
[Faculty of Science
Information and Computing Sciences]

Strategies for solving constraints in type
and effect systems

Jurriaan Hage
jur@cs.uu.nl

joint work with Bastiaan Heeren

Center for Software Technology, Department of Computer and Information
Sciences

Universiteit Utrecht
Department of Computer Science, Open University, The Netherlands

September 1, 2008

[Faculty of Science
Information and Computing Sciences]

2

Overview

Motivation

The basic operators

Non-local reorderings

Properties and implementation

Summary

[Faculty of Science
Information and Computing Sciences]

3

1. Motivation

[Faculty of Science
Information and Computing Sciences]

4

Type based program analysis §1

I Program analysis riding piggy back on type inferencing
mechanism.

I Type deduction system: specifies declaratively the
(consistent) solutions.

I Hindley-Milner for polymorphic lambda calculus

I Type inferencer: computes (the best) solution.
I Folklore Algorithm M, Damas/Milner’s algorithm W

I All the algorithms traverse the abstract syntax tree (parse
tree) of the program.

I Each algorithm is based on unification.
I Solving equivalence constraints, like a→ Int ≡ Bool → b.

I They differ only in when they perform which unification.

I The same for other validating type based analyses such as
Volpano and Smith’s Security Analysis.

[Faculty of Science
Information and Computing Sciences]

5

Main disadvantages §1

I Turning a deduction system into an algorithm is tedious
and error prone.

I Especially if you consider multiple analyses at the same
time.

I The order of unification is fixed.

I So why is that a problem?

[Faculty of Science
Information and Computing Sciences]

6

An example §1

I Consider λf → (f id , f True)
I Algorithm M stops at True

I True does not match the argument type of f which is ...

I Hugs blames the argument id instead.
I id does not match the argument type of f which is ...

I Algorithm W blames the application f True.

I A bottom-up algorithm will stop when it considers the
different types found for f at the binding site.

I Ad nauseam.

[Faculty of Science
Information and Computing Sciences]

7

A fixed order of unification §1

I Different orders of unification should not influence
satisfiability.

I If you stay true to the deduction system, this is no problem.

I The ordering of unification does determine which
unification is the first to fail.

I Which unification fails determines the error message
offered to the programmer.

I In other words, each strategy offers its own view on the
problem.

I Disadvantage: committing to a fixed solving strategy also
commits you to the corresponding view.

I Moreover, a different algorithm implies different order
implies need for a new soundness proof.

[Faculty of Science
Information and Computing Sciences]

8

So what do we propose? §1

I Use of special operators in type rules to declaratively
specify restrictions and degrees of freedom in performing
unification (solving strategy).

I Compiler is not committed to any fixed strategy.
I Each programmer can select his favourite one or use

multiple in parallel.

I Changing strategy can be done without changing or
understanding the compiler.

I The type system, the ordering of unifications, and
performing the unifications have been decoupled.

I Supporting various strategies/views in parallel is easy to
implement.

I Emulates existing type inference algorithms
I helium -X
I Also useful for experimentation and comparison

[Faculty of Science
Information and Computing Sciences]

9

Can we do more to improve error messages? §1

I By implementing heuristics that consider sets of
constraints at the time.

I We actually did this for Hindley-Milner (IFL 2006) and
Haskell’s type classes (PADL 2005).

I Need to look at O’Sullivan et al, suggested by referee.

I But also here, we use our operators.
I But this approach has drawbacks:

I Typically quite a bit of effort involved.
I Language dependent, analysis dependent.

I Although it does depend on the heuristic

I Our operators live in the world of constraints, and are not
tied to any particular language, analysis or language of
constraints.

[Faculty of Science
Information and Computing Sciences]

10

2. The basic operators

[Faculty of Science
Information and Computing Sciences]

11

The conditional rule with assumption sets §2

I Associate constraints with nodes in the AST.

I We build a constraint tree, not a constraint set.

I Operator language on top of constraint language.

TC = [c1, c2, c3] ♦ [• TC1, TC2, TC3]•
c1 = (τ1 ≡ Bool) c2 = (τ2 ≡ β) c3 = (τ3 ≡ β)

A1, TC1 ` e1 : τ1
A2, TC2 ` e2 : τ2 A3, TC3 ` e3 : τ3

A1 ++A2 ++A3, TC ` if e1 then e2 else e3 : β

I A strategy turns a constraint tree into a list of constraints.

I Impossible: first c1, then the subtrees, then {c2, c3}.

[Faculty of Science
Information and Computing Sciences]

12

Associating constraints with subexpressions. §2

I Some constraints ’belong’ to certain subexpressions:

TC = [c2, c3] ♦ [• c1OTC1, TC2, TC3]•
c1 = (τ1 ≡ Bool) c2 = (τ2 ≡ β) c3 = (τ3 ≡ β)

A1, TC1 ` e1 : τ1
A2, TC2 ` e2 : τ2 A3, TC3 ` e3 : τ3

A1 ++A2 ++A3, TC ` if e1 then e2 else e3 : β

I c1 is generated by the conditional, but associated with the
boolean subexpression.

I Example strategy: left-to-right, bottom-up for then and
else part, push down Bool (do c1 before TC1).

[Faculty of Science
Information and Computing Sciences]

13

Semantics by tree walk §2

I Solving strategy is deriveed from the semantics given to
the operators.

I Define tree walk (Is code formal enough?)

data TreeWalk = TW (∀a.[a]→ [([a], [a])]→ [a])

I Example strategy of previous slide as a tree walk:

treewalk1 = TW (λnd kids → f (unzip kids) ++ nd)
where f (csets, assocs) = conc assocs ++ conc csets

I A function, flatten, uses the strategy to turn a constraint
tree to a list of constraints.

flatten :: TreeWalk → ConstraintTree → [Constraint]

[Faculty of Science
Information and Computing Sciences]

14

Extensions: operators parameterised by label §2

I Simple idea: allow different tree walks for different
non-terminals

I Haskell interpreter Hugs considers tuples right-to-left,
other constructs left-to-right.

I Essentially, flatten’s strategy parameter can depend on the
AST node:

flatten :: (Label → TreeWalk)→ ...→ [Constraint]

[Faculty of Science
Information and Computing Sciences]

15

The strict operator, � §2

I Can we force subexpressions to be done left-to-right?

TC = [c2, c3] ♦ [• c1OTC1 � TC2 � TC3]•}
c1 = (τ1 ≡ Bool) c2 = (τ2 ≡ β) c3 = (τ3 ≡ β)

A1, TC1 ` e1 : τ1
A2, TC2 ` e2 : τ2 A3, TC3 ` e3 : τ3

A1 ++A2 ++A3, TC ` if e1 then e2 else e3 : β

I Even if we choose a right-to-left treewalk, the conditional
will still be inferred left-to-right.

I flatten ignores the treewalk in strict expressions.

I Still, c1 can be before or after TC1.

[Faculty of Science
Information and Computing Sciences]

16

Application of �: let-polymorphism §2

I When using constraints, basically two solutions for dealing
with polymorphism:

I Duplicate sets of constraints
I Solve constraints for the definition before it is used.

I Former solution unacceptable: duplication of effort, and
worse, of errors.

I The latter solution imposes restrictions on the order of
solving constraints.

I Can be handled by making the solver more complicated,
but....

I we can also use �.

I Details are in the paper.

[Faculty of Science
Information and Computing Sciences]

17

3. Non-local reorderings

[Faculty of Science
Information and Computing Sciences]

18

Environments versus assumption sets §3

I Assumption set based type system pass information about
identifier upwards.

I Constraints imposed at binding sites.

I Environment based type systems pass information about
declared identifiers downwards.

I Constraints imposed at identifier uses.

I To mimick environment based systems with ours, we allow
to “spread” constraints from binding site to use site.

I �◦ allows spreading, but does not enforce it, � forbids
spreading.

I Similarly for the other operators.

I Before flattening, choose to spread or not.

I Details, again, in the paper.

[Faculty of Science
Information and Computing Sciences]

19

Phasing §3

I Use if certain types of constraints always before the others.

I Application: constraints from type signatures before
constraints from the definitions themselves.

I Basic idea is simple: associate a phase number with
constraints.

I Constraints with low phase number go first.

I Use default phase for constraints, unless stated otherwise.
I Constraints encountered early are blamed less often.

I Signatures easier to get correct, so first signature
constraints.

[Faculty of Science
Information and Computing Sciences]

20

4. Properties and implementation

[Faculty of Science
Information and Computing Sciences]

21

Implementation §4

I Educational compiler Helium in use since 2002.

I Allows (some) experimentation with different orders.
I Efficiency:

I What kind?
I Constraints are simpler, but we have more of them.
I Computing substitution on the fly will be a bit more

efficient, but not much.
I We believe the gain offsets the loss.

I Comparing algorithms:
I no difference for correct programs.
I Lee and Yi: W sees too many constraints, M too few.
I Seeing constraints takes time, but seeing more might give

better message.

[Faculty of Science
Information and Computing Sciences]

22

Emulation §4

I Many existing algorithms and implementations can be
emulated by choosing the appropriate treewalk.

I For example: algorithm W is emulated by a bottomUp
strategy combined with spreading.

I The type system is always the same.

I Only the interpretation of the operators changes.

I And the choice to spread or not.

[Faculty of Science
Information and Computing Sciences]

23

Correctness proofs §4

I Soundness proof (w.r.t. Hindley-Milner)

I A general sketch is given, independent of the analysis and
language.

I No actuall proof in the paper. Should it be?

I Full proof in PhD thesis of second author. Give number of
pages?

I Proof not essentially more difficult, but it is quite long.

I Some of it can be avoided: mapping assumptions sets back
to environments (our “mistake”)

I Essentially, we prove correct (most/all) possible algorithms!

[Faculty of Science
Information and Computing Sciences]

24

Proof ideas/sketch §4

I Show you get the same solution for every possible treewalk.

I For equivalence constraints solving order irrelevant.
I Correctness essentially depends on our use of �.

I Makes sure that generalization and instantiation constraints
are not solved before their time has come.

I Proof hinges less on the particular traversal,

I which makes it less arbitrary and more abstract.

[Faculty of Science
Information and Computing Sciences]

25

5. Summary

[Faculty of Science
Information and Computing Sciences]

26

Summary §5

I Bridge the gap between type system specification and type
inference implementation.

I High-level operators in the type rules disallow and enable
certain unification orders.

I The remaining freedom is for the programmer to fill in.
I Choosing a strategy is done by choosing a semantics for

(some of) the proposed operators.
I As exposed to the programmer through the compiler.

I Solvers may impose certain restrictions on the order in
which constraints should be solved.

I Our operators can be used to assure these restrictions hold.

I Multiple solving “back-ends”, multiple strategies (in
parallel), multiple independent error messages.

I No need to commit to solving strategy while the compiler
is being built.

[Faculty of Science
Information and Computing Sciences]

27

Questions? §5

I What should we include to make it more understandable or
complete?

I Actual M and W algorithms?
I Changing assumption set based to environment based?

(Future Work.)

I Give the proofs? How detailed?

I Code for flattening, spreading etc.?

I Reinclude phasing? New feature extension.

I Apply to another validating analysis: Security Analysis?
(Future Work.)

	Motivation
	The basic operators
	Non-local reorderings
	Properties and implementation
	Summary

