[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

Strategies for solving constraints in type
and effect systems

Jurriaan Hage
jur@cs.uu.nl
joint work with Bastiaan Heeren
Center for Software Technology, Department of Computer and Information
Sciences

Universiteit Utrecht
Department of Computer Science, Open University, The Netherlands

September 1, 2008

Overview

Motivation

The basic operators

Non-local reorderings
Properties and implementation

Summary

§W@ L) [FacuIFy of Science
%US Universiteit Utrecht Information and Computing Sciences]
AN

2

1. Motivation

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = = E DA

Type based program analysis §1

Program analysis riding piggy back on type inferencing
mechanism.

Type deduction system: specifies declaratively the
(consistent) solutions.

» Hindley-Milner for polymorphic lambda calculus
Type inferencer: computes (the best) solution.
» Folklore Algorithm M, Damas/Milner's algorithm W
All the algorithms traverse the abstract syntax tree (parse
tree) of the program.
Each algorithm is based on unification.
» Solving equivalence constraints, like a — Int = Bool — b.

» They differ only in when they perform which unification.

» The same for other validating type based analyses such as

Volpano and Smith’s Security Analysis.

5&\\“% [Faculty of Science
% N) % Universiteit Utrecht Information and Computing Sciences]
K/

Main disadvantages §1

» Turning a deduction system into an algorithm is tedious
and error prone.

» Especially if you consider multiple analyses at the same
time.

» The order of unification is fixed.

» So why is that a problem?

= o o a . .
§ Universiteit Utrecht Information and Computing Sciences]

:gwyf/) [Faculty of Science
5 TN

An example §1

v

Consider A\f — (f id, f True)
Algorithm M stops at True
> True does not match the argument type of f which is ...

v

v

Hugs blames the argument id instead.
> id does not match the argument type of f which is ...

v

Algorithm W blames the application f True.

v

A bottom-up algorithm will stop when it considers the
different types found for f at the binding site.

Ad nauseam.

v

‘S\\‘Wﬂ [Faculty of Science

AW
? N) % Universiteit Utrecht Information and Computing Sciences]

N

A fixed order of unification §1

Different orders of unification should not influence
satisfiability.

» If you stay true to the deduction system, this is no problem.

» The ordering of unification does determine which

>

&
e

N

unification is the first to fail.

Which unification fails determines the error message
offered to the programmer.

In other words, each strategy offers its own view on the
problem.

Disadvantage: committing to a fixed solving strategy also
commits you to the corresponding view.

Moreover, a different algorithm implies different order
implies need for a new soundness proof.

[Faculty of Science

%
N) % Universiteit Utrecht Information and Computing Sciences]

So what do we propose? §1

» Use of special operators in type rules to declaratively
specify restrictions and degrees of freedom in performing
unification (solving strategy).

» Compiler is not committed to any fixed strategy.

» Each programmer can select his favourite one or use
multiple in parallel.

» Changing strategy can be done without changing or
understanding the compiler.

» The type system, the ordering of unifications, and
performing the unifications have been decoupled.

» Supporting various strategies/views in parallel is easy to
implement.

» Emulates existing type inference algorithms

» helium -X

Ty » Also useful for experimentation and COMPArison . . ¢ science

= Universiteit Utrecht Information and Computing Sciences]

Can we do more to improve error messages? §1

9

By implementing heuristics that consider sets of
constraints at the time.

We actually did this for Hindley-Milner (IFL 2006) and
Haskell's type classes (PADL 2005).

» Need to look at O'Sullivan et al, suggested by referee.

But also here, we use our operators.
But this approach has drawbacks:

» Typically quite a bit of effort involved.
» Language dependent, analysis dependent.

> Although it does depend on the heuristic
Our operators live in the world of constraints, and are not
tied to any particular language, analysis or language of
constraints.

[Faculty of Science

= o o a . .
N) % Universiteit Utrecht Information and Computing Sciences]

2. The basic operators

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] = = = £ DA

The conditional rule with assumption sets §2

» Associate constraints with nodes in the AST.
» We build a constraint tree, not a constraint set.

» Operator language on top of constraint language.

Tc = [01762703] Q + 7&177&27%3+
cg=(m=Bool) ca=(n=p0) c3=(3=0)
A Tep e
Az, Teabea:m Az, Tez b e3: 73

A1 +H Ay H A3z, 7c Fif €1 then e; else e3 : 3

» A strategy turns a constraint tree into a list of constraints.

» Impossible: first ¢1, then the subtrees, then {c2,c3}.

5&\\“’%}) [Faculty of Science
; N % Universiteit Utrecht Information and Computing Sciences]
1 NS

Associating constraints with subexpressions. §2

» Some constraints 'belong’ to certain subexpressions:

Ic = [c2,¢3] © ¢c1V7Tey, Tea, Te3 ¢
cp=(m1=Bool) co=(e=p) c3=(13=p0)
A1, Tei e
Ao, Teo e 1 1 As,Tes b es:m3
Ai H Ao H As,7c | if e1 then es else e3 : 3

» c; is generated by the conditional, but associated with the
boolean subexpression.

» Example strategy: left-to-right, bottom-up for then and
else part, push down Bool (do ¢; before 7¢1).

[Faculty of Science
Information and Computing Sciences]

= 2z
o= . P
Z U F Universiteit Utrecht

NI
12 N

Semantics by tree walk §2

» Solving strategy is deriveed from the semantics given to
the operators.

» Define tree walk (Is code formal enough?)

data TreeWalk = TW (Va.la] — [([a],[a])] — [a])

» Example strategy of previous slide as a tree walk:

treewalk] = TW (And kids — f (unzip kids) H nd)
where f (csets, assocs) = conc assocs H conc csets

» A function, flatten, uses the strategy to turn a constraint
tree to a list of constraints.

flatten :: TreeWalk — ConstraintTree — [Constraint]

; N) % Universiteit Utrecht Information and Computing Sciences]

@Wff') [Faculty of Science
13 KT\

Extensions: operators parameterised by label §2

» Simple idea: allow different tree walks for different
non-terminals

» Haskell interpreter Hugs considers tuples right-to-left,
other constructs left-to-right.

» Essentially, flatten's strategy parameter can depend on the
AST node:

flatten :: (Label — TreeWalk) — ... — [Constraint]

5&\\“’%}) [Faculty of Science
; N % Universiteit Utrecht Information and Computing Sciences]
14 NS

The strict operator, < §2

» Can we force subexpressions to be done left-to-right?

Te =[c2,c3] O ¢a1VTey < Too < T3 ¢}
c1= (11 =Bool) co=(r2=p) c3=(13=0p)
A, Teiber:m
Ao, Teo ezt 7o As, ez ez i 73

A1 +H Ay H A3z, 7c Fif €1 then e, else e3 : 3

» Even if we choose a right-to-left treewalk, the conditional
will still be inferred left-to-right.

» flatten ignores the treewalk in strict expressions.

» Still, ¢; can be before or after Z¢;.
‘S\\‘Wﬂ [Faculty of Science

AW
; N) % Universiteit Utrecht Information and Computing Sciences]

i N

Application of <: let-polymorphism §2

» When using constraints, basically two solutions for dealing
with polymorphism:
» Duplicate sets of constraints
» Solve constraints for the definition before it is used.
» Former solution unacceptable: duplication of effort, and
worse, of errors.

» The latter solution imposes restrictions on the order of
solving constraints.

» Can be handled by making the solver more complicated,
but....

» we can also use <.

» Details are in the paper.

5&\\“% [Faculty of Science
; N) % Universiteit Utrecht Information and Computing Sciences]

16 N

3. Non-local reorderings

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] = = = £ DA

Environments versus assumption sets §3

&
e

18 N

\4

Assumption set based type system pass information about
identifier upwards.

» Constraints imposed at binding sites.

Environment based type systems pass information about
declared identifiers downwards.

» Constraints imposed at identifier uses.
To mimick environment based systems with ours, we allow
to “spread” constraints from binding site to use site.
< ° allows spreading, but does not enforce it, < forbids
spreading.

» Similarly for the other operators.

» Before flattening, choose to spread or not.

» Details, again, in the paper.

[Faculty of Science

%
N) % Universiteit Utrecht Information and Computing Sciences]

Phasing §3

» Use if certain types of constraints always before the others.

» Application: constraints from type signatures before
constraints from the definitions themselves.

» Basic idea is simple: associate a phase number with
constraints.

» Constraints with low phase number go first.

» Use default phase for constraints, unless stated otherwise.

» Constraints encountered early are blamed less often.

» Signatures easier to get correct, so first signature
constraints.

@Wﬁ' [Faculty of Science

AW
; N) % Universiteit Utrecht Information and Computing Sciences]

19 N

4. Properties and implementation

&‘W% [Faculty of Science

N ZZ a qo-0 a - .
ESIN) é Universiteit Utrecht Information and Computing Sciences]

0 N

Implementation §4

21

» Educational compiler Helium in use since 2002.

» Allows (some) experimentation with different orders.
» Efficiency:
» What kind?
» Constraints are simpler, but we have more of them.
» Computing substitution on the fly will be a bit more
efficient, but not much.
> We believe the gain offsets the loss.
» Comparing algorithms:
> no difference for correct programs.
> Lee and Yi: W sees too many constraints, M too few.
> Seeing constraints takes time, but seeing more might give
better message.

5&\\“% [Faculty of Science
% N) % Universiteit Utrecht Information and Computing Sciences]
K/

Emulation §4

v

Many existing algorithms and implementations can be
emulated by choosing the appropriate treewalk.

v

For example: algorithm W is emulated by a bottomUp
strategy combined with spreading.

v

The type system is always the same.

v

Only the interpretation of the operators changes.

v

And the choice to spread or not.

‘S\\‘Wﬂ [Faculty of Science

AW
; N) % Universiteit Utrecht Information and Computing Sciences]

22 N

Correctness proofs 54

» Soundness proof (w.r.t. Hindley-Milner)

> A general sketch is given, independent of the analysis and
language.

» No actuall proof in the paper. Should it be?

» Full proof in PhD thesis of second author. Give number of
pages?

» Proof not essentially more difficult, but it is quite long.

» Some of it can be avoided: mapping assumptions sets back
to environments (our “mistake”)

» Essentially, we prove correct (most/all) possible algorithms!

5&\\“% [Faculty of Science
; N) % Universiteit Utrecht Information and Computing Sciences]

23 N

Proof ideas/sketch §4

v

Show you get the same solution for every possible treewalk.

v

For equivalence constraints solving order irrelevant.

v

Correctness essentially depends on our use of <.

» Makes sure that generalization and instantiation constraints
are not solved before their time has come.

v

Proof hinges less on the particular traversal,

v

which makes it less arbitrary and more abstract.

5&\\“% [Faculty of Science
? N) % Universiteit Utrecht Information and Computing Sciences]

24 KN

5. Summary

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = = E DA

Summary §5

» Bridge the gap between type system specification and type
inference implementation.

» High-level operators in the type rules disallow and enable
certain unification orders.

» The remaining freedom is for the programmer to fill in.
» Choosing a strategy is done by choosing a semantics for
(some of) the proposed operators.
> As exposed to the programmer through the compiler.
» Solvers may impose certain restrictions on the order in
which constraints should be solved.
» Our operators can be used to assure these restrictions hold.

» Multiple solving “back-ends”, multiple strategies (in
parallel), multiple independent error messages.

> No need to commit to solving strategy while the compiler
ﬁ\\Wﬁ' lg built. [Faculty of Science
{ chi

% N) % Umversltelt Ut Information and Computing Sciences]

2 N

Questions? §5

27

v

What should we include to make it more understandable or
complete?
> Actual M and W algorithms?
» Changing assumption set based to environment based?
(Future Work.)

Give the proofs? How detailed?

'S

» Code for flattening, spreading etc.?

» Reinclude phasing? New feature extension.
>

Apply to another validating analysis: Security Analysis?
(Future Work.)

5&\\“% [Faculty of Science
; N) % Universiteit Utrecht Information and Computing Sciences]

N

	Motivation
	The basic operators
	Non-local reorderings
	Properties and implementation
	Summary

