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1. Motivation
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Type based program analysis §1

Program analysis riding piggy back on type inferencing
mechanism.

Type deduction system: specifies declaratively the
(consistent) solutions.

» Hindley-Milner for polymorphic lambda calculus
Type inferencer: computes (the best) solution.
» Folklore Algorithm M, Damas/Milner's algorithm W
All the algorithms traverse the abstract syntax tree (parse
tree) of the program.
Each algorithm is based on unification.
» Solving equivalence constraints, like a — Int = Bool — b.

» They differ only in when they perform which unification.

» The same for other validating type based analyses such as

Volpano and Smith’s Security Analysis.
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Main disadvantages §1

» Turning a deduction system into an algorithm is tedious
and error prone.

» Especially if you consider multiple analyses at the same
time.

» The order of unification is fixed.

» So why is that a problem?
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An example §1

v

Consider A\f — (f id, f True)
Algorithm M stops at True
> True does not match the argument type of f which is ...

v

v

Hugs blames the argument id instead.
> id does not match the argument type of f which is ...

v

Algorithm W blames the application f True.

v

A bottom-up algorithm will stop when it considers the
different types found for f at the binding site.

Ad nauseam.

v
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A fixed order of unification §1

Different orders of unification should not influence
satisfiability.

» If you stay true to the deduction system, this is no problem.

» The ordering of unification does determine which
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unification is the first to fail.

Which unification fails determines the error message
offered to the programmer.

In other words, each strategy offers its own view on the
problem.

Disadvantage: committing to a fixed solving strategy also
commits you to the corresponding view.

Moreover, a different algorithm implies different order
implies need for a new soundness proof.
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So what do we propose? §1

» Use of special operators in type rules to declaratively
specify restrictions and degrees of freedom in performing
unification (solving strategy).

» Compiler is not committed to any fixed strategy.

» Each programmer can select his favourite one or use
multiple in parallel.

» Changing strategy can be done without changing or
understanding the compiler.

» The type system, the ordering of unifications, and
performing the unifications have been decoupled.

» Supporting various strategies/views in parallel is easy to
implement.

» Emulates existing type inference algorithms

» helium -X

Ty » Also useful for experimentation and COMPArison . . ¢ science
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Can we do more to improve error messages? §1

9

By implementing heuristics that consider sets of
constraints at the time.

We actually did this for Hindley-Milner (IFL 2006) and
Haskell's type classes (PADL 2005).

» Need to look at O'Sullivan et al, suggested by referee.

But also here, we use our operators.
But this approach has drawbacks:

» Typically quite a bit of effort involved.
» Language dependent, analysis dependent.

> Although it does depend on the heuristic
Our operators live in the world of constraints, and are not
tied to any particular language, analysis or language of
constraints.
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2. The basic operators
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The conditional rule with assumption sets §2

» Associate constraints with nodes in the AST.
» We build a constraint tree, not a constraint set.

» Operator language on top of constraint language.

Tc = [01762703] Q + 7&177&27%3+
cg=(m=Bool) ca=(n=p0) c3=(3=0)
A Tep e
Az, Teabea:m Az, Tez b e3: 73

A1 +H Ay H A3z, 7c Fif €1 then e; else e3 : 3

» A strategy turns a constraint tree into a list of constraints.

» Impossible: first ¢1, then the subtrees, then {c2,c3}.
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Associating constraints with subexpressions. §2

» Some constraints 'belong’ to certain subexpressions:

Ic = [c2,¢3] © ¢c1V7Tey, Tea, Te3 ¢
cp=(m1=Bool) co=(e=p) c3=(13=p0)
A1, Tei e
Ao, Teo e 1 1 As,Tes b es:m3
Ai H Ao H As,7c | if e1 then es else e3 : 3

» c; is generated by the conditional, but associated with the
boolean subexpression.

» Example strategy: left-to-right, bottom-up for then and
else part, push down Bool (do ¢; before 7¢1).
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Semantics by tree walk §2

» Solving strategy is deriveed from the semantics given to
the operators.

» Define tree walk (Is code formal enough?)

data TreeWalk = TW (Va.la] — [([a],[a])] — [a])

» Example strategy of previous slide as a tree walk:

treewalk] = TW (And kids — f (unzip kids) H nd)
where f (csets, assocs) = conc assocs H conc csets

» A function, flatten, uses the strategy to turn a constraint
tree to a list of constraints.

flatten :: TreeWalk — ConstraintTree — [ Constraint]
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Extensions: operators parameterised by label §2

» Simple idea: allow different tree walks for different
non-terminals

» Haskell interpreter Hugs considers tuples right-to-left,
other constructs left-to-right.

» Essentially, flatten's strategy parameter can depend on the
AST node:

flatten :: (Label — TreeWalk) — ... — [ Constraint]
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The strict operator, < §2

» Can we force subexpressions to be done left-to-right?

Te =[c2,c3] O ¢a1VTey < Too < T3 ¢}
c1= (11 =Bool) co=(r2=p) c3=(13=0p)
A, Teiber:m
Ao, Teo ezt 7o As, ez ez i 73

A1 +H Ay H A3z, 7c Fif €1 then e, else e3 : 3

» Even if we choose a right-to-left treewalk, the conditional
will still be inferred left-to-right.

» flatten ignores the treewalk in strict expressions.

» Still, ¢; can be before or after Z¢;.
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Application of <: let-polymorphism §2

» When using constraints, basically two solutions for dealing
with polymorphism:
» Duplicate sets of constraints
» Solve constraints for the definition before it is used.
» Former solution unacceptable: duplication of effort, and
worse, of errors.

» The latter solution imposes restrictions on the order of
solving constraints.

» Can be handled by making the solver more complicated,
but....

» we can also use <.

» Details are in the paper.
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3. Non-local reorderings
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Environments versus assumption sets §3
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Assumption set based type system pass information about
identifier upwards.

» Constraints imposed at binding sites.

Environment based type systems pass information about
declared identifiers downwards.

» Constraints imposed at identifier uses.
To mimick environment based systems with ours, we allow
to “spread” constraints from binding site to use site.
< ° allows spreading, but does not enforce it, < forbids
spreading.

» Similarly for the other operators.

» Before flattening, choose to spread or not.

» Details, again, in the paper.
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Phasing §3

» Use if certain types of constraints always before the others.

» Application: constraints from type signatures before
constraints from the definitions themselves.

» Basic idea is simple: associate a phase number with
constraints.

» Constraints with low phase number go first.

» Use default phase for constraints, unless stated otherwise.

» Constraints encountered early are blamed less often.

» Signatures easier to get correct, so first signature
constraints.
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4. Properties and implementation
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Implementation §4
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» Educational compiler Helium in use since 2002.

» Allows (some) experimentation with different orders.
» Efficiency:
» What kind?
» Constraints are simpler, but we have more of them.
» Computing substitution on the fly will be a bit more
efficient, but not much.
> We believe the gain offsets the loss.
» Comparing algorithms:
> no difference for correct programs.
> Lee and Yi: W sees too many constraints, M too few.
> Seeing constraints takes time, but seeing more might give
better message.
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Emulation §4

v

Many existing algorithms and implementations can be
emulated by choosing the appropriate treewalk.

v

For example: algorithm W is emulated by a bottomUp
strategy combined with spreading.

v

The type system is always the same.

v

Only the interpretation of the operators changes.

v

And the choice to spread or not.
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Correctness proofs 54

» Soundness proof (w.r.t. Hindley-Milner)

> A general sketch is given, independent of the analysis and
language.

» No actuall proof in the paper. Should it be?

» Full proof in PhD thesis of second author. Give number of
pages?

» Proof not essentially more difficult, but it is quite long.

» Some of it can be avoided: mapping assumptions sets back
to environments (our “mistake”)

» Essentially, we prove correct (most/all) possible algorithms!
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Proof ideas/sketch §4

v

Show you get the same solution for every possible treewalk.

v

For equivalence constraints solving order irrelevant.

v

Correctness essentially depends on our use of <.

» Makes sure that generalization and instantiation constraints
are not solved before their time has come.

v

Proof hinges less on the particular traversal,

v

which makes it less arbitrary and more abstract.
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5. Summary
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Summary §5

» Bridge the gap between type system specification and type
inference implementation.

» High-level operators in the type rules disallow and enable
certain unification orders.

» The remaining freedom is for the programmer to fill in.
» Choosing a strategy is done by choosing a semantics for
(some of) the proposed operators.
> As exposed to the programmer through the compiler.
» Solvers may impose certain restrictions on the order in
which constraints should be solved.
» Our operators can be used to assure these restrictions hold.

» Multiple solving “back-ends”, multiple strategies (in
parallel), multiple independent error messages.

> No need to commit to solving strategy while the compiler
ﬁ\\Wﬁ' lg built. [Faculty of Science
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Questions? §5
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v

What should we include to make it more understandable or
complete?
> Actual M and W algorithms?
» Changing assumption set based to environment based?
(Future Work.)

Give the proofs? How detailed?

'S

» Code for flattening, spreading etc.?

» Reinclude phasing? New feature extension.
>

Apply to another validating analysis: Security Analysis?
(Future Work.)

5&\\“% [Faculty of Science
; N) % Universiteit Utrecht Information and Computing Sciences]

N



	Motivation
	The basic operators
	Non-local reorderings
	Properties and implementation
	Summary

