
[Faculty of Science
Information and Computing Sciences]

Type Error Diagnosis in Helium

Jurriaan Hage
joint work with Bastiaan Heeren (slides are mostly his too)

Department of Information and Computing Sciences, Universiteit Utrecht
J.Hage@uu.nl

September 16, 2013

[Faculty of Science
Information and Computing Sciences]

2

Some things about me

I PhD at Leiden under Grzegorz Rozenberg on algorithms
and combinatorics of graphs and groups (switching classes)

I Commercial educator at Leiden during 1999-2000

I Software technology with Doaitse Swierstra and Johan
Jeuring since Nov 2000.

I They (and Wouter Swierstra) all say “Hi!”.

[Faculty of Science
Information and Computing Sciences]

2

Some things about me

I PhD at Leiden under Grzegorz Rozenberg on algorithms
and combinatorics of graphs and groups (switching classes)

I Commercial educator at Leiden during 1999-2000

I Software technology with Doaitse Swierstra and Johan
Jeuring since Nov 2000.

I They (and Wouter Swierstra) all say “Hi!”.

[Faculty of Science
Information and Computing Sciences]

3

My current projects

I Type and effect systems
I PhD on higher-ranked polyvariance

I Continuous testing of Internet applications
I Flash, in our case

I Automated support for migration of Cobol/JCL legacy
systems to service architecture

I Hobby: plagiarism detection for C#, Java and Haskell

I Also low key: object-sensitive analysis of PHP, soft typing
of dynamic languages.

I Type error diagnosis for functional languages/EDSLs
I Proposal currently under appraisal

[Faculty of Science
Information and Computing Sciences]

4

Blatant advertisement

I Next year, I chair
I PEPM 2014, San Diego, co-located with POPL
I TFP 2014, somewhere in the Netherlands

I Start saving up papers to submit!

[Faculty of Science
Information and Computing Sciences]

5

1. The Helium Type Inferencer

[Faculty of Science
Information and Computing Sciences]

6

Part I: Constraint-based type inference §1

I Introduction (includes time travel)

I Bottom-up typing rules

I Equality constraints

I Polymorphism and instance constraints

I Constraint solving

I Summary

[Faculty of Science
Information and Computing Sciences]

7

Example 1 §1

main = xs : [4, 5, 6]
where len = length xs

xs = [1, 2, 3]

Is this program well typed?

ERROR "Main.hs":1 - Unresolved top-level overloading

*** Binding : main

*** Outstanding context : (Num [b], Num b)

Student FP: ”What did I do wrong?”

I Type classes make the type error message hard to
understand

I The location of the mistake is rather vague

I No suggestions how to fix the program

[Faculty of Science
Information and Computing Sciences]

7

Example 1 §1

main = xs : [4, 5, 6]
where len = length xs

xs = [1, 2, 3]

Is this program well typed?

ERROR "Main.hs":1 - Unresolved top-level overloading

*** Binding : main

*** Outstanding context : (Num [b], Num b)

Student FP: ”What did I do wrong?”

I Type classes make the type error message hard to
understand

I The location of the mistake is rather vague

I No suggestions how to fix the program

[Faculty of Science
Information and Computing Sciences]

8

Example 2 §1

pExpr = pAndPrioExpr
<|> sem Expr Lam
<$ pKey "\\"

<∗> pFoldr1 (sem LamIds Cons, sem LamIds Nil) pVarid
<∗> pKey "->" <∗> pExpr

Is this program well typed?

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]

[Faculty of Science
Information and Computing Sciences]

8

Example 2 §1

pExpr = pAndPrioExpr
<|> sem Expr Lam
<$ pKey "\\"

<∗> pFoldr1 (sem LamIds Cons, sem LamIds Nil) pVarid
<∗> pKey "->" <∗> pExpr

Is this program well typed?

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]

[Faculty of Science
Information and Computing Sciences]

9

Example 2 §1

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]

Student: ”Why is my parser not accepted by the compiler?”

I Message is really big, and thus not very helpful

I You have to discover why the types don’t match yourself

I It happens to be a common mistake, and easy to fix

[Faculty of Science
Information and Computing Sciences]

10

Example 3 §1

main :: (Bool → a)→ (a, a, a)
main = λf → (f True, f False, f [])

Is this program well typed?

ERROR "Main.hs":2 - Type error in application

*** Expression : f False

*** Term : False

*** Type : Bool

*** Does not match : [a]

Student Type Systems: ”Why is f False reported?”

I There is a lot of evidence that f False is well typed

I The type signature is not taken into account

I The type inference process suffers from a left-to-right bias

[Faculty of Science
Information and Computing Sciences]

10

Example 3 §1

main :: (Bool → a)→ (a, a, a)
main = λf → (f True, f False, f [])

Is this program well typed?

ERROR "Main.hs":2 - Type error in application

*** Expression : f False

*** Term : False

*** Type : Bool

*** Does not match : [a]

Student Type Systems: ”Why is f False reported?”

I There is a lot of evidence that f False is well typed

I The type signature is not taken into account

I The type inference process suffers from a left-to-right bias

[Faculty of Science
Information and Computing Sciences]

11

What is Helium? §1

I Original idea by Arjan van IJzendoorn

I Haskell 98 without class and instance definitions
I Particular attention paid to type error diagnosis

I Mostly based on Bastiaan Heeren’s PhD thesis

I Maintained by Bastiaan Heeren and myself
I Has been dormant for some time, but is now being readied

for Hackage
I A few parts have already made it unto Hackage

I More (sometimes outdated) details on the Helium website
I http:

//www.cs.uu.nl/wiki/bin/view/Helium/WebHome

I At the basis of the Helium innovations lies a constraint
based type inference process.

http://www.cs.uu.nl/wiki/bin/view/Helium/WebHome
http://www.cs.uu.nl/wiki/bin/view/Helium/WebHome

[Faculty of Science
Information and Computing Sciences]

12

Hindley/Milner type inference §1

τ ≺ Γ(x)

Γ H̀M x : τ
[Var]HM

Γ H̀M e1 : τ1 → τ2 Γ H̀M e2 : τ1
Γ H̀M e1 e2 : τ2

[App]HM

Γ\x ∪ {x ::τ1} H̀M e : τ2
Γ H̀M λx→ e : (τ1 → τ2)

[Abs]HM

Γ H̀M e1 : τ1 Γ\x ∪ {x :generalize(Γ, τ1)} H̀M e2 : τ2
Γ H̀M let x = e1 in e2 : τ2

[Let]HM

I Algorithm W is a (deterministic) implementation of these
typing rules.

[Faculty of Science
Information and Computing Sciences]

13

Constraint-based type inference §1

I A basic operation for type inference is unification.
Property: let S be unify(τ1, τ2), then Sτ1 = Sτ2

We can view unification of two types as a constraint.

I An equality constraint imposes two types to be equivalent.
Syntax: τ1 ≡ τ2

I We define satisfaction of an equality constraint as follows.
S satisfies (τ1 ≡ τ2) =def Sτ1 = Sτ2

I Example:
I [τ1 := Int, τ2 := Int] satisfies τ1 → τ1 ≡ τ2 → Int

[Faculty of Science
Information and Computing Sciences]

13

Constraint-based type inference §1

I A basic operation for type inference is unification.
Property: let S be unify(τ1, τ2), then Sτ1 = Sτ2

We can view unification of two types as a constraint.

I An equality constraint imposes two types to be equivalent.
Syntax: τ1 ≡ τ2

I We define satisfaction of an equality constraint as follows.
S satisfies (τ1 ≡ τ2) =def Sτ1 = Sτ2

I Example:
I [τ1 := Int, τ2 := Int] satisfies τ1 → τ1 ≡ τ2 → Int

[Faculty of Science
Information and Computing Sciences]

14

Bottom-up typing rules §1

{x :β}, ∅ B̀U x : β [Var]BU

A1, C1 B̀U e1 : τ1 A2, C2 B̀U e2 : τ2
A1 ∪ A2, C1 ∪ C2 ∪ {τ1 ≡ τ2 → β} B̀U e1 e2 : β

[App]BU

A, C B̀U e : τ

A\x, C ∪ {τ ′ ≡ β | x :τ ′ ∈ A} B̀U λx→ e : (β → τ)
[Abs]BU

I A judgement (A, C B̀U e : τ) consists of the following.
I A: assumption set (contains assigned types for the free

variables)
I C: constraint set
I e: expression
I τ : asssigned type (variable)

[Faculty of Science
Information and Computing Sciences]

15

Example §1

twice = λf → λx → f (f x)

ABS(f)

ABS(x)

APP

APP

VAR(x)VAR(f)

VAR(f)

Constraints

[Faculty of Science
Information and Computing Sciences]

16

Example §1

twice = λf → λx → f (f x)

VAR(f)
A={f:t1}

t1

ABS(f)

ABS(x)

APP

APP

VAR(x)VAR(f)

Constraints

[Faculty of Science
Information and Computing Sciences]

17

Example §1

twice = λf → λx → f (f x)

VAR(f)

VAR(f)
A={f:t2}

A={f:t1}

t2

t1

ABS(f)

ABS(x)

APP

APP

VAR(x)

Constraints

[Faculty of Science
Information and Computing Sciences]

18

Example §1

twice = λf → λx → f (f x)

VAR(f)

VAR(f) VAR(x)
A={x:t3}A={f:t2}

A={f:t1}

t3t2

t1

ABS(f)

ABS(x)

APP

APP

Constraints

[Faculty of Science
Information and Computing Sciences]

19

Example §1

twice = λf → λx → f (f x)

APPVAR(f)

VAR(f) VAR(x)

A={f:t2, x:t3}

A={x:t3}A={f:t2}

A={f:t1}

t4

t3t2

t1

ABS(f)

ABS(x)

APP

Constraints

t2 ≡ t3 -> t4

[Faculty of Science
Information and Computing Sciences]

20

Example §1

twice = λf → λx → f (f x)

APP

APP

VAR(f)

VAR(f) VAR(x)

A={f:t1, f:t2, x:t3}

A={f:t2, x:t3}

A={x:t3}A={f:t2}

A={f:t1}

t5

t4

t3t2

t1

ABS(f)

ABS(x)
Constraints

t2 ≡ t3 -> t4

t1 ≡ t4 -> t5

[Faculty of Science
Information and Computing Sciences]

21

Example §1

twice = λf → λx → f (f x)

APP

APP

ABS(x)

VAR(f)

VAR(f) VAR(x)

A={f:t1, f:t2}

A={f:t1, f:t2, x:t3}

A={f:t2, x:t3}

A={x:t3}A={f:t2}

A={f:t1}

t6 -> t5

t5

t4

t3t2

t1

ABS(f)

Constraints

t2 ≡ t3 -> t4

t1 ≡ t4 -> t5

t3 ≡ t6

[Faculty of Science
Information and Computing Sciences]

22

Example §1

twice = λf → λx → f (f x)

APP

APP

ABS(x)

ABS(f)

VAR(f)

VAR(f) VAR(x)

A={}

A={f:t1, f:t2}

A={f:t1, f:t2, x:t3}

A={f:t2, x:t3}

A={x:t3}A={f:t2}

A={f:t1}

t7 -> (t6 -> t5)

t6 -> t5

t5

t4

t3t2

t1

Constraints

t2 ≡ t3 -> t4

t1 ≡ t4 -> t5

t3 ≡ t6

t1 ≡ t7

t2 ≡ t7

[Faculty of Science
Information and Computing Sciences]

23

Example §1

twice = λf → λx → f (f x)

I C =


t2 ≡ t3 -> t4

t1 ≡ t4 -> t5

t3 ≡ t6

t1 ≡ t7

t2 ≡ t7

I S =

{
t1,t2,t7 := t6 -> t6

t3,t4,t5 := t6

I S satisfies C (moreover, S is a minimal substitution that
satisfies C). As a result, we have inferred the type

S(t7 -> t6 -> t5) = (t6 -> t6) -> t6 -> t6

for twice.

[Faculty of Science
Information and Computing Sciences]

24

Constraints and polymorphism §1

I Syntax of an instance constraint:

τ1 6M τ

I Semantics with respect to a substitution S:

S satisfies (τ1 6M τ2) =def Sτ1 ≺ generalize(SM,Sτ2)

I Example:
I [t1 := t2, t4 := t5 -> t5] satisfies t4 6∅ t1 -> t2

A1, C1 B̀U e1 : τ1 A2, C2 B̀U e2 : τ2

A1 ∪ A2\x, C1 ∪ C2 ∪ {τ ′ 6M τ1 | x :τ ′ ∈ A2}
B̀U let x = e1 in e2 : τ2

[Let]BU

[Faculty of Science
Information and Computing Sciences]

24

Constraints and polymorphism §1

I Syntax of an instance constraint:

τ1 6M τ

I Semantics with respect to a substitution S:

S satisfies (τ1 6M τ2) =def Sτ1 ≺ generalize(SM,Sτ2)

I Example:
I [t1 := t2, t4 := t5 -> t5] satisfies t4 6∅ t1 -> t2

A1, C1 B̀U e1 : τ1 A2, C2 B̀U e2 : τ2

A1 ∪ A2\x, C1 ∪ C2 ∪ {τ ′ 6M τ1 | x :τ ′ ∈ A2}
B̀U let x = e1 in e2 : τ2

[Let]BU

[Faculty of Science
Information and Computing Sciences]

25

Example §1

identity = let i = λx → x in i i

LET(i)

APP

VAR(i)VAR(i)

ABS(x)

VAR(x)

Constraints

[Faculty of Science
Information and Computing Sciences]

26

Example §1

identity = let i = λx → x in i i

VAR(x)
A={x:t1}

t1

LET(i)

APP

VAR(i)VAR(i)

ABS(x)

Constraints

[Faculty of Science
Information and Computing Sciences]

27

Example §1

identity = let i = λx → x in i i

ABS(x)

VAR(x)
A={x:t1}

A={}

t1

t2 -> t1

LET(i)

APP

VAR(i)VAR(i)

Constraints

t1 ≡ t2

[Faculty of Science
Information and Computing Sciences]

28

Example §1

identity = let i = λx → x in i i

ABS(x)

VAR(x) VAR(i)

A={i:t3}

A={x:t1}

A={}

t3

t1

t2 -> t1

LET(i)

APP

VAR(i)

Constraints

t1 ≡ t2

[Faculty of Science
Information and Computing Sciences]

29

Example §1

identity = let i = λx → x in i i

ABS(x)

VAR(x) VAR(i) VAR(i)
A={i:t4}

A={i:t3}

A={x:t1}

A={}

t4

t3

t1

t2 -> t1

LET(i)

APP

Constraints

t1 ≡ t2

[Faculty of Science
Information and Computing Sciences]

30

Example §1

identity = let i = λx → x in i i

APPABS(x)

VAR(x) VAR(i) VAR(i)

A={i:t3, i:t4}

A={i:t4}

A={i:t3}

A={x:t1}

A={}

t5

t4

t3

t1

t2 -> t1

LET(i)

Constraints

t1 ≡ t2

t3 ≡ t4 -> t5

[Faculty of Science
Information and Computing Sciences]

31

Example §1

identity = let i = λx → x in i i

APP

LET(i)

ABS(x)

VAR(x) VAR(i) VAR(i)

A={}

A={i:t3, i:t4}

A={i:t4}

A={i:t3}

A={x:t1}

A={}

t5

t5

t4

t3

t1

t2 -> t1

Constraints

t1 ≡ t2

t3 ≡ t4 -> t5

t3 6∅ t2 -> t1

t4 6∅ t2 -> t1

[Faculty of Science
Information and Computing Sciences]

32

Example §1

identity = let i = λx → x in i i

I C =


t1 ≡ t2

t3 ≡ t4 -> t5

t3 6∅ t2 -> t1

t4 6∅ t2 -> t1

I S =


t1 := t2

t3 := (t6 -> t6) -> t6 -> t6

t4,t5 := t6 -> t6

I S satisfies C (moreover, S is a minimal substitution that
satisfies C). As a result, we have inferred the type

S(t5) = t6 -> t6

for identity.

[Faculty of Science
Information and Computing Sciences]

33

Greedy constraint solver §1

Given a set of type constraints, the greedy constraint solver
returns a substitution that satisfies these constraints, and a list
of constraint that could not be satisfied by the solver. The
latter is used to produce type error messages.

I Advantages:
I Efficient and fast
I Straightforward implementation

I Disadvantage:
I The order of the type constraints strongly influences the

reported error messages. The type inference process is
biased.

[Faculty of Science
Information and Computing Sciences]

34

Ordering type constraints §1

I One is free to choose the order in which the constraints
should be considered by the greedy constraint solver.
(Although there is a restriction for an implicit instance
constraint)

I Instead of returning a list of constraints, return a
constraint tree that follows the shape of the AST.

I A tree-walk flattens the constraint tree and orders the
constraints.

I W: almost a post-order tree walk
I M: almost a pre-order tree walk
I Bottom-up: ...
I Pushing down type signatures: ...

[Faculty of Science
Information and Computing Sciences]

35

A realistic type rule §1

I Some constraints ’belong’ to certain subexpressions:

I c1 is generated by the conditional, but associated with the
boolean subexpression.

I Example strategy: left-to-right, bottom-up for then and
else part, push down Bool (do c1 before TC1).

[Faculty of Science
Information and Computing Sciences]

36

Global constraint solver §1

Type graphs allow us to solve the collected type constraints in a
more global way.

I Advantages:
I Global properties can be detected
I A lot of information is available
I The type inference process can be unbiased
I It is easy to include new heuristics to spot common

mistakes.

I Disadvantage:
I Extra overhead makes this solver slower

[Faculty of Science
Information and Computing Sciences]

37

Type graphs §1

Int

-> : ->

-> xs ->

main

t0 Int
4

5

Int6

Int

[][][]

[]

[4,5,6] xs:[4,5,6]

t1

main = xs : [4, 5, 6]
where len = length xs
xs = [1, 2, 3]

[Faculty of Science
Information and Computing Sciences]

38

Type graph heuristics §1

If a type graph contains an inconsistency, then heuristics help to
choose which location is reported as type incorrect.

I Examples:
I minimal number of type errors
I count occurrences of clashing type constants (3×Int versus

1×Bool)
I reporting an expression as type incorrect is preferred over

reporting a pattern
I wrong literal constant (4 versus 4.0)
I not enough arguments are supplied for a function

application
I permute the elements of a tuple
I (:) is used instead of (++)

I All these heuristics are present in the Helium compiler

I We will see more examples in Part II

[Faculty of Science
Information and Computing Sciences]

39

Summary §1

We have described a parametric type inferencer

I Constraint-based: specification and implementation are
separated

I Standard algorithms can be simulated by choosing an order
for the constraints

I Two implementations are available to solve the constraints

I Type graph heuristics help in reporting the most likely
mistake

solve constraints

global (type graph)

solve constraints

greedy

flatten

treeconstraints

collectAST tree
constraint constraint

list
substitution +

type errors

type rules
specialized treewalk

type graph
heuristics

[Faculty of Science
Information and Computing Sciences]

40

2. Domain Specific Type Error Diagnosis

[Faculty of Science
Information and Computing Sciences]

41

Embedded Domain Specific Languages §2

I Embedded (internal) Domain Specific Languages are
achieved by encoding the DSL syntax inside that of a host
language.

I Many “advantages”:
I familiarity host language syntax
I escape hatch to the host language
I existing libraries, compilers, IDE’s, etc.
I combining EDSLs

I At the very least, useful for prototyping DSLs

[Faculty of Science
Information and Computing Sciences]

42

What host language? §2

I Some languages provide extensibility as part of their
design, e.g., Ruby, Python, Scheme

I Others are rich enough to encode a DSL with relative ease,
e.g., Haskell, C++

I In most languages we just have to make do
I In Haskell, EDSLs are simply libraries that provide some

form of “fluency”
I Consisting of domain terms and types, and special

operators with particular priority and fixity

[Faculty of Science
Information and Computing Sciences]

43

Challenges for EDSLs §2

I How to achieve:
I domain specific optimisations
I domain specific error diagnosis

I Optimisations and error diagnosis also take up time in a
non-embedded setting, but there we have more control.

I Can we attain this control for error diagnosis?

[Faculty of Science
Information and Computing Sciences]

44

Our case study §2

I Parser combinators: an EDSL for describing parsers
I An executable and extensible form of EBNF

I Concatenation/juxtaposition: p <∗> q , and p <∗ q
I Choice: p <|> q
I Semantics: f <$> p and f <$ p
I Repetition: many , many1 , ...
I Optional: option p default
I Literals: token "text", pKey "->"
I Others introduced as needed, and defined at will

pExpr = pAndPrioExpr
<|> sem Expr Lam -- a function of two arguments
<$ pKey "\\"

<∗> pFoldr1 (sem LamIds Cons, sem LamIds Nil) pVarid
<∗ pKey "->"

<∗> pExpr

[Faculty of Science
Information and Computing Sciences]

45

My first mistake §2

pExpr = pAndPrioExpr
<|> sem Expr Lam
<$ pKey "\\"

<∗> pFoldr1 (sem LamIds Cons, sem LamIds Nil) pVarid
<∗> pKey "->"

<∗> pExpr

The error message that results:

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]

[Faculty of Science
Information and Computing Sciences]

46

A closer look at the message §2

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]

I Message is large and looks complicated

I You have to discover why the types don’t match yourself

I No mention of “parsers” in the error message

I It happens to be a common mistake, and easy to fix

[Faculty of Science
Information and Computing Sciences]

47

The problems §2

Type error messages typically suffer from the following
problems.

1. A fixed type inference process. The order in which
types are inferred strongly influences the reported error
site, and there is no way to depart from it.

2. The size of the mentioned types. Irrelevant parts are
shown, and type synonyms are not always preserved.

3. The standard format of type error messages. Domain
specific terms are not used.

4. No anticipation for common mistakes. Error messages
focus on the problem, and not on how to fix it.

[Faculty of Science
Information and Computing Sciences]

48

The solution in a nutshell §2

1 Bring the type inference mechanism under control
I by phrasing the type inference process as a constraint

solving problem

2 Provide hooks in the compiler’s type inference process to
change the process for certain classes of expressions

I specialize type error messages for a particular domain
I control the order in which constraints are solved
I drive heuristics that suggest fixes for often-made mistakes

I Changing the type system is forbidden!
I Only the order of solving, and the provided messages can

be changed

[Faculty of Science
Information and Computing Sciences]

48

The solution in a nutshell §2

1 Bring the type inference mechanism under control
I by phrasing the type inference process as a constraint

solving problem

2 Provide hooks in the compiler’s type inference process to
change the process for certain classes of expressions

I specialize type error messages for a particular domain
I control the order in which constraints are solved
I drive heuristics that suggest fixes for often-made mistakes

I Changing the type system is forbidden!
I Only the order of solving, and the provided messages can

be changed

[Faculty of Science
Information and Computing Sciences]

49

How is this organised? §2

I For a given source module Abc.hs, a DSL designer may
supply a file Abc.type containing the directives

I The directives are automatically used when the module is
imported

I The compiler will adapt the type error mechanism based
on these type inference directives.

I The directives themselves are also a(n external) DSL!

[Faculty of Science
Information and Computing Sciences]

50

The type inference process §2

I We piggy-back ride on Haskell’s underlying type system

I Type rules for functional languages are often phrased as a
set of logical deduction rules

I Inference is then implemented by means of an AST
traversal

I Ad-hoc or using attribute grammars

[Faculty of Science
Information and Computing Sciences]

51

The rule for type checking applications §2

Γ H̀M f : τa → τr Γ H̀M e : τa
Γ H̀M f e : τr

I Γ is an environment, containing the types of identifiers
defined elsewhere

I Rules for variables, anonymous functions and local
definitions omitted

I Algorithm W is a (deterministic) implementation of these
typing rules.

[Faculty of Science
Information and Computing Sciences]

52

Specializing a type rule (1/3) §2

Applying the type rule for function application twice in
succession results in the following:

Γ H̀M op : τ1 → τ2 → τ3 Γ H̀M x : τ1 Γ H̀M y : τ2
Γ H̀M x ‘op‘ y : τ3

Consider one of the parser combinators, for instance <$>.

<$> :: (a→ b)→ Parser s a→ Parser s b

We can now create a specialized type rule by filling in this type
in the type rule (x and y stand for arbitrary expressions of the
given type)

Γ H̀M x : a→ b Γ H̀M y : Parser s a

Γ H̀M x <$> y : Parser s b

[Faculty of Science
Information and Computing Sciences]

52

Specializing a type rule (1/3) §2

Applying the type rule for function application twice in
succession results in the following:

Γ H̀M op : τ1 → τ2 → τ3 Γ H̀M x : τ1 Γ H̀M y : τ2
Γ H̀M x ‘op‘ y : τ3

Consider one of the parser combinators, for instance <$>.

<$> :: (a→ b)→ Parser s a→ Parser s b

We can now create a specialized type rule by filling in this type
in the type rule

(x and y stand for arbitrary expressions of the
given type)

Γ H̀M x : a→ b Γ H̀M y : Parser s a

Γ H̀M x <$> y : Parser s b

[Faculty of Science
Information and Computing Sciences]

52

Specializing a type rule (1/3) §2

Applying the type rule for function application twice in
succession results in the following:

Γ H̀M op : τ1 → τ2 → τ3 Γ H̀M x : τ1 Γ H̀M y : τ2
Γ H̀M x ‘op‘ y : τ3

Consider one of the parser combinators, for instance <$>.

<$> :: (a→ b)→ Parser s a→ Parser s b

We can now create a specialized type rule by filling in this type
in the type rule (x and y stand for arbitrary expressions of the
given type)

Γ H̀M x : a→ b Γ H̀M y : Parser s a

Γ H̀M x <$> y : Parser s b

[Faculty of Science
Information and Computing Sciences]

53

Specializing a type rule (2/3) §2

I Use equality constraints to make the restrictions that are
imposed by the type rule explicit.

I Γ is unchanged, and therefore omitted from the rule

I Type rules are invalidated by shadowing, here, <$>.

x : τ1 y : τ2
x <$> y : τ3


τ1 ≡ a→ b
τ2 ≡ Parser s a
τ3 ≡ Parser s b

Split up the type constraints in ”smaller” unification steps.

x : τ1 y : τ2
x <$> y : τ3


τ1 ≡ a1 → b1
τ2 ≡ Parser s1 a2
τ3 ≡ Parser s2 b2

s1 ≡ s2
a1 ≡ a2
b1 ≡ b2

[Faculty of Science
Information and Computing Sciences]

53

Specializing a type rule (2/3) §2

I Use equality constraints to make the restrictions that are
imposed by the type rule explicit.

I Γ is unchanged, and therefore omitted from the rule

I Type rules are invalidated by shadowing, here, <$>.

x : τ1 y : τ2
x <$> y : τ3


τ1 ≡ a→ b
τ2 ≡ Parser s a
τ3 ≡ Parser s b

Split up the type constraints in ”smaller” unification steps.

x : τ1 y : τ2
x <$> y : τ3


τ1 ≡ a1 → b1
τ2 ≡ Parser s1 a2
τ3 ≡ Parser s2 b2

s1 ≡ s2
a1 ≡ a2
b1 ≡ b2

[Faculty of Science
Information and Computing Sciences]

54

Specializing a type rule (3/3) §2

x : τ1 y : τ2
x <$> y : τ3


τ1 ≡ a1 → b1
τ2 ≡ Parser s1 a2
τ3 ≡ Parser s2 b2

s1 ≡ s2
a1 ≡ a2
b1 ≡ b2

x :: t1; y :: t2;

x <$> y :: t3;

t1 == a1 -> b1

t2 == Parser s1 a2

t3 == Parser s2 b2

s1 == s2

a1 == a2

b1 == b2

[Faculty of Science
Information and Computing Sciences]

55

Special type error messages §2

x :: t1; y :: t2;

x <$> y :: t3;

t1 == a1 -> b1 : left operand is not a function

t2 == Parser s1 a2 : right operand is not a parser

t3 == Parser s2 b2 : result type is not a parser

s1 == s2 : parser has an incorrect symbol type

a1 == a2 : function cannot be applied to parser’s result

b1 == b2 : parser has an incorrect result type

I Supply an error message for each type constraint. This
message is reported if the corresponding constraint cannot
be satisfied.

[Faculty of Science
Information and Computing Sciences]

56

Example §2

test :: Parser Char String
test = map toUpper <$> "hello, world!"

This results in the following type error message:

Type error: right operand is not a parser

Important context specific information is missing, for instance:

I Inferred types for (sub-)expressions, and intermediate type
variables

I Pretty printed expressions from the program

I Position and range information

[Faculty of Science
Information and Computing Sciences]

56

Example §2

test :: Parser Char String
test = map toUpper <$> "hello, world!"

This results in the following type error message:

Type error: right operand is not a parser

Important context specific information is missing, for instance:

I Inferred types for (sub-)expressions, and intermediate type
variables

I Pretty printed expressions from the program

I Position and range information

[Faculty of Science
Information and Computing Sciences]

57

Error message attributes §2

The error message attached to a type constraint might now
look like:

x :: t1; y :: t2;

x <$> y :: t3;

...

t2 == Parser s1 a2 :

@expr.pos@: The right operand of <$> should be a

expression : @expr.pp@ parser

right operand : @y.pp@

type : @t2@

does not match : Parser @s1@ @a2@

...

[Faculty of Science
Information and Computing Sciences]

58

Example §2

test :: Parser Char String
test = map toUpper <$> "hello, world!"

This results in the following type error message (including the
inserted error message attributes):

(2,21): The right operand of <$> should be a parser

expression : map toUpper <$> "hello, world!"

right operand : "hello, world!"

type : String

does not match : Parser Char String

[Faculty of Science
Information and Computing Sciences]

59

Implicit constraints §2

A type constraint can be ”moved” from the constraint set to
the deduction rule.

x :: t1; y :: t2;

x <$> y :: Parser s b;

t1 == a1 -> b : left operand is not a function

t2 == Parser s a2 : right operand is not a parser

a1 == a2 : function cannot be applied to parser’s

result

An implicit constraint with a default error message is inserted
for the type in the conclusion.

[Faculty of Science
Information and Computing Sciences]

60

Order of the type constraints §2

Each meta-variable represents a subtree for which also type
constraints are collected. This constraint set can be explicitly
mentioned in the type rule.

x :: t1; y :: t2;

x <$> y :: Parser s b;

constraints x

t1 == a1 -> b : left operand is not a function

constraints y

t2 == Parser s a2 : right operand is not a parser

a1 == a2 : function cannot be applied to parser’s

result

[Faculty of Science
Information and Computing Sciences]

61

Soundness and completeness §2

The soundness of a specialized type rule with respect to the
default type rules is examined at compile time.

I Because a mistake is easily made

I Invalid type rules are rejected when a Haskell file is
compiled

I Type safety can still be guaranteed at run-time
I The type rule may not be too restrictive, so we are also

complete
I This restriction may be dropped

[Faculty of Science
Information and Computing Sciences]

62

Example §2

x :: t1; y :: t2;

x <$> y :: Parser s b;

t1 == a1 -> b : left operand is not a function

t2 == Parser s a2 : right operand is not a parser

This specialized type rule is not restrictive enough:

The type rule for "x <$> y" is not correct

the type according to the type rule is

(a -> b, Parser c d, Parser c b)

whereas the standard type rules infer the type

(a -> b, Parser c a, Parser c b)

[Faculty of Science
Information and Computing Sciences]

63

Another example §2

x :: a -> b; y :: Parser Char a;

x <$> y :: Parser Char b;

This specialized type rule is too restrictive: there is no reason to
demand that we parse streams of characters.

The type rule for "x <$> y" is not correct

the type according to the type rule is

(a -> b, Parser Char a, Parser Char b)

whereas the standard type rules infer the type

(a -> b, Parser c a, Parser c b)

[Faculty of Science
Information and Computing Sciences]

64

AST versus conceptual structure: phasing §2

f <$> p <∗> q <∗> r

I Associativity and priorities of the operators chosen to
minimize parentheses in a practical situation

I The inferencing process follows the shape of the abstract
syntax tree closely

I Conceptual and actual AST shape may be very different

<*>

<*>

r

q

pf

<$> f

<$>

<*>

p q r

abstract syntax tree conceptual structure

[Faculty of Science
Information and Computing Sciences]

65

Phasing by example (1/2) §2

test :: Parser Char String
test = (++) <$> token "hello world" <∗> symbol ’!’

My four step approach to infer the types:

1. Infer the types of the expressions between the parser
combinators.

2. Check if the types inferred for the parser subexpressions are
indeed Parser types.

3. Verify that the parser types can agree upon a common
symbol type.

4. Determine whether the result types of the parser fit the
function.

In this case, a type inconsistency is detected in the fourth step.

[Faculty of Science
Information and Computing Sciences]

66

Phasing by example (2/2) §2

I Hugs reports the following:

ERROR "Phase1.hs":4 - Type error in application

Expression: (++) <$> token "hello world" <*>

symbol ’!’

Term : (++) <$> token "hello world"

Type : [Char] -> [([Char] -> [Char],[Char])]

Does not match: [Char] -> [(Char -> [Char],[Char])]

I The four step approach might result in:

(1,7): The function argument of <$> does not

work on the result types of the parser(s)

function : (++)

type : [a] -> [a] -> [a]

does not match : String -> Char -> String

[Faculty of Science
Information and Computing Sciences]

67

Assigning phase numbers (1/2) §2

x :: t1; y :: t2;

x <$> y :: t3;

phase 6

t2 == Parser s1 a2 : right operand is not a parser

t3 == Parser s2 b2 : result type is not a parser

phase 7

s1 == s2 : parser has an incorrect symbol type

phase 8

t1 == a1 -> b1 : left operand is not a function

a1 == a2 : function can’t be applied to parser’s result

b1 == b2 : parser has an incorrect result type

I All phase i constraints solved before phase i+ 1

I The default phase number is 5

[Faculty of Science
Information and Computing Sciences]

68

Assigning phase numbers (2/2) §2

In a similar way, the constraints can be assigned a lower phase
number than the default.

If we assign explicit constraints to phase 4, then the following
error is reported:

test :: Parser Char String
test = map toUpper <$> "hello, world!"

(2,21): Type error in string literal

expression : "hello, world!"

type : String

expected type : Parser Char String

[Faculty of Science
Information and Computing Sciences]

69

Some final words on specialized type rules §2

I Rules are applied by matching expressions below the line
on the AST, and then “replacing” the old constraints and
error reporting functions with the new.

I The matched expression can also be something like
f <$> p <∗> q , where f , p and q are meta-variables and
the other two are not.

I Matching rules proceeds top to bottom

I Specialized type rules cannot match across lets and
lambda’s, but the meta-variables may of course represents
ASTs that have these.

[Faculty of Science
Information and Computing Sciences]

70

Another directive: siblings §2

I Certain combinators are known to be easily confused:
I cons (:) and append (++)
I <$> and <$
I (.) and (++) (PHP programmers)
I (+) and (++) (Java programmers)

I These combinations can be listed among the specialized
type rules.

siblings <$> , <$

siblings ++ , +, .

I The siblings heuristic will try a sibling if an expression with
such an operator fails to type check.

[Faculty of Science
Information and Computing Sciences]

71

Example §2

data Expr = Lambda [String] Expr

pExpr
= pAndPrioExpr

<|> Lambda <$ pKey "\\"

<∗> many pVarid
<∗ pKey "->"

<∗ pExpr

Extremely concise:

(11,13): Type error in the operator <*

probable fix: use <*> instead

[Faculty of Science
Information and Computing Sciences]

72

Permuting function arguments (1/2) §2

Supplying the arguments of a function in the wrong order can
result in incomprehensible type error messages.

test :: Parser Char String
test = option "" (token "hello!")

ERROR "Swapping.hs":2 - Type error in application

*** Expression : option "" (token "hello!")

*** Term : ""

*** Type : String

*** Does not match: [a] ->

[([Char] -> [([Char],[Char])],[a])]

I Check for permuted function arguments in case of a type
error

I There is no need to declare this in a .type file

[Faculty of Science
Information and Computing Sciences]

73

Permuting function arguments (2/2) §2

test :: Parser Char String
test = option "" (token "hello!")

(2,8): Type error in application

expression : option "" (token "hello!")

term : option

type : Parser a b -> b -> Parser a b

does not match : String -> Parser Char String -> c

probable fix : flip the arguments

[Faculty of Science
Information and Computing Sciences]

74

Summary §2

We have shown four techniques to influence the behaviour of
constraint-based type inferencers.

fixed
order

size of
types

standard
format

no
anticipation

specialized
type rules

√ √ √ √

phasing
√

× × ×
siblings × ×

√ √

permuting × ×
√ √

[Faculty of Science
Information and Computing Sciences]

75

Concluding remarks §2

I I have shown what can be achieved in the context of
Haskell 98 when it comes to domain specific error
diagnosis.

I Implemented in the Helium compiler
(www.cs.uu.nl/wiki/bin/view/Helium/WebHome)

I More details in
Heeren, Hage, Swierstra, Scripting The Type Inference
Process (ICFP ’03).

I See the paper and a follow-up paper on type classes at
PADL ’05 for many more details (or read Bastiaan’s PhD
thesis)

[Faculty of Science
Information and Computing Sciences]

76

Future Work §2

I Ongoing: Helium on Hackage

I Scaling up to Haskell 2010 (or later)
I Because many libraries/EDSLs use extensions that we do

not yet support
I existentials
I GADTs
I type families
I rank-n
I multi-parameter type classes

I Proposal for a PhD to actually perform this work is
currently under appraisal

[Faculty of Science
Information and Computing Sciences]

77

Thank you for your attention

	The Helium Type Inferencer
	Domain Specific Type Error Diagnosis

