithmic
solutions and in the second place the effort related to the design and development of the framework.
These two aspects are both separated into three phases: first analysis, then implementation and
finally evaluation. This structure is reflected in the thesis and is visualized in Figure 1.2.

Literature Study

Analysis

Implementation

Evaluation

Algorithms

Empirical Study

Introduction

Architectural Design

Framework

Prototype Applications

Conclusions

Figure 1.2: Document Structure

We see there are two common chapters: the introduction (Chapter 1) and conclusion (Chapter 8)
of the work.

The thesis is separated into three parts: Analysis, Implementation and Evaluation. Each part
consists of one chapter which discusses the algorithmic aspect and the second chapter discusses
aspects related to the navigation framework itself. The algorithmic aspect of the project is thus
discussed in:

• Chapter 2 : Literature Study. This chapter establishes graph theoretic notation and defi-
nitions. It gives a fairly broad, but brief, overview of algorithms that solve relevant graph

9

problems. Algorithms are selected to be implemented, based on the discussion in the chapter.

• Chapter 4 : Implementation of Algorithms. A detailed description of the algorithms that are
implemented is given in this chapter and it reports relevant implementation details for them.

• Chapter 6 : Empirical Study. This chapter reports on the performance of the algorithms
on generated problems with different properties. It compares several configurations of these
algorithms with each other.

In the following chapters we report on aspects related to the navigation framework itself.

• Chapter 3 : Architectural Design. This chapter reports requirements for the framework and
based on these requirements a design is constructed.

• Chapter 5 : Implementation of the Framework. We discuss several crucial implementation
details of the framework in this chapter.

• Chapter 7 : Prototype Applications. On top of the framework several applications are devel-
oped during the project. This chapter gives a brief description of these applications.

These aspects are reasonably self contained. The reader with a particular interest in either of
these can limit him/herself to the introduction, depending on interest the even or odd chapters and
the conclusion.

10

Part II

Analysis

11

Chapter 2

Literature Study

In this chapter we discuss the current research in relevant graph algorithmic topics. The purpose
is to establish common notation, definitions and assumptions used throughout the document. This
chapter provides the reader with a brief introduction to various algorithms and conveys basic ideas
behind them. It does not explain each algorithm in detail, but does provide references to more
detailed sources of information. Furthermore, an answer to Research Question 1 is given.

What are the state-of-the-art algorithms and heuristics for the single-source shortest
path, maximum flow and minimum-cost flow problems?

As part of the answer to this research question we study the practical performance of these
algorithms. Based on this study we answer Research Question 2:

Which of these algorithms are best suited to be implemented?

This chapter is structured as follows: in Section 2.1 common definitions and notation are es-
tablished. In Section 2.2 the shortest path problem and commonly used heuristics are treated.
Of special interest are the maximum flow and minimum-cost flow problems. Algorithms for these
problems are discussed in Section 2.3 and Section 2.4 respectively. Both these sections provide
insight into the practical performance of algorithms concerned. In Section 2.5 we discuss several
problems which include a time component. This section will answer Research Question 4:

How can we introduce the notion of time in these algorithms?

2.1 Graph Algorithms

In this, and the following sections dealing with graph algorithms we base ourselves on books by
Cormen et al.[14] and Ahuja et al.[3]. These works provide an excellent and in dept overview of the
concerned topics.

2.1.1 Preliminaries and Definitions

A graph is defined as G = (V,E) with finite vertex set V and finite edge set E, and each edge e ∈ E
is a pair (v, w) with v, w ∈ V . If the edges have a direction then G is called a directed graph or

12

digraph, otherwise the graph is an undirected graph. In the directed case we denote v the tail and w
the head of the pair. We denote the number of vertices |V | with n and the number edges |E| by m.
Unless otherwise stated we assume graphs considered contain no self loops or multiple arcs. For a
vertex v ∈ V the degree of v is given by |(v, w) ∈ E|. A path P is a sequence of vertices (v1, . . . , vk)
such that ∀i, 1 ≤ i < k : (vi, vi+1) ∈ E and all vi ∈ P are distinct, i.e. there is no repetition of
vertices on the path. The sequence of vertices is called a walk if there is repetition. If v1 = vk the
path is called a cycle, and a graph without a cycle is called acyclic. For graph without parallel
edges or self loops n2 is an upper bound on the number of edges, a graph is called sparse if it has
O(n) edges.

Throughout the document we will use the words ’vertex’ and ’node’ interchangeably to denote
any v ∈ V . The word ’arc’ always denotes a directed edge. Finally, the word ’network’ is regarded
as a synonym of graph. Next a list of assumptions used throughout the document.

Assumption 2.1.1. The graph is a directed graph.

In general it is possible to convert an undirected graph G = (V,E) into a directed one G′ =
(V,E′) by replacing each edge (v, w) ∈ E with two directed arcs (v, w) and (w, v) in E′. Both these
two edges have the same weight as the original edge. However, if G contains an edge with negative
arc length this will always create a negative cycle.

Assumption 2.1.2. The graph does not contain parallel arcs or self-loops.

This assumption is for notational convenience, if parallel arcs are allowed an edge is not uniquely
identified by its head and tail (v, w).

Assumption 2.1.3. All arc and node properties, such as weight, cost or capacity are integers.

As we will see in the next chapters it is possible to associate various properties with edges or
nodes. We assume these properties are always integer. In general this is required for algorithms
that use scaling techniques to solve the problem. However, this assumption is not restricting in
practice, because data is represented as a rational number in a computer. Such a number can be
converted to an integer by multiplying it with a suitably large integer.

2.2 Shortest Path Problem

2.2.1 Definitions

Consider a directed graph G = (V,E). We can associate a weight wi,j with each edge (i, j). The
weight of a path P = (v1, . . . , vk), or cycle when v1 = vk, is the sum of the weight of its edges:∑

(vi,vi+1)∈P wi,i+1. If the weight of a cycle is negative we call this a negative cycle. The single
source shortest path problem is defined as finding the paths with lowest weight between a given node
s and all other nodes. A related problem is finding the shortest paths between all pairs of nodes
called the all-pairs shortest path problem. When using the terms shortest path (SP) we always mean
the single source shortest path problem. When considering the shortest path between two points
we denote the source and destination vertices with s and t respectively.

A lot of graph algorithms make certain assumptions about the structure and properties of the
graph they are applied to. In this paragraph we will list several assumptions which we consider to
hold in general throughout the document unless otherwise stated.

13

Assumption 2.2.1. The graph does not contain a negative cycle.

Finding a shortest path in the presence of negative cycles is a substantial more difficult problem.
In fact the problem is NP-complete[3].

2.2.2 Dijkstra’s Shortest Path Algorithm

One of the most well known algorithms for solving the single source shortest path problem is
Dijkstra’s algorithm[17], which is used in practice to solve routing problems. In this paragraph
we discuss Dijkstra’s algorithm, which is given in Algorithm 1. Dijkstra’s algorithm requires an
additional assumption (2.2.2)

Assumption 2.2.2. The graph does not contain any negative weight arcs. I.e. ∀(v, w) ∈ E : w(v, w) ≥
0.

Within the domain of navigation this assumption is not restrictive. Alternatively, the Bellman-
Ford [8, 39] algorithm is able to find a shortest path in the presence of negative arc lengths and
detects negative cycles. However, its running time is inferior to Dijkstra’s algorithm (O(nm), Di-
jkstra using Fibonacci heaps O(m+ n log n)).

Dijkstra’s algorithm associates two labels with every node. A current upper bound of the
shortest path distance from the source to the concerned node (di). This value is initiated with
∞, except for the source node. Instead the source its label is set to 0. The second label is a
pointer to the previous node on the current shortest path from the source to this node(prev). The
algorithm maintains two lists of vertices. First a list to which a final shortest path distance has
been assigned (S) and a list of vertices which still have to be considered (Q). In each iteration
of the algorithm it selects and removes the vertex (i) with the current minimum shortest path
estimate from Q and adds it to S. Next it updates all neighbors connected to i, that is to say all
vertices j for which arc (i, j) ∈ E. If the current label dj < di + wij , then the label of dj is set
to di + wij and the value prevj is set to i. When the algorithm terminates the shortest path from
s to any node t can be found by following the prev pointers starting with prevt. The while loop
is executed exactly n times, because every vertex is removed from S and added Q exactly once.
The final asymptotic running time of the algorithm depends on the implementation used for list S.
Specifically the operation to extract the vertex with the current minimum distance label. The best
theoretic strongly polynomial worst-case running time is achieved by using Fibonacci heaps [23]
and results in a running time of O(m + n log n). Faster weakly polynomial algorithms achieve an
O(m + n

√
logD) [2] and O(m log logD) [38, 40] bounds. For a complete analysis and correctness

proof we refer to [14].

2.2.3 Heuristics for Dijkstra

Wagner et al.[62] give an overview of speed-up techniques for the shortest path problem. These
still guarantee correctness and do not change the worst case behavior of the algorithm. Typically,
they do reduce the number of vertices considered, and thus the running time substantially. In this
section we give a short overview of these heuristics. The interested reader is advised to consult [62]
and references therein for a more detailed description of these heuristics.

14

Algorithm:Dijkstra
Input: Graph G = (V,E)
Input: Vertex s

Q← V , S ← ∅;
foreach i ∈ V do di ←∞;
ds ← 0, prevs ← 0;

while Q 6= ∅ do
Select i ∈ Q for which di = min{dj : j ∈ Q};
S ← S ∪ {i} ;
Q← Q− {i} ;
foreach (i, j) ∈ E do

if dj > di + wij then
dj ← di + wij ;
prevj ← i;

Algorithm 1: Dijkstra’s Algorithm for the Shortest Path Problem

Bidirectional Search

Bidirectional search[46] performs a search, using Dijkstra’s algorithm, in two directions at once.
One emanating from the source and the other originating from the destination node. The search
starting from the destination is applied to a reverse graph. I.e. consider graph G = (V,E) and
reverse graph Gr = (V,Er), with (w, v) ∈ Er ∀(v, w) ∈ E. The algorithm can terminate once
their search fronts meet; i.e. when there is a node, that is assigned a permanent label by both the
forward and reverse search waves. Let dif denote the distance label assigned to vertex i by the
forward search and dir the label assigned by the reverse search. The shortest path is defined as
mini∈V {dif + dir}.

Goal-Directed search or A*

Dijkstra’s algorithm always considers nodes in FIFO order. A* on the other hand attempts to guide
the search in the direction of the destination by changing the order of nodes considered. During
the search A* assigns a lower bound estimate of the distance hi from node i to the destination to
each node i. This in addition to the assigned distance label (di). This lower bound estimate is
defined as a function h : V → R. Let h∗(i) denote the actual minimum distance from node i to
the destination, a heuristic function h(i) is called feasible if ∀v ∈ V : 0 ≤ h(v) ≤ h∗(v). Now the
ordering of nodes in the priority queue is determined by di + hi. A feasible heuristic function can
be obtained by using the Euclidean distance between a node and the destination. Hart et al.[35]
give a proof of termination and optimality of A*.

Hierarchical Methods

Heuristics in this category work by adding additional short-cut edges to the original graph during
a preprocessing step. Two main approaches for constructing such a hierarchical graph are the
multi-level approach and highway hierarchies. The multi-level approach is discussed next.

15

It works by identifying a hierarchy of subsets of V such that Sn ⊂ . . . ⊂ (S0 = V). Call a vertex
i ∈ Sj a selected vertex at level j. The graph G = (V,E) is enriched by additional edges: upward
edges pointing from a non-selected vertex to a selected vertex on a higher level, downward edge
going from a selected edge at some level to a non-selected vertex on a lower level and level edges
traversing from one selected vertex to another selected vertex on the same level. Vertices could be
selected based on the degree of a node or one could exploit domain specific knowledge.

Edge Labels

With this approach a label is associated with each edge indicating all nodes to which the shortest
path starts with the concerned edge. More precisely: ∀(v, w) ∈ E find set S(v, w) such that ∀t ∈ V
if the shortest path v, t starts with (v, w) then t ∈ S(v, w). Its trivial to see that if (u, v) is part
of the shortest s, t path then its sub path u, t is also a shortest path. Dijkstra’s algorithm can be
modified such that only edges containing the target node in their label are considered at each step.
Unfortunately this approach requires O(n2) space.

2.3 Maximum Flow Problem

2.3.1 Definition

A flow problem consists of a directed graph and two distinguished vertices s, t ∈ E. These vertices
are called the source and sink respectively. Furthermore a non negative capacity c(v, w) is associated
with each arc (v, w) ∈ E. Let C denote the largest arc capacity. A flow is defined as a function
f : E → R such that the capacity (2.1), the antisymmetry (2.2) and the flow conservation (2.3)
constraints hold.

∀(v, w) ∈ E : f(v, w) ≤ c(v, w) (2.1)
∀(v, w) ∈ E : f(v, w) = −f(w, v) (2.2)

∀v ∈ V − {s, t} :
∑

(v,w)∈E

f(v, w)−
∑

(w,v)∈E

f(w, v) = 0 (2.3)

To solve the maximum flow problem on a graph G we wish to find a flow f with maximum value.
The value of a flow |f | is the net flow into the sink and is defined by |f | =

∑
v∈E (v, t). Another

important concept is that of residual capacity, which we define next. The residual capacity rf (v, w)
of an edge (v, w) ∈ E is defined as rf (v, w) = c(v, w)− f(v, w) and if rf (v, w) > 0 we call (v, w) a
residual edge. The residual graph Gf consists the vertex set V and the set of all residual edges Ef
(Gf = (V,Ef)).

We can partition V into two subsets P and Q with Q = V − P and s ∈ P and t ∈ Q. This
is called a cut and we denote such a cut with [P,Q]. The capacity of a cut is defined as c(P,Q)
and the cut with the minimum capacity of all cuts in the graph is referred to as minimum-cut
([P,Q]∗). Let f be a flow with maximum value in G, then ∃[P,Q] such that |f | = c(P,Q) and we
have [P,Q] = [P,Q]∗. This is the maximum flow minimum-cut theorem. A proof is given in [14]

Note that we can support multiple sources S = (s1, . . . , sk) and sinks T = (t1, . . . , tl) by convert-
ing our original graph G = (V,E) to G′ = (V ′, E′). To obtain G′ two vertices s∗ and t∗ are added
to original V . These are denoted supersource and supersink receptively, to the V . Furthermore:

16

∀si ∈ S : (s∗, si) is added to V ′ and ∀ti ∈ T : (ti, t∗) with infinite capacity is added to E, now
called E′. The solutions for the maximum flow problem on G and G′ will be equivalent.

In addition the the assumptions made in the previous sections we make the following assumption
for the maximum-flow problem.

Assumption 2.3.1. If arc (v, w) ∈ E then (w, v) ∈ E.

If (w, v) /∈ E, we add (w, v) with c(w, v) = 0.

2.3.2 Overview

Specialized algorithms for the maximum flow problem are based on four different methods. Fulk-
erson and Dantzig [24] applied the Simplex method to the problem. Ford and Fulkerson [39]
gave a method based on augmenting paths. Edmonds and Karp [19] showed the algorithm had
a polynomial time bound when augmenting along shortest paths, which are found using Breadth
First Search (BFS). Dinitz [18] constructed a method based on calculating blocking flows. Fi-
nally, Goldberg and Tarjan [29] published the push-relabel method. The best theoretical bound
is achieved by Goldberg and Rao [28] based on Dinitz’ blocking flow method. They achieve a
O(min{m3/2, n2/3m} log(n2/m) logC) (with C the largest capacity) worst case bound.

2.3.3 Algorithms

Ford-Fulkerson

The algorithm of Ford and Fulkerson [39] is based on finding paths from the source to the sink in the
residual network Gf , called augmenting paths Pf = {vs, . . . , vt} with ∀vi ∈ Pf − {vt} : (vi, vi+1) ∈
Ef . Such an augmenting path can be found with, for example, BFS. The flow along such a path
can be augmented with the minimum capacity of an arc on this path. A drawback of this method
is that each augmentation might only carry a small amount of flow.

Capacity Scaling

The capacity scaling algorithm by Edmonds and Karp [19] solves the maximum flow problem by
ensuring that in each step a sufficiently large value is augmented. They define a ∆-residual Graph
(Gf (∆)). Such a graph only contains those residual edges that have a capacity larger then ∆. In
each iteration the algorithm looks for augmenting paths in Gf (∆) and flow is augmented along this
path. Once no more augmenting paths exist the algorithms reduces ∆ with ∆

2 and the next iteration
commences. The algorithm terminates when no more paths exist and ∆ = 1. Because Gf (1) = Gf
the algorithm terminates with a maximum flow. The algorithm has a worst case complexity of
O(m2 logC).

Shortest Augmenting Path

As it’s name suggests the Shortest Augmenting Path algorithm only augments along the current
shortest path from source to sink in the residual graph. It spends an average time of O(n) per
augmentation by determining this shortest path in a smart way. It has a time complexity of
O(n2m).

17

Push-Relabel

The push-relabel algorithm takes a different approach. Instead of augmenting flow along a path
from source to sink it makes local adjustments by relaxing the flow conservation constraint (2.3) and
using 2.4 instead. It thus allows vertices to have excess flow. Such a flow, which allows vertices to
have excess flow, is called a pseudo-flow. During execution a labeling of the vertices is maintained.
The algorithm then relies a push and a relabel operation to make local modification in order to
transform the pseudo-flow into a flow. The push operation causes flow to be pushed to a vertex with
a lower label while the relabel operation increases the label of a vertex if there is no neighbor with a
lower label. Conceptually this labeling first causes flow to flow towards the sink. In later stages of
the algorithm excess flow will be pushed back towards the source. The algorithm terminates when
no vertex has excess and the pseudo-flow is in fact a maximum flow.

∀v ∈ V − {s, t} :
∑

(v,w)∈E

f(v, w)−
∑

(w,v)∈E

f(w, v) ≥ 0 (2.4)

2.3.4 Empirical Results

In [6] Anderson and Setubal compare an implementation of the push-relabel algorithm with imple-
mentations of Ford-Fulkerson’s, Edmonds-Karp’s and Dinitz’ algorithms. In addition they evaluate
different strategies and heuristics for the push-relabel algorithm. The performance of the push-
relabel algorithm is clearly superior to the other implementations except for a class of acyclic dense
graphs where Dinitz’ algorithm performs better. However, the use of the global relabeling heuristic
is essential. The performance of their implementation based on a queue is shown to be most robust,
and it never loses with a wide margin. The highest label strategy often performs best, but per-
forms far worse on some problem classes. Nguyen and Venkateswaran [49] confirm the conclusions
made in [6]. Their tests show the importance of the global relabeling heuristic and conclude the
implementation based on a queue performs best in general. A global relabeling frequency of once
every n relabellings works well in practice.

2.4 Minimum-Cost Flow Problem

In this section the minimum-cost flow problem is discussed. We first shortly describe a number of
classical approaches to solve the problem and end our discussion with a more elaborate review of
the Successive Approximation by Cost Scaling algorithm. This algorithm is closely related to the
push-relabel method treated in the previous section. Empirical results indicate implementations of
this algorithm achieve good practical performance.

2.4.1 Definition

We obtain a minimum-cost flow problem by extending the definition of the previously given Max-
imum flow problem. An additional cost u(v, w) is associated with each arc (v, w) ∈ E, and a
demand d(v) is specified such that equation 2.5 holds. Here our objective is to minimize the cost:∑

(v,w)∈E f(v, w)× u(v, w). We denote the largest value of u(v, w) with U .
We extend the definition for the residual network to apply to the minimum-cost flow problem.

The residual capacity rf (v, w) of an edge (v, w) ∈ E is defined as rf (v, w) = c(v, w)−f(v, w) and if

18

rf (v, w) > 0 we call (v, w) a residual edge. The cost u(v, w) is associated with the residual edge. In
addition we add arc (w, v) with rf (w, v) = f(v, w) and cost −u(v, w) if rf (w, v) > 0. The residual
graph Gf consists the vertex set V and the set of all residual edges, Ef , with positive residual
capacity (Gf = (V,Ef)).

∑
(s,v)∈E

f(s, v) = d (2.5)

Assumption 2.4.1. If arc (v, w) ∈ E then (w, v) ∈ E.

If (w, v) /∈ E, we add (w, v) with c(w, v) = 0.

Assumption 2.4.2. No arc costs are negative.

If there is such an arc (v, w) we can reverse its direction and add (w, v) with cost c(w, v) = −c(v, w).

2.4.2 Overview

Already as early as 1951 Dantzig [15] applied the simplex method to the minimum-cost flow problem.
Edmonds and Karp [19] published the successive shortest path algorithm based on reduced costs.
The original cycle canceling algorithm is due to Klein [42] and was improved upon by Goldberg and
Tarjan [31] and Barahona and Tardos [7]. The relaxation method (not discussed here) is due to
Bertekas and Tseng [9]. Currently the best bounds are achieved by using scaling approaches. The
first to apply scaling approaches to the problem were Edmonds and Karp [19]. In 1987 a method
using cost scaling was published by Goldberg en Tarjan [26]. Based on this method they established
a O(n3 log(nU)) worse case bound. Ahuja et al.[1] applied scaling to both cost and capacity. Their
best algorithm runs in O(nm log log(C) log(nU)). The best strongly polynomial algorithm is due
to Orlin [52, 53] with an O((m log n)(m+ n log n)) worse case behavior.

2.4.3 Algorithms

Successive Shortest Path

The successive shortest path algorithm finds a shortest path based on reduced costs in the residual
network. In each iteration it starts at a node with excess flow (v) and finds a shortest path
to a node with deficit flow (w). The reduced cost of an arc up(v, w) is defined as up(v, w) =
u(v, w) + p(v) − p(w), for a given price function, p : V → R. Let P denote such a shortest path,
with (i, j) an arc on this path and rij the residual capacity of such an arc. Furthermore, let be
e(v) the excess of start node v and e(w) the demand (negative excess) of the destination node.
Once such a path is fond we augment δ units of flow along this path. Where δ is defined as:
δ = min{e(v),−e(w),min(i,j)∈P {rij}}.

An important drawback of the algorithm is that there is no guarantee how much flow is aug-
mented in each step, in fact each step might carry only a small amount of flow. The capacity scaling
approach improves this method by ensuring each augmentation augments at least a minimum value
of flow.

19

Cycle Canceling

In contrast with the previous successive shortest path algorithm the cycle canceling algorithm[42]
starts with a feasible flow, which is obtained by a single execution of any maximum flow algorithm.
The algorithm then continues to update this feasible flow by repeatedly finding negative cycles in the
residual network and augmenting flow along these cycles. This approach is based on the observation
that, if there is a negative cycle in the residual network, then it is possible to send flow along this
cycle. A new feasible solution with a reduced cost is obtained in this way. Alternative approaches
based on this method augment flow along cycles which result in maximum improvement[31], and
[7] augments along the minimum mean negative cost cycle.

Capacity Scaling

This approach improves the successive shortest path algorithm by making sure that in each iteration
the algorithm augments a sufficiently large amount of flow. In each iteration a shortest paths, with
a minimum capacity of at least δ, are found, between nodes with supply and demand. Flow is sent
along such a path. Once there are no more paths with a capacity of at least δ, the value of δ is
halved and the next iteration commences.

Successive Approximation by Cost Scaling

It is possible to obtain an efficient algorithm by scaling on cost, instead of capacity. Goldberg
and Tarjan [26] described such an algorithm. The reduced cost of an arc up(v, w) is defined as
up(v, w) = u(v, w) +p(v)−p(w). For a given constant ε > 0 and a price function, p : V → R, a flow
is ε-optimal with respect to p if ∀(v, w) ∈ Ef up(v, w) ≥ −ε. The algorithm iteratively transforms
an ε-optimal flow into an ε

α (with a constant α > 1) pseudo flow, which is then updated to become
an ε

α -optimal flow. In this way the algorithms successively obtains a better approximate of the
minimum cost flow until its approximate is in fact a minimum cost flow.

2.4.4 Empirical Results

Empirical results for the minimum-cost flow problem are less decisive as those reported for the max-
imum flow problem. Goldberg and Kharitanov [30] published a study of their implementation of
the Successive Approximation algorithm, and comparing with an implementation of the Relaxation
Algorithm (RELAXT)[9]. They conclude that in general the Successive Approximation performs
well, usually better then RELAXT. However, on some problem instances it performs worse. Gold-
berg later published a paper [27], that extends those previous results. He compares a new improved
implementation (CS21) of the successive approximation algorithm with RELAXT, and two imple-
mentations of the simplex method (NETFLO [41] and RNET [33]) applied to the Minimum Cost
flow problem. The conclusion in this work supports the earlier results by Goldberg and Kharitanov.
The CS2 implementation usually outperforms the other algorithms, and never loses with a large
difference. Earlier empirical studies showed the network simplex and relaxation methods are su-
perior to other non-scaling methods, such as successive shortest path and cycle canceling methods
[3].

1Source available at http://avglab.com/andrew/soft.html.

20

http://avglab.com/andrew/soft.html

2.5 Dynamic Flows

Until now all problems discussed were static flows and the problems did not incorporate a time
component. However, in many problems a time component is essential. In this section we give the
definition of a dynamic graph and specify three problems that contain a time element. Specifically,
these three problems are the maximum dynamic flow, earliest arrival and quickest flow problem.
Finally, we give a method to solve the quickest flow problem by converting a dynamic graph into
a static minimum cost flow graph, which is called a time expanded graph. The solution to the
quickest flow problem can be obtained by finding a minimum cost flow in the time expanded graph.
An evacuation scenario can be modelled as a quickest flow problem.

2.5.1 Definition

The definition of a dynamic graph (Gτ = (V,Eτ) is similar to that of a minimum cost graph. Here
instead of costs we associate a transit time τ(v, w) with τ(v, w) ≥ 0 with each (v, w) ∈ E. Let Θ
denote the finite ordered set of time steps. A dynamic flow is defined as function f : E,Θ → R.
We use the notation that f(v, w, θ + τ(v, w)) = −f(w, v, θ).

We modify the various constraints to apply to dynamic flows.

∀(v, w) ∈ E,∀θ ∈ Θ : f(v, w, θ) ≤ c(v, w) (2.6)
∀(v, w) ∈ E,∀θ ∈ Θ : f(v, w, θ) = −f(w, v, θ) (2.7)

∀v ∈ V − {s, t},∀θ ∈ Θ :
∑

(v,w)∈E

f(v, w, θ) +
∑

(w,v)∈E

−f(w, v, θ) = 0 (2.8)

The flow value of a dynamic graph is defined as |f | =
∑
v∈V

∑
θ∈Θ f(v, t, θ). Here t denotes

the sink. Several problems are formulated based on dynamic graphs. The maximum dynamic flow
problem aims to find a flow such that |f | is maximized within a given time bound. The solution to
the earliest arrival problem maximizes the amount of flow that reaches the sink in each time step.
The quickest flow problem attempts to minimize θ ∈ Θ such that all demand has reached the sink.

2.5.2 Time Expanded Graphs

We can obtain a time expanded graph Ge = (Ve, Ee) from a dynamic graph Gτ = (V,Eτ) and a time
horizon Θ as follows. Graph Ge is a static graph and each edge (v, w) ∈ Ee has capacity c(v, w)
and cost u(v, w) properties according to the definition of the minimum cost flow problem.
∀θ ∈ Θ,∀v ∈ V we create a copy ve. Here vi represents vertex v at time i. We denote the set

of these time copies with Ve. ∀(v, w) ∈ Eτ we add edge (vi, wj) to Ee if j − i = τ(v, w) and assign
it a capacity c(vi, wj) = c(v, w) and cost u(vi, wj) = i+ τ(v, w). Thus an edge is assigned a weight
equal to the timestep at which flow leaves the concerned edge. In this way the edge weights increase
over time. This approach is called the turnstile costing approach by Chalmet et al.[12]. Jarvis and
Ratliff [37] proof that it is possible to solve both the quickest flow problem and the earliest arrival
problem at the same time, when using this approach. To deal with multiple sources and sinks we
can add a supersource and supersink like we did with static flows.
We can now find a maximum dynamic flow in Gτ by solving the maximum flow problem in Ge and
find a solution to the quickest flow and earliest arrival problems by solving the minimum cost flow
problem in Ge [3].

21

2.6 Conclusion

In this chapter we provided a brief description of the main ideas behind algorithms relevant for our
work. Section 2.2 defines the shortest path problem and gives Dijkstra’s algorithm for solving it.
Within the navigational domain this algorithm is commonly used to solve the problem. In order
to gain a substantial speed-up in practical performance a number of heuristics can be used. In
Section 2.3.4 and 2.4.4 we reported on empirical results comparing a wide range of algorithms for the
maximum flow and minimum-cost flow problems respectively. Based on the reviewed reports we can
conclude that the push-relabel and successive approximation by cost scaling algorithm constitute
to the state-of-the-art algorithms for these two problems. The push-relabel often outperforms
competitive algorithms by a significant margin [27], provided that the global relabeling heuristic is
used. For the minimum-cost problem the reported results are less decisive, however in general the
successive approximation algorithm outperforms competing algorithms and never loses by a wide
margin. As an additional advantage these algorithms allow intuitive parallelization. This answers
Research Questions 1 and 2. Respectively

What are the state-of-the-art algorithms and heuristics for the single-source shortest
path, maximum flow and minimum-cost flow problems?

and

Which of these algorithms are best suited to be implemented?

Finally, we defined a dynamic graph and discussed a method to obtain solutions for the maximum
dynamic, earliest arrival and quickest flow problems. This answers Research Question 4:

How can we introduce the notion of time in these algorithms?

22

Chapter 3

Architectural Design

In this chapter the architectural design of the framework is described. This description is structured
according to the Institute of Electrical and Electronics Engineers (IEEE) 1471[50] recommended
practice. This document defines common concepts, terminology and a methodology for creating an
architectural description for software systems. An architectural document has to identify stakehold-
ers interested in the system and the concerns they have regarding the system. Then requirements
applicable to the system must be elicitated and documented. Based on the concerns of the stake-
holders and these requirements an architectural design is constructed. Such a design consists of a
collection views. Each conforms to a specific viewpoint and highlights certain aspects of the system.
A viewpoint specifies how a view is constructed, it provides a rationale for the view, and it lists the
diagrams or models that are used to illustrate the view. Furthermore it states which stakeholders
and concerns are addressed by the view.

Viewpoints are selected based on Kruchten’s 4+1 Model of Software Architecture [43]. This
model defines five viewpoints1 and specifies how views conforming to these viewpoints can be
constructed. The five defined viewpoints are the logical, process, development, physical and scenario
viewpoint. This last scenario viewpoint is used to relate the four previous ones with one another.
For this reason the scenario view represents the ’1’ in ’4+1’. All viewpoints are further described
in Section 3.3. In the discussion of the physical viewpoint we argue that the physical view is not
relevant for a framework. We omit the physical view, because of the arguments that are given in
this discussion.

The next section identifies various stakeholders and lists concerns for each of them. Section 3.2
reports on the requirements for the framework. It aims to answer Research Question 7:

What are the requirements for such a framework?

The section following the requirements specifies the selected viewpoints. The consecutive sections
give the different views corresponding to the specified viewpoints. In order: the logical view in
Section 3.4, the process view in Section 3.5, the development view in Section 3.6 and finally the
scenario view which connects the three previous views. This collection of views gives an answer to
Research Question 8:

What design satisfies the requirements?
1Kruchten actually uses the term view, however this term maps to viewpoint in the IEEE 1471 specification.

23

Finally, it can observed from the requirements and design how the framework addresses Research
Question 5:

In what way can we incorporate dynamic changes of structure and properties?

3.1 Stakeholders and their Concerns

In this section we identify all stakeholders that are concerned with the framework at some point
during its life cycle. Specific concerns are elicitated for each of these stakeholders. Due to the open
nature of the project, certain roles have no concrete representation. However, their concerns are
nevertheless important, therefore it is decided to still list those. To validate the completeness of
the listed stakeholders and concerns a software engineer at Logica was interviewed.

To indicate a priority among concerns a ’+’ is used to specify concerns of greater importance.
We distinguish between two groups of stakeholders, those involved with developing the framework
and those who instantiate the framework to build a specific application. These two parties could
be part of different organizations or there might be some overlap between these functions.

• Developer: management, designers, developers and maintainers.

• Acquirer: management and application developers (the users of the framework).

3.1.1 Developer

With the developer we mean the organization responsible for initiating the development of the
framework based on this architecture document. Once the initial development has been completed
they will be responsible for maintaining it, which might involve additional development cycles to
provide new functionality.

Management

+ Feasibility. It should be feasible to develop the framework within the given constraints,
including skill of developers, time allocated for the project.

+ Applicability. One of the aims of a framework is to enable code reuse. To that end it should
be applicable within its intended domain.

• Documentation. A framework’s utility depends for a large part on the ease of use for its
users. Properly documenting a software artifact, however, is an extensive effort. This should
be taken into account by the management.

• Interoperability. by definition a framework is not a complete application but will have to work
together with other pieces of software. The integration with other software will be easier if
the framework is designed with interoperability in mind. The use of standards supports this
concern.

• Portability will allow the framework to be deployed on different platforms potentially increas-
ing its applicability.

24

Designers

The designers are responsible for producing a clear design based on the requirements and concerns
of stakeholders.

• Clear and unambiguous requirements.

• Complete and consistent requirements. It must be possible to produce a feasible design from
the requirements.

Developers

These are the actual developers of the framework. They are responsible for implementing the
framework such that resulting artifact meets the requirements.

+ Clear and understandable design. The developers have the task of creating the framework
based on the knowledge contained in the architecture and technical designs. In order to fulfill
this task efficiently, it is important that the required knowledge is readily and easily available.

• Documentation. Writing documentation is often regarded as a time consuming and tedious
job. Enough time should be allocated to properly document the framework.

• A modular structure. This allows effective work division among team members.

• Technologies used for implementing the framework. Preference is given to mature, well sup-
ported technologies for which expertize is available within the team.

Maintainer

The maintainer is responsible for maintaining the framework, i.e. fixing bugs and adapting the
framework to newly discovered requirements during the lifetime of the framework. The original
developer team might be assigned to this task, but it is also possible that another team assumes
this role. If a new team takes on this task, then it is important they can quickly familiarize
themselves with the overall architecture and structure of the framework.

+ Documentation: proper and clear documentation allows them to understand the structure of
the framework and as a result it both increases their work efficiency and quality. They will
also be responsible for keeping the documentation up-to-date.

+ Modularity: A modular structure will allow them to, in general, make quick fixes without
affecting the framework as a whole.

3.1.2 Acquirer

The Acquirer denotes the party which uses the framework to implement a specific application.
Their management needs to be able to assess the suitability of the framework for their application
[22]. Once it is decided, that the framework will be applied in development of the application, the
developers within this party will use the framework to develop the specific application at hand. In
order to fulfill their task, they largely depend on the documentation of the framework. A number
of concerns follow directly from ease-of-use. In this section we identify concerns which hold in
general for any acquiring party, this in contrast with application specific requirements. Of course,
the weight of certain concerns will depend on specific application details.

25

Management

With this category we mean the group of people responsible for evaluating the framework and
deciding on whether it is suitable for the problem at hand. A number of concerns are specific to the
intended use of the framework. However, we can identify some general concerns. These are listed
next.

+ Ease of use for developer team.

• Cost. The cost involved with using the framework as opposed to just developing this specific
application. This depends on the fit between the framework and the intended application
domain, the effort required to learn to work with the framework and whether it is expected
more similar applications will be build. If more similar applications are expected to be build,
then the additional cost of learning to use or developing a framework is justified by the
expected gain in application development productivity.

• Extensibility. The effort required to tailor the framework to the specific needs of the appli-
cation, ideally the frameworks fits the application domain perfectly and hardly any effort is
required to instantiate it.

• Maturity and stability. The external interfaces of a framework must remain stable. This
will ease migration to a new version of the framework, and, if during the evolution of the
framework its exported interfaces change, then this might lead to a cascade of changes in the
application code. A mature framework, and in general thoroughly used code, is expected to
have fewer bugs and to be more reliable and robust [22]. These properties can be acquired by
sound design and the investment of effort over time.

Users of the framework

The users of a framework are actually the developers building a specific application using the
framework. As such they are most concerned with the ease-of-use of the framework, which, among
other things, depends on clarity of the documentation.

+ Ease of use: it should be relatively easy to build a new application with the framework. This
concern depends on several things, for example clear documentation and stable interfaces.

+ Documentation: in order to instantiate the framework and construct application with it
the developers need to understand how the framework is designed and how they can easily
integrate the framework into their application. Good documentation, explaining the design
of the framework and how to use it, facilitates this.

• Stability. The interfaces exported by the framework should remain stable. It becomes difficult
to migrate to a new version of the framework, if the interfaces it exports change during the
evolution of the framework. Such a change in external interfaces might cause a cascade of
changes in the application code.

• Interoperability. Frameworks have to work together with other components. The use of
standards supports this and makes it easier to connect frameworks with other artifacts. This
indirectly supports the ease of use of the framework.

26

• Portability. If a framework does not support a target platform initially, it may very well be
nearly impossible to port it to that particular platform [60].

• Scalability. The performance of an application based on the framework will depend on the
implementation of the framework. To avoid the situation, in which the framework becomes
the bottleneck of the system, it should be designed with scalability in mind.

3.2 Requirements

Requirements elicitation and specification are an essential part of a software project, because all
subsequent phases of design and development depend on it. Incomplete or flawed requirements
are very costly to correct in later stages of the project and are a major risk to project success[20].
In this section we list functional and quality requirements, followed by some constraints imposed
on the solution. Functional requirements specify the concrete behavior of the system. In contrast
quality requirements describe often subjective general properties, such as maintainability, of the
system. Sometimes the term non-functional requirements is used instead of quality requirements.
This section thus provides an answer to research question 7:

What are the requirements for such a framework?

The requirements listed here are derived from the project description given in Chapter 1, the
theoretical background discussed in Chapter 2, the authors own ideas and a discussion of these
ideas with a software engineer at Logica. Based on these requirements a design for the framework
will be constructed, which is given in subsequent sections.

3.2.1 Functional Requirements

Functional requirements define the behavior of the system. They are listed in Figure 3.1, by
category. We identify five categories, with ’operations’ being a subcategory of ’algorithms’:

• General: This category consists of requirements applicable to the system as a whole and
regarding the exposure of functionality to external applications.

• Graph management: Contains requirements imposing constraints on the Graph data structure
used in the system and those related to the administrations of Graphs.

• Algorithm management: Contains requirements regarding the management and execution of
algorithms.

• Entity management: Contains requirements regarding the position of entities and updates of
these positions.

• Algorithms: This category and the Operations subcategory list all requirements with respect
to the actual algorithms and operations which should be implemented.

The next sections provide further clarification.

27

Requirements

Algorithm Management

+ REQ01 - Algorithm management

+ REQ19 - Execute algorithms on graph

+ REQ20 - Configure algorithms

+ REQ21 - Monitor algorithms

+ REQ22 - Execute preprocessing and transformation steps

+ REQ58 - Execute multiple tasks concurrently.

+ REQ59 - Construct result

Algorithms

+ Operations

+ REQ28 - Dijkstra

+ REQ29 - Push-relabel for maximum flow

+ REQ30 - Breadth first search

+ REQ39 - Successive-approximation by cost scaling

Operations

+ REQ32 - Check graph for consistency

+ REQ33 - Check which algorithms are supported by the graph.

+ REQ34 - Create residual network

+ REQ35 - Transform undirected to directed

+ REQ36 - Convert real property values to integers

+ REQ37 - Add arcs with 0 capacity

+ REQ38 - Add arcs with infinite costs

+ REQ39 - Transform to dynamic graph

+ REQ40 - Add support for minimum capacities

+ REQ41 - Transform negative arcs to non-negative ones

+ REQ42 - Replace unbounded capacities by bounded ones

+ REQ43 - Support for splitting nodes

+ REQ44 - Remove arcs with opposite directions

+ REQ45 - Remove double arcs

+ REQ47 - Detect negative cycles

+ REQ63 - Generic facility to add transformations

(from Algorithms)

Graph Management

+ REQ02 - Graph Management

+ REQ03 - Graph datastructure

+ REQ12 - Load graph

+ REQ13 - Save graph

+ REQ14 - Modify graph

+ REQ15 - Clean graph

+ REQ17 - Support various properties

+ REQ56 - Facility to link external model to graph model

+ REQ57 - Regulate access to the graph

General

+ REQ10 - Log facility

+ REQ11 - Configuration facility

+ REQ23 - Expose interface to manage graphs

+ REQ24 - Expose interface to modify graph model

+ REQ25 - Expose interface to execute algorithms

+ REQ26 - Expose service which publishes results

+ REQ27 - Expose facility used to update positioning data

+ REQ61 - Initialize framework

+ REQ62 - Unique ID facility

Entity Management

+ REQ00 - Entity management

+ REQ04 - Add entity

+ REQ05 - Remove entity

+ REQ06 - Update entity

+ REQ54 - Modify graph based on received updates

Figure 3.1: Functional Requirements

28

General

This category contains requirements relating to functionality to manage and configure the frame-
work as a whole. Requirements specifying how the framework interacts with external components
are listed in this category as well. Often, requirements in this group are related to specific require-
ments in one of other categories. For example, the requirement for a ’Unique Id facility’ (req62),
stems from the requirement in the Graph management category specifying it should be possible to
relate the external environment to the Graph data structure (req18).

Graph Management

Requirements in this group are related to the construction and management of the graph data
structure. An internal Graph data structure has to be defined and functionality to load and create
a Graph from a source must be provided. As noted previously there is a wide range of sources are
conceivable and, therefore, it should be easy to add support for new sources. It is only required
to offer facilities which allow addition of these modules with minimal effort. It is not required to
provide an implementation. Apart from the functionality to load a graph, it has to be possible to
save the internal graph model, but it is not required to support translation between various data
formats. The Graph data structure should be flexible in order to support various properties required
by different algorithms. Furthermore, there should be some facility which allows an application to
relate the elements of the Graph data structure to the external environment.

Algorithm Management

Here we deal with requirements that relate to the management and execution of algorithms. Re-
quirements concerning the actual implementation of algorithms and support transformations on
graphs are mentioned in the next section. Most requirements in this group are self explanatory;
with the ability to configure algorithms we mean support for setting various parameters and select-
ing specific heuristics.

Algorithms

In this sections we describe requirements concerning the concrete algorithms that will be imple-
mented. Often graph algorithms require certain preprocessing steps to be executed before the actual
algorithm is run. Additionally, some algorithms allow for the implementation of heuristics which
can sometimes drastically improve performance. The algorithms and heuristics mentioned here are
discussed in Chapter 2.

Algorithms:

• Breadth first search. A basic search algorithm which is used as preprocessing step or as
subroutine within an algorithm.

• Dijkstra. In Chapter 2 a number of heuristics are discussed. These heuristics are considered
as ’nice-to-have’ features, but not essential to the initial version of the framework.

• Push-Relabel for the maximum flow problem, based on a FIFO-queue implementation and
the global relabeling heuristic.

29

• Successive-approximation by Cost Scaling for the minimum-cost flow problem, which is related
to the previously mentioned Push-Relabel .

Operations and Transformations:

The different graph algorithms make different assumptions about the structure and properties as-
sociated with the graph. This category lists a number of requirements dealing with transformations
of the graph and ensuring that it is and remains consistent. Most operations are derived from the
various assumptions algorithms make about the structure of the input Graph. (Consult Chapter 2
for an explanation). Most important is a facility which allows easy addition (req63) and execution
of new graph operations. A few operations are strong requirements, namely; req32, req33, req34,
req37. The other graph operations can be implemented ’on-demand’.

Entity Management

Requirements in this group are related to entity management. The framework keeps track of the
position information for groups of entities, in order to support novel functionality like anticipated
traffic congestion. When the position of an entity is updated by an external application the Graph
has to be updated. To avoid continuous changes to the graph structure, modifications can be
applied in batches.

3.2.2 Quality Requirements

Sommervile [59] advises to specify quality requirements in terms of objective and measurable values.
However, he also mentions that in practice the effort and cost required to objectively measure these
requirements may not be justified. Nevertheless, a description of quality requirements is valuable
even when not objectively measured. If for each requirement a priority is indicated, then developers
can use these as a goal or guideline when developing the system.

Zeist et al.[61] give the Quint22 framework for specifying software quality. This framework
is an extension of the International Organization for Standardization (ISO) 9126[36] model for
software quality. It is shown graphically in Figure 3.2. This model defines a number of software
quality properties and several sub characteristics for each property. For a characteristic a number
of concrete indicators are given, which can be used to quantify ’quality’. For example it defines
a property ’reliability’ with sub characteristics maturity, fault tolerance, recoverability, availability
and degradability. For availability it gives indicators such as ’availability ratio’ and it specifies a
protocol, that indicates how such an indicator can be measured. The added benefit over the ISO
standard is that it gives such a protocol for all indicators. However, some characteristics are difficult
to measure and as a result the validity of these specifications varies. In fact, the authors themselves
indicate a validity rating for each of the protocols.

From this collection of characteristics we selected a small subset, which we think are key to the
framework. We intend to use these requirements as guideline for design and development of the
framework and will not make objective measurements. The definitions are adapted from [61].

• Changeability. The effort required to modify or add new functionality to the framework. By
nature a framework has to be modified and extended in order to instantiate it to form a
complete application. Changeability is therefore a characteristic of prime importance for the

2http://www.serc.nl/quint-book/

30

http://www.serc.nl/quint-book/

success of a framework. A structure with highly decoupled modules facilitates changeability.
Such a structure enables replacement of a certain module with a different implementation
while limiting the impact to other modules.

• Reliability and fault tolerance. The ability of the framework to remain functional, even if
exceptions or errors occur. The framework will support the execution of various algorithms
and operations. Therefore it is important that the framework is able to continue operating
normally even after a fault occurs during the execution of an algorithm. Moreover a badly im-
plemented algorithm may not terminate and the framework must be able to monitor execution
and abort if necessary.

• Understandability and clarity. The effort that is required by users of the framework to recog-
nize functionality of the framework and to understand the logical concepts behind it. To use
the framework it must be clear to developers what functionality is offered by the framework
and how this functionality can be used and extended. This requirement can be met by clear
coding standards and proper documentation.

Figure 3.2: Quint2 model for software quality.

3.2.3 Constraints

In this sections we list and describe a number of constraints which limit the solutions space.

31

• Time allocated to the project. The deadline for completion of the encapsulating project is
set to October 2008. The project consists of the creation of additional artifacts apart from
the implementation of the framework, hence not all available time can be assigned to the
inception of the framework.

• Language used to implement the framework: Java. This constraint stems from the expertise
available within the development team. It will require time and effort to learn a different
programming language and associated libraries. Using a different programming language
is therefore expected to increase the risk involved with the project to a level which is not
acceptable.

In Chapter 3.6 these constraints will be evaluated with the purpose of identifying to what extent
they restrict the solution.

3.3 Viewpoints

This sections describes the different viewpoint, lists which stakeholders have interest in particular
views and which requirements are addressed by each view.

3.3.1 Logical Viewpoint

The logical view shows how functional requirements are mapped onto static modules and rela-
tionships between them. These modules translate into collaborations of classes in object-oriented
programming languages. This translation is made by developers based on this view. Furthermore
it eases understanding, and thus usability, of the framework by decomposing it in smaller mod-
ules. Apart from the clear interest developers have in the logical view, it is also of interest to the
maintainers, users of the framework and management parties. Maintainers use the logical view in
conjunction with the process view to gain understanding of the structure of the framework and to
determine where the framework needs to be adapted in order to add support for new requirements.
Users utilizing the framework to construct an application can determine from the logical view at
which points the framework interacts with external applications. Managers can be assured the
framework provides the required functionality.

The logical view uses a component diagram to give a high level overview of the framework and
its relation with external components. An internal structure diagram is used to provide insight in
the internal decomposition of the framework into modules and their interrelationships.

To summarize: Stakeholders with interest in this view:

• Developer: management, developers and maintainers.

• Acquirer: management, application developers.

Requirements addressed:

• Functional requirements.

• Maintainability: changeability.

• Usability.

32

3.3.2 Process Viewpoint

The process view gives a view of the system at run-time. As such it deals with processes, threads
and issues of concurrency and distribution. In this role it primarily addresses issues of scalability
and fault tolerance. It shows how abstractions of the logical view are mapped onto processes and
threads. In general the process view complements the logical view and provides an understanding
of the behavior of the system at runtime. As such it is of particular interest to developers of the
framework, application developers and maintainers.

In the process view, sequence diagrams and process diagrams are used to further illustrate this.
The process diagram shows how the functionality of framework is decomposed into processes and
threads, whereas the sequence diagrams illustrate how common requests are handled by the system.
They show how different elements of the framework work together at runtime to provide results for
these requests.

Stakeholders with interest in this view:

• Developer: Developers and maintainers.

• Acquirer: Application developers.

Requirements addressed:

• Efficiency: scalability.

• Reliability: fault tolerance.

3.3.3 Development Viewpoint

The purpose of the development view is to provide a decomposition of the framework into smaller
development tasks. It presents a general strategy to accomplish these tasks and gives a road map
based on this strategy. This road map can be used to keep track of the progress of the develop-
ment effort. The development view can therefore confirm the feasibility of the project and is of
particular interest to the management of the developing organization. Clearly the developers are
also concerned with this planning. In addition, the development view specifies and motivates dif-
ferent technologies used to implement the project. The choice of technologies will influence quality
requirements of portability, applicability and conformance. In this view it is argued that the con-
straints specified in Section 3.2.3 are not overly constraining and that the project is feasible within
these constraints.

Stakeholders with interest in this view:

• Developer: Management and developers.

Requirements and constraints addressed:

• Feasibility.

• Constraints: Java and Java Remote Method Invocation (RMI).

33

3.3.4 Physical Viewpoint

The physical viewpoint illustrates the mapping of processes onto computational nodes or servers
and their physical interconnection. However, such a mapping will mostly depend on the application
that uses the framework. For example a web service based on the navigation framework might
deploy the framework on multiple servers. The requests from users can then be balanced across
these servers. Therefore the physical view is omitted from the remainder our description; this view
must be addressed by the application instantiating the framework.

3.3.5 Scenario Viewpoint

The purpose of the scenario view is to connect the other views, it points out how each view shows
the system from a different angle and how they complement each other. It does so by specifying a
limited number of relevant use cases. It shows how the system realizes the use cases and does so
by redirecting readers with specific concerns to the view addressing this concern.

3.4 Logical View

The view described in this section conforms to the logical viewpoint. As such it explicitly models
how the functional requirements of the system map to abstract modules. It also shows how these
modules relate to each other and the external world. A component diagram is used to visualize
interaction between the framework and the external components. To convey the internal structure
of the framework, a composite structure diagram is used. Source code is written by developers based
on the presented static structure. The logical view is therefore of particular interest to developers
of the framework. Moreover it is also of interest to application developers, because it provides
insight into the relation of the framework with external components. Furthermore management
stakeholder can verify that the specified functional requirements are met.

To complement the logical view the process view in Section 3.5 shows the system in terms
of processes and threads, and defines how communication is handled. The next section presents
the general high level structure of the framework. The following section explains the internal
structure of the framework in terms of modules and their interrelationships. In addition it assigns
responsibilities to each module. Section 3.4.2 gives an overview of how external applications interact
with the framework.

3.4.1 General Structure

The main architectural style in the design is the Model-View-Controller pattern. The framework
implements the model and the controller, but leaves the implementation of views to applications
will be build upon the framework. The usage of this pattern allows decoupling between the model
and the views. This decoupling is especially important for our framework since the framework itself
does not implement a view. The model consists of the Graph data structure and the algorithms
which operate upon them, and the controller consists of various management modules as depicted
in Figure 3.4. Application specific views communicate with the framework by means of the various
ports described later in this section.

34

Components

Navigation FrameworkMap

PositioningFeedback

Figure 3.3: External Components

High Level Overview

Figure 3.3 gives a high level overview of the framework and visualizes connections between the
framework and three external components (Map, Feedback and Positioning in the figure). The
map component represents the environment from which a Graph data structure is constructed,
this Graph is input to the framework and navigation algorithms are executed on this Graph. The
map component is also responsible for communicating changes in the environment (think of blocked
roads for example) which trigger a modification to the Graph structure. The feedback component is
responsible for processing the output returned by the framework, possibly relaying and presenting
them to users. Finally the positioning component is responsible for sending property (e.g. position)
updates of entities.

3.4.2 Internal Structure

The navigation framework consists of five internal modules which work together to provide naviga-
tion functionality. In this section we discuss all five of them, reason what their responsibilities are,
how they interact with other modules and how they relate to the functional requirements as spec-
ified in Section 3.2.1. The internal structure is visualized in Figure 3.4. This diagram type shows
how components are composed of their internal parts. It shows provides and requires interfaces
for parts and the interfaces exposed to external components by means of ports (labeled P# in the
figure). Internal parts are assembled by connecting matching provides and requires interfaces.

Interaction with External Components

As shown in Figure 3.4, the framework communicates with the outside world by means of five
defined ports (labeled P#) in the figure. Access to all ports except for P1 is done through a
’handler’ object which forwards requests and messages to the appropriate component and returns
results to the application. GraphLoaders, objects which construct a Graph from input data, have
to be provided at start-up time. The Process View (Section 3.5) gives a thorough explanation
of communication methods utilized and shows how requests are handled by different components
within the framework.

35

Internal Structures

Navigation Framework

P3

P4

P5

P2

P1

GraphManagement

GraphPersistenceFactory

GraphModificationHandler

EntityManagement

EntityUpdateHandler

GraphModification

AlgorithmManagement

Controller

NavigationRequestHandler ResultPublisher

AlgorithmLibrary

GraphModification

EntityUpdate

Feedback

GraphLoader

Navigation «delegate» «delegate»

Execute Algorithm

«delegate»

«delegate»

«inheritance»

Graph

Algorithm

Figure 3.4: Framework Internal Structure - Ports are labeled P#

• Port 1: NavigationRequestHandler. The NavigationRequestHandler is the interface used by
applications to make use of the navigational services provided by the framework.

• Port 2: GraphPersistenceFactory. The application developer supplies the framework with
a class implementing the GraphLoader interface, which is able to construct a Graph from a
desired data source. This class is registered with the GraphPersistenceFactory, which is called
by the framework when a Graph is required.

• Port 3: GraphModificationHandler. This port provides an interface to modify properties or
the structure of the graph. Requests to modify the graph are received here and are forwarded
to the GraphManagement module. The modifications are applied here.

• Port 4: EntityUpdateHandler. This port requires an EntityUpdate event source, these events
are forwarded to the EntityUpdateHandler.

• Port 5: ResultPublisher. Port 4 provides a service which publishes results returned by algo-
rithms to subscribed applications.

36

Graph Management

The framework uses an internal Graph data structure, which has to be flexible in order to support
a number of different algorithms. Furthermore in order to relate an external model, for example a
geographic map, to the Graph model, it must support an identification property. A Graph can be
constructed from a variety of data sources. One can think of common geographic datafile formats
such as shape files3 or GML4. For this reason the GraphPersistenceFactory has to be provided with
a specific implementation of the GraphLoader interface by an instantiating application. The Graph-
PersistenceFactory uses this specific GraphLoader to construct a Graph on request. The framework
itself will only provide a facility to directly serialize and deserialize the internal Graph data struc-
ture. In addition it should be possible to make modifications to the Graph at runtime, reflecting
changes in the underlying model. One can think of changes to properties, adding or removing arcs.
These modifications are supplied to the framework in the form of GraphModificationRequest, which
are processed by the GraphModificationHandler. Some operations or modifications will require a
’lock’ on the graph structure to ensure no algorithm is executed while the graph is in an inconsistent
temporary state. Finally the GraphManager has the purpose of hiding the strategy used to retrieve
and store Graphs from other modules.

The responsibilities of this module are listed below. Here each responsibility is linked to one
or more functional requirements by a given Id (reqX). These ids correspond to those shown in
Figure 3.1.

• Defines a Graph data structure on which the various supported graph algorithms can oper-
ate.(req16, req17).

• Possibility to link an external model with the Graph; this can be done by means of Identifiers
(Ids) (req56).

• Facility to provide the framework with GraphLoaders. A GraphLoader is responsible for the
construction of a Graph from some kind of data source. (req12). The framework itself will
not provide an implementation; this is the responsibility of the application instantiating the
framework.

• Facility to serialize a Graph (req13).

• A method to make modifications to a Graph. (req14).

• Regulate access to the graph (req57).

It has the following relations with other modules:

• External port P2 (described earlier).

• Provides the GraphModificationHandler which processes GraphModificationRequests issued
through external port P3 and the EntityManagement module.

• Provides the AlgorithmManagement module with a Graph.
3ESRI Shapefile [21]
4Geography Markup Language (GML) [51]

37

Entity Management

The framework maintains a register of entities. An entity can, for example, represent a car or
a person. Each entity has an identification, position and direction associated with it. Updates of
these properties are handled by the EntityUpdateHandler and might result in updates to the Graph
structure. For example consider a change of position in the scenario where each entity is modeled
as a unit of flow. Such a change in position might result in the removal of a unit of flow at the
node corresponding to the entity’s original position and the addition of a unit of flow at the entity’s
new position. The component sends these GraphModificationRequests in batches so that multiple
changes to the Graph can be applied in a single pass over the Graph. This module is actually
optional: if the application does not require these advanced features it can be omitted.

The EntityManagement module has the following responsibilities:

• Addition and removal of entities (req4, req5).

• Modification of an Entity’s properties (req6).

• When appropriate sends a Message to the GraphModificationHandler to trigger a modification
of the Graph (req54).

It has the following relations with other modules:

• External port P3 (described earlier).

• Makes use of the GraphModificationHandler provided by the GraphManagment module.

Algorithm Management

The AlgorithmManagement contains generic logic for configuration and execution of algorithms
and returning their results; as such it is the central unit in the framework. Furthermore it contains
logic to support concurrent execution of algorithms, in order to support a scenario in which the
framework receives online queries for route information from the application.

The AlgorithmManagement module has the following responsibilities:

• Execute preprocessing steps (req22).

• Execute graph transformations (req22).

• Execute graph algorithms (req19).

• Configure algorithms (req20).

• Monitor algorithms (req21).

• Execute algorithms concurrently (req58).

• Construct a result (req59).

It has the following relations with other modules:

38

• It requires the AlgorithmLibrary to supply algorithms and operations.

• Graph data structures are provided by the GraphManager component.

• It receives commands from the Controller.

Algorithm Library

The framework will provide navigational services by executing graph algorithms on a supplied
Graph. This module contains a collection of algorithms and operations which can be applied to
the Graph data structure. Each algorithm can be composed of multiple suboperations, possibly
multiple implementations of a specific operation and certain functionality can be added by means
of decorators5. For example, in this way extensive monitoring functionality can be added. Con-
figuration and composition of an algorithm is the responsibility of the AlgorithmManager module.
It is essential that the AlgorithmLibrary is constructed in such a way that it is easy to add new
algorithms and operations. Additionally, this module contains operations to validate and possibly
transform a Graph. E.g. checks to ensure certain required properties are set, and operations to
transform an undirected graph to a directed one. Chapter 2 provides a description of the different
algorithms and concepts.

Responsibilities are subdivided in two categories, namely, responsibilities in the form of concrete
graph algorithms and responsibilities dealing with transformations and consistency checking of the
Graph structure.

Algorithms:

• Breadth First Search (req30).

• Dijkstra’s algorithm for shortest path (req28).

• Push-Relabel algorithm for maximum flow (req29).

• Successive-approximation by Cost Scaling for minimum-cost flow (req39).

Operations:

• Check graph for consistency (req32).

• Check which algorithms are supported by a graph (req33).

• Create a residual network (req34).

• Transform an undirected graph to a directed graph (req35).

• Convert double / float properties to integers (req36).

Additional operations, such as req37-47 will be implemented when necessary.
This module has a single relation: it provides algorithms to the AlgorithmManager module.

5Decorator Pattern [25]

39

Controller

The Controller module starts and initializes configures the framework. It will provide utilities such
as logging and handing out unique Ids to the framework. IDs are extensively used to relate the
outside environment to the data structures used by the framework. For example arcs have an Id
which points to a connection or road in the environment. In this way the results returned by the
algorithm can be related to the environment. Furthermore it provides external components with
an entry point to the framework.

The Controller has the following responsibilities:

• Start and initialize framework (req61).

• Provide utilities to enable logging and configuration of the framework (req10, req11).

• Provide utility to create framework wide unique IDs (req62).

• Start a server which exports services provided by the framework (req23,req24,req25,req26,req27).

It has the following relations with other modules:

• External port P1.

• External port P5.

• Uses the AlgorithmManager to execute algorithms.

• Forwards results returned by AlgorithmManager to ResultPublisher, which makes the result
available to client applications.

3.5 Process View

The process view gives a view of the system at runtime in terms of processes and threads. It relates
abstractions introduced in the logical view to processes and threads, i.e. which thread controls
certain computations, and specifies what protocols are used for communication between them.
Therefore the process view mainly deals with quality requirements such as scalability, reliability,
fault tolerance and to a certain extent analysability. This section uses sequence diagrams, and a
custom diagram to clarify the process and thread design of the framework.

The logical view suggests that the main work of the framework is done by the AlgorithmMan-
agement and to a lesser extent by the GraphManagement module. Here the actual algorithms
are executed and modifications are made to the graph. Furthermore, we expect that in virtu-
ally any application based on the framework the actual execution of graph algorithms will be the
computationally most intensive part. We emphasize the fact that there are several points (ports)
where external components interact with the framework during runtime. Specifically they interact
by means of the NavigationRequestHandler, GraphModificationHandler, EntityUpdateHandler and
ResultPublisher.

40

3.5.1 Framework Concurrency Model

The requirement (req58) directly suggests a multi-threaded approach for the execution of algo-
rithms and graph modifications and transformations. We aim to create a multi-threaded single
process initially. However it is a clear design goal to enable straightforward migration to a multi-
process application. A multi-threaded application allows multiple tasks to be executed concurrently
and can improve efficiency and responsiveness. Furthermore, computationally intensive tasks can be
isolated within separate threads. This improves reliability and fault tolerance, because if a fault oc-
curs in such a thread, then this particular thread can be terminated without effecting other threads
and the application as a whole. A multiprocess application offers additional benefits of scalability.
Here computationally intensive parts can be isolated within a separate processes, which can run
on dedicated servers. If properly designed and constructed this allows an increase throughput by
deploying additional servers.

Thread Decomposition

Threads

Main

Controller

GraphModificationHandler

NavigationRequestHandler ResultPublisher

EntityUpdateHandler

AlgorithmManager

GraphManager

EntityManager

WorkerThread

WorkerThread

WorkerThread

Figure 3.5: Thread Composition

Figure 3.5 shows how the framework is decomposed into a thread hierarchy. In this figure each
non-white box denotes a separate thread. The white boxes represent certain functionality and are
included for clarity. However, they do not represent distinct threads. We can identify the ’Main’
thread which starts up the application and four sub threads: the Controller, AlgorithmManager,
GraphManager and the EntityManager. The Controller thread contains logic to receive requests
and forward these to the appropriate manager, as well as logic to relay results back to clients of
the framework. Each of the Algorithm Manager, Graph Manager and Entity Manager contains a
thread pool with worker threads that execute the computationally intensive work. Communication
between the threads is done by in process calls.

41

RequestNavigation

NavigationRequestHandler AlgorithmManager GraphManager

External Component
WorkerThread

ResultPublisher

create
RMI:Request

Register

Request

Retrieve Graph

Construct Task

Assign Task

Result

Result
RMI: Result

Figure 3.6: Request Navigation Sequence

Control Flow

Figure 3.6 contains a sequence diagram. It illustrates which objects are involved in handling navi-
gation and graph modification requests, respectively. The figure shows how an external component
makes a navigation request to the NavigationRequestHandler. The NavigationRequestHandler reg-
isters the request with the ResultPublisher, such that the ResultPublisher knows which parties
are interested in the result of the computation. Next the NavigationRequestHandler forwards the
request to the AlgorithmManager, which constructs and schedules a task to be executed. Construc-
tion of a task is done by selecting an algorithm and retrieving the Graph data structure. Onces a
task is scheduled it will be assigned an idle WorkerThread in the thread pool. This WorkerThread
will execute the algorithm. Once finished the WorkerThread will construct a result and return
it to the AlgorithmManager, which forwards it to the ResultPublisher which in turn sends it to
interested parties.

It is important to note that most communication between different parts of the framework are
asynchronous. This improves decoupling and isolates the different components from each other.

3.5.2 Future Improvements

The process and thread design as given in the previous section enables migration to a multiprocess
architecture. Here we shortly describe two change scenarios.

42

Because external applications communicate through an isolated set of ’handlers’ (specifically
the NavigationRequestHandler, GraphModificationHandler, EntityUpdateHandler and ResultPub-
lisher) it is fairly easy to create a layer in front of these handlers. For example, the main thread
could start a Java RMI6 server. This server would receive requests from external processes, which
can be located on a different physical machine. The RMI server would then forward these request
to the appropriate handlers.

A further improvement can be made by making the framework itself distributed. This can be
achieved relatively easily because the different components communicate with one another asyn-
chronous. It is possible to create a proxy between the different components which is responsible for
sending and receiving messages across process or machine boundary.

It should be noted, however, that communication between different processes, and especially if
this communication has to travel across a network, is less efficient then in process communication.
Furthermore not all applications that build upon the framework will require this distribution. A
solution can be to enable or disable this distribution by configuration.

3.6 Development View

The development view provides a view of the framework from a development perspective. It sub-
divides the complete development effort in smaller tasks and considers the dependency between
those tasks. Based on this dependency a feasible planning is made. This sections defines a couple
phases and specifies for each what functionality, in terms of requirements, must be implemented.
In addition to the planning this chapter discusses technologies used in the project. Therefore this
view is of prime importance to developers, but it is also interesting to managers as it provides a
means to track the progress of the project and assures the project is feasible.

3.6.1 Development of the Framework in Perspective

Development

Framework Development

«structured»
Develop Framework

Construct Prototype

Conduct ExperimentsImplement
Experimentation Facility

Implement Algorithms

Figure 3.7: Development Phases

6Java Remote Method Invocation: whitepaper: [47]

43

Untill now we limited the discussion to the framework itself. However, the objectives (Sec-
tion 1.3.2) of the project go beyond constructing a navigation framework. In this section the
development of the framework is put in perspective of the larger encapsulating project. Figure 3.7
visualizes the different development items within the project. We can see the development of the
framework is subdivided in two items, namely the development of the framework itself and sub-
sequently the implementation of various algorithms. In addition three more items are identified.
These items concern the construction of a prototype application based on the framework and the
measurement of the performance of the implemented algorithms.

3.6.2 Development of the Framework

Develop Framework

Utilities

Graph Datastructure Graph Management Algorithm Management

Controller

Entity Management

Server and Ports

Tools

Figure 3.8: This figure shows hierarchy of dependencies between tasks. Tasks higher in the hierarchy
depend on tasks below it.

Figure 3.8 is a more detailed view of the ’Develop Framework’ item seen in Figure 3.7. It shows
the dependencies between tasks identified within the development of the framework itself. Elements
shown in the figure largely correspond to the various modules described in the logical view, but the
’Utilities’ item indicate a general dependency of all development effort on tools, for example the
IDE, and utilities, such as logging, configuration and the unit test framework. The figure shows a
hierarchy of tasks. This hierarchy should be interpreted as follows: development elements appearing
on some level only depend on the development of other elements at the same level and those on

44

lower levels. Hence we can see that the development of the Ports to the framework are dependent
on the Algorithm and Graph Management and Graph Data Structure modules.

Development Approach

The structure of the general development process itself is to some extent inspired by agile methods.
That is to say a minimal functional version of the framework will be constructed first, and this
first version will be improved incrementally by adding additional functionality. This approach will
reduce risk, because there will be a working framework at any point in time and it is an especially
suitable method given the relative short nature of the project and small number of people involved
with the development. Furthermore the development of the framework is fairly easily decomposed
into small tasks, which can be seen next.

Road Map

The development of the framework is subdivided into three phases, which are listed in tables 3.1,
3.2 and 3.3. For each of these phases a number of tasks is given, each linked to the requirements
(given in Figure 3.1) they intend to satisfy. Nine weeks are assigned to implement the framework.
In phase one and two the framework itself is implemented. These two phases combined correspond
to the ’Develop Framework’ element in Figure 3.7. Phase one results in a minimal ’working’ appli-
cation and this ’working’ property is maintained during phase two, when additional functionality is
iteratively added. For phase one, two weeks are reserved and phase two is realized in three weeks. In
phase three, during the last four weeks, the various algorithms are added. This phase corresponds
to the ’Implement Algorithms’ element in Figure 3.7.

Documentation

The framework is delivered with documentation.

3.6.3 Technologies Used

In this section the technologies used for developing the framework will be discussed.

• Programming language: Java and Java RMI The framework will be developed in Java.
Java is a mature, full fledged object-oriented programming which is developed with the specific
purpose of ensuring portability between different operating systems. There are a huge num-
ber of libraries available for Java including libraries to handle XML and various Geographic
Information Systems (GIS) related file formats and standards. Furthermore it has support
for creating distributed applications based on Java RMI. As such the constraints to use Java
and Java RMI as specified in Section 3.2.3 are not considered restricting.

• Logging: The Apache commons logging7 Application Programming Interface (API) will be
used in combination with the Log4j8 library which implements this API.

• Testing: JUnit9.
7Commons Logging: http://commons.apache.org/logging/commons-logging-1.1.1/index.html
8Log4j: http://logging.apache.org/log4j/1.2/index.html
9JUnit: http://www.junit.org/

45

http://commons.apache.org/logging/commons-logging-1.1.1/index.html
http://logging.apache.org/log4j/1.2/index.html
http://www.junit.org/

Table 3.1: Phase 1: Minimal Initial Implementation

Item Description Requirements

Controller

• Utilities: Logging, Configuration, Id facility, Unit Test
facility req10, req11, req61,

req62• A minimal implementation required to initialize and start
the framework

GraphManager • Graph data structure req12 req16, req17,
req18, req56• GraphLoader facility

AlgorithmManager • Single threaded execution of algorithms and operations req19, req22

AlgorithmLibrary • Basic functionality
req30• BFS

Table 3.2: Phase 2: Improvements

Item Description Requirements

GraphManager

• Threaded Implementation

req13, req14, req57
• Save graphs
• Modify graphs
• Regulate access to graph

AlgorithmManager

• Threaded implementation
req20, req21,req58,
req59

• Facility to allow algorithm configuration
• Facility to monitor algorithms
• Construct result

EntityManager • Adding, removing and updating entities req4, req5, req6

Controller
• NavigationRequestHandler

req23, req24, req25,
req26, req27

• GraphModificationHandler
• ResultPublisher
• EntityUpdateHandler

Table 3.3: Phase 3: Implementation Algorithms

Item Description Requirements
Shortest path • Dijkstra req28

Maximum flow • Push-relabel req29

Minimum-cost flow • Scaling push-relabel req39

Operations

• Check graph for consistency
req32, req33, req34,
req35

• Check which algorithms are supported by the raph
• Create residual graph
• Transform undirected graph to directed

EntityManager • Modify graph based on received entity updates req57

46

3.7 Scenario View

As mentioned in the introduction the purpose of the scenario view is to connect the other views. It
does so by explaining several use cases and connecting those use cases to the previous views. In this
section we first describe three subfunctions by means of the use cases given in Table 3.4, Table 3.5
and Table 3.6. The final use case (given in Table 3.7) shows how the framework uses these three
subfunctions to satisfy a request made by an external application.

Consider this final use case, which is given in Table 3.7. This use case illustrates how an external
application requests the shortest route between two locations. The logical view shows how different
modules collaborate in order to handle requests and it lists the responsibilities of each of these
modules. This view illustrates how a request enters the system via one of the ports and how it
is delegated to the appropriate handler (the NavigationRequestHandler in this particular case).
Furthermore it shows how the AlgorithmManagement module requires a graph, which is provided
by the GraphManagement module. As such this view provides an understanding of the structure of
the framework as a whole and how different parts collaborate to implement specific requirements.
The process view is provided to complement the logical view. For this particular case it shows
how the AlgorithmManager constructs a Task, which is executed by a WorkerThread. In general
the process view can be observed to learn how different parts of the framework communicate and
it shows which process or thread executes certain tasks. It deals with issues of concurrency and
reliability. Finally the development view addresses the planning with respect to the development
of the framework, it indicates when certain functionality is expected to be implemented and can be
used to track the progress of the project.

Table 3.4: Use Case: Request Graph. This use case shows how a component within the framework
requests a graph from the GraphManagement component. Such a request is made by the compo-
nents that are responsible for executing algorithms and performing modifications to the graph

Use case: Request Graph
Level: Subfunction
Primary Actor: NavigationFramework

A graph is required by some internal component in order to satisfy a request.

1. The component requests the graph from the GraphManager.

2. The GraphManager:

(a) Checks if the requested graph is registered.

(b) Checks if the requested graph is available. If so:

(c) Locks the graph and returns the graph.

3. The component that requested the graph, receives the graph.

47

Table 3.5: Use Case: Instantiate Algorithm. This use case shows how the framework instantiates
an algorithm.

Use case: Instantiate Algorithm
Level: Subfunction
Primary Actor: NavigationFramework: AlgorithmManagement component

AlgorithmManagement requires an algorithm to satisfy a request.

1. AlgorithmManagement asks the AlgorithmLibrary to instantiate the algo-
rithm and supplies a classname and configuration properties.

2. The AlgorithmLibrary:

(a) Checks if an algorithm with the given classname is registered. If so:

(b) Instantiates the algorithm.

(c) Configures the algorithm.

(d) Instantiates components part of the algorithm (for example optional
heuristics), if required.

(e) Adds those components to the algorithm.

(f) Returns the instantiated and configured algorithm.

3. AlgorithmManagement receives the algorithm.

3.8 Conclusion

This chapter presented our design for the framework. To structure the design we followed the IEEE
1471[50] recommended practice. It therefore provided an answer to research questions 7 and 8.

In the first section of this chapter we identified stakeholders with concerns in the project. Sec-
tion 3.2 listed functional and quality requirements. These requirements are based on the project
description in Chapter 1, the aforementioned concerns of stakeholders in the project and the au-
thors’ own ideas. The requirements have been discussed with an experienced software engineer at
Logica to ensure their completeness and clarity. This answered Research Question 7:

What are the requirements for such a framework?

Based on these requirements a design of the framework was created. In accordance with the
IEEE 1471 recommend practice we provided multiple views. These views were selected based
on Kruchten’s 4+1 Model of Software Architecture [43]. The logical view provided insight into
the static structure of the framework, how the framework is decomposed into five modules and
how functional requirements are mapped to these five modules. Furthermore, in this view we can
observe that Graph Management component is responsible for processing modifications to the graph

48

Table 3.6: Use Case: Execute Algorithm. It shows how an algorithm is executed by a separate
thread.

Use case: Execute Algorithm
Level: Subfunction
Primary Actor: NavigationFramework: AlgorithmManagement component

AlgorithmManagement component requires an algorithm to be executed on a graph
in order to satisfy a request.

1. AlgorithmManagement:

(a) Constructs a task that will execute the algorithm on the given graph.

(b) Schedules the task for execution.

2. The task is assigned to a WorkerThread and the WorkerThread executes
the task.

3. The task:

(a) Adds the given graph to the algorithm.

(b) Initializes the algorithm.

(c) Executes the algorithm.

(d) Constructs a result.

(e) Returns the result to the AlgorithmManager.

4. The AlgorithmManager receives the result.

structure and properties. This provides an answer to Research Question 5:

In what way can we incorporate dynamic changes of structure and properties?

This view is complemented by the process view, which shows the framework from the perspective
of runtime threads and processes. Our process and thread design focused on decoupling the various
components in our design. In this way we aim to create a framework, which is easily extensible and
is decomposable in multiple processes.

In the development view the development effort was broken down in several smaller tasks and
the dependencies between these tasks were identified. Based on this decomposition and the depen-
dencies a detailed road map was given. Finally in the scenario view we used a use case to explicitly
connect the three previous views.

This collections of views gives an answer to Research Question 8:

What design satisfies the requirements?

49

Table 3.7: Use Case: Request Algorithm Execution. This use case explains how an external
application makes a concrete request to the framework. It shows how the framework step-by-step
satisfies the request by executing previously described use cases.

Use case: Request Algorithm Execution
Level: User Goal
Primary Actor: External Application

External Application sends a request to calculate the shortest route from ’My-
Home’ to ’MyShoppingMall’ in graph ’MyCity’ using the ’Dijkstra’ algorithm.

1. The Framework receives request, and:

(a) Registers the external application with ResultPublisher.

(b) Requests the ’MyCity’ graph from the GraphManagement component
by executing the Request Graph use case.

Once the required graph is acquired:

2. The request and the graph are forwarded to the AlgorithmManagement
component. The AlgorithmManagement:

• Requests ’Dijkstra’ by executing the Instantiate Algorithm use case.

• Executes the algorithm by executing the Execute Algorithm use case.

• Receives the result and forwards it to ResultPublisher.

3. The ResultPublisher publishes result to the external application.

50

Part III

Implementation

51

Chapter 4

Implementation of Algorithms

Chapter 2 aimed provide a fairly broad overview of relevant topics. It established definition and
assumptions, which we will continue to use in this chapter. Furthermore it concluded the Push-
Relabel and Successive-approximation by Cost Scaling are state-of-the-art algorithms for the max-
imum flow and minimum-cost flow problems, and that they are suitable to be implemented by the
framework. In this chapter we describe these algorithms and their implementation in more detail.
Therefore it gives an answer to research question 3:

Can these algorithms be implemented such that they support the framework?

4.1 Graph Data Structure

The graph data structure we use is provided by the JGraphT1 library, which is a flexible high
performance library for Java. It maintains a HashMap of all vertices and two lists to store all
incoming and outgoing edges, which in turn have a pointer to both vertices. Chapter 5 further
discusses this library and the design decisions made.

4.2 Push-Relabel

In this section we will discuss the push-relabel method by Goldberg and Tarjan [29] and practical
results obtained using this method. They relax the flow conservation constraint (2.3), instead they
use the following condition: ∑

w∈V−{s}

f(v, w) ≥ 0 (4.1)

A flow satisfying 2.1, 2.2 and 4.1 is called a pseudo flow. Using pseudo flows it is possible for the
amount of flow into a node to exceed the amount of flow leaving that node. This excess flow is
defined as: e(v) =

∑
v∈V f(v, w). Additionally the algorithm maintains a labeling d of all vertices

such that d(t) = 0, d(s) = n and ∀(v, w) ∈ Ef : d(v) ≤ d(w) + 1. Let dG(v, w) be defined as the

1http://jgrapht.sourceforge.net/

52

http://jgrapht.sourceforge.net/

minimum number of edges on the path from v to w in G. Finally, a vertex v ∈ V − {s, t} is called
active if e(v) > 0. The algorithm is initialized by filling all arcs leaving the source to maximum
capacity and setting all labels d, except d(s), to 0. d(s) is set to n. The complete algorithm is
shown as Algorithm 2 and uses two operations, push and relabel.

The push operation is applicable if a node v is active and there is an arc out of v with positive
residual capacity. It pushes the maximum amount of flow possible down arc (v, w) to node w with
a smaller label. This maximum corresponds the minimum of the nodes excess e(v) and the residual
capacity rf (v, w). If the push completely fills the capacity of the arc its called a saturating push,
otherwise a non-saturating push. In the latter case no excess flow is left in v.

The relabel operation is applicable if node v is active and for all residual arcs (v, w) out of v the
label d(v) ≤ d(w). The operation sets the label of v to the minimum of all labels d(w) + 1.

The main algorithm then continues to apply push and relabel operations in any order while any
of these are applicable. Intuitively the algorithm either pushes more excess flow ’downstream’ to
nodes with a lower label or it increases the ’height’ of a node by applying the relabel operation. Each
relabel operation will create at least one new possibility to push more flow downstream. Initially,
the algorithm will push flow in the direction of the sink. Eventually, however, as the ’height’ of
nodes increases and their label becomes larger then the source’s label, excess flow will be returned
to the source. The algorithm terminates when there are no active vertices anymore. Therefore none
of the nodes has an excess flow and the pre-flow is actually a maximum flow.

Algorithm:Push-relabel
// Initialize Pre-flow
foreach (v, w) ∈ E do f(v, w)← 0, f(w, v)← 0;
foreach v ∈ V do f(v, s)← c(v, s), f(s, v)← −c(v, s);
foreach v ∈ V − {s} do d(v)← 0, e(v)← f(s, v);

d(s)← n;

// Main loop
while Push or Relabel is applicable do

Select and apply applicable operation;

Algorithm 2: Push-Relabel for the Maximum Flow Problem

Function:push
Input: (v, w)
if v is active and rf (v, w) > 0 and d(v) = d(w) + 1 then

Let δ = min(e(v), rf (v, w)) and;
f(v, w)← f(v, w) + δ;
f(w, v)← f(v, w)− δ;
e(v)← e(v)− δ;
e(w)← e(w) + δ;

Function push

53

Function:relabel
Input: v
if v is active and for all w, (v, w) ∈ Ef we have d(v) ≤ d(w) then

d(v)← min(v,w)∈Ef
{d(w) + 1};

Function relabel

4.2.1 Strategies and heuristics

This generic algorithm allows considerable freedom in the sense that there is no specification on
the order in which the basic operations are applied. A simple implementation makes use of a FIFO
queue to store active vertices. In each step it takes the first vertex v from the queue and continues to
apply push operations on v as long as these are applicable. If new vertices become active as a result
of a push operation these are added to the rear of the queue. When no push operation is applicable
anymore it relabels v and adds v to the rear of the queue if it is still active. However alternative
strategies are possible. Goldberg and Tarjan [29] show the algorithm based on a FIFO queue has a
complexity of O(n3). By using a dynamic tree data structure [58] an O(nm log(n2/m)) algorithm
is obtained. Cheriyan and Maheshwari [13] use a strategy which applies pushes to the vertex with
maximal excess. This approach results in an improved bound of O(n2

√
m). Alternatively the vertex

with the highest label can be selected for the push operation. Ahuja and Orlin [4] use excess scaling
to obtain an algorithm with a running time of O(nm+ n2 log(U)), where U is an upper bound on
the arc capacities.

The global relabeling heuristic proposed in [29] works very well in practice. Periodically all
distance labels are updated and the label of all nodes v ∈ V are set to the minimum of dGf (v, s)+n
and dGf (v, t) by performing a BFS in the residual graph starting in the source and sink nodes. At
last we remark that the algorithm allows intuitive parallelization. This was reported in the original
paper and by Anderson and Setubal [5].

4.2.2 Implementation

The behavior of our implementation of the Push-Relabel algorithm can be adapted in three im-
portant ways. It is possible to select one of three implementations of the active vertex queue. The
three implementations provided are one based on a First In First Out (FIFO) queue, a Last In
First Out (LIFO) stack and a priority queue. The priority queue implementation sorts the vertices
based on their label in descending order and returns the vertex with the highest label. The global
relabel heuristic is also implemented and can added to the algorithm. Finally, it is possible to have
the algorithm calculate a feasible flow, instead of a maximum flow. This is possible by supplying
a demand for all of the sources and sinks and setting the ’bounded’ property to true. This mode
of operation is used as a subcomputation in our Successive Approximation by Cost Scaling (SA)
algorithm.

4.3 Successive Approximation by Cost Scaling

In this section we will discuss a minimum-cost flow algorithm based on cost scaling, which is closely
related to the push-relabel algorithm for the maximum flow problem described earlier.

54

For a given price function, p : V → R, the reduced cost of an arc up(v, w) is defined as
up(v, w) = u(v, w) + p(v)− p(w). A residual arc (v, w) is admissible if up(v, w) < 0. EA is the set
of admissible arcs and GA(V,EA) is the graph induced by this set. Again we define the excess of a
node e(v) with e(v) =

∑
v∈V f(v, w). Given a constant ε > 0 a flow f is said to be ε-optimal with

respect to p if ∀(v, w) ∈ Ef up(v, w) ≥ −ε. As is shown by [3]: if ε ≥ U then any feasible flow is
ε-optimal and if ε ≤ 1/n then any ε-optimal flow is an optimal flow given the assumption that all
edge costs are integer (Assumption 2.1.3).

The SA algorithm by Goldberg and Tarjan [27] is given in Algorithm 5. It maintains an ε-
optimal flow throughout its execution. After initializing the value of ε with U it continues to refine
its solution till the ε-optimal flow is an optimal flow. Refinement is done by iteratively applying
the refine function. This function reduces ε by a factor α (typical values are between 4 and 8). It
then converts the current ε-optimal flow in a ε

α -optimal pseudoflow2. By repeatedly applying push
and relabel the ε

α -optimal pseudoflow is transformed into a ε
α -optimal flow. The push function is

applicable to (v, w) if v is active and there is an outgoing arc (v, w) with positive residual capacity
(rf) and negative reduced cost (ap). The relabel function is applicable to (v) if v has no residual
arcs (v, w) ∈ Ef with negative reduced cost. Finally, when ε ≤ 1/n the current flow is optimal and
is returned. A correctness proof is given in [27].

Algorithm:Successive Approximation
// Initialize
ε← C;
foreach v ∈ V do p(v)← 0;
f ←(execute some max-flow algorithm);
while ε ≥ 1/n do

(ε, f, p)← refine(ε, f, p);
return f ;

Algorithm 5: Successive Approximation by Cost Scaling for the Minimum-Cost Flow Prob-
lem

Function:refine
Input: ε, f, p
ε← ε/2;
foreach (v, w) ∈ E do

if up(v, w) < 0 then
f(v, w)← c(v, w);

while Push or Relabel is applicable do
Select and apply applicable operation;

return ε, f, p;
Function refine

2Recall a pseudoflow is a flow satisfying 4.1 instead of 2.3: which allows vertices to have excess flow.

55

Function:push
Input: v, w
if v is active and rf (v, w) > 0 and up(v, w) < 0 then

Let δ = min(e(v), rf (v, w) and;
f(v, w)← f(v, w) + δ;
f(w, v)← f(v, w)− δ;
e(v)← e(v)− δ;
e(w)← e(w) + δ;

Function push

Function:relabel
Input: v
if v is active and ∀w, (v, w) ∈ Ef we have up(v, w) ≥ 0 then

p(v)← max(v,w)∈Ef
{p(w)− u(v, w)− ε};

Function relabel

4.3.1 Strategies and Heuristics

Goldberg [27], Goldberg and Kharitanov [30] and Bland et al.[10] propose several strategies and
heuristics that may improve the practical running time of the algorithm. In this section we discuss
several of them.

Selection strategy

Like the Push-Relabel algorithm the order in which the push and relabel operations are applied is
not defined. The discharge procedure selects an active vertex v and continues to apply push and
relabel operation on this vertex until it becomes inactive. In addition we need some data structure
to store active nodes and which defines the order in which active vertices are selected. Possibilities
include a FIFO queue, a LIFO stack or a list which is topologically sorted with respect to the
admissible graph. Based on the latter choice two different strategies can be formulated, namely
the first-active and wave methods[30]. However, these two methods require more computation and
both Goldberg [30] and Bland et al.[10] conclude that the method based on a queue is superior.

Simple Relabel

Instead of the ’complex’ relabel operation a simple alternative operation can be used.

Function:simple-relabel
Input: v
if v is active and ∀w, (v, w) ∈ Ef we have up(v, w) ≥ 0 then

p(v)← p(v)− ε;

Function simple-relabel

56

Lookahead Heuristic

Goldberg [27] reported, and we observed in preliminary executions, that in practice the following
scenario occurs frequently. Say vertex v is active and is selected for discharging. The algorithm
then pushes excess flow from v to a neighbor w. Then w either is, or becomes, active. Now the first
time thereafter, that w is selected for discharging, the algorithm immediately pushes the excess
flow from w back to v. This scenario only occurs when at w does not have any other outgoing
admissible arcs. A heuristic which attempts to prevent this scenario is given as Function push-
lookahead. This operation only pushes flow from v to w if either w has negative excess, or w has
outgoing admissible arcs. Otherwise w is relabeled. Goldberg [27] shows, this does not violate the
ε-optimality constraint.

Function:push-lookahead
Input: v, w
if v is active and (e(w) < 0 or ∃(w, x) ∈ EA) then

push(v,w);
else

relabel(w);

Function push-lookahead

4.3.2 Implementation

Our implementation of the SA algorithm can be configured with several options. It is possible to
either choose the complex or the simple variant of the relabel operation. It is also possible to set
the desired epsilon scale factor (α) and a different implementation of the active vertex queue can
be supplied. Once again an implementation based on a queue, stack or highest label priority queue
can be selected. Furthermore, we implemented the push-lookahead heuristic. The algorithm uses
the Push-Relabel algorithm to find an initial feasible flow. If no such flow is found, then execution
is aborted indicating that no feasible flow exists. Once the algorithm finds an optimal flow, it uses
BFS to calculate the minimum cost value. Finally, we remark that our implementation of the SA
algorithm shares a considerable amount of code with the Push-Relabel algorithm.

4.4 Miscellaneous Algorithms

Besides the Push-Relabel and the Successive Approximation by Cost Scaling algorithm, the frame-
work also contains implementations of the Breadth First Search, Dijkstra’s shortest path and
Bellman-Ford’s shortest path algorithms. Dijkstra’s algorithm is previously discussed in Sec-
tion 2.2.2 and both other algorithms are well known. This section only reports some implementa-
tion specific details of these algorithms and the reader is advised to consult the book by Cormen
et al.[14] for a complete description. This sections also explains our method of creating a time
expanded graph.

57

Breadth First Search

Our implementation of the BFS is designed to be easily extendable to perform various operations
and transformations. The algorithm can be configured with multiple parameters. By default the
algorithm will select a random start vertex and perform BFS from that vertex. Alternatively
a set of start vertices can be provided. In this case the algorithm will start BFS from each of
these vertices successively, unless this new start vertex has already been visited. Furthermore, a
parameter ’crossComponentSearch’ can be supplied. This causes the algorithms to expand its search
to include disconnected components. It does so by repeatedly starting the BFS first from the set of
start vertices and then from a vertex randomly selected from the remaining set of not-yet-visited
vertices. Finally, a parameter ’reversedSearch’ can be set. This causes the algorithm to traverse
directed edges in opposite direction e.g. from head to tail.

Dijkstra’s Shortest Path Algorithm

We use a Fibonacci heap to maintain the vertex queue. Furthermore it is possible to supply the
algorithm with an alternative distance function. By default the algorithm uses the weight of an
edge as distance. Our implementation of Dijkstra can be configured to either calculate the shortest
path between two given vertices, or to calculate the distance between a start vertex and all other
vertices. In the former case both a start vertex and end vertex must be supplied. In the latter case
the ’singeDestinationProperty’ should be set to false.

Bellman-Ford

The implementation of the Bellman-Ford algorithm is configurable with the same parameters as
Dijkstra’s algorithm. It uses a HashMap to maintain it’s ’visited vertices’ list.

Time Expand Graph Operation

This operation is implemented using BFS. Its behavior is configured by two additional proper-
ties. The ’interval’ (I) property indicates the the time window of interest and the ’resolution’ (R)
property influences the accuracy of the model. The following holds |Θ| = I

R , where Θ is the set of
timesteps.

Whenever the algorithm first encounters a vertex v in the original graph (pre-visit) it will create
time copies vi of v, where i ∈ Θ indicates the i-th timestep. Vertices vi and wj are linked when
the edge connecting them (and thus (v, w) ∈ E) is visited and i+ τ(v, w) = j, where τ(v, w) is the
time required to travel from v to w. This edge visit always occurs after both vertices have already
been visited. If due to a high resolution j does not exist, then i is connected to the smallest j such
that i+ τ(v, w) < j.

Finally, it is possible to prune away edges and vertices that are not reachable from the sources or
sinks in the time expanded graph by a ’PruneGraphOperation’. This operation is also implemented
using BFS.

4.5 Summary

In this chapter we discussed the various algorithms implemented by the framework in more detail.
We gave a complete description of the Push-Relabel and the Successive-approximation by Cost

58

Scaling algorithms and mentioned details specific to our implementation of these algorithms. This
chapter thus provides an answer to research question 3:

Can these algorithms be implemented such that they support the framework?

We ended this chapter with a brief discussion of the implementation details of several well
known algorithms. Chapter 6 will establish and discuss the performance of our implementation of
the Push-Relabel and Successive-approximation by Cost Scaling algorithms.

59

Chapter 5

Implementation of the Framework

Research Question 9 read:

Can we construct such a framework?

This question is in the first place answered by the framework itself, but not entirely. It implies
the following questions: does the framework that was developed conform the design and does it
meet the requirements? Functional requirements tend to be fairly concrete, at least when specified
properly. It can be verified from the implementation that the framework meets certain functional
requirements. Therefore, we will only state the few functional requirements that are not satisfied
by our implementation (in Section 5.4).

In contrast to the functional requirements, quality requirements are usually subjective and can
often, unless automated tools exist, only be specified and verified objectively with considerable
effort[63]. For this reason, we discuss some implementation details of the framework with respect
to the three selected quality requirements: changeability, reliability and understandability. The
definitions of quality requirements given here, are reiterated from Section 3.2.2.

5.1 Changeability

Changeability is the effort required to modify or add new functionality to the framework.
Our framework makes use of the JGraphT1 library version 0.7.3. This is an open source Java

library that provides various graph theoretic data structures. Although the current framework
makes use of JGraphT, it does not depend on JGraphT. An alternative data structure can be used
by providing an alternative implementation of a graph factory2.

Furthermore, it is possible to register new algorithms, operations and graph loaders with the
framework by modifying a configuration file. Apart from the effort required to implement the
concerned class itself no changes have to be made to the framework.

In order to ease interaction between the application and the framework a facade3 is created.
This creates a single point of entry and has the additional advantage that it is fairly easy to create
a layer (for example a Java RMI or web server) in front of the framework.

1http://jgrapht.sourceforge.net/
2Abstract Factory Pattern [25]
3Facade Pattern [25]

60

http://jgrapht.sourceforge.net/

According to the specification in the design the communication between various components
occurs asynchronous. In essence every components has a queue from which it consumes events or
tasks and another queue onto which it pushes the results it produced. This makes it in principle
possible to create a proxy between components. Such a proxy would enable different parts of the
framework to run on dedicated servers.

5.2 Reliability

Reliability is the ability of the framework to remain functional, even if exceptions or errors occur.
All tasks within the framework are executed within separate threads taken from a thread pool.

If an exception occurs during execution then this thread will simply terminate and the exception
will be reported to the external application.

The algorithm management component can be configured to use a policy that monitors running
threads and decides when a task should be aborted. A simple implementation that aborts tasks
based on a timeout is supplied with the framework. However, it is trivial to add more advanced
policies.

Finally, unit tests have been written.

5.3 Understandability

Understandability is the effort required by users of the framework to recognize functionality of the
framework and to understand the logical concepts behind it.

Understandability of the framework, its design and functionality is addressed in several ways.
First and foremost this thesis provides an extensive design (Chapter 3), it discusses the implemented
graph theoretic algorithms and gives few relevant implementation details. In addition the framework
is delivered with JavaDoc4 code comments and a manual. Finally, the prototype shows how to
interface with the framework and gives code examples.

5.4 Limitations

The most profound missing functionality is the EntityManagement component as specified in the
Logical View. This component is responsible for maintaining a registry of entities with their po-
sition and their direction. It aggregates updates of these properties in modifications to the graph
structure and state. In order to make these updates, the component uses the same interface to the
GraphManagement component, that external applications use. This component is therefore not
essential to the functioning of the framework as a whole.

We previously mentioned, that the framework contains a basic implementation of a policy to
monitor execution threads. Similarly, the framework contains only a basic functionality to regulate
access to graphs. These basic implementations can be easily replaces with more sophisticated ones.

4JavaDoc: http://java.sun.com/j2se/javadoc/

61

http://java.sun.com/j2se/javadoc/

5.5 Conclusion

In this chapter we discussed some relevant implementation details of the framework. This discussion
was structured according to the thee selected quality requirements, because the design decisions
behind these details are often based on these requirements. This chapter therefore provided concrete
arguments how the framework satisfies the quality requirements. These arguments provide a degree
of confidence that the framework is indeed changeable, reliable and understandable.

62

Part IV

Evaluation

63

Chapter 6

Empirical Study

During our project we made extensive use of our Successive-approximation by Cost Scaling algo-
rithm, because it is employed in our prototype to calculate a quickest flow. On the other hand
the Push-Relabel algorithm is primarily used as a subroutine of the SA algorithm. Specifically it
is used to calculate the first feasible flow. For this reason we spend more effort in developing and
testing the SA algorithm. In this chapter we report on the performance of both algorithms. Our
discussion of the Push-Relabel algorithm, however, is more brief and serves primarily as a baseline,
against which future improvements can be compared. The chapter provides an answer to Research
Question 6:

What is the measured performance of the maximum and minimum-cost flow algorithms
that are implemented?

6.1 General setup

The experiments are executed on a Intel Pentium 4 machine running at 3Ghz and equipped with 2
GB RAM. The system runs on Ubuntu Hardy Heron (8.04.1) Server Edition. Our code is compiled
using Sun Java SE 1.6.0 04. In order to facilitate the execution of the experiments an ’experimen-
tation’ application has been constructed on top of the framework.

6.2 Push-Relabel

This sections reports and discusses the performance of our implementation of the Push-Relabel al-
gorithm based on an empirical study.

6.2.1 Experimental Setup

Our implementation of the Push-relabel algorithm is tested on three problem families. For each
of these families problem instances are generated using two generators available from the dimacs
ftp-site1. The different families are described below.

1ftp://dimacs.rutgers.edu/pub/netflow

64

ftp://dimacs.rutgers.edu/pub/netflow

Generators

The Washington generator generates moderately dense networks and has four input parameters.
The first specifies the graph type, which is set to 6 to generate ’Basic Line’ graphs. The next
three parameters specify the number of rows, columns and degree. In order to generate graphs
with a problem size of 2x these parameters are set to values 2x−2, 4 and

√
n

4 respectively. With a
probability of 0.5 the generated graphs have their minimum-cut near the sink and with a probability
of 0.5 it is located near the source. Experiments are executed for problem sizes of 26, 28, 210 and
212 vertices. The family of graphs generated with this generator are labeled with ’wlm’.

The GenRMF generator is used to generate two families. The first family has a wide structure
and is denoted with ’rmfw’. Graphs in the other family have a long structure, these are marked
with ’rmfl’. The generator accepts five parameters: the output file, then the frame size (a) and
number of frames (b), and the minimum and maximum capacity. Each frame has a ∗ a vertices and
each vertex is connected to its neighbors. From each frame all vertices are connected to a randomly
selected counterpart in the next frame.

For both GenRMF families the capacity parameters are set to 1 and 104 respectively. Given
problem size of 2x, then for the rmfl-family let y = x/4 and a = 2y and b = 22y. For the rmfw-family
let y = x/5 and a = 22y and b = 2y.

Table 6.1 shows the problem sizes for the various families. For the wlm family approximate
values are given.

Table 6.1: Problem Sizes for Maximum Flow Problems

(b) Problem sizes for rmfw and rmfl families

Family Size Vertices Edges

rmfw

6 50 185
8 243 1026

10 1024 4608
12 3645 16956
14 13824 65664

rmfl

6 32 92
8 256 1008

10 800 3335
12 4096 18368
14 15488 71687

(b) Problem sizes for the wlm family

Family Size Vertices Edges

wlm

6 66 128
8 258 1000

10 1026 8070
12 4098 65020
14 16386 33776

6.2.2 Results

Table 6.2 gives execution time and operation counts for both rmf families. The results for the wlm
family are splitted between instances with their minimum-cut near the source (labeled wlm.s) and
those with their minimum-cut near the sink (label wlm.t). They are shown in Table 6.3. The first
row in this table indicates the number of instances in that category. Figure 6.1 visualizes the data
in a chart.

65

Discussion

The data clearly shows that the Push-Relabel algorithm is sensitive to the location of the minimum-
cut. The algorithm is significantly faster on graphs with their cut near the source. On the other
hand there is no significant difference in execution time between graphs with a wide and long
structure. Note that the size of problem instances for the rmfl family as shown in Table 6.2b is
slightly smaller then those for the rmfw family.

Table 6.2: Execution times for rmf families

(a) Results for the rmfw family

Vertices Edges Execution Time (ms) Relabels Saturating Pushes Non-Saturating Pushes
50 185 15.3 1052.7 1139.0 316.4

243 1026 367.4 25244.5 29070.6 4030.5
1024 4608 7539.4 458576.5 528267.1 47145.5
3645 16956 113348.1 5596195.2 6425340.4 470933.8

13824 65664 2145414.8 83401183.8 95257331.8 6122841.1

(b) Results for the rmfl family

Vertices Edges Execution Time (ms) Relabels Saturating Pushes Non-Saturating Pushes
32 92 7.3 409.3 426.0 111.3

256 1008 449.5 31632.5 35329.1 4363.4
800 3335 4153.0 261379.7 292793.1 27971.4

4096 18368 167440.8 7672229.2 8545208.5 620069.8
15488 71687 2516919.0 96543242.2 107060280.7 7232016.9

6.3 Successive Approximation

This section discusses the empirical study of our implementation of Successive Approximation by
Cost Scaling algorithm.

6.3.1 Experimental Setup

The implementation of the successive approximation by cost-scaling algorithm is evaluated using
problems generated by two generators. The grid-on-torus, or goto, generator is used to generate
three problem families, while another three families are generated with the gridgraph generator.
The source code for both generators is available through the dimacs ftp-site2. The generators and
their input parameters are discussed in more detail below. Forty instances are generated for each
family. Data is recorded on the execution time, number of saturating pushes, non-saturating pushes,
relabels, discharges and refines. Correctness is ensured by comparing the solution calculated with
our implementation with the one calculated by the CS2 algorithm by Goldberg3.

2ftp://dimacs.rutgers.edu/pub/netflow
3freely available for academic purposes at http://www.avglab.com/andrew/soft.html

66

ftp://dimacs.rutgers.edu/pub/netflow
http://www.avglab.com/andrew/soft.html

Generators

Three problem families are generated using the grid-on-torus generator. For all three families the
maximum capacity and maximum cost are kept constant at 16384 and 4096 respectively. The
variable property is the edge density and given a problem size of of 2x vertices the density is set to
8× x, 16× x and dx3/2e. The resulting families are called ’goto8’, ’goto16’ and ’gotoi’ respectively.
Experiments are done for problems sizes 26, 28, 210 and 212.

The gridgraph generator is used to create three families namely Grid-Wide(gridw), Grid-Square
(gridsq) and Grid-Long (gridl). As expected the graphs in these families have a wide, square and
long structure. The generator takes five parameters. The grid height, width, the maximum capacity
and maximum cost and finally a seed for the random number generator. For all three families the
maximum capacity is set to 104 and maximum cost to 104. Given problem size 2x. The wide family
is generated by setting the width to 2x−4 and height to 24. The square family is created with both
width and height set to 2x−1. Height is set to 2x−4 and width to 24 for the long family. For each
family graphs are generated with 26, 28, 210, 212 and 214 vertices.

If a particular generator was not able to generate a graph with exactly the said amount of
vertices, then parameters were chosen to approximate that value. An overview of graph sizes is
given in Table 6.4.

Parameters

In our experiments the following parameters can be influenced. Consult Section 4.3 for a description.

• E-Scale factor: the factor by which ε is reduced in each refine. Goldberg [30] suggest values
between 4 and 8.

• Implementation of the relabel operation {simple , complex}.

• Lookahead heuristic {enabled, disabled}.

Experiments are executed with the following parameter values:

Measured attributes

During execution of the algorithm the following attributes are recorded.

• Execution Time.

• Number of Refine operations.

• Number of Relabel operations.

• Number of Saturating Push operations.

• Number of Non-Saturating Push operations.

The ’execution time’ does not include the time required to initialize the algorithm (calculation
of a initial feasible flow is part of the initialization), nor does it include time to construct the result.
Time is measured by calls to the System.currentTimeMillis() method.

67

Table 6.3: Execution times for wlm family

(a) Results for the wlm instances with cut close to source

Vertices Edges Exec. Time (ms) Relabels Sat. Pushes Non-Sat. Pushes
24 66 128 7.5 606.0 633.3 165.8
15 258 1000 38.8 2232.7 2798.4 545.1
20 1026 8070 333.1 12771.4 14645.6 2113.8
19 4098 65020 2589.2 61266.8 66166.2 7162.8

(b) Results for the wlm instances with cut close to the sink

Vertices Edges Exec. Time (ms) Relabels Sat. Pushes Non-Sat. Pushes
16 66 128 24.3 1878.8 2071.6 402.3
25 258 1000 771.5 54701.5 57374.8 10450.0
20 1026 8070 23744.8 981934.9 989373.0 183554.8
21 4098 65020 699415.4 16303348.8 16309025.5 2671669.2

Table 6.4: Problem Sizes for Minimum Cost Flow Problems

(a) Problem sizes for grid families

Family Size Vertices Edges

gridl

6 66 140
8 258 512

10 1026 2000
12 4098 7952
14 16389 31760

gridsq

6 66 128
8 258 512

10 1026 2048
12 4098 8192

gridw

6 66 116
8 258 512

10 1026 2096
12 4098 8432
14 16386 33776

(b) Problem size for goto families

Family Size Vertices Edges

goto8

6 64 512
8 256 2048

10 1024 8192
12 4096 32768

goto16

6 64 1024
8 256 4096

10 1024 16384
12 4096 65536

gotoi

6 64 512
8 256 4096

10 1024 32768
12 4096 262144

Table 6.5: Experiment parameter values for minimum-cost flow

Id E-scale factor Relabel Operation Lookahead Heuristic
4.S 4 Simple Disabled
4.C 4 Complex Disabled
4.S.L 4 Simple Enabled
8.S 8 Simple Disabled
8.S.L 8 Simple Enabled

68

6.3.2 Results

Table 6.6 gives the mean execution times for experiments executed on graphs in the goto families.
This data is visualized in figures 6.2, 6.3 and 6.4. Table 6.7 gives the results for graphs that are
part of the grid families. These tables are visualized in figures 6.5, 6.6 and 6.7. In each table row
the lowest execution time is highlighted in bold, even though the margin is sometimes insignificant.
Unless otherwise indicated, all data presented is the mean over 40 datapoints.

We can observe that on small and medium problem sizes of the grid families the lookahead
heuristic offers a significant improvement in execution time. However, on larger grid problems its
lead is less significant. Furthermore, the algorithm with heuristic enabled performs far worse on
larger instances of the goto16 and gotoi families. On families with a higher number of edges, which
is the case for the goto16 and the larger gotoi families, the algorithm with an ε-scale factor of 4,
the simple relabel operation and with the lookahead heuristic disabled generally performs best.

6.3.3 Discussion

Analysis Lookahead Heuristic

Table 6.8 provides more detailed data for the gridl and gotoi experiment families.
This allows us to further analyze the performance of this heuristic. From this table we can

clearly see that the heuristic significantly reduces the number of push operations. However, at the
same time it increases the number of relabel operations and for larger problems it greatly increases
the number of relabels. We can observe an increase of roughly 64% and 122% when 4.S is compared
with 4.S.L on the gridl family with 4098 and 16386 vertices respectively. This increase in number
of relabel operations is explained by the heuristic itself. When the algorithm considers to push flow
from vertex v to w, it will check if w has any admissible outgoing arcs. If not, then it will relabel
w (as shown in Section 4.3.1, which explains the heuristic).

A further explanation of the detrimental influence of the heuristic on the performance on graphs
with a larger number of edges comes from our specific implementation of the heuristic. Because
our implementation does not explicitly maintain the admissible graph, it potentially has to check
all outgoing arcs of w in the residual graph to determine that w does indeed not have any outgoing
admissible arc.

This in fact changes the asymptotic running time of the algorithms. Goldberg [27] proves the
number of push operations is bound by O(n2m). When the algorithm selects vertex v to push flow
to vertex w it potentially examines all outgoing arcs of w and this number is bound by O(n) in a
fully connected graph. As a result the algorithm has a bound of O(n3m log nC).

Nevertheless the heuristic shows a significant reduction in push operations, with a decrease of
86% when comparing 4.S with 4.S.L on gotoi instances with 4096 vertices and 262144 edges. This
results in a lower execution time on smaller graphs. There are multiple possibilities to improve the
heuristic. First, explicitly maintain the admissible graph. Second, adapt the relabel strategy of
the heuristic. Goldberg and Kharitanov [30] describe a generalization of the heuristic, which aims
to reduce the number of relabels. They actually report a reduction in relabel operations for the
lookahead heuristic.

Analysis Relabel Operation

Here we further study difference between the complex and simple relabel operations as described
in Section 4.3.1. Table 6.9 gives more detailed information for the gridw and gotoi experiments.

69

As expected the difference in number of push and relabel operations is insignificant. However,
the simple relabel operation performs better in general, especially on smaller problems. On the
other hand it seems to lose its advantage on larger problems. Still, it is not possible to make firm
conclusions with respect to the larger problem sizes; additional study into the performance of the
complex relabel operation on these larger problems is required.

Analysis E-scale factor

Table 6.10 contains data useful to further analyze the change in behavior as a result of different
ε-scale factors. This table shows the number of refines and gives the number of push and relabel
operation per refine. Obviously, a higher scale factor results in fewer refines. Yet the amount of
work (i.e. push and relabel operations) done per refine increases significantly. This indicates a
trade-off between the work required to convert an ε-optimal flow into an ε

α -optimal pseudoflow
and the work done to convert the ε

α -optimal pseudoflow4 into an ε
α -optimal flow. As shown in our

discussion of the SA algorithm in Section 4.3, the first step is done within the refine itself, while the
later is achieved by repeatedly applying push and relabel operations. Based on the results of our
experiments we can conclude that in general it is better to execute more refines and do fewer work
when converting the pseudoflow to a flow. Only on larger dense problems, such as gotoi instances
with 1024 and 4096 vertices, the difference becomes less clear. However, further study on larger
problems is required to determine whether the balance actually tips in favor of a larger ε-scale.

6.4 Conclusion

In this chapter we reported on the performance of the Push-Relabel and Successive-approximation
by Cost Scaling algorithms. For the Push-Relabel algorithm we provided a baseline performance
against which future improvements can be compared. Based on the results for the wlm family of
graphs we conclude that that the running time of the algorithm depends heavily on the location
of the minimum-cut. This is clearly shown in Figure 6.1. There is no significant difference in
performance on graphs with a long versus wide structure.

For the Successive-approximation by Cost Scaling algorithm we implemented two relabels meth-
ods and the lookahead heuristic. Results indicate that this heuristic greatly decreases running time
on small to medium size graphs with a low edge density. This in contrast to its performance on
graphs with higher edge density and larger graphs in general. On these graphs the algorithm per-
forms far worse when this heuristic is enabled. We can conclude that this performance degradation
is due to the relabel strategy of the heuristic and the fact that the admissible graph is not ex-
plicitly maintained in our implementation. We can therefore suggest improvements: maintain the
admissible graph and adapt the relabel strategy of the heuristic.

For small and medium sized problems the algorithm with the complex relabel operation is
outperformed by the one with the simple relabel operation. However, on larger problems the
difference is less clear. This needs additional investigation.

Analysis of the effect of different ε-scale factors shows a trade-off between the work required to
convert an ε-optimal flow into an ε

α -optimal pseudoflow and the work done to convert the ε
α -optimal

pseudoflow into a ε
α -optimal flow. We conclude that for the problems we studied it is better to

do more refines and do less work during each refine. However, on large graphs with a high edge
4Recall: in a pseudoflow vertices are allowed to have excess flow.

70

density the results are less clear and further study is required to assess if this conclusion is valid for
problems larger then the ones we studied.

Table 6.6: Execution times for goto families

(a) Results for the goto8 family

Size Execution Time (ms)
Vertices Edges 4.S 4.C 4.S.L 8.S 8.S.L

64 512 221.8 434.3 161.2 296.0 165.8
256 2048 2264.4 4735.7 1792.9 3131.1 1934.4

1024 8192 48812.8 85294.8 38277.1 51328.4 31938.3
4096 32768 492649.8 862093.4 397817.7 553008.9 397236.0

(b) Results for the goto16 family

Size Execution Time (ms)
Vertices Edges 4.S 4.C 4.S.L 8.S 8.S.L

64 1024 323.9 633.4 353.7 393.3 382.2
256 4096 3332.7 6861.7 3549.1 4102.4 3666.8

1024 16384 58692.5 102190.4 59201.9 64477.8 56211.2
4096 65536 862968.8 938897.5 912028.0 960345.9 864057.7

(c) Results for the gotoi family

Size Execution Time (ms)
Vertices Edges 4.S 4.C 4.S.L 8.S 8.S.L

64 512 219.6 410.3 150.8 268.1 164.1
256 4096 3508.6 7014.8 3612.5 4289.4 3828.3

1024 32768 95935.0 173121.9 166062.9 100471.6 157604.5
4096 262144 3434949.1 3741921.7 10405170.05 3543468.4 10002877.2

5Means based on 15 problem instances.

71

Table 6.7: Execution times for grid families

(a) Results for the gridl family

Size Execution Time (ms)
Vertices Edges 4.S 4.C 4.S.L 8.S 8.S.L

66 140 61.5 113.4 33.2 77.6 34.5
258 512 664.3 1342.8 367.4 793.4 409.6

1026 2000 8636.1 14450.1 4417.5 11257.8 5479.2
4098 7752 81590.1 156630.5 59928.5 112005.9 69547.8

16389 31760 896164.8 949192.5 839003.3 1321073.6 1066389.4

(b) Results for the gridsq family

Size Execution Time (ms)
Vertices Edges 4.S 4.C 4.S.L 8.S 8.S.L

66 128 80.6 147.4 42.4 97.4 45.8
258 512 678.5 1355.5 371.9 786.0 391.1

1026 2048 7487.8 12335.2 3715.6 9309.8 4457.4
4098 8192 61007.6 114705.6 36629.3 76786.9 42900.8

(c) Results for the gridw family

Size Execution Time (ms)
Vertices Edges 4.S 4.C 4.S.L 8.S 8.S.L

66 116 85.3 160.2 45.0 111.8 51.4
258 512 670.6 1396.8 371.6 806.7 410.3

1026 2096 6643.3 10687.6 3335.4 7989.5 4079.4
4098 8432 50216.8 95027.1 37297.1 64021.7 44377.3

16389 33776 649502.4 605408.2 675441.5 738416.8 802116.3

72

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

32 128 512 2048 8192

Ti
m

e
in

 m
s

(l
o

g
sc

al
e)

Vertices (log scale)

rmfl

rmfw

wlm.s

wlm.t

Figure 6.1: Mean execution times for the maximum flow families
73

100

1,000

10,000

100,000

1,000,000

64 256 1,024 4,096

Ti
m

e
in

 m
s

(l
o

g
sc

al
e)

Vertices (log scale)

Goto8 Execution Time

4.S

4.C

4.S.L

8.S

8.S.L

Figure 6.2: Mean execution times for the goto8 family
74

100

1,000

10,000

100,000

1,000,000

64 256 1,024 4,096

Ti
m

e
 in

 m
s

(l
o

g
sc

al
e)

Vertices (log scale)

Goto16 Execution Time

4.S

4.C

4.S.L

8.S

8.S.L

Figure 6.3: Mean execution times for the goto16 family
75

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

64 256 1,024 4,096

T
im

e
 in

 m
s

(l
o

g
sc

a
le

)

Vertices (log scale)

Gotoi Execution Time

4.S

4.C

4.S.L

8.S

8.S.L

Figure 6.4: Mean execution times for the gotoi family
76

10

100

1,000

10,000

100,000

1,000,000

10,000,000

64 256 1,024 4,096 16,384

Ti
m

e
in

 m
s

(l
o

g
sc

al
e)

Vertices (log scale)

GridL Execution Time

4.S

4.C

4.S.L

8.S

8.S.L

Figure 6.5: Mean execution times for the gridl family
77

10

100

1,000

10,000

100,000

1,000,000

64 256 1,024 4,096

Ti
m

e
in

 m
s

(l
o

g
sc

al
e)

Vertices (log scale)

GridSq Execution Time

4.S

4.C

4.S.L

8.S

8.S.L

Figure 6.6: Mean execution times for the gridsq family
78

10

100

1,000

10,000

100,000

1,000,000

64 256 1,024 4,096 16,384

Ti
m

e
in

 m
s

(l
o

g
sc

al
e)

Vertices (log scale)

GridW Execution Time

4.S

4.C

4.S.L

8.S

8.S.L

Figure 6.7: Mean execution times for the gridw family
79

Table 6.8: Analysis of the lookahead heuristic

(a) Data for the gridl family

Execution Time(ms) Relabels Pushes
Vertices Edges 4.S 4.S.L 4.S 4.S.L 4.S 4.S.L

66 116 62 33 5293 5819 7545 2473
258 512 664 367 54800 65795 90953 33942

1026 2096 8636 4417 491407 659370 872751 373255
4098 8432 81590 59928 4447991 7307973 8212003 4325095

16386 33776 896165 839003 42727382 90551038 80787449 54693229

(b) Data for the gotoi family

Execution Time Relabels Pushes
Vertices Edges 4.S 4.S.L 4.S 4.S.L 4.S 4.S.L

64 512 220 151 11932 14747 20089 6097
256 4096 3509 3612 111651 157940 210082 55536

1024 32768 95935 166063 1353868 2077323 2702428 528970
4096 262144 3434949 104051705 18366418 319934405 36771987 50143305

Table 6.9: Analysis of the relabel operation

(a) Data for the gridw family

Execution Time (ms) Relabels Pushes
Vertices Edges 4.S 4.C 4.S 4.C 4.S 4.C

66 140 85 160 7651 7805 11762 12002
258 512 671 1397 55482 57194 92315 94989

1026 2000 6643 10688 371416 357437 652426 626007
4098 7952 50217 95027 2091707 2111111 3769226 3805762

16389 31760 649502 605408 11093651 11013480 20324615 20215037

(b) Data for the gotoi family

Execution Time (ms) Relabels Pushes
Vertices Edges 4.S 4.C 4.S 4.C 4.S 4.C

64 512 220 410 11932 11732 20089 19677
256 4096 3509 7015 111651 109436 210082 205383

1024 32768 95935 173122 1353868 1352313 2702428 2704180
4096 262144 3434949 3741922 18366418 18582860 36771987 37125519

80

Table 6.10: Analysis of ε-scale factor

(a) Data for the gridl family

Execution Time (ms) Refines Relabels / Refine Pushes / Refine
Vertices Edges 4.S 8.S 4.S 8.S 4.S 8.S 4.S 8.S

66 140 62 78 10.0 7.0 529 970 754 1367
258 512 664 793 11.0 7.0 4982 9919 8268 15938

1026 2000 8636 11258 12.0 8.0 40951 78273 72729 139319
4098 7952 81590 112006 13.0 9.0 342153 666709 631693 1233078

16389 31760 896165 1321074 14.0 9.0 3051956 6952895 5770532 13226182

(b) Data for the gotoi family

Execution Time (ms) Refines Relabels / Refine Pushes / Refine
Vertices Edges 4.S 8.S 4.S 8.S 4.S 8.S 4.S 8.S

64 512 220 268 9.0 6.0 1326 2455 2232 3919
256 4096 3509 4289 10.0 7.0 11165 19964 21008 36559

1024 32768 95935 100472 11.0 8.0 123079 184007 245675 353978
4096 262144 3434949 3543468 12.0 8.0 1530535 2519552 3064332 4726935

81

Chapter 7

Prototype Applications

Fayad et al.[22] argues that it requires multiple iterations to develop a framework. With each
iteration more experience into the framework and the problem domain is gained. Based on this
experience the framework can be improved. For this reason it was one of our objectives to develop an
application. The application that we created, simulates an evacuation from a building. However,
apart from this evacuation application, two more applications have been developed during the
course of the project. In early stages a simple console based application was constructed, and later
an application to manage and schedule experiments was required for our empirical study. These
applications can serve as an example of how the framework can be used within an application. This
chapter describes these three applications and serves as a confirmation of Research Question 9:

Can we construct such a framework?

7.1 Console Application

During the early phases of the development of the framework a small text based interface to the
framework was constructed. As development of the framework progressed, new functionality was
added to this ’frontend’ application. This resulted in a simple application which gives a fairly
comprehensive overview of the functionality offered by the framework. It supports functionality to
load graphs, execute algorithms on them and modify the structure of the graph. Moreover, the ap-
plication was instrumental in identifying problems and suggesting improvements to the framework.
A screenshot is shown in Figure 7.1. The screenshot shows how three commands are executed in
succession. First a graph is loaded from a file using the DimacsGraphLoader and it is assigned
and id (’MCF’). Next the successive approximation algorithm is executed on this graph. Vertices 0
and 9 are assigned source and sink with a supply of 12 and -12 respectively. Once the framework
completes computation it returns the solution, which is printed by the application. Finally, the
resulting graph is shown. On each line a vertex and it’s set of outgoing edges are shown. An edge
is represented by the following example string 0 : 2[0− > (3/6)5− > 2]. Here:

• 0 : 2[0→ (3/6)5→ 2] Shows the id assigned to the edge. In this case this id is composed of
the head and tail vertices, but that is not required.

• 0 : 2[0→ (3/6)5→ 2] Are the tail and head vertices of the edge.

82

• 0 : 2[0→ (3/6)5→ 2] Represents the flow value, capacity and the cost assigned to an edge.

Figure 7.1: Console FrontEnd screenshot.

7.2 Experimentation Application

The experimentation application allows us to schedule the execution of experiments. These ex-
periments are generated from two input files. The first specifies properties of the graphs, such
as filename and the GraphLoader class that should be used to load the graph. The second file
specifies configuration properties of the algorithms and the graph on which the algorithm should
be executed. These experiments are then executed consecutively. Figure 7.2 shows a screenshot of
the console output of the application while it is running on a dedicated machine. The application
writes the results of each experiments to a file. Figure 7.2 shows the log output of the application.
Observe the application repeatedly loads a graph, executes an experiment on the graph, and then
unloads the graph. The figure shows that each time a single experiment is executed on the graph,
but the application also contains functionality to execute multiple experiments on the same graph.

Figure 7.2: Experimentation application screenshot

83

7.3 Evacuation Application

One of the objectives of this thesis was to develop a graphical prototype application on top of
the framework. The choice was made to simulate an evacuation from a building. This evacuation
application was further described in Section 1.5. That section also listed some requirements for the
application. In this section we describe the actual application and discuss how it interacts with the
framework. In Section 7.3.3 two screenshots of the application are shown and described.

cmp Evacuation Prototype

Evacuation Prototype

Navigation FrameworkMap

PositioningFeedback

Figure 7.3: Relation of the evacuation prototype with the framework. The box ’Evacuation Proto-
type’ shows the components that are implemented by the application.

7.3.1 Relation to Framework

The framework requires domain specific implementations of several components. Figure 7.3 shows
how the evacuation application relates to the framework schematically. The evacuation prototype
provides a custom GraphLoader that allows location information to be stored in a file along with
the graph. The GUI presents feedback from the framework to the user. People within the building
are simulated and no component explicitly implementing the positioning component is provided.

7.3.2 Functionality

Graphs can be loaded within the framework from files using the GraphLoaders registered with the
framework. The graph is visualized on screen and it is possible to place context information in the
background of the graph. It is possible to add or remove vertices and edges from the graph and edge
properties can be edited. The modifications are made to the graph within the framework and the
changes are displayed on screen. Vertices can be assigned as source or sink and their supply value
can be edited. Based on these values a minimum-cost flow can be calculated by the framework.
The resulting minimum-cost flow is shown on screen.

In the context of an evacuation problem the supply value of a source corresponds to the number
of people present at that location. A sink indicates an exit of the building. The most efficient way
to evacuate a building is obtained by calculating a quickest flow. In order to calculate this quickest

84

flow based on the graph that is shown, two additional parameters need to be set: namely interval
and resolution. The interval denotes the time horizon for which a quickest flow is calculated and
resolution determines the length of a timestep. The capacity property of edges is now interpreted
as capacity per timestep. Cost denotes the number of timesteps required to travel across an edge
from the tail vertex to the head vertex. Calculating a quickest flow based on this graph involves a
few steps. First a time expanded graph is created, then this time expanded graph is pruned and
finally a minimum-cost flow algorithm is executed on the time expanded graph. As explained in
Section 2.5 the minimum-cost flow in the time-expanded graph is actually a quickest flow. Based
on the solution to quickest flow problem the evacuation simulation is created. The application now
shows a timeline on screen. At each step of the timeline the graph shown on screen is updated to
reflect the status of the evacuation at that timestep. By automatically advancing along the timeline
an animation of the evacuation is shown.

7.3.3 Evacuation Screenshots

Figures 7.4 and 7.5 shows screenshots of the evacuation application. The application in the screen-
shots show a map of the Buys Ballot Laboratorium (BBL) building of Utrecht University situated
on the Uithof in the background. On top of this map a graph is drawn. This graph is thus a model
of the building. However, we did not perform any research to ensure the accuracy of the model.
The graph is visualized using jGraph1, which is an opensource library for graph visualization.

Figure 7.4: Evacuation application: detail

Figure 7.4 depicts the seventh floor of this building. We can observe 10 nodes in this closeup
picture and several edges connecting them. To reduce model complexity, each node represents a
certain area within the building. For example node ’77’ actually represents several nearby rooms.
Three nodes are marked ’A’, ’B’ and ’C’. These nodes are located within the staircases and are
connected with upper and lower floors. We can see these edges actually leaving the figure on the
right hand side.

Each edges has a label, which displays properties of the edge. Each label consists of three values
’flow / capacity (cost)’. In this context, flow denotes the number of people currently traveling
across the edge. The capacity is the maximum number of people that can travel across the edge in
a time period. At last, cost gives the time it takes to travel across the edge from tail to head. In

1http://www.jgraph.com/

85

http://www.jgraph.com/

the figure several edges are colored red. This indicates that people are traveling across the edge in
the current timestep.

Figure 7.5: Evacuation application: overview

The next figure, Figure 7.5 gives a screenshot of the entire application. Here we can see 8 floors
in the BBL building. The simulation that is shown on the screenshot has 100 timesteps (indicated
by ’interval’ Graphical User Interface (GUI) element - marked by a green F). Each timestep can, for
example, be interpreted as a three second period. In this example we placed 200 people in rooms
on floors five to eight. Observe how people are traveling across the staircases from the top floor
towards the exits. The building has five exits, two on the first floor and three at ground level. On
the first floor the BBL is connected to two adjacent buildings by bridge. For technical reasons each
of these exits is connected to the ’supersink’ (marked by a green T).

The screenshot also shows the GUI. Several elements are marked with green letters. A short
description for each of these is given next.

• A: The file menu allows you to load and save graphs.

• B: Shows general information about the current graph. Its name, number of vertices and
edges.

86

• C: Allows you to switch between algorithms.

• D: Box that lists sources and sinks within the graph.

• E: Executes the current algorithm.

• F: Allows you to modify the interval and resolution parameters.

• G: Shows information about the currently selected graph element. In this case the edge
between node 86 and 84.

• H: Play or Pause the evacuation simulation.

• K: Timeline for the evacuation simulation. Allows you to rapidly scroll forwards and back-
wards in time.

• L: Indicates the framework is currently processing input.

• M: Allows you to zoom in and out.

Some functions are not shown. For example, it is possible to scroll the map view by using the arrow
keys and when the right mouse button is pressed a context menu is shown. This menu allows you
to edit the graph. We previously described how this simulation is calculated. Here we give little
anecdotal information about this process. In the screenshot it can be observed that the shown
graph consists of 95 vertices, which are connected by 308 edges. The time expanded graph that
is constructed from this graph has about 9500 vertices and during the pruning step roughly 3800
vertices are removed. The resulting graph still has 5700 vertices and about 18500 edges. It takes
our algorithm 12 seconds to find a quickest flow in this graph.

7.4 Discussion

The development effort of all three applications was dominated by the effort to collect input data,
and, especially for the evacuation prototype, the effort to present the data that is received from the
framework. Interaction with the framework proved to be straightforward. Development of these
applications was invaluable in verifying that (parts of) the framework and algorithms worked as
intended and suggesting fixes if it did not. The three applications are remarkably different from
each other and each serves a different purpose.

The evacuation application is a visual application and can be used as demonstrator. From the
description of this application in the previous section we can observe that it meets the requirements
specified in Section 1.5. The application therefore satisfies the objective to construct a prototype
application based on the framework. Additionally, the application shows that the abstract graph
algorithms that are supported and implemented by the framework can be applied to a practical
problem.

The console application intends to provide a comprehensive overview of the functionality offered
by the framework. Because of this, it can be used, in conjunction with the evacuation application
to verify if the framework satisfies functional requirements. Additionally, because this code does
not contain GUI and event handling code, it may be better suited as a code example for developers
that want to build their own application on top of the framework.

87

The experimentation application is quite different from the previous two and can show the
flexibility of the framework. It aims to consecutively load a large number of graphs and execute
algorithms on them. With this application we established baseline performance for the Push-
Relabel and Successive-approximation by Cost Scaling algorithms. It thus allowed us to answer
Research Question 6. Furthermore, if optimizations are made to the framework or the algorithms,
then this application can be used to measure the performance gain. In this way, one can be confi-
dent that these optimization did result in a better performance.

We introduced this chapter with the observation of Fayad et al.[22], that it requires multiple
iterations to construct a mature framework. They argue that the best way to learn if a framework
is sufficiently flexible and general for its intended purpose is to develop applications on top of the
framework. On the other hand they mention that it is dangerous to develop production applications
based on a framework, while it is still evolving.

Because of this apparent contradiction: to construct a mature framework you need to build
applications upon it, but to develop applications based on the framework you require a mature
framework, we developed three prototype applications. The experience that was gained in the
process provides us with degree of confidence that the framework can be applied in a complete
application. In Section 5.4 we identified limitations of the framework; clearly these need to be
addressed.

7.5 Conclusion

This chapter described three applications that were built on top of the framework. Each of these
applications has a different purpose. The evacuation application can serve as visual demonstrator
and shows that the graph algorithms supported by the framework can be applied in a practical
application. Developers can use the console application as a code example. This application can
also be used to verify the framework satisfies functional requirements. The third application enables
the analysis of the algorithms implemented by the framework. These three applications provide
arguments that the framework is flexible and that it can be applied in a complete application.

88

Chapter 8

Conclusion

8.1 Research Questions and Objectives

In this section we present the conclusion of this thesis. This conclusion is structured according to
the structure of the thesis. Observe how all research subquestions are answered by the chapters.

8.1.1 Analysis

Literature Study

In Chapter 2 an overview of relevant graph algorithmic topics was given. Dijkstra’s algorithm [17]
for the SP problem was discussed and several heuristics to speed up Dijkstra were mentioned.

In the following sections several algorithms for both the maximum flow and minimum-cost flow
problem were discussed. This discussion focused on the empirical results, that have been published
for these algorithms. Based on this discussion we reached the conclusion that the Push-Relabel [29]
and Successive-approximation by Cost Scaling algorithms [26] are state-of-the-art algorithms for re-
spectively, the maximum flow and minimum-cost flow problem. This conclusion answers Research
Question 1: What are the state-of-the-art algorithms and heuristics for the single-source shortest
path, maximum flow and minimum-cost flow problems? and Research Question 2: Which of these
algorithms are best suited to be implemented?

After discussing the algorithms for the maximum flow and minimum-cost flow problems, a
method for introducing a time component was treated. A dynamic graph contains such a time
element. The chapter gave definitions for the maximum dynamic, earliest arrival and quickest flow
problems. It was shown that these problems can be solved by executing an ordinary minimum-cost
flow algorithm on a so called time expanded graph. This time expanded graph is a static graph that
can be created from a dynamic graph. This answered Research Question 4: How can we introduce
the notion of time in these algorithms?

Architectural Design

Chapter 3 described the design of the framework. This design was structured according to the
IEEE 1471 [50] recommend practice. Section 3.2 listed functional and quality requirements for our

89

framework. Changeability, reliability and clarity were identified as key properties of the framework.
The remainder of the chapter described a collection of views. The Logical View showed a decompo-
sition into multiple modules. Functional requirements are mapped onto these modules. The Process
View shows the framework from a runtime perspective. Both the Functional and Process View aim
to ensure decoupling between different parts of the framework. This chapter thus answered both
Research Question 7: What are the requirements for such a framework? and Research Question 8:
What design satisfies the requirements?

8.1.2 Implementation

Implementation of Algorithms

The thesis continued to discuss the algorithms, that are implemented and supported by the frame-
work in Chapter 4. This chapter gives a complete definition of the Push-Relabel [29] and Successive
Approximation by Cost Scaling (SA) [26] algorithms. Moreover, it describes implementation spe-
cific aspects for these algorithms. Additionally, it mentions few heuristics for these algorithms and
provides references to others. These heuristics can often decrease the practical runningtime of these
algorithms. In addition to the Push-Relabel and SA algorithms several other algorithms are imple-
mented. Relevant implementations details were mentioned for each of these. This chapter therefore
provides an answer to Research Question 3: Can these algorithms be implemented such that they
support the framework?.

Implementation of the Framework

In Chapter 5 attention shifted to the framework. Research Question 9: Can we construct such a
framework? is in the first place answered by the framework itself. However, this chapter argues how
the framework satisfies the requirements. It shows how certain design decisions were influenced by
the quality requirements. Furthermore, it identifies areas where the framework can be changed and
improved. It, for example, argues that the framework can be made distributed, because different
components communicate through asynchronous queues.

8.1.3 Evaluation

Empirical Results

In Chapter 4 we reported on our implementation of the Push-Relabel and SA algorithms. Chap-
ter 6 reported on the practical performance of these algorithms by an empirical study. It thus
provides an answer to Research Question 6: What is the measured performance of the maximum
and minimum-cost flow algorithms that are implemented?

First, the performance of the Push-Relabel algorithm was studied on problems generated with
the Washington and GenRMF generators that are available from the dimacs ftp-site1. A baseline
performance was established and we can conclude that the performance of the algorithm is sensitive
to the location of the minimum-cut. The algorithm performed significantly better on graphs with
their cut close to the source.

1ftp://dimacs.rutgers.edu/pub/netflow

90

ftp://dimacs.rutgers.edu/pub/netflow

Next, the performance of our implementation of the SA algorithm was measured. We executed
experiments on graphs generated by two generators, namely: the gridgraph and goto generator.
These are also available through the dimacs ftp-site. The behavior of the algorithm was evaluated
with a different ε-scale factor, two implementations of the relabel operation and the lookahead
heuristic.

The results showed that in general an ε-scale factor of 4 is preferable over one of 8, the ’simple
relabel’ operation usually outperforms the ’complex relabel’ operations. However, for both these
parameters additional study into their behavior on larger problems is required. Analysis of the
lookahead heuristic showed a significant performance gain on small and medium sized problems.
This in contrast with far worse behavior on large and dense graphs. Several approaches were
proposed to improve the heuristic’s behavior.

Prototype Applications

One of the objectives of the thesis project was to construct a visual prototype application. Chap-
ter 7 describes this, and two other applications that have been build during the project. The first
application visually simulates an evacuation from a building. It shows that the algorithms imple-
mented by the framework and the framework itself can be used in a practical application. The
console application provides a console interface to the framework. It aims to provide a comprehen-
sive overview of the functionality offered by the framework. Therefore, it can be used to verify if the
framework satisfies its functional requirements. The third application enabled the empirical study
of the performance of the Push-Relabel and SA algorithm. This experiment application schedules
the sequential execution of algorithms on graphs. These three applications provide arguments that
the framework can be applied in a complete application.

8.1.4 Objectives

At the start of the project we defined several objectives. Table 8.1 shows each of them has been
satisfied.

8.2 Future Work

The framework itself and the algorithms that are implemented can be improved upon in several
ways. Often these improvements are already mentioned in relevant sections. In the following
sections we propose and describe few of these improvements. Again, these improvements are cate-
gorized according to aspect: algorithmic and framework.

8.2.1 Algorithmic Improvements

The framework currently supports the previously mentioned algorithms, namely: Dijkstra, Push-
Relabel and Successive Approximation by Cost Scaling. Effort can be directed into improving the
performance of each of these. Suggestions to this end are made later in this section. Furthermore,
it would be interesting to investigate to what extent previous solutions can be used as input for
later computations, after for example, the graph structure has been changed.

• Dijkstra’s Algorithm. A lot of research has been done on improving the performance of Di-
jkstra’s algorithm. In Chapter 2 we shortly described some heuristics for Dijkstra. These

91

Table 8.1: Objectives

Objective Satisfied by

Determine and describe the state-of-the-art algorithms for
the maximum flow and minimum cost flow problems.

Chapter 2

Derive and describe requirements for a framework as de-
scribed in the problem description and produce a design
based on these requirements.

Chapter 3

Report on the algorithmic implementation details and how
they address research questions stated in the previous sec-
tion.

Chapter 4

Perform a first iteration in the development of the frame-
work.

The framework and Chapter 5

Report on the performance of the implemented algorithms
by empirical study.

Chapter 6

Construct a prototype application. The evacuation prototype and
Chapter 7

heuristics can lead to a substantial gain in performance. Chapter 2 and the references therein
provide a good starting point. Our implementation of Dijkstra uses Fibonacci heaps. Alter-
natively, a faster, but weakly polynomial implementation can be used. For example, the one
described by Ahuja et al.[2].

• Push-Relabel. Research[6, 49] has shown that the global relabel heuristic can improve the
performance of the Push-Relabel algorithm significantly. Alternatively, effort could be made
to develop a parallel implementation of the algorithm. Articles by Goldberg and Tarjan [29]
and Anderson and Setubal [5] reported on this.

• Successive Approximation by Cost Scaling. In our discussion of the Successive-approximation
by Cost Scaling algorithm we cited several articles ([27, 30, 10]), that describe heuristics for
this algorithm. Implementation of these heuristics can lead to additional performance gains.
We implemented the lookahead heuristic. In Chapter 6 we analyzed the behavior of the
heuristic and suggested several improvements. Again, this algorithm can be parallelized [26].

8.2.2 Framework

In Chapter 5 we mentioned several areas, where the framework can be improved upon.

• More sophisticated functionality for monitoring and terminating execution threads. The cur-
rent implementation of the framework provides only a simple policy, that terminates threads
after a fixed delay.

• More sophisticated functionality for regulating access to graphs.

92

• The framework currently lacks an implementation of the Entity Management module. This
module was described in Section 3.4.2 of the design.

• Chapter 5 provides arguments where and how the framework can be distributed.

8.3 Conclusion

Section 8.1 highlighted the answers to each of the subquestions and Section 8.2 proposed future
work. During this thesis project a navigation framework was designed and constructed. This
framework aims to provide advanced navigation functionality by solving various flow problem.
In order to solve these problems, it supports implementations of Dijkstra’s algorithm, the Push-
Relabel and Successive-approximation by Cost Scaling algorithms. These algorithms solve the
shortest path, maximum flow and minimum-cost flow problems respectively. The framework also
contains functionality to create a time-expanded graph. Solutions to dynamic problems, such as the
quickest flow and earliest arrival problems can be found by executing the Successive-approximation
by Cost Scaling algorithm on this time-expanded graph. Furthermore, the performance of the
Push-Relabel and Successive-approximation by Cost Scaling algorithms was studied empirically.

Based on the framework and these algorithms an application was constructed that simulates
an evacuation from a building. Such an evacuation can be modeled as quickest flow problem. The
application uses the framework to construct a model of the building and to calculate a solution to
this quickest flow problem. The simulation is created based on the solution of this problem.

Based on this, and the conclusions we described in the previous sections, we can conclude that
we have answered the main Research Question:

Construct a navigational framework incorporating dynamic aspects as previously ex-
plained. How can existing theoretical graph algorithms be applied to support the required
functionality provided by the framework?

.

93

Part V

Appendices

94

Appendix A

Acronyms

ACS Applied Computing Science

API Application Programming Interface

AOP Aspect Oriented Programming

BBL Buys Ballot Laboratorium

BFS Breadth First Search

DFS Depth First Search

EUT Energy, Utility and Telecom

FIFO First In First Out

GIS Geographic Information Systems

GML Geography Markup Language

GPS Global Positioning System

GUI Graphical User Interface

Ids Identifiers

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

LBS Location Based Services

LCD Liquid Crystal Display

LIFO Last In First Out

95

MMS Multimedia Messaging Service

M.Sc. Master of Science

RD Rijksdriehoekscordinaten

req Requirement

RF Radio Frequency

RMI Remote Method Invocation

SA Successive Approximation by Cost Scaling

SMS Short Message Service

SP shortest path

UU Utrecht University

WLAN Wireless Local Area Network

WGS84 World Geodetic System 84

96

Bibliography

[1] R.K. Ahuja, A.V. Goldberg, J.B. Orlin, and R.E. Tarjan. Finding minimum-cost flows by
double scaling. Mathematical Programming, 53:243–266, 1992.

[2] R.K. Ahuja, K.Mehlhorn, J.B.Orlin, and R.E. Tarjan. Faster algorithms for the shortest path
problem. J. ACM, 37(2):213–223, 1990.

[3] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows: theory, algorithms, and applica-
tions. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[4] R.K. Ahuja and J.B. Orlin. A fast and simple algorithm for the maximum flow problem.
Operations Research, 37:748–759, 1989.

[5] R.J. Anderson and J.C. Setubal. On the parallel implementation of Goldberg’s maximum
flow algorithm. In SPAA ’92: Proceedings of the fourth annual ACM symposium on Parallel
algorithms and architectures, pages 168–177, New York, NY, USA, 1992. ACM.

[6] R.J. Anderson and J.C. Setubal. Goldberg’s algorithm for maximum flow in perspective:
a computational study. In Network Flows and Matching: First DIMACS Implementation
Challenge, pages 1–18, Boston, MA, USA, 1993. American Mathematical Society.

[7] R. Barahona and E. Tardos. Note on Weintraub’s minimum-cost circulation algorithm. SIAM
J. Comput., 18(3):579–583, 1989.

[8] R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87–90, 1956.

[9] D.P. Bertsekas and P. Tseng. Relaxation methods for minimum cost ordinary and generalized
network flow problems. Oper. Res., 36(1):93–114, 1988.

[10] R.G. Bland, J. Cheriyan, D.L. Jensen, and L. Ladanyi. An empirical study of min cost flow
algorithms. In Network Flows and Matching: First DIMACS Implementation Challenge, pages
119–156, Boston, MA, USA, 1993. American Mathematical Society.

[11] J.V. Carroll, K. Van Dyke, J. Kraemer, and C. Rodgers. Vulnerability assessment of the U.S.
transportation infrastructure relying on the global positioning system. ION National Technical
Meeting, 2001.

[12] L.G. Chalmet, R.L. Francis, and P.B. Saunders. Network models for building evacuation.
Management Science, 28(1):86–105, 1982.

97

[13] J. Cheriyan and S. N. Maheshwari. Analysis of preflow push algorithms for maximum network
flow. SIAM J. Comput., 18(6):1057–1086, 1989.

[14] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms. McGraw-
Hill Higher Education, 2001.

[15] G.B. Dantzig. Application of the Simplex Method for Solving Assignment Problems - Motivation
and Computational Experience. Wiley, NY, USA, 1951.

[16] A. de Bruijne, J. van Buren, A. Kösters, and H. van der Marel. Geodetic reference frames in
the Netherlands. Technical report, Netherlands Geodetic Commission, 2005.

[17] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

[18] Y. Dinitz. Algorithm for solution of a problem of maximum flow in a network with power
estimation. Soviet Mathematics-Doklady, 11:1277–1280, 1970.

[19] J. Edmonds and R.M. Karp. Theoretical improvements in algorithmic efficiency for network
flow problems. J. ACM, 19(2):248–264, 1972.

[20] A. Endres and D. Rombach. Handbook of Software and Systems Engineering: Empirical Ob-
servations, Laws and Theories. Pearson Education Limited, England, 2003.

[21] ESRI. ESRI shapefile technical description. Technical report, ESRI, 1998.

[22] M. E. Fayad, D. C. Schmidt, and R. E. Johnson. Building application frameworks: object-
oriented foundations of framework design. John Wiley & Sons, Inc., New York, NY, USA,
1999.

[23] M. L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network opti-
mization algorithms. J. ACM, 34(3):596–615, 1987.

[24] D.R. Fulkerson and G.B. Dantzig. Naval Research Logistics Quarterly, pages 277–283, 1955.

[25] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

[26] A. Goldberg and R. Tarjan. Solving minimum-cost flow problems by successive approximation.
In STOC ’87: Proceedings of the nineteenth annual ACM conference on Theory of computing,
pages 7–18, New York, NY, USA, 1987. ACM.

[27] A. V. Goldberg. An efficient implementation of a scaling minimum-cost flow algorithm. J.
Algorithms, 22(1):1–29, 1997.

[28] A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. J. ACM, 45(5):783–797,
1998.

[29] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. In STOC
’86: Proceedings of the eighteenth annual ACM symposium on Theory of computing, pages
136–146, New York, NY, USA, 1986. ACM.

98

[30] A.V. Goldberg and Kharitonov M. On implementing scaling push-relabel for the minimum-
cost flow problem. In Network Flows and Matching: First DIMACS Implementation Challenge,
pages 157–198, Boston, MA, USA, 1993. American Mathematical Society.

[31] A.V. Goldberg and R.E. Tarjan. Finding minimum-cost circulations by canceling negative
cycles. J. ACM, 36(4):873–886, 1989.

[32] D. Grejner-Brzezinska. Positioning and Tracking Approaches and Technologies, chapter 12,
pages 70–110. CRC Press, Boca Raton, FL, USA, 2004.

[33] M.D. Grigoriadis. An efficient implementation of the network simplex method. Mathematical
Programming Study, pages 83–111, 1986.

[34] J. Hallberg, M. Nilsson, and K. Synnes. Positioning with bluetooth. In 10th International
Conference on Telecommunications, volume 2, pages 954–958, 2003.

[35] P.E. Hart, N.J Nilsson, and B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. Systems Science and Cybernetics, 4:100–107, 1968.

[36] ISO. ISO 9126:2000 software engineering - product quality - part 1: Quality model. Technical
report, International Organization for Standardization, Geneva, Switzerland, 2001.

[37] J.J. Jarvis and H.D Ratliff. Some equivalent objectives for dynamic network flow problems.
Management Science, 28(1):106–109, 1982.

[38] D.B. Johnson. A priority queue in which initialization and queue operations take O(loglog d)
time. Mathematical Systems Theory, 15:295–309, 1982.

[39] L.R. Ford Jr. and D.R. Fulkerson. Flows in Networks. Princeton University Press, Princeton,
NJ, USA, 1962.

[40] R.G. Karlsson and P.V. Poblete. An O(m loglog d) algorithm for shortest paths. Discrete
Applied Mathematics, 6:91–93, 1983.

[41] J.L. Kennington and R.V.Ramakrishnan. Algorithms for Network Programming. Wiley, 1980.

[42] M. Klein. A primal method for minimal cost flows with applications to the assignment and
transportation problems. Management Science, 14(3):205–220, nov 1967.

[43] P. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):42–50, 1995.

[44] B. Li, A.G. Dempster, C. Rizos, and J. Barnes. Hybrid method for localization using WLAN.
In Spatial Sciences Conference, pages 341–350, 2005.

[45] X.R. Lopez. Location-Based Services, chapter 6, pages 171–188. CRC Press, Boca Raton, FL,
USA, 2004.

[46] M. Luby and P. Ragde. A bidirectional shortest-path algorithm with good average-case be-
havior. Algorithmica, 4:551–567, 1987.

[47] Sun Microsystems. Java Remote Method Invocation - Distributed Computing for Java. Tech-
nical report.

99

[48] U.S. National Imagery and Mapping Agency. Department of Defense World Geodetic System
1984, its definition and relationships with local geodetic systems. Technical report, National
Imagery and Mapping Agency, 1984.

[49] Q.C. Nguyen and V. Venkateswaran. Implementations of Goldberg-Tarjan maximum flow
algorithm. In Network Flows and Matching: First DIMACS Implementation Challenge, pages
19–42, Boston, MA, USA, 1993. American Mathematical Society.

[50] Institute of Electrical and Electronics Engineers. IEEE recommended practice for architecture
description of software-intensive systems. Technical report, New York, NY , USA, 2000.

[51] Inc. Open Geospatial Consortium. OpenGIS Geography Markup language (GML) Encoding
Standard. Technical report, 2007.

[52] J.B. Orlin. A faster strongly polynomial minimum cost flow algorithm. In STOC ’88: Proceed-
ings of the twentieth annual ACM symposium on Theory of computing, pages 377–387, New
York, NY, USA, 1988. ACM.

[53] J.B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations Research,
41(2):338–350, mar 1993.

[54] S. Pandey, F. Anjum, B. Kim, and P. Agrawal. A low-cost robust localization scheme for wlan.
In WICON ’06: Proceedings of the 2nd annual international workshop on Wireless internet,
page 17, New York, NY, USA, 2006. ACM.

[55] I. Pruijn. Location based messaging services: A generic architecture. Master’s thesis, Enschede,
The Netherlands, 2008.

[56] ABI research. Location-based services - operator strategies, revenue opportunities, subscribers,
devices, and applica- tions for mobile lbs. 2006.

[57] C. Rizos. Trends in geopositioning for lbs, navigation and mapping. In International Sympo-
sium and Exhibition on Geoinformation 2005, 2005.

[58] D.D. Sleator and R.E. Tarjan. A data structure for dynamic trees. In STOC ’81: Proceedings
of the thirteenth annual ACM symposium on Theory of computing, pages 114–122, New York,
NY, USA, 1981. ACM.

[59] I. Sommerville. Software Engineering: (Update) (8th Edition) (International Computer Sci-
ence). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[60] S. Sparks, K. Benner, and C. Faris. Managing object oriented framework reuse. IEEE Com-
puter, 29(9):52–61, 1996.

[61] B. van Zeist, P. Hendriks, R. Paulussen, and J. Trienekens. Kwaliteit van softwareprodukten -
Praktijkervaringen met een kwaliteitsmodel. Kluwer Bedrijfswetenschappen, 1996.

[62] D. Wagner and T. Willhalm. Speed-up techniques for shortest-path computations. In STACS
2007, pages 23–36, 2007.

[63] R. H. J. Zeist and P. R. H. Hendriks. Specifying software quality with the extended iso model.
Software Quality Journal, 5:273–284, 1996-12-01.

100

	I Project
	Introduction
	Context
	Location Based Services
	Navigation

	Problem Description
	Navigation Framework
	Graph Algorithms

	Research Questions and Objectives
	Research Questions
	Objectives

	Project Environment and Scope
	Scope

	Evacuation Simulation
	Document Structure

	II Analysis
	Literature Study
	Graph Algorithms
	Preliminaries and Definitions

	Shortest Path Problem
	Definitions
	Dijkstra's Shortest Path Algorithm
	Heuristics for Dijkstra

	Maximum Flow Problem
	Definition
	Overview
	Algorithms
	Empirical Results

	Minimum-Cost Flow Problem
	Definition
	Overview
	Algorithms
	Empirical Results

	Dynamic Flows
	Definition
	Time Expanded Graphs

	Conclusion

	Architectural Design
	Stakeholders and their Concerns
	Developer
	Acquirer

	Requirements
	Functional Requirements
	Quality Requirements
	Constraints

	Viewpoints
	Logical Viewpoint
	Process Viewpoint
	Development Viewpoint
	Physical Viewpoint
	Scenario Viewpoint

	Logical View
	General Structure
	Internal Structure

	Process View
	Framework Concurrency Model
	Future Improvements

	Development View
	Development of the Framework in Perspective
	Development of the Framework
	Technologies Used

	Scenario View
	Conclusion

	III Implementation
	Implementation of Algorithms
	Graph Data Structure
	Push-Relabel
	Strategies and heuristics
	Implementation

	Successive Approximation by Cost Scaling
	Strategies and Heuristics
	Implementation

	Miscellaneous Algorithms
	Summary

	Implementation of the Framework
	Changeability
	Reliability
	Understandability
	Limitations
	Conclusion

	IV Evaluation
	Empirical Study
	General setup
	Push-Relabel
	Experimental Setup
	Results

	Successive Approximation
	Experimental Setup
	Results
	Discussion

	Conclusion

	Prototype Applications
	Console Application
	Experimentation Application
	Evacuation Application
	Relation to Framework
	Functionality
	Evacuation Screenshots

	Discussion
	Conclusion

	Conclusion
	Research Questions and Objectives
	Analysis
	Implementation
	Evaluation
	Objectives

	Future Work
	Algorithmic Improvements
	Framework

	Conclusion

	V Appendices
	Acronyms
	Bibliography

