
Master Thesis

Detecting dependencies across
programming languages

Theodoros Polychniatis
Department of Information and Computing Sciences

Faculty of Science
Utrecht University

t.polychniatis@students.uu.nl

July 23, 2012

Contents

Thesis information . IV

1 Introduction 1
1.1 Context . 1
1.2 Problem description . 1
1.3 Research objective . 2
1.4 Research questions . 3
1.5 Company profile . 4
1.6 Research model . 4

1.6.1 Scientific relevance . 5
1.6.2 Social relevance . 6
1.6.3 Research contribution . 6

2 Research method 7
2.1 Research structure . 9
2.2 Research phase 1: Literature study approach 10
2.3 Research phase 2: Interview approach . 10

2.3.1 Interview phases . 11
2.3.2 Limitations . 14

2.4 Research phase 3: State of the art evaluation 14
2.5 Research phase 4, 5 & 6: Experimental setup, data analysis, method

development and evaluation . 14
2.5.1 Ground truth method . 15
2.5.2 Selection criteria for case study . 16
2.5.3 Evaluation process . 17

3 Related literature 19
3.1 Concepts and definitions . 19

3.1.1 What is a “dependency”? . 19
3.1.2 Classification . 20

3.2 State of the art . 22
3.2.1 Eclipse MoDisco . 23
3.2.2 PAMOMO . 23
3.2.3 GenDeMoG . 24
3.2.4 Moose . 24
3.2.5 DSketch . 24

I

Contents

3.2.6 Source Navigator NG . 25

4 State of the art evaluation 27
4.1 Requirements elicitation . 27
4.2 Rating criteria for requirements . 29
4.3 Must have requirements . 32
4.4 Should have requirements . 34
4.5 Could have requirements . 35
4.6 Prerequisites . 36
4.7 Comparison matrix . 37

5 Proposed method 41
5.1 General description . 41
5.2 Preparation for the evaluation process . 42

5.2.1 Case study . 42
5.2.2 Experiment setup . 43

5.3 SIG framework . 43
5.4 Infrastructure . 44
5.5 Pattern based approach . 46

5.5.1 Database dependency type . 46
5.5.2 File I/O dependency type . 49

5.6 Token based approach - Ad-hoc filtering 49
5.6.1 Basic algorithm . 50
5.6.2 Base case . 51
5.6.3 Filtering out language reserved words 51
5.6.4 Filtering out project specific words 52
5.6.5 Tailored tokenising of XML type documents 53
5.6.6 Evaluation of token based approach with Ad-hoc filtering 55

5.7 Token based approach - Statistical filtering 55
5.7.1 Filtering out frequent words . 56
5.7.2 Filtering out frequent words per language 57
5.7.3 Filtering out frequent words per file and language 58
5.7.4 Weight filtering . 60
5.7.5 Composite experiment . 61
5.7.6 Comparison between statistical and ad-hoc approaches 61

5.8 Ground truth data (GTD) amendment . 63
5.8.1 Adding Indirect dependencies . 63
5.8.2 Treating different XML based technologies as different languages . 64

5.9 Filtering out frequent words per file and language category 65
5.9.1 Description . 65
5.9.2 Composite experiment with amended GTD 65

6 Large scale case study project 69
6.1 Project description . 69

Master thesis:“Detecting dependencies across programming languages” II

Contents

6.2 Extension for another language of the project 70
6.3 Challenges . 70
6.4 Evaluation method for large scale systems 71
6.5 Experiment . 71
6.6 Refinement . 71
6.7 Evaluation . 73

7 Discussion 75
7.1 Answers to research questions . 75
7.2 Validity & Reliability . 77
7.3 Future research . 81

8 Conclusion 83

References 85

Appendix 88
Interview form for defining evaluation criteria 88
Appendix B - GTD for small case study project 94
Appendix C - Draft paper for submission to the CSMR 2013 96

Master thesis:“Detecting dependencies across programming languages” III

Thesis information

Additional information about this thesis is provided in the table below:

Thesis information

Author:
- - - - - - - - - - - - - - - -
Name Theodoros Polychniatis
Student number 3614646
E-mail address t.polychniatis@students.uu.nl; thodpol@gmail.com

Master’s Course:
- - - - - - - - - - - - - - - -
MSc program MSc in Business Informatics, Utrecht University
MSc starting date Sep. 1, 2010
Title of thesis project Detecting dependencies across programming languages
Thesis start date Dec. 1, 2011
Thesis end date July 23, 2012

Supervisors:
- - - - - - - - - - - - - - - -
From Utrecht University:

1st supervisor dr. Jurriaan Hage
(j.hage@uu.nl)

2nd supervisor dr. Slinger Jansen
(slinger@slingerjansen.nl)

From Software Improvement Group (SIG):
1st external supervisor prof. dr. ir. Joost Visser

(j.visser@sig.eu)

2nd external supervisor Eric Bouwers, Msc
(e.bouwers@sig.eu)

IV

Abstract

Information systems, especially large scale ones, are heterogeneous, i.e., they comprise
modules, which are developed in diverse programming languages. In order to assess
the complexity of such systems a method, which can detect dependencies among their
modules is needed. Although there is a variety of methods that detect the dependencies
within a programming language, there are not many cross-language detection methods. In
this thesis the state of the art methods are reviewed, using a newly proposed evaluation
method and a rating schema. The reviewed methods were not highly rated according
to our schema because they focus mainly on accuracy. Therefore, a new method is
proposed, which focuses on both cost-effectiveness and accuracy. The proposed algorithm
is simple and generic, so that it can support a new language with minimal effort. It is
also explainable to a non technical audience. In order to be able to assess the new method
with the proposed evaluation approach, a tool was created and series of experiments were
conducted on a small case study project. The actual dependencies in the project were
extracted by manual checking, and they were used as ground truth data, with which the
dependencies retrieved by the proposed method were compared. Moreover, the method was
executed on a large scale information system, to evaluate the degree of generalisation of
the results.

V

Chapter 1

Introduction

1.1 Context

Programming languages have weak and strong points, and they are used mainly in the
domain they are designed for. Some languages like Java and C++ are designed for
multi-purpose use (General Purpose Languages - GPLs) while others are designed for a
specific domain (Domain specific Languages - DSLs). Examples of DSLs are the mark-up
languages of the various wiki engines or the SQL language (Van Deursen et al., 2000).
Moreover, because of the fast pace of evolution in the software development domain,
modern programming languages are more suitable for new projects than languages that
were popular 20 years ago. Companies try to modernise their legacy information systems
(LISs), but this is a time and money consuming process which includes a lot of risk.
Therefore many companies modernise only part of their LIS which work alongside with
these modern systems.

Because of these reasons, companies have to maintain, expand and generally deal with
software systems, which comprise components developed in more than one programming
language. We call these systems heterogeneous.

1.2 Problem description

The modernisation, expansion and generally the modification of heterogeneous informa-
tion systems is a difficult and complex task. This is the reason why many organisations
hire consultancy companies with specialisation in assessment and improvement of infor-
mation systems, to help them carry out and manage modernisation projects. One of
the first steps in this process is the evaluation of the organisation’s existing systems.
The knowledge acquired from this step is crucial because the outcome of this process
plays an important role in the decisions to be made by the organisation’s or company’s
management board.

The degree of difficulty for the modification of software project is strongly and inversely

1

Chapter 1. Introduction

dependent upon its maintainability. According to the ISO/IEC 25010 quality standard
(ISO25010, 2011), “maintainability is the degree of effectiveness and efficiency with which
a product or system can be modified by the intended maintainers”. The same standard
also describes the evaluation process for the quality attributes of the software prod-
uct. Although it is not necessary for every evaluation to have full compliance with the
standard process, the latter provides a guideline for evaluators. In this thesis the term
“evaluator” refers to the role of a person that conducts an evaluation of the software
quality of a software system.

In many systems, especially in large scale ones, a general overview of the components
of the information system makes it more comprehensible to the evaluators. Such an
overview should display the dependencies of the involved components even if these com-
ponents have been developed in different programming languages. Source code analysis
and, in particular, static analysis in homogeneous systems is quite advanced and there is
a lot of literature and tooling to support dependency detection, at least in GPLs and in
popular DSLs systems. Problems arise when a system contains modules written in dif-
ferent languages that communicate with each other. These dependencies can take many
different (syntactical) forms, can be dynamic rather than static, and may be indirect
via frameworks, databases and scripts. The high number of possible combinations of
languages that can exist exacerbates the problem to a greater degree.

1.3 Research objective

In this research we try to give a solution to the problem that was described in the
previous paragraphs. The goal/question/metric method - GQM (Basili et al., 1994) is
used to structure our objective, formulate the research questions and define the metrics
to answer these questions. The objective is defined as:

The objective of this study is to improve the process of detect-
ing dependencies across programming languages, focusing on
the cost-effectiveness and the accuracy, from the viewpoint of a
software evaluator, in the context of evaluating heterogeneous
information systems.

The following definitions are important because they clarify the objective.

Wilde (1990) gives the following definition for “dependency”:
“From the point of view of the maintainer, there is a dependency between two components
if a change to one may have an impact that will require changes to the other.”

Wilde uses the term component as in software module or in software artefact which is
defined as “an entity that belongs to a software system, e.g., a package, a file, a function,

Master thesis:“Detecting dependencies across programming languages” 2

Chapter 1. Introduction

a line of code, a database query, a piece of documentation, or a test case” (Beyer and
Noack, 2005).

In this context, components are defined as meaningful collections of software modules
e.g., folders, group of folders responsible for a certain functionality, etc.

1.4 Research questions

The aforementioned problem and the objective that needs to be reached form our re-
search question:

What is a cost-effective, yet accurate method of detecting the de-
pendencies across software modules, in heterogeneous software
systems?

And the sub-questions that arise:

SQ1: What is a “dependency”?
SQ2: What types of dependencies exist across languages?
SQ3: How can we detect these dependencies?
SQ4: How can we evaluate the state of the art?
SQ5: How can we evaluate the accuracy of the method?
SQ6: How can we evaluate the cost-effectiveness of the method?

The definition of “dependency” is already given in section 1.3 in order to make the
document more comprehensible, thus the first sub-question is already answered. However
this definition is an outcome of literature study as it is explained in section 3.1.

Master thesis:“Detecting dependencies across programming languages” 3

Chapter 1. Introduction

1.5 Company profile

In the context of this thesis, the author is working as an
intern at the company Software Improvement Group - SIG1

which presents itself as: “...a consultancy firm that provides
impartial, objective, verifiable and quantitative assessments
of risks related to your corporate software systems. Our
analysis software allows us to measure quality, to lay bare the underlying architecture
and to assess the risks related to a system.”1

The company provides a number of services related to consultancy, such as:

• Project risk estimation - consultancy about the risks involved in a project plan.
• Software risk assessment - in-depth analysis of the technical quality of a software

system to expose the risks that the company takes.
• Software monitoring - automated monitoring of the product quality of a software

system being developed or maintained (with consultants interpreting the results).
• Software product certification - With a method verified by the German certification

institute TÜV, SIG certifies the quality of the maintainability of a software product
according to the ISO/IEC 25010 quality standard (ISO25010, 2011).
• Sustainability scans - for greener and more cost efficient IT.

The company employs a professional team of consultants which consists of two types
of members: “Technical consultants” who are responsible for evaluating the quality of
a software system from a client company and “general consultants” who receive the
evaluation result from the technical consultants, translate it into business risks or ob-
jectives and advise the client company accordingly. Technical consultants have the role
of evaluators as defined in section 1.2.

Software analysis is the main part of the services that the company provides. SIG focuses
on static source code analysis because dynamic software analysis requires execution of
the code and this is not always possible at SIG’s environment. Our research topic also
focuses on static software analysis, hence it serves directly the company’s needs.

1.6 Research model

In this study we follow the IS research framework (see Fig. 1.1) which was proposed by
Hevner et al. (2004) because it does not focus only on the creation and evaluation of
an innovative IT product, but also on the impact that the research has on the environ-
ment.

As we can see from the left side of Fig. 1.1, the environment, people and organisations,

1Software Improvement Group - http://www.sig.eu

Master thesis:“Detecting dependencies across programming languages” 4

http://www.sig.eu

Chapter 1. Introduction

Figure 1.1: The information science research framework (Hevner et al., 2004) instanti-
ated for this thesis.

define the problem domain which this study is inspired on. The knowledge base on
the right side of the model provides the appropriate knowledge from already existing
research that can be applied to our case. After some cycles of development, assessment,
evaluation and refinement, an artefact is expected to be produced which is an addition
to the knowledge base and is applicable to the environment. The social and scientific
relevance and the contribution that is expected from this study are explained in the
following paragraphs.

1.6.1 Scientific relevance

The problem of dependency finding concerns both the academic society and the software
industry. Most scientific literature deals with homogeneous systems or systems written
in well co-operating languages (e.g., Java with JSP). In the industrial sector there is
a variety of proprietary and open-source tools that support methods for dependency
finding, in particular for specific modern GPLs. However, only a few proprietary tools
deal with less modern GPLs or with a small range of DSLs. The current study is relevant
in the scientific domain because the success of our proposed method can fill this gap.

Moreover, the existing methods which are reviewed in section 3.2, do not define a reusable
evaluation method. Validation and evaluation are conducted with interviews by experts
from the case study organisations. In this study a repeatable evaluation process for the

Master thesis:“Detecting dependencies across programming languages” 5

Chapter 1. Introduction

findings of a dependency detection method is provided as well.

1.6.2 Social relevance

When software evaluators try to evaluate the quality of the information systems in
an organisation, they encounter complex systems where they do not know if and to
what degree the systems modules interface. To make matters worse, in many cases
documentation is lacking and the expert staff responsible for the development of these
systems are not working in the organisation any more. Trying to analyse the code and
attain an understanding of the interconnected modules of the system is so expensive,
in terms of time and effort, that the evaluators have to avoid it. Consequently the
evaluators take decisions without knowledge of the dependencies, leading to failures and
other unforeseen problems.

Generating an overview of this network of dependent modules, even if not 100% precise,
allows the evaluators to save working hours, which they can spend on improving the rest
of the modification project.

Furthermore, they will provide the organisation’s management board with more data
earlier in the process, to allow for better decisions and planning for the costs and the
duration of the modification project. This increase in the efficiency of the evaluation
process, is a common interest of the software evaluators, the organisation’s CIO, CTO
and generally, its management board.

1.6.3 Research contribution

We identify the following academic research contributions:

• A state of the art review and comparison.
• Patterns of dependencies across technology boundaries.
• A method for automated dependency detection to support precise enough program

understanding.
• A description of a reusable evaluation process for such a method.

And the (research) contributions to the company are:

• A method for software evaluators to evaluate in a cost-effective, yet accurate way,
the complexity in heterogeneous systems.
• Improved quality of consulting.

Master thesis:“Detecting dependencies across programming languages” 6

Chapter 2

Research method

In order to provide answers to the research questions, we need to decompose each re-
search question and find the necessary research approaches through which these ques-
tions can be answered. For the sub-questions whose answers can be quantified metrics
are identified, following the GQM paradigm (Basili et al., 1994).

Table 2.1 displays the research approach for every sub-question.

7

Chapter 2. Research method

Table 2.1: Research approach to answer the sub-questions.

Research sub-question Approach

SQ1: What is a dependency?
-Literature study of the concepts in the field of
dependency detection.

SQ2: What types of
dependencies exist across
languages?

-Literature study of the classification of dependen-
cies.
-Interviews with experts to discover the types of
dependencies experts are interested in.

SQ3: How can we detect these
dependencies?

-Literature study of the state of the art.
-Extending or developing a method if the previous
approaches are unsatisfactory.
-Creating a tool in order to be able to execute the
method.
-Selecting case studies to execute the method.

SQ4: How can we evaluate the
state of the art?

-Literature study for selecting the requirements
and their metrics.
-Interviews with experts to validate the require-
ments and define their metrics.

SQ5: How can we evaluate the
accuracy of the method?

-Literature study for metrics if not covered by the
metrics of SQ4.
-Evaluating the results of the developed method
on experiments conducted on the case studies.

SQ6: How can we evaluate the
cost-effectiveness of the
method?

-Experimenting by extending the (tool of the)
method to handle a new language.

Master thesis:“Detecting dependencies across programming languages” 8

Chapter 2. Research method

2.1 Research structure

The research approaches that we defined in Table 2.1, are not necessarily answered in
the same order as displayed in the table, i.e., the literature study precedes all other
approaches. The thesis itself is structured in phases as shown in Table 2.2.

Table 2.2: Phases of the research process

Phase Description - Actions involved

Phase 1: Literature study

-Getting familiar with the research area, getting/creating
definitions of concepts and terminology.
-Studying classifications of dependencies.
-Studying the state of the art approaches.
-Defining the requirements for the main approaches.
-Studying the metrics which are used for the require-
ments.

Phase 2: Interviews
-Conducting interviews with experts to validate, and if
necessary, modify the requirements and define their met-
rics.

Phase 3: State of the art eval-
uation

-Evaluating the state of the art and making the decision
of extending an already existing method or developing a
new method in order to achieve our objective. As de-
scribed in section 4.7, the decision is to develop a new
method/algorithm because the state of the art does not
meet the requirements.

Phase 4: Experimental setup
and data analysis

This phase involves:
-defining the implementation technique,
-selecting case study projects where the method should
be applied,
-defining the evaluation approach of the method.

Phase 5: Method
development and evaluation

This phase involves an iteration of:
-designing the method/algorithm,
-implementing the algorithm,
-testing the algorithm for defects,
-experimenting with different parametrisation,
-evaluating results.

Phase 6: Final evaluation

The final evaluation involves:
-A large scale project case study
-An extensibility experiment.

Phase 7: Conclusion
The final phase involves discussion of the results, identi-
fication of future research opportunities and conclusions.

Master thesis:“Detecting dependencies across programming languages” 9

Chapter 2. Research method

2.2 Research phase 1: Literature study approach

The first phase of the research is performed by conducting a literature study. Books,
journal articles, conference papers, published literature reviews and international stan-
dards are the sources of information for this research. These sources are accessed through
free web-based search engines, tailored for academic purposes, such as Scirus1, Google
Scholar2, Citeseer3 and Mendeley4.

Following the guidelines in (Levy and Ellis, 2006), the literature study started by search-
ing for publications containing keywords and phrases related to our topic. As Levy and
Ellis (2006) suggest, good quality journals were selected using the ranking list of journals
published by the Association for Information Systems5 . Therefore, published material
in ACM6, IEEE7 journals and MIS Quarterly8 were studied first. Although the rigour
of leading journals is higher than that found in conference proceedings, as Webster and
Watson (2002) suggest, the publications from high ranking conferences were also exam-
ined.

To expand the study material, backward and forward search (Webster and Watson, 2002)
was conducted, i.e., the gathering of articles following the references and the citations
from the set of articles which are already examined.

For each article we studied, the set of concepts and methods that are described were
extracted. These findings were examined and evaluated in terms of the applicability that
they may have in our research.

The end of the literature study phase came to an end, when the same references were
found and no new relevant concepts were discovered (Levy and Ellis, 2006).

2.3 Research phase 2: Interview approach

In order to evaluate the state of the art of the methods which can detect cross language
dependencies, requirements (RQs) for such methods need to be defined. These RQs are
formed by conducting semi-structured interviews with general and technical consultants
from SIG. The RQs of the method are directly translated into RQs for the software which
implements the method. Although RQs are usually separated into functional, quality
RQs and constraints, during the elicitation phase, no separation is made, because we

1http://www.scirus.com/
2http://scholar.google.nl/
3http://citeseer.ist.psu.edu/
4http://www.mendeley.com/
5http://ais.affiniscape.com/displaycommon.cfm?an=1&subarticlenbr=432
6http://www.acm.org/
7http://www.ieee.org/
8http://www.misq.org/

Master thesis:“Detecting dependencies across programming languages” 10

Chapter 2. Research method

want to capture the most important RQs regardless of their category. The interview
approach is described in the next paragraphs.

2.3.1 Interview phases

Preparation
For the preparation of the interview the following key points were considered:

1. Goal definition:
-To define and prioritise the requirements for a cross language dependency analysis
method.
-To collect other interesting information for this research which the interviewees
may provide.

2. Selection of interviewees:
Six consultants were selected from SIG. The interviewees have at least two years of
experience in evaluation. Three of them are technical consultants, whose main role
is to evaluate software, and the other three are general consultants, who, together
with the technical consultants, identify risks. These two types of consultants were
needed for our interviews, in order to capture the rationale from both aspects of
the evaluation process.

3. Type of the interview:
For the first goal a structured interview (Kvale and Brinkmann, 2009) is appropri-
ate because the same questions with the same wording and in the same sequence
are asked to all the respondents. For the second goal, where any additional infor-
mation is captured an unstructured explorative approach is more suitable.

4. Structure of the interview:
The interview starts with an introductory session. Then it is divided into four
phases. The first three concern the first goal and are of a structured type and the
fourth phase is explorative and concerns the second goal of our interview.

5. Duration:
Due to resource constraints, the duration of the whole process has to be less than
35 minutes unless the interviewee wants to provide us with more information.

The interview form that was used is available in the Appendix A.

Introductory session
The aim of the introductory session is to communicate the objective of this thesis and
the goal of the interview to the interviewee. It is important for the interviewee to under-
stand the purpose of a method that detects dependencies across language boundaries.
This session lasts for five minutes.

Master thesis:“Detecting dependencies across programming languages” 11

Chapter 2. Research method

Phase 1 - Requirements discovery
After we confirm that the interviewee has a good understanding of the objective, he/she
is asked to name the top five RQs for such a method. We note down each RQ and we
make sure that we have understood it. It is not necessary for the interviewee to provide
all five RQs, because this might extend the scheduled duration of the phase which should
be ten minutes.

Phase 2 - Requirements prioritisation
In this phase the interviewee is given a set of RQs (listed in Table 2.3), which are believed
to be important for this method. This set of RQs was created by:

• brainstorming, using the author’s professional experience in developing multi-
system enterprise applications,
• studying the literature,
• unstructured interview with one experienced technical consultant and the quality

manager from the same company.

Table 2.3: Requirement set presented to the interviewees

Requirements Description

Explainability The meaning of the dependency findings should be able to be
understood by the software evaluator and the customer.

Accuracy The percentage of False Positives and False Negatives* should
be as low as possible.

Tool integration The method should be able to be implemented as part of an
existing tool.

Visualisation The results should be displayed in a visual way.

Filtering The results can be filtered (e.g., according to keywords or de-
pendency types).

Initial range of
languages

The method initially should support a set of different program-
ming languages.

Extensibility The method should be extendable so as to include an unsup-
ported language in a short time-frame.

Efficiency It should be fast enough so that it can be executed on large-
scale systems in a reasonable time-frame.

Exportability The results should be exportable to open format(s).

*False Positives are dependencies that are found by the method but are not actually true dependencies.

False Negatives are actual dependencies that the examined system has, but the method does not find.

The set of the RQs is given to the interviewees to discover whether extensibility and
accuracy, which are the initial focus of our study, are important for them as well. To
prevent biasing the interviewees, our set is not presented in the beginning. For the same
reason the order of the requirements for each interviewee is randomised. The goal of this

Master thesis:“Detecting dependencies across programming languages” 12

Chapter 2. Research method

phase is to get the interviewees opinion about the priority of each RQ.

The MoSCoW technique (Knudsen, 2004) was selected for the prioritisation because the
evaluators are usually already familiar with it and if not, it is very simple to understand
it. It is also very fast in comparison with other techniques like Cost-Value Approach
(which uses Analytical Hierarchy Process) or cumulative voting (Ahl, 2005), (Berander
and Andrews, 2005).

In short, RQs are divided into the four following categories:

1. Must have - Critical RQs, if they are missing, the project is considered to be a
failure.

2. Should have - High priority RQs. The project however can be delivered without
them.

3. Could have - Desirable, but not necessary RQs.
4. Won’t have - RQs which will not be included in the project.

While the interviewee reads the RQ set, we fill in the MoSCoW table with the require-
ments that he/she selected in the first phase. The interviewee’s RQs are placed before
the predefined set, to reduce the possible bias that could be introduced by placing our
RQs first.

Then the MoSCoW technique is introduced to the interviewee, while the prioritisation
table is presented. The interviewee has the opportunity to add more RQs if he/she did
not think of them during the first phase. The interviewee is informed that the time-frame
of the development of the method is 4.5 months.

The whole duration of second phase should not exceed 15 minutes.

Phase 3 - RQs quantification
In this phase we ask for the interviewee’s opinion about the value, or a range of values
for each RQ, e.g., for the extensibility of the method, the value could be in a number
of man-days. This information makes our understanding of the RQs more substantial
because it quantifies them by introducing a measuring scale. Five minutes are enough
for this phase. With this phase, the structured part of the interview ends.

Phase 4 - Additional information
In the fourth phase we try to capture any additional information from the interviewees
that could help our research. They are all experienced consultants and they can possibly
have a particular idea, event, or any other piece of knowledge to share, i.e projects from
the company that would be interesting case studies, or ideas for the implementation of
the method. One of the questions here is what type of dependencies the consultants
find interesting to be extracted by the method. Because of the explorative nature of this
part, we decided to keep it unstructured.

Master thesis:“Detecting dependencies across programming languages” 13

Chapter 2. Research method

2.3.2 Limitations

A fact that might be considered as a weakness of our method, is that our predefined set
of RQs was presented, instead of organising workshops with the consultants in order to
discover and prioritise the RQs.

Another limitation was that because of time constraints, the number of the intervie-
wees was limited and selected among the employees of one company. This threatens
the generalisability of the results because the interviewees have acquired their working
experience as consultants mostly at the same company, which means that they share a
common way of thinking.

However we feel that these problems are not counter our research because the objective
of our research, targets in a great degree the exact domain of the company.

2.4 Research phase 3: State of the art evaluation

In the third research phase the information from the literature and the expert interviews
is used to create a rating schema with which the state of the art methods for detecting
dependencies is evaluated.

For each requirement a metric is defined using a five level Likert-type scale (Arnold et al.,
1967). Every level of that scale is defined by a statement. The statements were created
by using the experts answers to the interviews, and by brainstorming when the answers
were not given in detail.

Once the rating schema was created, we tried to deploy the tools that are provided by
the corresponding state of the art methods. After the successful deployment of the tool,
the methods were tested and evaluated against the rating schema. As it is mentioned
in section 4.7, only three out of six methods were deployable and usable. In order to
evaluate the unusable methods, a search for publications that refer to these methods in
the literature was conducted, according to our approach in section 2.2.

2.5 Research phase 4, 5 & 6: Experimental setup, data
analysis, method development and evaluation

With the completion of the third phase, as is mentioned in section 4.7, it was decided
not to base our research on one of the state of the art methods, but to introduce a
new method. This phase describes the research approach for the creation of the new
method.

The experimental setup is an important step before we proceed with the development

Master thesis:“Detecting dependencies across programming languages” 14

Chapter 2. Research method

of the method, because it allows us to create a framework to methodically evaluate the
data that is acquired with the execution of the proposed method (PM). Our goal is to
describe a reproducible and unbiased evaluation process.

The evaluation of our method requires:

• A second method for finding cross language dependencies with accurate results, or
with a known error rate, so that its results can be compared with the results of
our method. We call the second method the ground truth method (GTM), since
it gives us ground truth data (GTD) about the dependencies that exist in the
software system.
• A case study project on which dependency extraction methods can be executed.

2.5.1 Ground truth method

Because the PM extracts dependencies which belong to a set of different dependency
types, the GTM should be able to discover the dependencies for these patterns. The
state of the art methods which are reviewed in chapter 3 are candidates for GTMs.
However we deem them unsuitable for our purpose because of the following reasons:

• The most important reason is that for the methods that were applicable, there
was no evidence for their accuracy9, hence their error rate is unknown. What
could be done, is compare the results with our method and have more confidence
for the results that both methods have in common. However, manual checks for
distinctions would be necessary.
• Their maturity is low9, meaning that their deployment, configuration and usage

is difficult and there is no proper documentation to overcome these difficulties.
Therefore, a lot of time is needed to understand and use these methods as GTMs.
• The reviewed methods support only a small set of languages, or a specific type

of dependencies9. This means that these methods need to be extended in order
to use them for a comparison with our method’s results. Although that would be
ideal, the time-frame of this thesis does not allow for this.

Manual checking of the source code modules was selected to be the GTM . By “manual
checking” we mean that the subject studies a set of source files at hand and detects
dependencies according to his/her experience. The detailed process is explained in the
next section.
The disadvantages of manual checking are:

• It is not automatic, thus it is time consuming.
• Because the evaluator searches for dependency patterns which he, himself devel-

oped, manual checking is biased to a greater degree. The GTM could be performed
by another software evaluator to eliminate this bias. This requires time, which the

9The reader can refer to section 4.7 where the state of the art methods are evaluated.

Master thesis:“Detecting dependencies across programming languages” 15

Chapter 2. Research method

software evaluators from the company do not have.

The advantages are :

• Traditionally, manual checking is well accepted by software evaluators as a cross-
language dependency detection method, hence it is admissible to use it in our
case.
• It can show the accuracy of the results in a common way for any language combi-

nation or pattern used. This increases the explainability of the results and allows
for the comparison of accuracy among languages and patterns.

2.5.2 Selection criteria for case study

An important factor in the evaluation process is the selection of a case study project.
First of all, a multilingual project is selected in which we know, from its description, or
from its functionality, that there are dependencies among the modules of the system.
Either recent projects from the company’s client portfolio can be selected, or open-source
projects. Each choice has advantages and disadvantages:

• Selecting an open-source project increases the transparency of the results. The
method can be executed repeatedly by scientists and the expected results should
be the same. Therefore the experiment can be easily reproduced.
• On the other hand, by selecting a project from the company archive the guidance of

the software evaluator who was assigned to that project is provided. The informa-
tion from the evaluator can reveal more cross language dependencies than we might
expect. The drawback is that the source code of the company projects is regarded
as confidential information and is not publicly available for future experiments.

To have a reproducible experiment, an open-source project is selected. In order to
get some more information about where the dependencies can be found, the software
evaluators from SIG who evaluated systems with similar technologies were consulted.

A summary of the dilemmas and the decisions taken is given in Table 2.4.

Since dependencies are detected manually, the case study project ideally has technolo-
gies that we are familiar with, so that the manual extracting of dependencies has high
accuracy. The size of the project is relatively small for two reasons:

• The manual check for dependencies can be done in a limited time-frame.
• The probability of having more accurate results from the manual check increases.

In a small project, all the dependencies can be manually extracted, instead of
taking a sample of its files and generalizing the results.

Master thesis:“Detecting dependencies across programming languages” 16

Chapter 2. Research method

Table 2.4: Evaluation process decisions

Decision
point

Candidate
solution

Pros/Cons
Selected
approach

Ground
truth
method

reviewed
methods

+ automation
+ low bias
– specific pattern or languages
– low maturity, unusable
– no accuracy evidence

manual
checking

+ common way of results interpretation

X
+ de-facto method in the industry
– not automatic, time consuming
– more biased

Case
study

company
project

+ evaluator’s expertise available
– confidentiality of source code
– not reproducible experiment

open-source
project

+ transparency
X

+ reproducible experiment

2.5.3 Evaluation process

During the evaluation process, the proposed method (PM) is executed and evaluated
against the Must have criteria which are discussed in section 4.2. Our method is created
through an iterative process of brainstorming for algorithms, implementation, testing,
evaluating and refinement (see chapter 5).

For every iteration the evaluation process involves the following steps:

1. Execute the method on the case study project.
2. Retrieve the results.
3. Compare the results with the ones retrieved with the GTM .
4. Calculate the accuracy metrics which were discussed in section 4.3.
5. Examine the False positives (FP) and the False Negatives (FN) to improve the

algorithm.
6. Judge the algorithm in terms of explainability and extensibility.

In order to test the applicability of the method on to other projects, and be able generalise
the configuration and the results that the method has in the small project, the method
was executed and evaluated on a large scale project. More information is given in chapter
6.

Master thesis:“Detecting dependencies across programming languages” 17

Chapter 2. Research method

Master thesis:“Detecting dependencies across programming languages” 18

Chapter 3

Related literature

According to the research structure which was presented in section 2, the first phase
of our research involves studying the literature in order to answer parts of the research
sub-questions. Our goal is to:

• become acquainted with the research domain and to find definitions of related
concepts and terminology,
• learn about classifications of dependencies,
• discover the state of the art methods for detecting cross-language dependencies.

3.1 Concepts and definitions

3.1.1 What is a “dependency”?

As the main objective of this thesis is to detect cross-language dependencies, we need to
define the term “dependency”. This definition directly affects the way in which depen-
dencies are extracted from the source code and the way of validating them. Although
we searched the literature for a term, no standardised or commonly used definition was
found. There are abstract definitions, such as the one proposed by Nagappan and Ball
(2007) where a software dependency is defined as “a relationship between two pieces of
code”.

Spanoudakis (2005) defines dependency with more detail as “a relationship between two
software entities e1 and e2, where the existence of e1 relies on the existence of e2, or
changes in e2 have to be reflected in e1.”

A similar definition, which also introduces the concept of functionality, is given by
de Souza (2005): “A dependency between software modules is said to exist when one
module relies on another to perform its operations or when changes to the latter must be
reflected on the former”

The closest definition to the one we seek is given by Wilde (1990) as:
“From the point of view of the maintainer, there is a dependency between two components

19

Chapter 3. Related literature

if a change to one may have an impact that will require changes to the other.”
Wilde’s definition was chosen for two reasons: First, because he specifies the viewpoint
(maintainer), which happens to be the viewpoint for our research. Second, because it is
detailed enough for our scope and at the same time, it also allow us to cover types of
dependencies where a change in one module, may require changes to another module,
but not necessarily.

Note that Wilde uses the term software component in place of software module as defined
in section 1.3.

3.1.2 Classification

The extraction of a dependency between two modules, pre-requires, way(s) to detect it.
In order to detect the dependency, we need to understand how two modules are related.
Therefore, we explore the literature to acquire more knowledge about how the different
dependencies can be classified. This will also make the definition, and consequently our
research more tangible.

There are different ways in which dependencies can be classified. In the approach followed
by Bagchi et al. (2001), tasks or transactions in a software system are associated with
the software and hardware resources being used for the specific tasks. The sequence of
the resources is used to create a dependency graph and the strength of the relationship
is categorised in four levels: absent, weak, medium, or strong. This categorisation suits
Bagchi et al. because they focus on dynamic dependency analysis where dependencies
are found during the run time of the software. This type of classification is not applicable
in our case because of our focus on static analysis of the source code.

Wilde (1990), besides the definition of dependencies, introduces the following classifica-
tion of dependencies:

• Data item dependencies - regarding variables, data structures, and records.
• Data type dependencies - regarding relationships between types/structures that a

programmer can define within a programming language and their properties.
• Subprogram dependencies - regarding calling other programs within a program.
• Source file dependencies - inclusion of header files, imports etc.
• Source location relationships - the relationship that exists because the relative

location, the packaging and the organisation of files should reflect a certain func-
tionality grouping.
• Additional classes of dependencies - other language specific dependencies.

From Wilde’s classification, we can see that the dependency types describe dependencies
where the changes in one module have a rather direct impact on the other, e.g., changing
a variable, a name or a sub-program, will have a direct impact on the module(s) using
it.

Master thesis:“Detecting dependencies across programming languages” 20

Chapter 3. Related literature

Figure 3.1: Graphical representation of SW extension mechanisms (Jansen et al., 2008)

A more architectural viewpoint of classification, which is introduced by Jansen et al.
(2008), is displayed in Fig. 3.1. It depicts a graphical representation of software extension
mechanisms, which implies software dependencies as well. The type of extensions, hence,
the type of dependencies corresponding to the diagrams in the image are listed below:

(a) direct data interchange among components
(b) component reuse through libraries, e.g., method calls, dynamic link libraries, jars
(c) glue code, when one component calls another through a wrapping interface
(d) shared data objects, when components share the same datasource
(e) component bus, when components are invoked as a service, e.g., Corba
(f) plug-in architecture, e.g., Eclipse, Joomla plug-in mechanisms
(g) service oriented architecture with pre-established conventions, e.g., SOAP calls,

translation services
(h) enterprise service bus, namely dynamic, automatic service invocation probably

with service level agreements

As Jansen et al. mention in the same paper and as can be deduced by the arrows in the
figures, the above interactions among components (a), (b), (g) are “direct” and the rest
are “indirect” component invocations.

For this thesis this classification is modified to include the following three categories:

• Direct - strong dependencies among components/modules which have a change
impact on each other without (necessarily) an intermediate module through which
the dependency arises. These dependencies would probably cause compilation
errors. e.g., program calls, file inclusions.
• Framework - weaker type dependencies which would probably cause runtime errors.

Master thesis:“Detecting dependencies across programming languages” 21

Chapter 3. Related literature

e.g., injection of objects/properties at runtime through application frameworks or
servers like spring framework dependency injection.
• Indirect - even weaker dependencies, which may not cause errors at runtime but

which have a high probability that will cause errors in functionality. e.g., a change
in a table property in a database may affect the form in a JSP page displaying
the properties of the corresponding table entity, even though there are abstraction
layers between the data layer and the presentation layer.

In this thesis we focus the analysis on the dependency types that are displayed in Table
3.1 because they cover the cases of dependencies which we want to extract.

Table 3.1: Dependency types

Dependency types Description
Possible
granularity

Database access SQL based or other types DB
Schema, Table,
Column

File access File I/O
File,
class,
method

Program calling Executable programs calls

Method calls
Direct method calls through in-
terconnecting libraries

Configuration files Property files, XMLs

Network based
Sockets, WebServices, Message
Queues

Although each type can be extracted at a different level of granularity, the focus of the
dependency detection is only on the file level for the following reason: if a finer level of
granularity is used, such as method level or block level, then the method will depend
more on the elements of the structure that is provided by the language at hand. This
means that the specific language vocabulary and syntax have to be considered. In a file
level, the knowledge of the structure of the language may not be necessary. File level is
also enough for our context of getting a first overview of a system’s dependencies.

3.2 State of the art

In this section we present the main findings from our literature study are presented.
This study does not include commercial methods/applications because: firstly, we could
not have access to them to evaluate them, and secondly they are not open source, hence,
we cannot learn about the algorithms they use. It is noted here that the evaluation of
the methods is valid for the time that this thesis was written.

Master thesis:“Detecting dependencies across programming languages” 22

Chapter 3. Related literature

The criteria used to evaluate the state of the art are actually requirements for a de-
pendency detection method, and are formed by the literature study and interviews with
experts. Therefore they are discussed after section 4.1.

3.2.1 Eclipse MoDisco

The Eclipse MoDisco project1 is an initiative that aims at providing a framework in the
context of Model-Driven Reverse Engineering, to support the extraction and exploita-
tion of models in legacy applications. Software models are considered as representations
of software modules with a level of abstraction, that depends on the purpose of the mod-
elling process. It considers as inputs all types of modules like source code, databases,
configuration files etc. and provides the capabilities for generating their corresponding
models and their handling (dependency finding, analysis, metrics, documentation, visu-
alisation). The framework achieves that by using an extensible set of “model discoverers”
that comply to the Knowledge Discovery Meta-model (KDM) (Bruneliere et al., 2010).
The process involves three basic steps:

• the creation of a language specific model
• the creation of a language independent meta-model, and
• the enrichment of the language independent meta-model with additional informa-

tion such as data and control flow.

The AtlanMod MegaModel Management - AM32 (Jouault et al., 2010) is a component
which is responsible for managing the meta-models of each software module and the
AtlanMod Model Weaver - AMW3 automatically creates links among the elements of
these meta-models. Currently it provides advanced support for Java and Java related
XML technologies, as well as C#, but for other GPLs and DSLs, discoverers need to
be implemented. MoDisco provides the infrastructure for dependency analysis, but the
patterns for weaving models still need to be written by the analyst.

3.2.2 PAMOMO

In Guerra et al. (2010) the authors use Ecore4 models to represent software modules
and on them they apply pattern matching algorithms in order to define traces and
constraints between these models. They created an eclipse plugin (Guerra and de Lara,
2010), PAMOMO, which they provide along with a simple, made-up case study. The
tool provides support for defining the patterns, but the process of creating the Ecore
models is not automated and there is little documentation about it.

1The Eclipse-MDT MoDisco project: http://eclipse.org/MoDisco
2The Eclipse AM3 project: http://wiki.eclipse.org/AM3
3The Eclipse AMW project: http://www.eclipse.org/gmt/amw
4Eclipse Ecore package: http://download.eclipse.org/modeling/emf/emf/javadoc/2.7

.0/org/eclipse/emf/ecore/package-summary.html

Master thesis:“Detecting dependencies across programming languages” 23

Chapter 3. Related literature

3.2.3 GenDeMoG

GenDeMoG (Pfeiffer and Wasowski, 2011) is one of the few dependency finding tools,
based on Eclipse EMF5 technologies as well, which has been executed on a real, large
scale heterogeneous system. Their case study included an application suite which is
build in Java and many other modern XML based DSLs. The tool follows these steps:

• A Component Descriptor Model - CDM has to be defined by the user. In this
descriptor the system’s components are defined and initialised with properties like
visibility, type, location etc. In the same file the dependency patterns in the form
of queries are written, using the EMF expression language.
• These queries are then compiled into search programs.
• A graph generator transforms their output into a dependency graph for the system.

The tool can work with languages based on the Ecore meta-meta-model. Pfeiffer and
Wasowski (2011) state that XSD based languages can also be automatically transformed
into Ecore based ones. This is required because, if we want to link the modules which
are instances of meta-models (language types), the meta-models must all belong to the
same meta-meta-model (M3 level).

3.2.4 Moose

Moose (Ducasse et al., 2009) is another framework for software analysis of homogeneous
and heterogeneous systems. It is written in Smalltalk and the analysis results can be
displayed visually with graphs. It uses the same principle as before, namely the use of
the so-called FM3 language independent meta-meta-model. According to the authors,
an FM3 adhering meta-model can be created from object oriented languages, and they
provide an API for that. It uses a language (MSE) similar to XML for importing
new languages and transforming them into the FM3 format. PetiParser is a parsing
framework provided by the same platform which enables the (manual) construction of
custom parsers for new languages.

3.2.5 DSketch

DSketch (Cossette and Walker, 2010) or GrammarSketch, is the first approach found
that does not use meta-modelling techniques to find dependencies. It is based on regular
expression pattern matching, but provides the developer/analyst with a language to write
these patterns in a much easier and meaningful way. Currently the tool is provided as an
eclipse plugin and works with Java, SQL, XML. Cossette and Walker (2010) state that
it is extensible without providing an API. In the two case studies that were presented in
(Cossette and Walker, 2010) the developers and evaluators of the method mentioned that

5The Eclipse EMF project: http://www.eclipse.org/modeling/emf/?project=emf

Master thesis:“Detecting dependencies across programming languages” 24

Chapter 3. Related literature

the tool was relatively accurate but they would not trust it without a manual validation
of the findings.

3.2.6 Source Navigator NG

Source Navigator6 (SN) is a source code analysis tool intended to be used in large scale
systems. It can reveal the relationships among classes or their members as well as build
method call trees. Language specific extractors are used to extract facts from the code
which are stored along with location and scoping information into a database, for later
processing. Then with cross-referencing of the facts, the relationships among them are
created. Depending on the user’s task (e.g., class hierarchy, call tree, include graphs), the
data from the database are analysed and presented using a graphical interface written in
Tcl/Tk. SN supports more than 11 languages (e.g., Java, C/C++, Python, PHP, For-
tran, COBOL, Tcl/Tk etc.) which are bundled with the program but it can be extended
with more languages through the provided source development toolkit (SDK).

6http://sourcenav.berlios.de/

Master thesis:“Detecting dependencies across programming languages” 25

Chapter 3. Related literature

Master thesis:“Detecting dependencies across programming languages” 26

Chapter 4

State of the art evaluation

In this chapter the state of the art methods for detecting cross language dependencies
which were presented in section 3.2 are reviewed. For that, a set of requirements is
created which the method should ideally have. In addition, rating criteria for each
requirement is given, with which the methods are compared. After the explanation of
the requirements, a comparison matrix is presented, giving information about the score
of each method for each requirement.

4.1 Requirements elicitation

The requirements for a dependency detection method are formed by conducting semi-
structured interviews with general and technical consultants from SIG. The interview
method is explained in 2.3 and the results from the interviews are given in the next
paragraphs.

The first goal of the interview sessions is to define and rank the requirements the con-
sultants believe are important for dependency detection method. For that, the results
of the second phase of the interview are compiled.

As we do not want to reveal the names of the participants, the names are substituted
with variables. GC1, GC2, GC3 are the names of the three general consultants and
TC1, TC2, TC3 the names of the three technical consultants.

In the first phase of the interview, participants added RQs that already existed in the
given set of the second phase. Only two requirements were added by two different
participants:

• ”Universality” - the method should detect dependencies with the same way within
a single language and across languages as well.
• ”Language agnosticity” - The method should be able to detect dependencies with-

out language specific information.

These two requirements are added to the predefined set of RQs. Then the priority of each

27

Chapter 4. State of the art evaluation

Figure 4.1: For each requirement, the answers for all 6 interviewees are shown in an 11
point scale (0 = least important, 10 = most important). The seventh bar
shows the average. Interviewees were general consultants (GC) and technical
consultants (TC).

RQ is calculated by the average of each RQ in the new set. A new variable is introduced
in the analysis, namely ”importance” which is the complement of the priority and its
scale is from zero to ten (The number of the RQs is eleven). The score of the importance
of each RQ by each participant, and their average is depicted in Figure 4.1:

From the results we can see that the hypothesis that accuracy and extensibility are
important, is confirmed, as they are ranked in the first and third position. An interesting
fact is that explainability is significant for the consultants as well. During the interviews
most consultants shared the opinion that the method should provide results that can be
easily understood by their clients. The metrics used by the method should be simple,
so that the clients can be convinced that the dependency analysis which is applied in
his/her software system, provides an accurate description of its complexity.

Another interesting observation is that the general consultants are aligned for the impor-
tance of the accuracy, explainability and visualisation, whereas the technical consultants
are more aligned for the extensibility. This can be explained by the fact that the tech-
nical consultants are taking into account the development effort and the difficulty of
extending the method to accommodate additional languages. On the other hand the
general consultants are more interested in the presentation of the results because they

Master thesis:“Detecting dependencies across programming languages” 28

Chapter 4. State of the art evaluation

will use this information to communicate the results to the clients.

Another valuable piece of information which was extracted from these interviews is that
the consultants are interested in the accuracy of the method, with different weight in
False Positives than False Negatives. They can tolerate a reasonable percentage of False
Negatives but it is important that the number of False Positives is minimal. They all
agreed that the false positives should be less than 30% of the findings.

According to the average ranking of the RQs they are grouped, based on the MoSCoW
method, as displayed in Table 4.1.

Table 4.1: Priority categorisation of requirements using MoSCoW, based on their im-
portance according to the interviewees answers.

Requirement Must Should Could Won’t

Accuracy x

Explainability x

Extensibility x

Initial range of languages x

Tool integration x

Visualisation x

Efficiency x

Filtering x

Exportability x

Universality x

Language agnosticity x

The RQs Universality and Language agnosticity are placed in the Won’t have set because
they were suggested only by one consultant. Thus they have the lowest importance
value.

4.2 Rating criteria for requirements

Table 4.2 displays the requirements in order of importance (from high to low importance)
based on the information obtained from the interviews. The horizontal groupings display
each requirement, its metric in a five level Likert-type scale (Arnold et al., 1967) and
for every level of that scale a statement of what the level represents. A description
for each requirement is given in the paragraphs following the table. In this section the
requirements which were listed under the Won’t have category of the MoSCoW method,
i.e., Universality and Language agnosticity are not included.

As can be seen from Table 4.2, one more category was added, i.e., Prerequisites. These

Master thesis:“Detecting dependencies across programming languages” 29

Chapter 4. State of the art evaluation

prerequisites have to be satisfied at least in the second level of our scale, in order to be
able to assess the other requirements.

Table 4.2: Rating criteria for each requirement
Cat. Requirement Level Level’s description

M
u
st

h
av

e

Accuracy
(Fmeasure)

* 0 ∼ 20%
** 21% ∼ 40%
*** 41% ∼ 60%
**** 61% ∼ 80%
***** 81% ∼ 100%

Explainability

* only the developer of the method can explain the result

**
reverse engineering on the analysis method is required to
understand the results

*** a technical consultant can interpret the result

a business consultant with a weak technical background can
interpret the result

a stakeholder or business consultant with no technical back-
ground can interpret the result

Extensibility

*
not extensible, the methods is customised for a number of
languages

**
metamodels/parsers and detection patterns need to be de-
fined for new languages

only new metamodels/parsers need to be defined for new
languages

no metamodels/parsers used, but an extension mechanism is
provided

***** no extension needed, the method is generic

S
h
o
u
ld

h
av

e

Initial range
of languages

* 1 ∼ 3 languages
** 4 ∼6 languages
*** 7 ∼ 9 languages
**** 10 ∼ 12 languages
***** >12 languages

Tool
integration

* the method is only theoretical (e.g., if it is only theoretical)

**
the method is partly implemented as a stand alone applica-
tion

*** the method is fully implemented as a stand alone application

the method is implemented in an integrated development
environment

***** the method is integrated in a software analysis toolkit

Visualisation

* lacking visualisation
** console based text or graphical representation
*** visual tool that shows dependencies as a grid
**** visual tool that shows dependencies in one or more graphs

interactive visual tool for selecting dependencies from a
graph for details

Continued on next page

Master thesis:“Detecting dependencies across programming languages” 30

Chapter 4. State of the art evaluation

Table 4.2 – Continued from previous page

Cat. Criterion Level Level’s description
C

o
u
ld

h
av

e

Efficiency

*
needs more than 6 hours to finish the analysis for an
∼1MSLOC system (Million Source Lines Of Code)

**
between 3 to 6 hours to finish the analysis for an ∼1MSLOC
system

between 1 to 2 hours to finish the analysis for an ∼1MSLOC
system

between 30 minutes and 1 hour to finish the analysis for an
∼1MSLOC system

less than 30 minutes to finish the analysis for an ∼1MSLOC
system

Filtering

* no filtering provided
** basic filtering capabilities according to the dependency type
*** predefined category filters
**** text filters
***** combination of text filters and category filters

Exportability

* not exportable results
** results exported in a method specific format
*** results exported in one open or standardised format

results exported in more than one open or standardised for-
mats

results exported in more than one open or standardised for-
mats in a configurable way

P
re

-r
eq

u
ir

em
en

ts

Maturity
Testing

* no evidence of testing
** 1 ∼ 2 case studies
*** 3 ∼ 10 case studies
**** > 10 case studies
***** tested in production environment

Maturity
Usability

* un-deployable

**
can be deployed and used by experts with deep knowledge
of the method

*** deployable and usable only by experts
**** deployable only by experts but usable by software evaluators
***** deployable and usable by software evaluators

Documentation

* lacking documentation
** documentation that describes mainly deployment
*** documentation that describes deployment and functionality

documentation describing laconically each step of the
method

***** full documentation with examples of usage

Master thesis:“Detecting dependencies across programming languages” 31

Chapter 4. State of the art evaluation

4.3 Must have requirements

Accuracy

From the compiled results from the interviews (Fig. 4.1), we can see that Accuracy is the
main concern of the consultants. Therefore it has the first position in our ranking too.
A method or a tool that extracts dependencies, belongs to the category of information
retrieval methods. Especially for accuracy, there are published and commonly accepted
metrics, which are explained in this paragraph.

Let C be the collection of all possible dependencies which is depicted with the outer
ellipse in Fig. 4.2. Suppose that from all the items in C, only a set π with π ⊆ C of
them is “relevant” (or actual dependencies). Suppose also that a method that extracts
dependencies detects and retrieves a set t for which t ⊆ C.

Figure 4.2: Metrics used to evaluate accuracy in the information retrieval domain. In
our case Collection is the set of all possible dependencies that can exist
in the system, Relevant is the set of actual dependencies in a project, and
Retrieved is the set of dependencies that a dependency detection method
retrieves. (FN=False Negatives, FP=False Positives, TP=True Positives,
TN=True Negatives)

From Manning et al. (2009) we get table 4.3 which shows the possible combinations of
findings.

Table 4.3: Possible dependencies

Relevant Non Relevant

Retrieved True Positives (TP) False Positives (FP)

Not Retrieved False Negatives (FN) True Negatives (TN)

From the same publication and from Alvarez (2002) we get the following classic metrics

Master thesis:“Detecting dependencies across programming languages” 32

Chapter 4. State of the art evaluation

for information retrieval.

“Recall (R) is the fraction of relevant documents that are retrieved”.

R =
|TP |
|π|

=
|TP |

|TP |+ |FN |
(4.1)

“Precision (P) is the fraction of retrieved documents that are relevant”

P =
|TP |
|t|

=
|TP |

|TP |+ |FP |
(4.2)

Although there was not a clear answer by the interviewees about the maximum number
of FN, they all agreed that the precision should be higher than 70%.

Both measures are important for measuring accuracy. However, a single metric is more
suitable for our comparison matrix because we can correspond each level of the ranking
scale of the accuracy requirement to a range of values of that single metric. Van Rijsber-
gen (1979) introduces a metric that captures the trade-off between recall and precision.
It is defined as the weighted harmonic mean of precision and recall and it is calculated
as follows:

Fmeasure =
(β2 + 1)× P ×R
β2 × P +R

, with β2 ∈ [0,∞] (4.3)

β shows how many times recall is more important than precision. If β = 1 they are of
equal importance. If β > 1, recall is more important and if β < 1, precision is more
important. From the interviews with the consultants we learned that precision weights
more than recall. Therefore β = 0.5 is selected which shows that precision is twice as
important than recall. The metric for accuracy thus becomes:

F0.5 =
(0.52 + 1)× P ×R

0.52 × P +R
(4.4)

Explainability

The second most important requirement, according to the interviews is explainability. It
is of high concern for both technical and general consultants. By the term “explainabil-
ity” we mean the property of the method that identifies how easily the method behaviour
and results can be interpreted by the user. As explained in section 4.1, it is significant
for two reasons:

• If the representation of the results of an analysis are self explanatory, it is cost-
efficient for the software evaluator, who will not need time to spend in the inter-
pretation of the results.
• If the meaning of the results and the way they were formed are clear to even non

technical personnel, then the results are quickly accepted.

Master thesis:“Detecting dependencies across programming languages” 33

Chapter 4. State of the art evaluation

Extensibility

The third requirement, in terms of priority, is extensibility. The definition used for this
requirement during the interviews was the ability of the method to be implemented or
extended to include a currently unsupported language in a short time. The experts often
encounter information systems which contain modules written in languages that have
not been encountered before. Consequently, they have to update the method in a short
time while keeping the trade-off with accuracy at a reasonable level. The metric we
would like to use for this criterion is the number of days that is required to support a
new language. However this question cannot be answered unless we try to extend each
method ourselves, or find published information about it. Because no references were
found to this kind of information, the type of approach is used as a criterion, namely
how generic the method’s algorithm is, e.g., does it use parsers or meta-models for each
language, or a more generic approach?

4.4 Should have requirements

Initial range of languages

The range of languages that a method already supports is another important require-
ment. Especially for consulting companies that have to work daily with a wide variety of
languages, a method that supports only a small subset of them is not adequate. It would
require a lot of effort to extend such a method so as to support most of the languages
of their clients’ portfolios, even if the extensibility is high. The metric used here is the
number of languages that the method supports.

Tool integration

This requirement shows how well the method under evaluation is implemented or inte-
grated into a tool. It can vary from being purely theoretical with no implementation at
all, or being implemented as a console/script based program, up to being fully imple-
mented and integrated into a widely used development or analysis toolkit.

Visualisation

Visualisation describes the representation of the results of the analysis. Like the previous
requirement, it can vary from a text based representation enumerating all the dependency
findings, to a sophisticated interactive representation of the results as a graph. In the
latter case, a software evaluator would be able to select a dependency which is represented
by an edge and see more details. The reason that this is not so high in priority, is that the

Master thesis:“Detecting dependencies across programming languages” 34

Chapter 4. State of the art evaluation

focus of our research is not on the representation, but on quality of the findings and the
extensibility of the method. The findings can also be merged with other evaluation tools,
therefore the representation is important, but not crucial for the specific research.

4.5 Could have requirements

Efficiency

For efficiency we looked up the definition in the ISO25010 (2011) where Performance
efficiency is described as the “performance relative to the amount of resources used under
stated conditions”. It consists of three elements:

• Time behaviour - which concerns the response, processing times and throughput
rates of a method.
• Resource utilisation - which concerns the amounts and types of resources used by

the method.
• Capacity - which concerns the maximum limits of method’s parameters.

As the methods selected for review provide software tools for executing them, we plan to
do their evaluation using a desktop computer, which has a moderate set of characteristics
(4GB memory, 4x2.8GHz processing power) at the time this thesis was written. We plan
to execute these methods on a large scale project, i.e., around one million source lines
of code (MSLOC) and measure the time for the analysis to finish.

Filtering

Filtering is another feature that is useful for the methods. It refers to results filtering, i.e.,
how we isolate a group of dependencies of our interest, from the whole set of dependencies
that the method retrieves. Filtering can be done by the different types of classification
(see section 3.1.2). It can also be done using lexical keywords, or even regular expressions
for the analysts with a stronger computer science (CS) background.

Exportability

A method for finding heterogeneous dependencies is intended to be used along with
other methods in the context of comprehending software. These methods produce re-
sults in a human readable format that aims for better understanding of the software
program at hand (e.g., in control flow analysis, control flow graphs are produced). It
is valuable when the results of each method are combined in a unified representation
because it saves time and helps to have an overall image of the program’s complexity.
This is why exportability of the results is one of the requirements for the methods of

Master thesis:“Detecting dependencies across programming languages” 35

Chapter 4. State of the art evaluation

our review. Exportability describes how easily the results of a method can be used from
other methods or frameworks, thus improving the interoperability with them. Examples
of open formats for direct graphs representations are GraphML, GXL, XMI etc. The
metric is the number and the type of formats in which the results are exported. It is
placed last in our ranking from the interviews because, as mentioned by the experts, the
tool integration may overlap this feature.

4.6 Prerequisites

This section describes three prerequisites that an existing method has to satisfy, up to a
degree, in order to be capable of evaluating the method against the Must, Should, and
Could have requirements.

Maturity is an important prerequisite that contributes to the quality of a method. Usu-
ally the lifecycle of a method involves the conception of the initial idea, or the algorithm,
then its implementation, followed by iterations of testing, evaluation, and refinement.
When the algorithm and its implementation are ready, more effort in improving usability
and other lower priority attributes is invested. With this requirement the maturity state
of the methods is evaluated. That is why this prerequisite is split in two: application
and usability.

Maturity - Application

This prerequisite shows the extent to which the method has been applied. The lowest
level is that the method has not been tested, or that no evidence of usage is found.
Other levels include the execution of the method on a number of case studies, and the
highest level is that the method is applied in a production environment.

Maturity - Usability

Adapting the definition of ISO25010 (2011) to our case, Usability is the degree to which
a method can be used by the evaluators to achieve specified goals with effectiveness,
efficiency and satisfaction. For our evaluation, we focus on the ease of deployment and
usage of the methods and the provided tools.

Documentation

The next prerequisite added is “Documentation”. It describes the quality of the docu-
mentation of the method, how its steps are described, if there are examples of usage so

Master thesis:“Detecting dependencies across programming languages” 36

Chapter 4. State of the art evaluation

as to make a software evaluator able to use it. If a method has very complicated steps
that are not explained, or if the supporting tool of that method is very difficult to under-
stand due to lacking documentation, then the method’s usability decreases. However, a
well documented method leads to improved usability, maturity, and extensibility of the
method.

4.7 Comparison matrix

The requirements and their metrics which were defined in the previous section, provide
the means for evaluating the state of art methods for detecting cross-language depen-
dencies. A comparison matrix is an informative and descriptive way of visualizing the
differences among the reviewed methods. The names of the state of the art methods are
the column headers of the table and the row headers are the requirements. The con-
tents of the cells contain the score of each method for the corresponding requirement.
A question mark in a cell shows that the score could not be calculated or deducted, or
that there is uncertainty about it. The comparison matrix is displayed in Table 4.4.

Source Navigator NG (SN) has a high score in many requirements because it supports
many languages and it provides a documented way of extending it for more languages.
We were able to install it and conduct an analysis for three supported languages (Java,
C, PHP). Files from each language that we created were used as input. C and Java files
declared fields and methods, and the PHP files called the same method names and used
fields with the same names. The analysis showed dependencies within each language but
not any cross-language dependency. The analysis was run on other three multilingual
programs, but without success. Since we do not know what are the dependencies the SN
looks for, we are not confident about its score. Moise and Wong (2005) did not find any
examples for such use either. In the same paper they extended SN to find Java and C++
dependencies through Java Native Interface. One year later they extended it further for
finding dependencies across C++ and scripting languages as Perl and Python. Source
Navigator NG is still active but it does not have a big developer community1. For the
above mentioned reasons, SN was excluded from the comparison matrix.

We tried to execute all the methods which are shown in the matrix. Some of them were
deployable and usable while others do not provide the proper documentation and could
not be used at all (e.g., PAMOMO, GenDeMoG). Even for the methods that could
be used, we were not able to find the right information, in a reasonable time-frame,
to measure every requirement of our table (Source Navigator NG, Eclipse MoDisco,
PAMOMO, GenDeMoG). For the evaluation of those cases the information obtained from
the related publications was used. The low maturity ranking of most of the methods
depicts this problem. Moreover, for the methods that were applicable, the language
set was different. Therefore any comparison would not be reliable. For these reasons

1http://developer.berlios.de/project/stats/?group_id=8334

Master thesis:“Detecting dependencies across programming languages” 37

http://developer.berlios.de/project/stats/?group_id=8334

Chapter 4. State of the art evaluation

Table 4.4: Comparison matrix of the state of the art methods according to their rating
on the requirements set we defined.

P
ri
o
ri
ty

Requirement M
o
D
is
c
o

P
A
M

O
M

O

G
e
n
D
e
M

o
G

M
o
o
se

D
S
k
e
tc
h

Must
have

Accuracy ? ? ? ? ?
Explainability ? ** *** *** ***
Extensibility ** ** ** *** *

Could
have

Initial range of languages * * *** *** *
Tool integration **** **** **** ***** ****
Visualisation *** *** **** **** ***

Should
have

Efficiency ? ? ? ? ?
Filtering **** ? ? *** ****
Exportability *** ? *** ** *

Pre-
reqs

Maturity - usability *** ** * **** ***
Maturity - testing * ** ** *** **
Documentation ***** ** * ***** ****

question marks were put in the rating of requirements Accuracy and Efficiency.

From all the methods, only GenDeMoG provided a sophisticated accuracy metric. The
authors of the method analysed a heterogeneous application (the Apache Ofbiz enterprise
automation suite2); and by manually inspecting all the dependency patterns that they
used in the analysis, they determined that no False Positives where retrieved. However
they did not check for False Negatives. The GenDeMoG is a very thorough approach
but it lacks documentation so it was difficult to test its applicability.

The method which ranks best according to our requirements is the one offered by the
Moose project. It is the most mature from the reviewed methods, it supports a relatively
high range of languages and it provides a framework for extending it further (in terms
of new languages, results exporting, visualisation, etc.). We were able to install it and
conduct an analysis with it without problems. It also provides detailed documentation
describing its usage and its extension possibilities.

We also observe that all the methods score low in explainability, which is a key require-
ment of the evaluators. Another interesting fact is that the combination of the criteria
Initial range of languages, and Extensibility makes all the methods rank low. We take
into account this average because our target is to have a method that supports a con-
siderable number of languages after an investment of a reasonable amount of time and
cost.

2http://ofbiz.apache.org/

Master thesis:“Detecting dependencies across programming languages” 38

Chapter 4. State of the art evaluation

Eclipse MoDisco has invested a lot of effort building an infrastructure which is able to
support (potentially) many languages and there is a large active community working
on it. It uses meta-modelling techniques to map each different language structure to
a common meta-model for all languages. Patterns have to be provided by the user to
find the cross references among the attributes of the different models. This results in its
low maturity ranking in our comparison matrix. However it has a serious potential for
becoming a strong framework for source code analysis.

All the methods reviewed, tend to use a lot of language specific information in order
to extract dependencies. Except DSketch all the methods which use meta-modelling
techniques require a parser or a modeller to be constructed for supporting new languages
and both of these components require detailed knowledge of the language’s syntax and
grammar. This leads them to score low in extensibility. For the company where this
thesis is conducted, this is a severe drawback because the systems the company has
dealt with in the past, contain in total more than 70 different languages. The reviewed
methods offer support for less than nine languages initially and in combination with
the low extensibility, it results in great cost and and effort if we decide to use them for
a broad range of systems. Therefore, the approach of meta-models has to be rejected
until a fast and automated way of creating meta-models from programming languages
is defined. The DSketch method may not use a parser or a modeller, but it is still
based on a specific language grammar, and it does not provide an elaborate extension
mechanism.

For these reasons we decided not to base our research on one of the current approaches,
but to introduce a new method. As stated in our objective, we focus on the cost-
effectiveness while keeping the accuracy in acceptable levels. It is a challenging trade-off
which is addressed in the next chapters.

Master thesis:“Detecting dependencies across programming languages” 39

Chapter 4. State of the art evaluation

Master thesis:“Detecting dependencies across programming languages” 40

Chapter 5

Proposed method

This chapter describes the longest phase of the thesis because it involves the gradual
development and evaluation of the proposed method. The following sections provide
information for each step of method creation.

5.1 General description

Our goal is to extract dependencies in heterogeneous software systems using the defini-
tion in 3.1.1. Patterns and algorithms are developed to extract the dependency types
which were mentioned in chapter 3. A generic solution is difficult to find, therefore
language specific information may be needed. Our intend is to minimise the language
specific parts of our algorithm.

A method prototype has to be built to test the developed method. For this, the classic
steps of every software project take place: design of the prototype, implementation and
testing. After the testing of each algorithm, we experiment with different parameters to
evaluate the algorithm. The definition of the algorithm and the prototype development
is an iterative process because the algorithm needs to be implemented, tested, evaluated,
and refined.

In the coming sections our approaches and the algorithms involved are described. For
each algorithm an explanation for its selection and the observations from its evaluation
are given.

41

Chapter 5. Proposed method

5.2 Preparation for the evaluation process

5.2.1 Case study

Taking into account all the decisions in section 2.5.2, a sample application from the
Spring webflow framework or SWF1 was selected as our case study project. The applica-
tion is called “booking-faces” and it is a web based hotel booking application. The source
code can be downloaded from the Spring community website2 by navigating to Spring
webflow and then to version “2.1.0.RELEASE”. The Spring framework is a framework
for building layered Java enterprise solutions. SWF is an extension to this framework
which enables the use of flows and transitions from one web page to another.

The project contains only 98 files of which the source files are only a few. An analysis for
the physical lines of code using Al Danial’s3 cloc tool produced the following output:

http://cloc.sourceforge.net v 1.53 T=0.5 s (92.0 files/s, 6412.0 lines/s)

Language files blank comment code

CSS 14 213 199 961

HTML 10 24 21 558

Java 8 154 57 476

XML 12 76 45 357

SQL 2 3 0 62

SUM: 46 470 322 2414

It has Java, XML, HTML, SQL and CSS as main languages. The technologies it involves
are:

• Java
• Java Persistence (Component for database handling)
• Spring Webflow (Component of Spring Framework, responsible for the flow and

the transitions between web pages)
• Java Server Faces (Presentation layer component for rich web pages)

The consultants did not show interest in dependencies in which CSS files are involved,
thus they are excluded from the files set among which the dependencies are detected.

1http://www.springsource.org/spring-web-flow
2http://www.springsource.org/download/community
3http://cloc.sourceforge.net

Master thesis:“Detecting dependencies across programming languages” 42

Chapter 5. Proposed method

5.2.2 Experiment setup

The ground truth method and the case study project have already been selected. The
next step is to define the nature of the dependencies we are looking for, namely the
direct, framework, or indirect. (The reader can refer to section 3.1.2 where these terms
are explained.) It is useful to check the types of the dependencies as well, because looking
explicitly for certain dependency types (e.g., database access dependencies), increases
the accuracy of the manual checking.

The second step is to define the languages or the technologies across which, files are
dependent. In our case Java, SQL, XML and HTML/XHTML were selected.

Now, there is enough information to define the collection of file combinations within
which the dependencies are extracted.

In the booking-faces project, CSS(.css), Java Manifest(.MF), photo(.jpg, .png, .gif) or
Maven (.pom) files are excluded, so of the 98 files in the project, only 32 are involved
in our dependency checking. Files under the test directories of the project are also
omitted. If two files are dependent in both directions, this dependency is counted once.
The dependencies which are among files of the same language are also filtered out.

The last step before we start evaluating our proposed method, is to execute the ground
truth method on the case study project. Table 5.1 displays the information retrieved
with a manual check for dependencies.

Table 5.1: Ground truth data

Attributes Value

Direct dependencies 5

Framework dependencies 39

Total relevant dependencies (π) 44

Collection (C) 367

Non relevant dependencies (Total negatives) 323

The reader can refer to section 3.1.2 as well as to section 4.3 where the terms in the
table are explained.

5.3 SIG framework

In section 1.5 it is mentioned that SIG assesses the quality of the software which is
used or provided by their client companies. The big number of different programming

Master thesis:“Detecting dependencies across programming languages” 43

Chapter 5. Proposed method

languages they encounter (over 70) has created the need to build a method and a tool
(Software Analysis Toolkit or SAT) to analyse these systems. SAT provides an analysis
base framework on top of which analysis tools for different languages can efficiently be
built. SAT is able to produce accurate analyses and dependency results for most of
the 70 programming languages which they have encountered. For example, SAT can
generate, for the Java language, the dependency graph of a system, with method level
granularity, and with metrics for every element of the maintainability quality standard
(ISO25010, 2011). It does that by automatically calculating metrics (e.g., lines of code
and McCabe’s complexity (McCabe, 1976)).

5.4 Infrastructure

This section describes the infrastructure of our prototype. It is illustrated in Fig. 5.1.
The prototype needs an infrastructure which has a lot in common with SIG’s framework.
Given a root directory which contains the modules of the system to be analysed, SAT
creates a graph of the files and directories and populates it with more information, for
instance the programming language that each file belongs to.

The main idea is to have a set of layers on top of SAT, where the source code can
be searched for multiple dependency types, using the “enriched” file graph which is
generated by SAT.

We consider that a dependency type describes a directed relationship and even if it
is not directed it is treated as directed with a random direction. In section ?? it is
mentioned that if two files are connected with two dependencies of different direction,
this dependency is counted once. This gives the flexibility to detect directed and non-
directed dependencies in a uniform way. Therefore we search first in the source files to
extract the definition of a fact (callee fact), i.e., a code snippet, and then search again in
the files for other facts which depend upon the callee facts. The dependent facts are called
caller facts. Our intent is to build an inventory of dependency types where each type
adheres to the design just described. Each type has the caller and the callee patterns
which are used to detect the corresponding facts in the source code for the specific
dependency that the type describes. The infrastructure provides the ability for each
pattern to be implemented generically and if necessary, language specifically. For the
language specific way, a language handling component is responsible for implementing
specific patterns for each language.

During the analysis, a dependency graph is created. Then edges are created from the
extracted facts to the callee files, and then from the caller files to the facts. Using that
information edges are created from the caller files to the corresponding callee files if there
is a node connecting both of them.

After the analysis finishes, there is a filtering component that is responsible for filtering

Master thesis:“Detecting dependencies across programming languages” 44

Chapter 5. Proposed method

Figure 5.1: Architecture diagram of the prototype of the proposed method. The boxes
represent the components (i.e., packages) of the prototype. A component can
contain sub-components which are represented with inner boxes of different
colour.

Master thesis:“Detecting dependencies across programming languages” 45

Chapter 5. Proposed method

out dependencies that are not relevant, e.g., edges where the caller and callee files are
the same, or they belong to the same language.

Moreover, the aggregation component of our infrastructure which uses SIG’s framework
as well, is responsible for aggregating the dependencies to a component level. A compo-
nent can be a directory or another type of grouping. If a system has more than a few
files, presenting the results without aggregating the dependencies is not very useful.

An important part of our infrastructure is the presentation and the persistence of results.
The results are automatically compared with the ones from the ground truth method,
and then all the information is stored into a database for further analyses. The results,
apart from the metrics discussed in the evaluation process, (recall, precision and F0.5)
contain detailed information about the dependencies, i.e., the caller file, the callee file,
the name of the dependency type and source facts that were detected by the two patterns.
The analysis can be done for multiple dependency types simultaneously.

This infrastructure allows for the extension of a dependency type to support more lan-
guages. Apart from being used for our experiments, the resulting dependency graph
gives an informative overview of the complexity of the system.

5.5 Pattern based approach

Description

The infrastructure is designed in a way that the analysis can be done for a number
of dependency types. The interviews with the experts showed that the dependency
types they are most interested in, are systems that involve modules which communicate
through databases, files and web services.

5.5.1 Database dependency type

DB entity reference in embedded SQL

We decided to start developing our method by detecting dependencies among database
and host languages. Van Den Brink et al. (2007a) explored the dependencies among
databases and host languages in which SQL queries are embedded. They focus on Visual
Basic, PL/SQL and COBOL and they manage to reveal the complexity of the involved
languages with high accuracy. Although this work is remarkable, it has the disadvantage
that it cannot be efficiently maintained for and extended to many languages, because of
its language specific information. That is why a less accurate but more flexible approach
is followed.

Master thesis:“Detecting dependencies across programming languages” 46

Chapter 5. Proposed method

The first relationship extracted is the interactions among tables of a database schema
and a host language. Therefore our callee pattern should reveal the table name and our
caller pattern should reveal the references to it. In order to analyse the database and
extract the table names, the database schema is exported to an .sql file which contains all
the SQL entities creation declaration i.e., schema, tables, functions, procedures, triggers,
etc.

Callee pattern

For the callee pattern, we searched the syntax definition of SQL for table creation decla-
rations among the commonly used relational database management systems (RDBMS),
e.g., MySQL DB, PostgreSQL and Oracle DB. The conclusion was that there are two
main ways to find table creation statements in SQL code: by parsing the .sql file using
the full SQL syntax and by lexical text matching using regular expressions. Because
the table names only need to be extracted from the .sql file, no parsing of the SQL
creation statement is required. Our hypothesis was that with a regular expression the
table names can be extracted, covering the majority of cases. In the end, we came up
with the regular expression in (5.1).

(?<=create table)(\s+\w+\.?\w+\b) (5.1)

The callee pattern worked with high accuracy on the different files considered, from all
three RDBMS systems. With the above regular expression, the schema name with a
full-stop is also obtained if the table name has the form ”SCHEMA.TABLENAME”. It
is very easy to extract only the table name. For each .sql file a node is created for every
table name it contains and an edge is created from the table name to the file. The result
is that for every .sql file a list of table names is associated with it.

Caller pattern

For the caller pattern, the algorithm was constructed by searching in every non-sql files
for words that match any of the table names which already exist in the graph. If a match
for a table is found, then an edge in the graph from the non-sql file to the table node is
created. Fig. 5.2 shows a sample graph at that stage. In this example, three Java files
and two SQL files are included under the directory src/demoApplication. The two SQL
files create the same tables (USER and PERMISSIONS) but they have different notation,
because they are targeted to a different RDBMS. The UserManagementDao.java file has
embedded SQL referring to those tables and the other two Java files have irrelevant
content. Fig. 5.2 shows how the nodes USER and PERMISSIONS are connected with
the corresponding source files.

An in depth investigation showed that the table names where not only matched by the
embedded SQL statements, but also by object names. To correct this, the caller pattern

Master thesis:“Detecting dependencies across programming languages” 47

Chapter 5. Proposed method

Figure 5.2: Sample dependency graph

was adapted to search for table names, not anywhere in the file, but only in quoted
text, with the rationale that embedded SQL can usually be found in string assignments.
Because quoted text can be declared in different ways across programming languages,
only text within double quotes is searched. We extracted the quoted strings with the
regular expression shown in (5.2) and searched in these strings for the table names. For
other languages where the string assignment declaration is different, a different (but
similar) implementation of the pattern can be created.

(?:\"([^\"]+)\"|(\\S+)) (5.2)

To improve the caller pattern from the extracted quoted strings, the ones that did not
contain any SQL reserved word or phrase in them are excluded, such as INSERT INTO,
SELECT FROM, UPDATE and DELETE FROM. In this manner, the probability of
matching a SQL statement increases, but it is possible, that these phrases and words
are part of a physical language string.

The next step was to extend the facts that are captured with the callee pattern. Besides
extracting only table names, SQL functions, procedures, triggers and other SQL entity
types are extracted. “create or replace” was added in our case-insensitive search string
to cover more cases.

Evaluation

Although the extraction of entities from .sql files had 100% accuracy, the matching of the
entities in the embedded SQL statements produced False Positives. Quoted strings may
include SQL reserved words, but that does not make them SQL statements. The more
we were trying to reduce the False Positives, and search with more structure the quoted
texts, the more language specific information (SQL grammar & syntax) we introduced
to the algorithm. Consequently, this lowers the extensibility and the explainability of

Master thesis:“Detecting dependencies across programming languages” 48

Chapter 5. Proposed method

the method. The approach of extracting embedded SQL code in host languages was
researched by Van Den Brink et al. (2007b). This paper was the outcome of the main
author’s master thesis which was conducted also in SIG. The co-authors who are also
working at the same company, informed us that this approach was highly accurate,
but was not easily extensible for other host languages, thus it was not adopted by the
company.

The experience obtained with the database dependency type showed us that it is very
difficult to develop patterns for every dependency type and language without involving
a great amount of language specific information.

5.5.2 File I/O dependency type

The different ways in which languages interact through text files of a file system were
also examined, the so called file input output (I/O) dependency type. A list of code
facts which are responsible for reading, writing and appending files was created for the
languages Java, C, C++, C#, VBNET, PHP and TCL/TK. We were surprised by the
variety of ways that exist for opening and reading or writing to a file. Modern languages
use stream readers while others a simple open command. Some code snippets are shown
in Table 5.2.

Table 5.2: Examples of file handling

Language File handling example

Java
new BufferedReader(new FileReader(“file.txt”))
new FileInputStream(“file.txt”)

TCL/TK set out [open “file.txt” r]

C FILE *fp; fp = fopen(“file”,“r”);

C++ ifstream infile(“file.txt”)

C# new StreamReader(“file.txt”)

PHP $file=fopen(“file.txt”,“r”);

VBNET Dim Filename As String = “file.txt”

The examples in the table are just a few ways in our list of accessing files in those lan-
guages. We wanted to point out this diversity in order to justify our decision not to search
for patterns, but to seek for an alternative solution for retrieving these dependencies.

5.6 Token based approach - Ad-hoc filtering

As an alternative to the pattern based, a more generic, token based approach is proposed.
Here the basic algorithm is proposed, on which we elaborate to improve its accuracy.

Master thesis:“Detecting dependencies across programming languages” 49

Chapter 5. Proposed method

5.6.1 Basic algorithm

With the following algorithm files from different programming languages are associated,
according to similar tokens which they may have. The basic algorithm is shown in
Algorithm 1.

Algorithm 1 Basic algorithm of the token based approach
1: create a graph of the system’s source files
2: for each file in the graph do
3: replace special characters in the file’s content with spaces
4: tokenise the text by splitting it on white space
5: extract all the words-tokens
6: for each word-token do
7: lookup in the graph if a node with the name of the word exists
8: if word-node does not exist then
9: create a node with the same name as the word

10: end if
11: create an edge from the file to the word-node
12: end for
13: end for
14: for each word-node do
15: if node is connected with fewer than two files from different languages then
16: remove node
17: end if
18: end for

The following details of the algorithm were omitted because we want to give just the
basic idea while keeping it readable in this document:

• A special character is any character except a letter, number, and/or underscore.
• During the tokenising, strings that consist only of numbers are omitted.
• Tokens with less than one character are also omitted.

The next paragraphs describe the steps performed to improve the accuracy of our algo-
rithm. All the experiments in this section were conducted using the ”booking-faces” case
study project, and the results of our algorithm are compared with the ones that were
produced using the ground truth method on the same project. The coming paragraphs
have the following structure:

• Description of the method to increase accuracy, based on the aforementioned al-
gorithm.
• Evaluation of the results.

In this document only the main results from our experiments are reported. Each ex-
periment has an identification number (Id) and for every new experiment the Id is
incremented by one. For every experiment, the result is added to the table as a new row
where the first column is the Id of the experiment.

Master thesis:“Detecting dependencies across programming languages” 50

Chapter 5. Proposed method

5.6.2 Base case

Description

The basic algorithm performs a “brute force” words matching. No filtering is applied on
the graph as this is the base case of our experiment.

Evaluation

Table 5.3 shows the results from the first experiment using the token matching algorithm.

Table 5.3: Results from token based approach - Ad-hoc filtering: Base case

Id Recall Precision F0.5 Description

1 100% 11.6% 14.1% basic algorithm

The results show that although the recall is perfect, the percentages of precision and
F0.5 are very low. This is not surprising because the simplest form of the algorithm was
used. In the next steps ways to filter out the False Positives are considered.

5.6.3 Filtering out language reserved words

Description

The first thing to notice by examining the False Positives is that many of them are
created due to words which belong to the language grammar, or its libraries and are also
common in more than one programming language, e.g., for, return, if, else, true, false,
int, long, import are examples of words that are used in more than one language. To
filter out these dependencies a list of the reserved words for every supported language
was created. The words in the list are excluded during the extraction of the words from
the source files. For example, for XML, the following list was created: xml, version,
xmlns, xsi, schemaLocation, noNamespaceSchemaLocation, type, LastUpdate, encoding,
utf, utf8, iso, element, sequence. The W3C’s XML Schema definition4 was used to
acquire commonly used words for XML files.

We also noticed that specific .xml files and .properties are connected with all the .java
files, e.g., log4j.xml and log4j.properties. These are configuration files that are respon-

4http://www.w3.org/XML/Schema

Master thesis:“Detecting dependencies across programming languages” 51

Chapter 5. Proposed method

sible for logging information during run time to text files5. Because they do not belong
to the dependency types we are looking for, these files were filtered out.

Evaluation

Table 5.4 shows the results from this experiment.

Table 5.4: Results from token based approach - Ad-hoc filtering: Filtering out reserved
words

Id Recall Precision F0.5 Description

1 100% 11.6% 14.1% basic algorithm

5 100% 13.3% 16.1% filtering out reserved words (Java, SQL, XML)

Although the recall remained to 100% and the F0.5 increased, we still observed that there
were still FP created by keywords or common words from the libraries of the languages,
e.g., integer, boolean and Date.

In order to tackle this problem the Java excluded word list was extended with all the
package and the class names from the Java Development Kit (JDK)6. A program in Java
to get the list of these words was created. Despite increasing precision, the performance of
the algorithm dropped by at least 50%. We also observed that there are many JDK class
names that are commonly used as identifiers (without using the specific JDK class), and
they should not be excluded during the dependency detection. Therefore this solution
was rejected.

Instead of including all the words of the JDK, only the ones that are under the package
java.lang were used because the false positives were mostly from these classes. The speed
of the algorithm increased significantly, but at the expense of precision. Table 5.5 shows
the results.

5.6.4 Filtering out project specific words

Description

The precision is still low from the previous experiment (less than 70% that the consul-
tants require). Another group of FP which contributes to these levels of our metrics is
created because of project specific words which appear in a large percentage of files, e.g.,

5http://logging.apache.org/log4j
6http://www.oracle.com/technetwork/java/javase/overview/index.html

Master thesis:“Detecting dependencies across programming languages” 52

Chapter 5. Proposed method

Table 5.5: Results from token based approach - Ad-hoc filtering: Filtering out language
reserved words. The classnames under the java.lang package are added to the
java excluded words list.

Id Recall Precision F0.5 Description

1 100% 11.6% 14.1% basic algorithm

5 100% 13.3% 16.1% filtering out reserved words (Java, SQL, XML)

6 100% 14.4% 17.4% filtering out JDK words

7 100% 13.5% 16.3% filtering out java.lang words

the basic package declaration in Java files which happened to have common words with
the namespaces for many XML files as well. A filter to cut off these words was added
to our algorithm.

Evaluation

Table 5.6: Results from token based approach - Ad-hoc filtering: Filtering out project
specific words

Id Recall Precision F0.5 Description

1 100% 11.6% 14.1% basic algorithm

5 100% 13.3% 16.1% filtering out reserved words (Java, SQL, XML)

6 100% 14.4% 17.4% filtering out JDK words

7 100% 13.5% 16.3% filtering out java.lang words

9 100% 15.7% 18.9% filtering out project specific words

Table 5.6 shows that recall is still at 100%, and F0.5 is increased by 2.6%. The problem
is that this solution must be customised for every new project.

5.6.5 Tailored tokenising of XML type documents

Description

A precision of 15% is still low. By observing the FP dependencies again, we found out
that some of them were created by the elements and parameters from the XML tags as
in the lines of the following sample files:

Master thesis:“Detecting dependencies across programming languages” 53

Chapter 5. Proposed method

booking-flow.xml (Spring webflow XML language):

<view-state id="enterBookingDetails" model="booking">

enterBookingDetails.xhtml (a JSF page, variant of JSP):

<h:inputText id="checkoutDate" value="#{booking.checkoutDate}">

web.xml (a file that configures a Java based web application):

<context-param>

<param-name>contextConfigLocation</param-name>

<param-value>

/WEB-INF/config/web-application-config.xml

</param-value>

</context-param>

The above examples show that the facts “id” and “value” create false dependencies
among these files because they refer to irrelevant concepts.

To solve this, the base algorithm was implemented especially for XML type languages,
to extract words only from the value elements (e.g., XML, XSD, HTML, XHTML and
Spring framework related files). There are two types of value elements: the ones that
are within quotes within a tag (e.g., “enterBookingDetails” in the first example) and
the ones that are enclosed by opening and closing tags. (e.g., “/WEB-INF/config/web-
application-config.xml” in the third example).

We manage to capture for every XML type file the content between quotes with the
regular expression 5.2 that was presented earlier. Then, we capture for the same file all
the content between tags (including the tags) with the regular expression 5.3 and delete
it.

< (.|\n)+? > (5.3)

The algorithm is shown in Algorithm 2.

Algorithm 2 Capturing values from XML files
1: for every file do
2: capture the quoted text
3: for every quoted string do
4: tokenise
5: create or append the list of words for the file with the tokens
6: end for
7: replace the text between tags (including tags) with spaces
8: tokenise the rest of the content
9: append the list of words with the tokens

10: end for

Master thesis:“Detecting dependencies across programming languages” 54

Chapter 5. Proposed method

Evaluation

Table 5.7: Results from token based approach - Ad-hoc filtering: Tailored tokenising of
XML type documents

Id Recall Precision F0.5 Description

1 100% 11.6% 14.1% basic algorithm

5 100% 13.3% 16.1% filtering out reserved words (Java, SQL, XML)

6 100% 14.4% 17.4% filtering out JDK words

7 100% 13.5% 16.3% filtering out java.lang words

9 100% 15.7% 18.9% filtering out project specific words

11 97.8% 21.5% 25.5% extracting value elements for XML

13 97.8% 25.3% 29.7%
filtering out JSP EL, DTD & DOCTYPE
words

With a slight decrease in recall a noticeable improve in precision was achieved. We are
aware of the fact that the language syntax was used, but XML is a general category of
languages rather than a language itself, therefore we believe we are not customizing the
method to our case study.

In addition, by extending the excluded word list with the reserved words for the ex-
pression language (EL) for JSP and JSF and also adding the words DOCTYPE and
DTD, the F0.5 increases to 29.7%(see entry 13 in Table 5.7). These two words, are in
the header of many JSF and XML pages, therefore contributing to the high FP rate.

5.6.6 Evaluation of token based approach with Ad-hoc filtering

Despite keeping recall in exceptional levels, precision is still not satisfactory. We remind
the reader that the interview sessions with the consultants showed that high precision
is more important than recall. On top of that, for every refinement of the algorithm,
language specific information had to be added. Therefore the explainability and the
extensibility of the method decreased with every refinement.

5.7 Token based approach - Statistical filtering

In this section another branch of our token based approach is discussed. The reserved
words filtering is removed and instead, a series of statistics based filters are applied. Our
goal is to make the algorithm more generic, thus more extendible and comprehensible.

Master thesis:“Detecting dependencies across programming languages” 55

Chapter 5. Proposed method

The following filters apply simple statistical analysis to files and their tokens. For the
variables that are used in each analysis, the corresponding thresholds are given as input
to those filters to cut off tokens or dependencies. For every filter, experiments are
conducted with many different threshold values, in order to get the best results. In the
next paragraphs the rationale for the creation of each filter is descrbed and the accuracy
of the method after experimenting with each filter separately (i.e., removing the previous
filters) is evaluated. Since each filter is parametrised, the values of the accuracy metrics
are presented with a chart, as it shows in a more comprehensible way the improvement
or deterioration of the metrics.

5.7.1 Filtering out frequent words

Description

We observe that language reserved words appear with high frequency among the total
words of all the files in the project. This led to the creation of the first filter of this
category which calculates all the frequencies of unique tokens within the project. This
is done by creating a map of all the unique tokens that are extracted from all files, and
by counting the number of times each token is found. Our goal is to remove words that
appear frequently, like false, true, integer, etc. All the reserved word filters that were
presented in the ad-hoc filtering approach are removed, and instead the tokens frequency
filter are applied. The input to the filter is a frequency threshold. This means that words
that appear in the whole project with higher frequency than the threshold value, are
removed, and are not involved in the detected dependencies.

Evaluation

In the Xaxis in Fig. 5.3, the frequency thresholds do not have the same intervals. The
values in the figure were selected after experimentation with a wide range of thresholds,
because they better represent the changes in the metrics visually (e.g., the metrics have
the same values for the thresholds from 100% to 6%).

Table 5.8: Token based approach - Statistical filtering: Filtering out frequent words

Id Recall Precision F0.5 Description

16 97.8% 16.7% 20% Filtering frequent words, Threshold=6%

The chart also shows that the recall decreases for threshold=1% while the precision
remains stable. In order to explain that, the FP and the FN were examined. We

Master thesis:“Detecting dependencies across programming languages” 56

Chapter 5. Proposed method

Figure 5.3: Token based approach - Statistical filtering: Filtering out frequent words

observed that common words within a language (which create FP) were not removed
(e.g., private, string, html). This is due to some words not being keywords or common
words for every language.

On the contrary words (e.g., like hotel, booking, price, etc.) which were part of the
actual dependencies were filtered out because they were found in many places in the
source files.

5.7.2 Filtering out frequent words per language

Description

In order to improve our results, the previous filter was modified to calculate the frequen-
cies of the words per language. In this way, we hypothesise that a word that is common
for one language but not for others will still be considered frequent according to the
input threshold.

Master thesis:“Detecting dependencies across programming languages” 57

Chapter 5. Proposed method

Evaluation

The results of the filter are shown in Fig. 5.4. With the frequent words per language
filter, the results are nearly the same when the recall is around 100% but they are slightly
better when the recall drops to around 50%.

Figure 5.4: Token based approach - Statistical filtering: Filtering out frequent words per
language

The same number of FP can be explained by the fact that sometimes the source files
contain a big number of statements which do not necessarily include language specific
words. An example that reveals this problem is a system that has many Java files which
have a high number of lines of code (LOCs). As such, for this system, for the Java
language, the words class, interface, extends, implements, etc. will not have high values
of frequency, hence they will not be removed.

We also observe that for threshold=0.4% (see Table 5.9) there is a decrease in recall but
the F0.5 increases greatly (to 41.3%).

5.7.3 Filtering out frequent words per file and language

Description

In order to overcome the problem that was described in the previous paragraph, the
Words per files filter is introduced. This filter calculates the frequency of the words which

Master thesis:“Detecting dependencies across programming languages” 58

Chapter 5. Proposed method

Table 5.9: Token based approach - Statistical filtering: Filtering out frequent words per
language

Id Recall Precision F0.5 Description

16 97.8% 16.7% 20% Filtering frequent words, Threshold=6%

30 97.8% 16.7% 20%
Filtering frequent words per language, Thresh-
old=3%

36 37.0% 42.5% 41.3%
Filtering frequent words per language, Thresh-
old=0.4%

appear in different files of the same language. It collects all the unique tokens(words)
for the specific language and then for each word it counts the files containing it. The
filter calculates for each language and for each word the fraction:

Wordfreq.perfiles =
Number of files from a language that contain the word

Total number of files from this language
(5.4)

Evaluation

Fig. 5.5 and Table 5.10 show that for theshold=60% a small improvement in the precision
and the F0.5 is achieved while keeping the recall at very high levels (97.8%).

Table 5.10: Token based approach - Statistical filtering: Filtering out frequent words per
file and per language

Id Recall Precision F0.5 Description

16 97.8% 16.7% 32.6% Filtering frequent words, Threshold=6%

30 97.8% 16.7% 32.6%
Filtering frequent words per language, Thresh-
old=3%

36 37.0% 42.5% 41.3%
Filtering frequent words per language, Thresh-
old=0.4%

55 97.8% 18.4% 22%
Filtering frequent words per files, Thresh-
old=60%

Master thesis:“Detecting dependencies across programming languages” 59

Chapter 5. Proposed method

Figure 5.5: Token based approach - Statistical filtering: Filtering out frequent words per
file and per language

5.7.4 Weight filtering

Description

Another observation made after the examination of the results, was that many False
Positives were caused by dependencies in which only a small number of words were
matched from the two dependent files. Examples of such words are in, of, id, encoding,
type, etc. In order to remove these FP the concept of “weight” is introduced, as a
property of a dependency. The value of the weight is the number of the words which
were matched in the two files that the dependency refers to.

Subsequently, a filter which filters out dependencies with a low weight was created. It
gets threshold as an input, i.e., a number, below which every dependency is removed.

Evaluation

Fig. 5.6 shows that the recall drops with a near linear behaviour. This happens because
there are, indeed, true dependencies which connect two files with a few words. They are
removed with the weight filter, and therefore the recall decreases.

Master thesis:“Detecting dependencies across programming languages” 60

Chapter 5. Proposed method

Figure 5.6: Token based approach - Statistical filtering: Weight filtering

5.7.5 Composite experiment

Once we know the behaviour of each filter, the last three filters were applied simul-
taneously with all the combinations of thresholds that were presented in the previous
section. The first one, i.e., word frequency filter was omitted because the word frequency
per language filter is better, and also covers the cases of the former. The results contain
combinations of filters and their thresholds, which were better in terms of the accuracy
metrics, than the ones obtained by applying the filters individually. Table 5.11 displays
the best results for recall, precision and F0.5.

5.7.6 Comparison between statistical and ad-hoc approaches

At this point, the experiments with both the ad-hoc and the statistical filters are com-
pleted, therefore the two approaches can be compared. The best results from the ad-hoc
approach were achieved with the experiment with id=13, using all the filters which were
mentioned in the ad-hoc filtering section (see Table 5.12).

We observe that the accuracy of the ad-hoc solution is slightly better than the accuracy
of the statistical one, yet the explainability and the extensibility of the statistical solution
is by far greater because the basic algorithm is simple and the filters are apply in the
same manner to any type of source file. In order to handle a new language with the
statistical approach, only the the infrastructure need to be extended, but nothing specific

Master thesis:“Detecting dependencies across programming languages” 61

Chapter 5. Proposed method

Table 5.11: Token based approach - Statistical filtering: Composite experiment

Id Recall Precision F0.5 Parameters

665 98% 21.7% 25.7%
Freq. threshold: 100%, Freq. per file thresh-
old: 75%, Min. weight threshold: 0

655 74% 37.4% 41.5%
Freq. threshold: 100%, Freq. per file thresh-
old: 85%, Min. weight threshold: 2

690 68% 41.5% 45%
Freq. threshold: 100%, Freq. per file thresh-
old: 55%, Min. weight threshold: 1

691 60% 50% 51.7%
Freq. threshold: 100%, Freq. per file thresh-
old: 55%, Min. weight threshold: 2

715 40% 62.5% 56.2%
Freq. threshold: 100%, Freq. per file thresh-
old: 35%, Min. weight threshold: 2

726 36% 66.7% 57%
Freq. threshold: 100%, Freq. per file thresh-
old: 25%, Min. weight threshold: 1

716 28% 77.8% 57.4%
Freq. threshold: 100%, Freq. per file thresh-
old: 35%, Min. weight threshold: 3

Table 5.12: Token based approach - Ad-hoc filtering: Best result

Id Recall Precision F0.5 Description

13 97.8% 25.3% 29.7%
filtering out JSP EL, DTD & DOCTYPE
words

Master thesis:“Detecting dependencies across programming languages” 62

Chapter 5. Proposed method

needs to be done for the method itself.

However, the parameters for the filters need to be determined, i.e., the threshold values,
which provide the best accuracy results. An advantage of this parametrisation is that
we can focus on a different aspect of accuracy for the analysis. We can focus on the
recall if we are interested not to have FN, or focus on the precision and the F0.5 if we
want to eliminate the FP.

5.8 Ground truth data (GTD) amendment

After studying the results the following observations were made:

• A noticeable percentage of the FP were dependencies which were not entirely false,
but revealed a weaker relationship between two files. We remind the reader that
with the ground truth method we searched only for strong dependencies that is,
direct and framework dependencies.
• We did not search for any dependency between the different XML technologies,

e.g., how the presentation logic configuration (JSF configuration) is bonded with
the application framework (Spring configuration), or the latter with the database
configuration (JPA configuration). These configurations use XML files which were
treated as one language.

The aforementioned observations were discussed with consultants and researchers from
SIG, in the form of informal interviews and the conclusion was that the ground truth
method and data, should be amended, as it is explained in the following paragraphs.

5.8.1 Adding Indirect dependencies

As stated in the classification section, indirect are dependencies which are weaker than
direct or framework because they may not cause runtime errors, but there is a high
probability that a change in one of the dependent files, will require a change in the other
file in order to achieve the desired functionality.

In our case study an example is the booking form of a hotel (in JSF), and the database
entry for the hotel (in SQL). The field “hotelname” in the JSF is dependent on the
database column “hotelname” as it shows its content. If the column is changed to
“hoteladdress” the content in the JSF will be wrong.

For that reason all the the files in the case study project were again examined. The
indirect dependencies that were found were 34, thus increasing the number of total
dependencies to 86. The results are shown in Table 5.13 under the first amendments
column.

Master thesis:“Detecting dependencies across programming languages” 63

Chapter 5. Proposed method

In the same column we can see that eight framework dependencies were added. These
were discovered during examining the FP for the aforementioned experiments. The eight
dependencies were not FP but true dependencies which we missed with the manual
checking. This also shows the usefulness of our method.

5.8.2 Treating different XML based technologies as different languages

As stated above, the fact that XML technologies are treated as one language, hides a
part of the complexity of a system. Different technologies can belong to different external
components or libraries and this is a fact that the software evaluator should be aware
of, when judging the complexity of a system.

In examining our case study project the following different technologies (configuration
types) were found:

• WebappXML - the configuration for Java web applications
• SpringXML - the configuration for the Spring Framework
• JSFXML - the configuration for Java Server Faces presentation layer
• DBAXML - the configuration for Database Access layer

The examination of the case study project revealed eight dependencies among the XML
files, one direct, six framework and one indirect. The modified ground truth data are
shown in Table 5.13 under the second amendments column. The necessary modifications
were made in our tool to accommodate the above changes.

Table 5.13: Amended ground truth data

Phases
Attributes Initial 1st amend. 2nd amend.

Direct dependencies 5 5 6

Framework dependencies 39 47 53

Indirect dependencies 0 34 35

Total relevant dependencies (π) 44 86 94

Collection (C) 367 367 400

Non relevant dependencies (Total negatives) 323 281 306

Master thesis:“Detecting dependencies across programming languages” 64

Chapter 5. Proposed method

5.9 Filtering out frequent words per file and language
category

5.9.1 Description

Here the concept of language category is introduced, i.e., languages with similar struc-
ture, syntax and grammar are grouped. In our case, all XML technologies that are
mentioned in the previous paragraph belong to the same category.

Another version of the Words per files frequency filter was created, which uses the
same formula (see eq.5.4) but the files are counted per language category, and not per
language:

Word freq. per files =

=
Number of files from a language category that contain the word

Total number of files from this language category

As the behaviour of the filter is already known, it was not applied separately, but in
combination with the filters of the composite experiment as shown in the next section.

5.9.2 Composite experiment with amended GTD

Description

Like in the previous composite experiment, the three following filters with a wide range
of thresholds were simultaneously applied:

• Words per files per language filter
• Words per files per language category filter
• Weight filter

The Words frequency per language filter was skipped because, from the previous com-
posite experiment, the best results were taken when the threshold for it was 100% thus,
it did not remove any words.

Evaluation

From all the threshold combinations, the most interesting ones are displayed in Table
5.14, regarding the score for the three different accuracy metrics. The same experiment
results are displayed in Fig. 5.7 which plots the recall on the Yaxis and the precision on
the Xaxis.

Master thesis:“Detecting dependencies across programming languages” 65

Chapter 5. Proposed method

Table 5.14: Composite experiment with amended GTD results

Id Recall Precision F0.5 Parameters

3606 94.7% 37.9% 43.1% Freq. word/files/language threshold:60%,
Freq. word/files/category threshold:55%,
Min. weight threshold:0

3620 92.6% 38.5% 43.6% Freq. word/files/language threshold:60%,
Freq. word/files/category threshold:50%,
Min. weight threshold:0

3688 87.2% 43.9% 48.7% Freq. word/files/language threshold:60%,
Freq. word/files/category threshold:30%,
Min. weight threshold:0

3705 85.1% 48.2% 52.8% Freq. word/files/language threshold:60%,
Freq. word/files/category threshold:25%,
Min. weight threshold:0

4706 39.4% 80.4% 66.6% Freq. word/files/language threshold:70%,
Freq. word/files/category threshold:30%,
Min. weight threshold:4

4730 16% 93.8% 47.6% Freq. word/files/language threshold:35%,
Freq. word/files/category threshold:25%,
Min. weight threshold:4

Figure 5.7: The chart plots the most interesting results of the second composite exper-
iment after the amended ground truth data. The recall is plotted on the
Yaxis and the precision on the Xaxis.

Master thesis:“Detecting dependencies across programming languages” 66

Chapter 5. Proposed method

As can be seen from the table and the chart, it is difficult to achieve a parametrisation
which results in very good values for all three metrics (i.e., recall, precision and F0.5).
However depending on the desired priority of the accuracy aspect, a high value in the
corresponding metric can be achieved, with a trade-off in another aspect. In our case,
nearly 95% of the dependencies can be captured, with a precision of 38%. This means
that for each true dependency that is captured, 1.6 false dependencies are captured by
mistake. On the other hand, if precision is the top priority, an 80% precision can be
achieved while capturing 40% of the dependencies. The conclusion is that it is possible
to obtain a desired combination of values with a simple words matching approach.

Master thesis:“Detecting dependencies across programming languages” 67

Chapter 5. Proposed method

Master thesis:“Detecting dependencies across programming languages” 68

Chapter 6

Large scale case study project

6.1 Project description

The case study project on which all the experiments were conducted was very small
(around 3,200 LOCs). Therefore it would be questionable to generalise the applicability
of the method configuration and its results. That is why the proposed method was
executed on a large scale project from the company. The specific project was selected
for the following reasons:

• We are familiar with the involved technologies e.g., Java, Spring Framework, Web
Services (WSDL files).
• The project was based on Web Services, which is a dependency type that the

consultants were interested in.
• The project was still under evaluation by the company; therefore the consultants

assigned to it could be contacted for further information.

An analysis of the content of the project revealed that it contained about 15,000 files
distributed mainly in Java, XML, WSDL and JSP files. The project also contained a
few files written in HTML, JavaScript and SQL. The languages that had the highest
probability to participate in a web services related dependency in the specific project
were Java, WSDL and XML. As our goal was to extract the web services dependencies,
the rest of the languages (JSP, HTML, JavaScript and SQL) were excluded from the
analysis.

The project is based on the Spring Framework1 which is a Java based enterprise appli-
cation framework.

1http://www.springsource.org/spring-framework/

69

Chapter 6. Large scale case study project

6.2 Extension for another language of the project

The tooling did not support the WSDL language, therefore the necessary changes had
to be implemented to the prototype in order to make our method applicable for WSDL.
This was a good opportunity to evaluate the extensibility of our method. Every change
performed, and the total time spent were documented. Due to the confidentiality of the
SIG’s underlying infrastructure the main changes are briefly mentioned:

• The process of accepting files with extension “.wsdl” with a new entry in the
FileFilters component.
• A new entry in the supported languages set.
• A new entry in the XML category of languages (see section 5.9) because WSDL is

an XML type of language.
• An assignment of the WSDL language to the general token-based pattern.
• Unit tests for every new entry.

The fact that WSDL is XML based is coincidental. It would take the same time, if
there was a different type of language at hand. The whole implementation and testing
process lasted less than three hours, because only infrastructure changes were needed.
It would have been better if another developer extended the method, because this would
increase the objectiveness of the extension time. However the time of the developers
was limited and implementing these changes ourselves was the only solution. From the
reviewed state of the art methods, it is assumed that none could be extended so fast
because, apart from the infrastructure work, parsers or modelers need to be created
which is a time consuming process. Therefore, our proposed method has an advantage
in extensibility.

6.3 Challenges

The biggest challenge that was encountered with the large scale project, was perfor-
mance. It took around seven hours to complete an analysis on a desktop computer
of moderate capabilities (4x2.8Ghz processor and 3GB memory). Because the time was
limited and it was needed for experimentation and analysis, many parts of our implemen-
tation were optimised such as the application of the filters and the token based matching.
With these optimisations the computation time decreased to half, while ensuring that
the algorithm results were not affected.

The duration was still long, but the time frame of the thesis did not allow us to consider
further improvements. Therefore, the suggestions of the consultants of the project were
followed, to apply the method only to the Java and WSDL technologies. When the
language set was reduced to these two languages, the project could be analysed in around
20 minutes (the project contained around 8,000 Java files and 400 WSDL files).

Master thesis:“Detecting dependencies across programming languages” 70

Chapter 6. Large scale case study project

6.4 Evaluation method for large scale systems

The manual checking of dependencies was limited in this project because the number of
files is large and consequently the number of retrieved dependencies is large as well. The
dependencies of the project could not be extracted with the ground truth method as it
would take, with an optimistic estimation, more than three weeks to finish. Therefore
the recall could not be calculated. What we did was:

1. Take a random sample of the retrieved dependencies. All the dependencies in the
sample should be different. This sampling technique is called “Random sampling
without replacement” (Barreiro and Albandoz, 2001).

2. Check their validity manually.
3. Calculate the precision for this sample.
4. Generalise the precision result to the whole project.

In the next experiments the evaluation is based on the above steps.

6.5 Experiment

In order to test the generalisability of the threshold settings, a setting that was applied
on the small case study was used, which provided high precision results (80.4%), with
moderate recall (39.4%). This setting was selected because the precision was more
important for the consultants than the recall.

The method retrieved around 10.000 dependencies. By examining the results we realised
that a big part of the dependencies were created because of words that contained two
to four letters. Our hypothesis was that the dependencies with words containing a few
characters are more probable to be False Positives. A sample of the dependencies was
taken where the matched words consisted of less than five characters. Our hypothesis
was confirmed because, in this set, the precision was 5%.

6.6 Refinement

The algorithm was refined to capture only words with five, or more characters. The
rationale is that in a big project, the class, method names (for Java) or the entities in
general that cooperate with other components usually have longer names in order to
carry semantics which are useful for the maintainability of the source code.

The new analysis retrieved 630 dependencies. By examining a random sample of them,
the precision was found to be improved but it was still low (23.5%). In order to explain
this score, a histogram of the files which comprised these dependencies was created (see

Master thesis:“Detecting dependencies across programming languages” 71

Chapter 6. Large scale case study project

Fig. 6.1). From the 8,500 WSDL and Java files, 266 different files participated in our
dependencies set. By analysing the histogram and the results we found that from these
266 files, six files only were responsible for 27% of dependencies.

Figure 6.1: The histogram plots the number of files per percentage of dependencies in
which they are involved.

From the six files, one was a Java interface, and one was a Java abstract class. They were
both implemented/extended by most of the other Java files which participated in the
Web Services interfacing. They declared methods described in the WSDL files, therefore
they were true dependencies. The other four files were WSDL files which had very long
free text within the documentation tags describing the methods. This turned out to be
the source source of many False dependencies. More WSDL files were examined and we
observed that they also contained long text within their documentation tags.

The algorithm was refined again, to exclude the documentation tags, as this case was
clearly project specific. The analysis was run again and the number of dependencies
reduced to 157. With the same sampling technique, a sample of 30 files was taken and
the precision was 76.7% which was rather satisfactory.

Master thesis:“Detecting dependencies across programming languages” 72

Chapter 6. Large scale case study project

6.7 Evaluation

The filtering of the words with less than five characters is generic and it can be applied
to any project, with perhaps a configurable value for the number of characters. However
the exclusion of the documentation tags from the WSDL files was a project specific
refinement of the method. Therefore more projects to test its generalisability are needed.
Data may not be available to calculate recall, but it was proven that the method was
able to support a new language in less than a day of development, and to provide results
with high precision (76.7%).

Master thesis:“Detecting dependencies across programming languages” 73

Chapter 6. Large scale case study project

Master thesis:“Detecting dependencies across programming languages” 74

Chapter 7

Discussion

In this chapter the results of the thesis, the problems that were encountered, controversial
points and possibilities for future research are discussed.

7.1 Answers to research questions

As stated in section 1.3, the objective of this study is to improve the process of detecting
dependencies across programming languages, focusing on the cost-effectiveness and the
accuracy, from the viewpoint of a software evaluator, in the context of evaluating het-
erogeneous information systems. We believe that we managed to reach our objective,
because all our research questions were answered, through the different phases of the
research, as shown in Table 7.1.

In Table 7.2 the proposed method is compared with the state of the art methods for the
MoSCoW’s Must have requirements. The rest of the requirements were not included
because we could only focus on the most important ones, given the time limitations of
this thesis.

Our method can be explained to general consultants, can be extended for a new language
in less than a day and we managed to have an accuracy level with F0.5=66.6%. We believe
that the answers to the sub-questions, and the result of this comparison, answers the
main research question as well, which is:

RQ: What is a cost-effective, yet accurate method of detecting the dependencies across
software modules, in heterogeneous software systems?

75

Chapter 7. Discussion

Table 7.1: Answers to research (sub)questions

Research sub-
question

Answer

SQ1: What is a de-
pendency?

Our first sub-question was answered by literature study in section 3.1.1.

SQ2: What types
of dependencies exist
across languages?

SQ2 was answered by literature study in section 3.1.2 where the dependencies
are classified according to their strength and their functionality.

SQ3: How can we de-
tect these dependen-
cies?

In the beginning, the state of the art methods were discovered and evaluated.
Then we realised that the existing methods focus on the accuracy, whereas we
focus on the balance between cost-effectiveness and accuracy. In chapter 5, a
new method was proposed which uses a simple algorithm that minimises the
input needed for analysis, thus making it extendible and explainable.

SQ4: How can we
evaluate the state of
the art?

A literature study was conducted in order to discover the state of the art
methods in section 3.2. Then with literature study and expert interviews (see
section 2.3) the requirements that these method should abide to were defined.
A rating criteria schema was created in section 4.2 with which the reviewed
methods were evaluated. The result is the comparison matrix in section 4.7.

SQ5: How can we
evaluate the accuracy
of the method?

In section 4.3 the metrics used for accuracy were defined in detail by studying
the literature. A ground truth method was used to manually extract the
dependencies from a small case study project in section 2.5.1, and we compared
with them the results that the proposed method produces. The proposed
method was executed and evaluated on a large scale project too.

SQ6: How can we
evaluate the cost-
effectiveness of the
method?

The extensibility and explainability of the method are key elements of its cost-
effectiveness. These two requirements and their rating criteria were defined
in section 4.2 and the time needed for the method to be implemented for an
unsupported language was measured in section 6.2.

Table 7.2: Comparison matrix of the state of the art methods and the proposed method
according to their rating on the MoSCoW’s Must have requirements.

Requirement
Eclipse
MoDisco

PAMOMO GenDeMoG Moose DSketch
Proposed
method

Accuracy ? ? ? ? ? ****

Explainability ? ** *** *** *** ****

Extensibility ** ** ** *** * *****

Master thesis:“Detecting dependencies across programming languages” 76

Chapter 7. Discussion

7.2 Validity & Reliability

Yin (2009) introduces the measurements of validity and reliability for assessing how
trustworthy the research results are and how accurately they reflect the reality. He
divides validity into three categories:

• Construct validity: The extent to which the construct measures the character-
istics being investigated.
• Internal validity: The extent to which the results are accurate and conforming

to reality.
• External validity: The extent to which the results of the research can be gener-

alised.

Reliability demonstrates that the operations of our study can be repeated with the
same results.

The next paragraphs describe the elements of the thesis that increase and are also a
threat to validity and reliability.

Construct validity

Construct validity is achieved by using multiple sources of evidence, establishing a chain
of evidence, and by letting the thesis artefacts and methods be review by key informants.
The elements of the thesis that increase the construct validity are:

• Throughout the thesis document, citations were made to all the sources of infor-
mation that have been used.
• The set of requirements was created using a literature study, informal interviews,

and it was validated by three business and three technical consultants with at least
two years in software evaluation.
• The results from every experiment were stored in a database or in text files for

analysis and validation. Apart from the values to the accuracy metrics, they
contain analytical information about the False Positives, the False Negatives, the
filtered words (by the frequency filters) and the filtered dependencies (by the weight
filter) so that they are available for checking at any time during the research.
• A software tool was implemented to compare the method results with the ground

truth data in a replicable way.
• This thesis was supervised by four supervisors, two from the university and two

from SIG.

And the possible threats to construct validity are:

• The interviews were conducted with only six subjects, all from the same company
(SIG).

Master thesis:“Detecting dependencies across programming languages” 77

Chapter 7. Discussion

• In the second phase of the interviews, after some time to discover the requirements,
the interviewees were presented with a predefined (by us) set of requirements.
If more time had been available, workshops for discovering and prioritising the
requirements would be a better, more unbiased solution.

Internal validity

Internal validity refers to the establishment of causal relationships and explanations
between data, variables, methods and results. In this thesis internal validity is increased
due to the following reasons:

• The first three phases of the interviews contained exactly the same questions, and
were conducted in the same manner for every participant. Only the last part was
explorative, were we tried to get any useful information for our research.
• Manual checking was selected as a method to extract ground truth data. For de-

pendencies that involved uncertainty, triangulation was achieved, using the advice
from software evaluators at SIG.
• For every algorithm that was selected for the proposed method, the rationale be-

hind it was documented. The refinements to the algorithms were selected after
analysis of the results, i.e., False Positives, False Negatives, filtered words and
dependencies.

Serious threats to internal validity were not identified.

External validity

External validity is concerned with the degree of generalisation of the study’s findings
beyond the case studies.

We tried to generalise our findings by executing the method on a large scale project,
using the parametrisation that produced the best results from the small case study.

However, external validity is not the strongest part of this thesis because of the following
threats:

• Recall could not be measured in the large scale case study, because extracting the
actual dependencies was practically impossible.
• The same parametrisation of the method gave similar, but not the same results

in the small and the large scale projects (the difference in precision was 3.7%). A
custom refinement had to be done to the large scale project to achieve this result.
• Two case studies are indicative for our results, but are not considered enough to

generalise our results.

Master thesis:“Detecting dependencies across programming languages” 78

Chapter 7. Discussion

Reliability

Reliability is concerned with the degree to which the method and the findings of this
research can be reproduced by other scientists.

• The rating schema has specific metrics, which can be used to the same state of the
art methods and produce the same results.
• The algorithm of the method is documented analytically, and can be executed in

a reproducible way.
• The small case study involved a small open-source project with common modern

technologies so that the manual checking and the execution of the method can
be performed in a repeatable manner. The results of the manual checking are
available for re-use in the Appendix B.

Threats to reliability:

• The large case study is not repeatable because the source is not publicly available.
• The extensibility experiment is based on the SIG framework, therefore it cannot be

reproduced. An underlying framework has to be constructed by future researchers.
• The source code of the implementation cannot be published because it depends on

the SIG infrastructure.

The aforementioned elements that increase and threaten the validity and the reliability
of this thesis are displayed in Table 7.3.

Master thesis:“Detecting dependencies across programming languages” 79

Chapter 7. Discussion

Table 7.3: A summary of the four measurements according to Yin (2009), which assess
the validity and the reliability of this thesis. The elements that have positive
and negative effect on each measurement are in the corresponding columns of
the table.

MeasurementPositive Negative

Construct
validity

-Citations to all the literature sources.
-Requirements were created with a literature
study, informal interviews, and validated by
experts.
-Experiment results stored in detail into
database or files.
-Implementation of a software tool for vali-
dating the method.
-Thesis supervised by four supervisors.

-The interviews with only six subjects, all
from SIG.
-Interviews instead of workshops to define
requirements

Internal
validity

-Structured type interviews (the first three
phases).
-Ground truth data by manually extracting
dependencies. Triangulation with experts in
case of uncertainty.
Unit tests for testing the tool. Automated
comparison of the method’s results with the
ground truth data.
-Documentation of the rationale for every al-
gorithm. Refinements to the algorithm after
systematic analysis of the results.

External
validity

-Case study on a large scale project, using
the knowledge from the small case study.

-Recall not measured in the large scale
project because manual extracting of de-
pendencies was impractical.
-The same parametrisation of the method
gave similar, but not the same results in
the small and the large scale projects.
-Custom refinement to the method for the
large scale project was necessary.
-Two case studies are indicative of the
method’s behaviour, but generalisation is
under discussion.

Reliability

-Rating schema with specific metrics.
-Analytical documentation of the algorithm.
-Open-source project for the case study,
with modern technologies. The results of the
manual checking are available in Appendix
B.

-Large case study is not repeatable due
to closed source code.
-The extensibility experiment is not re-
producible.
-Source code of method implementation
cannot be published.

Master thesis:“Detecting dependencies across programming languages” 80

Chapter 7. Discussion

7.3 Future research

An important addition to this thesis would be a benchmark of the method behaviour for
categories of projects. For that, we need a classification of a set of projects according to
their language set and their size. Then the proposed method can be executed on every
project with a wide range of parameters (different combinations of threshold values to
the statistical filters). For every analysis the results should be checked and compared
with the analyses from the other projects in the same category. If the behaviour is
similar, then we can conclude on the best parametrisation for each category of projects.
After that, the input for the method can be extracted from the results of the benchmark,
which is a process that can be automated.

In addition, an observation that was made during all the experiments, was that the
cross-language dependencies were extracted using words that contained, or were similar
to nouns and verbs (e.g., Booking, getBooking and bookHotel). Therefore future research
can be conducted on the use of physical language dictionaries and the use of similarity
algorithms in order to restrict the extraction of words from the source files.

Although there is nothing in the algorithm to prevent the method to be executed for
same-language dependency analysis, only cross-language experiments were conducted by
excluding the same-language findings. Therefore we can only have an assumption about
the method’s behaviour. An experimentation with the same way and the same evaluation
process as discussed in this thesis can be conducted for to verify this assumption.

Research can also be conducted on the behaviour of the method at component level. In
order to do that, the file level dependencies need to be aggregated into component level
ones. We may be able to increase the accuracy of the method by applying other type of
filters on the components or their dependencies. These types of filters can also be the
objective of future research.

Moreover, another interesting research possibility, would be to combine the token based
statistical approach with the pattern based. For example, if just the table names of the
SQL files are interesting for the analysis, these can be extracted with a pattern based
approach, which is language specific. Then these table names can be matched with word
nodes that are extracted from files from other languages with the token based approach.
Statistical filtering can still exclude frequent words, without being applied to the SQL
files. Therefore, with the combination of minimal language specific information, and the
token based approach, there is a probability for increasing accuracy.

Master thesis:“Detecting dependencies across programming languages” 81

Chapter 7. Discussion

Master thesis:“Detecting dependencies across programming languages” 82

Chapter 8

Conclusion

In this thesis we introduced an innovative method for detecting dependencies across soft-
ware modules which are developed in diverse programming languages (i.e., in heteroge-
neous systems). The accuracy of the method was found to be satisfactory (F0.5 = 66.6%).
The method’s greatest advantages are:

• the explainability due to its simple algorithm and
• the extensibility due to the fact that the algorithm is so generic that can be applied

on any language without additional input to the method.

These are properties that make the method highly cost-effective, thus appealing, to be
used by software evaluators, software maintainers, technical and general consultants.

This flexibility of our method is achieved by the fact that it does not use language or
project specific information or any other ad-hoc approach to detect dependencies. On the
contrary, the base idea is that with a simple token based algorithm tokens/words from
the source files are extracted, and then statistical filtering, based on statistical attributes
of these words, is applied. After unwanted words are filtered out, the files that have the
same words in common are marked as dependent. An example of a statistical filter is
the one that removes the words that appear in many different files of the same language.
This filter would remove words such as public, class, private, etc. within the Java files.

There are two different aspects of accuracy in which we are interested: recall, which is the
percentage of actual dependencies that are retrieved out of the whole actual dependencies
of a project, and precision, which is the percentage of actual dependencies among the
retrieved dependencies. Depending on the parametrisation of our method, namely of the
statistical filters, the two aspects can have different values (e.g., around 85% recall with
a 48% precision, or 80% precision with around 40% recall). These levels of accuracy
are satisfactory for our purpose because according to the consultants, precision is more
important than recall. However there are possibilities to improve accuracy. In section
7.3, ways in which future research can increase accuracy are presented. e.g., by adding
new statistical filters such as the one that excludes words with a few characters and
by creating benchmarks which will provide the best parametrisation for projects with
similar languages set and size.

83

Chapter 8. Conclusion

Furthermore, a contribution of this work is the detailed description of the process that
was executed to evaluate our method’s results. The evaluation method states our dilem-
mas and the rationale for our decisions for the selection of the case study projects and
the ground truth method which was used for comparison. It is described in such a way
that it is reusable for future research in this domain.

Last but not least, a comparison between the state of the art methods that were found
in the literature is presented. In order to do that, the most important requirements for
a dependency detection method were defined. A five level Likert’s type scale with a
description for each level was used to evaluate the methods against these requirements.
We showed with this comparison that there are other perspectives apart from accu-
racy which are also very important for the software evaluators, i.e., explainability and
extensibility.

We consider that our initial objective was reached, which was to find a cost-effective,
yet accurate method for detecting dependencies in heterogeneous systems. We believe
that this thesis has an actual contribution both to the academic and to the business
environment and also that it has created the foundations for future research.

Master thesis:“Detecting dependencies across programming languages” 84

Bibliography

Ahl, V. (2005). An experimental comparison of five prioritization methods. Engineering,
(August).

Alvarez, S. (2002). An exact analytical relation among recall, precision, and classification
accuracy in information retrieval. Boston College, Boston, Technical Report BCCS-
02-01, pages 1–22.

Arnold, W. E., Mccroskey, J. C., and Prichard, S. V. O. (1967). The likert-type scale.
New York, 15(2):31–33.

Bagchi, S., Kar, G., and Hellerstein, J. (2001). Dependency analysis in distributed
systems using fault injection : Application to problem determination in an e-commerce
environment. October, pages 1–13.

Barreiro, P. L. and Albandoz, J. P. (2001). Population and sample . sampling tech-
niques. Technical report, University of Seville, Management Mathematics for Euro-
pean Schools.

Basili, V. R., Caldiera, G., and Rombach, H. D. (1994). The goal question metric
approach. Science, 2:1–10.

Berander, P. and Andrews, A. (2005). Requirements Prioritization, pages 69–94. Number
November. Springer-Verlag.

Beyer, D. and Noack, A. (2005). Clustering software artifacts based on frequent common
changes. 13th International Workshop on Program Comprehension IWPC05, pages
259–268.

Bruneliere, H., Cabot, J., and Jouault, F. (2010). Modisco : A generic and extensible
framework for model driven reverse engineering. IEEEACM International Conference
on Automated Software Engineering, (Ase):173–174.

Cossette, B. and Walker, R. J. (2010). Dsketch : Lightweight , adaptable dependency
analysis. Change, pages 297–306.

de Souza, C. (2005). On the relationship between software dependencies and coordination:
field studies and tool support. PhD thesis, UNIVERSITY OF CALIFORNIA, IRVINE.

Ducasse, S., Girba, T., Kuhn, A., and Renggli, L. (2009). Meta-environment and exe-

85

Bibliography

cutable meta-language using smalltalk: an experience report. Software and Systems
Modeling, 8(1):5–19.

Guerra, E. and de Lara, J. (2010). Pamomo.
http://astreo.ii.uam.es/ eguerra/tools/pamomo/main.htm. Retrieved December
10, 2012.

Guerra, E., de Lara, J., Kolovos, D., and Paige, R. (2010). Inter-modelling: From theory
to practice. In Petriu, D., Rouquette, N., and Haugen, ., editors, Model Driven Engi-
neering Languages and Systems, volume 6394 of Lecture Notes in Computer Science,
pages 376–391. Springer Berlin / Heidelberg.

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design science in information
systems. MIS Quaterly, 28(1):1–7.

ISO25010 (2011). ISO/IEC 25010: 2011, Systems and software engineering-Systems
and software Quality Requirements and Evaluation (SQuaRE)-System and software
quality models.

Jansen, S., Brinkkemper, S., and Hunink, I. (2008). Pragmatic and opportunistic reuse
in innovative start-up companies. Software, IEEE, pages 42–49.

Jouault, F., Vanhooff, B., Bruneliere, H., Doux, G., Berbers, Y., and Bzivin, J. (2010).
Inter-DSL coordination support by combining megamodeling and model weaving, pages
2011–2018. ACM Press.

Knudsen, L. G. (2004). Developing an OCT imaging system in java. Master’s thesis,
Informatics and Mathematical Modelling, Technical University of Denmark, DTU.

Kvale, S. and Brinkmann, S. (2009). InterViews: Learning the Craft of Qualitative
Research Interviewing, volume 20. Sage Publications.

Levy, Y. and Ellis, T. J. (2006). A systems approach to conduct an effective literature
review in support of information systems research. Science Journal, 9(1):181–212.

Manning, C., Raghavan, P., and Schuetze, H. (2009). Evaluation in information retrieval.
Number c. Cambridge UP, online edi edition.

McCabe, T. J. (1976). Ieee transctions on software engineering. A complexity measure,
(2(6)):308–320.

Moise, D. and Wong, K. (2005). Extracting and representing cross-language dependen-
cies in diverse software systems. 12th Working Conference on Reverse Engineering
(WCRE05), pages 209–218.

Nagappan, N. and Ball, T. (2007). Using software dependencies and churn metrics to
predict field failures: An empirical case study. First International Symposium on
Empirical Software Engineering and Measurement (ESEM 2007), pages 364–373.

Master thesis:“Detecting dependencies across programming languages” 86

Bibliography

Pfeiffer, R.-H. and Wasowski, A. (2011). Taming the confusion of languages. In Pro-
ceedings of the 7th European conference on Modelling foundations and applications,
ECMFA’11, pages 312–328, Berlin, Heidelberg. Springer-Verlag.

Spanoudakis, G. (2005). Software traceability: a roadmap. of Software Engineering and
Knowledge, III:1–35.

Van Den Brink, H., Van Der Leek, R., and Visser, J. (2007a). Quality assessment
for embedded sql. International Working Conference on Source Code Analysis and
Manipulation SCAM, pages 163–170.

Van Den Brink, H., Van Der Leek, R., and Visser, J. (2007b). Quality assessment
for embedded sql. International Working Conference on Source Code Analysis and
Manipulation SCAM, pages 163–170.

Van Deursen, A., Klint, P., and Visser, J. (2000). Domain-specific languages: an anno-
tated bibliography. ACM Sigplan Notices, 35(6):26–36.

Van Rijsbergen, C. J. (1979). Information Retrieval, volume 30. Butterworths.

Webster, J. and Watson, R. T. (2002). Analyzing the past to prepare for the future:
Writing a literature review. MIS Quarterly, 26(2):xiii–xxiii.

Wilde, N. (1990). Understanding program dependencies. Program, (SEI-CM-26).

Yin, R. K. (2009). Case Study Research: Design and Methods, volume 5. Sage Publica-
tions.

Master thesis:“Detecting dependencies across programming languages” 87

Appendix

Appendix A - Interview form for defining requirements

Interview
Interviewee’s name:

Date:

Type of consultant:

Years of experience in evaluation:

The purpose of this research is to develop a method, namely an algorithm, with
which we can detect the dependencies across software modules that are developed
in diverse programming languages, e.g. systems that contain components in Java,
C/C++, Databases, XML files etc. The method has to be developed, applied and
evaluated in 3 months.

With this interview we are trying to define the requirements (RQs) of that method.

Phase 1

Q1. In your opinion, what should be the 5 most important RQs of a method for
detecting dependencies across software modules that are developed in
diverse programming languages? Can you explain why?

Table : Interviewee's RQs

Requirement Description/Explanation

Phase 2

We believe that the following set of RQs is related to the method. Please read them
and ask if something is unclear to you.

Table : Predefined RQs set

Requirement Description

Extensibility The method should be able to be extended so as to include
an unsupported language in a short time.

Accuracy The percentage of false positives and false negatives should
be as low as possible.

Initial range of
languages

The method initially should support a set of different
programming languages.

Explainability The meaning of the dependency findings should be able to be
understood by the software evaluator.

Efficiency It should be fast enough so that it can be applied to large-
scale systems in a reasonable timeframe.

Exportability The results should be exportable to open format(s).

Visualization The results should be displayed in a visual way.

Filtering The results can be filtered (e.g. according to keywords or
dependency types).

Tool integration The method should be able to be implemented as part of an
existing tool.

We want now to prioritize the final set of RQs. MoSCoW is a technique for RQs
prioritization. RQs are divided into the 4 following categories:

• Must have – if they are missing, the project is considered to be a failure.

• Should have – high priority RQs that should be included, if it is possible.

• Could have – desirable but not necessary RQs.

• Won’t have – will not be included in the solution.

In the following table we have merged the 5 RQs you introduced and the ones from
the previous table.

Q2. Regarding the timeframe of 3 months for developing the method, can you
categorize the RQs according to the MoSCoW technique? (put an “X” in the
corresponding cell under the Must, Should, Could, Won’t)

Table : MoSCoW prioritization

Requirement Must Should Could Won’t

Extensibility

Accuracy

Initial range of
languages

Explainability

Efficiency

Exportability

Visualization

Filtering

Tool integration

Q3. Could you please order the RQs in each column, so that the top priority from
each column is number 1?

Q4. Why did you do that selection and ordering?

Phase 3

Q5. Could you please propose a value for each requirement that you think it is
appropriate for our method and the specific timeframe we have?

Table : RQs proposed values

Requirement Indicative Value Type Value

Extensibility In man-days

Accuracy AVG (FP, FN)

Initial range of
languages

Number of languages

Explainability N/A

Efficiency Time for processing 10 KLOC

Exportability File formats

Visualization Visualization type

Filtering Filtering criteria

IDE integration Tool name

Phase 4

Q6. Could you name projects from this company in which you know from your
experience that the systems which the projects involved, contained
interdependent components developed in diverse languages?

Q7. Do you remember what types of dependencies you encountered among
those components?

Appendix B - Amended GTD for small case study project

Booking Faces Dependencies A
m

en
it

y.
ja

va

B
o

o
ki

n
g.

ja
va

B
o

o
ki

n
gS

er
vi

ce
.j

av
a

H
o

te
l.

ja
va

Jp
aB

o
o

ki
n

gS
er

vi
ce

.j
av

a

R
ef

er
en

ce
D

at
a.

ja
va

Se
ar

ch
C

ri
te

ri
a.

ja
va

U
se

r.
ja

va

p
er

si
st

en
ce

.x
m

l

im
p

o
rt

.s
q

l

cr
ea

te
.s

q
l

d
at

a-
ac

ce
ss

-c
o

n
fi

g.
xm

l

se
cu

ri
ty

-c
o

n
fi

g.
xm

l

w
eb

-a
p

p
lic

at
io

n
-c

o
n

fi
g.

xm
l

w
eb

fl
o

w
-c

o
n

fi
g.

xm
l

w
eb

m
vc

-c
o

n
fi

g.
xm

l

m
ai

n
-f

lo
w

.x
m

l

b
o

o
ki

n
g-

fl
o

w
.x

m
l

fa
ce

s-
co

n
fi

g-
1

2
.x

m
l

fa
ce

s-
co

n
fi

g.
xm

l

en
te

rB
o

o
ki

n
gD

et
ai

ls
.x

h
tm

l

re
vi

ew
B

o
o

ki
n

g.
xh

tm
l

en
te

rS
ea

rc
h

C
ri

te
ri

a.
xh

tm
l

re
vi

ew
H

o
te

l.x
h

tm
l

re
vi

ew
H

o
te

ls
.x

h
tm

l

in
tr

o
.x

h
tm

l

st
an

d
ar

d
.x

h
tm

l

lo
gi

n
.x

h
tm

l

lo
go

u
tS

u
cc

es
s.

xh
tm

l

in
d

e
x.

h
tm

l

w
eb

.x
m

l

m
es

sa
ge

s.
p

ro
p

er
ti

es

Amenity.java

Booking.java DB&PROP;F PROP;I PROP;F

BookingService.java PROP&DB;I CONF&PROP;F

Hotel.java DB&PROP;F

JpaBookingService.java CONF&PROP;F PROP&DB;I CONF&PROP;F

ReferenceData.java

SearchCriteria.java

User.java DB&PROP;F

persistence.xml CONF&PROP;D CONF&PROP;D CONF&PROP;D DB&CONF;F

import.sql PROP&DB;I

create.sql PROP&DB;I

data-access-config.xml DB&CONF;F DB&CONF;D

security-config.xml PROP;I CONF&PROP;FPROP;I FIO;F FIO;F

web-application-config.xml

webflow-config.xml CONF;F CONF;F

webmvc-config.xml CONF;F

main-flow.xml PROP;F PROP;F PROP;F CONF&PROP;F PROP;F PROP;F FIO&PROP;F FIO&PROP;F FIO&PROP;F

booking-flow.xml PROP;F PROP;F PROP;F CONF&PROP;F PROP;F FIO&PROP;F FIO&PROP;F

faces-config-12.xml

faces-config.xml

enterBookingDetails.xhtml PROP;F PROP;I PROP;F PROP;I PROP;F PROP;I FIO;F

reviewBooking.xhtml PROP;F PROP;I PROP;F PROP;I PROP;I

enterSearchCriteria.xhtml PROP;F PROP;I PROP;F PROP;I PROP;F PROP;F PROP;F PROP;I PROP;I

reviewHotel.xhtml PROP;I PROP;F PROP;I PROP;I

reviewHotels.xhtml PROP;I PROP;F PROP;I PROP;F PROP;I

intro.xhtml PROP;I PROP;I PROP;I PROP;I PROP;I PROP;I FIO;F PROP;I PROP;I

standard.xhtml PROP;F FIO;F PROP;F PROP;F

login.xhtml PROP;I PROP;I PROP;I

logoutSuccess.xhtml FIO;F

index.html

web.xml CONF&FIO;F CONF&FIO;D CONF;I CONF;F FIO;D

messages.properties

COUNT Direct dependencies (D) 6 categories:

COUNT Framework dependencies (F) 53 DBACCESS (DB) Java springxml webxml

COUNT Indirect dependencies (I) 35 CONFIGURATION (CONF) Plsql jsfxml properties

COUNT All dependencies (TP+FN) 94 FILEIO (FIO) dbaxml jsf / html

Not Applicable (grey cells) 224 PROPAGATION OF VARIABLE VALUE (PROP)

No Deps (TN+FP, or empty white

cells devided by two) 306

All possibilities (N) 400

Languages

Appendix C - Draft paper for submission to the CSMR 2013
Conference

The following paper is an outcome of this thesis and it is a draft version of the paper
that will be submitted to the 17th European Conference on Software Maintenance and
Reengineering (CSMR 2013).

Detecting cross-language dependencies generically

Theodoros Polychniatis
and Jurriaan Hage
Utrecht University
The Netherlands

Eric Bouwers∗

and Joost Visser‡

Software Improvement Group
∗Delft University of Technology
‡Radboud University Nijmegen

The Netherlands

Abstract

Information systems, especially large scale ones, are
heterogeneous, i.e., they comprise modules, developed
in diverse programming languages. In order to eval-
uate such systems a method to detect dependencies
among modules is needed. Although there is a variety
of methods that detect the dependencies within a
single programming language, there are no broadly
applicable cross-language detection methods. In this
paper, a new method is proposed, that is generic,
yet accurate and can support a new language with
minimal effort. To evaluate our method, we created a
tool and conducted a series of experiments on a small
case study for which dependencies had been extracted
manually.

1. Introduction

The modernisation, expansion and generally the
modification of heterogeneous information systems is
a difficult and complex task. Before any modification
to the software, evaluation of the existing status is
carried out, in order to extract the dependencies among
its modules and identify the possible risks of the
modification.

Cross-language dependency detection is needed to
support quality evaluations of industrial systems. When
analysing heterogeneous software systems, the depen-
dencies between modules written in different languages
are difficult to trace. Such dependencies can take many
different syntactical forms, can be dynamic rather
than just static, and may be indirect via frameworks,
databases, or scripts. The detection of dependencies
becomes even more challenging due to the high num-
ber of possible combinations of languages. To the best
of our knowledge, there is no scalable, robust, general

approach for cross-language dependency detection as
a method to support software evaluation.

In section 2, the problem is identified by conducting
interviews and literature study. Section 3 gives a review
of the state of the art methods in this domain. In section
4, an evaluation process is proposed for validating the
results of a dependency detection method. In section
5, a solution is given to the problem by presenting the
most basic general, naive approach (a word matching
algorithm), which we gradually improve by applying
a set of language agnostic filters. The results of our
approach are discussed in section 6. Finally, the last
section presents the contributions of our work and also
future research opportunities.

This paper is the outcome of the Master thesis of the
main author. More detailed information for this work
can be found in the thesis document [1].

2. Problem definition

In order to have a better understanding of the
characteristics that a cross-language dependency de-
tection method should have, interviews with software
evaluators were conducted.

Six consultants from Software Improvement Group
(SIG), with at least two years of experience in software
evaluation, were selected for the interviews. Three of
them are technical consultants, whose main role is to
evaluate software, and three are general consultants,
who, together with the technical consultants, identify
risks of the software. These two types of consultants
were necessary for our interviews, in order to capture
the rationale from both aspects of the evaluation pro-
cess.

The first part of the interview had a structured
approach [2] and led to the creation of a set of the most
important requirements that a dependency detection
method should have. The consultants were asked to

prioritise the requirements according to the MoSCoW
technique (a description is given in [3]) and then
to provide metrics for measuring them. The second
part of the interview was explorative, and was used
to discover any additional information based on the
consultants experience e.g., what dependency types
they are interested in.

The main outcome of the interviews was that the top
three requirements in the order of importance are:

1) Accuracy - measures the quality of the findings.
2) Explainability - how easily the method behaviour

can be understood and how easily the method
results can be interpreted by the user.

3) Extensibility - the ability of the method to be
implemented or extended to include a currently
unsupported language.

These three requirements are explained below:
In the information retrieval literature, commonly

accepted metrics for measuring accuracy are found (
[4], [5]): “Recall is the fraction of relevant documents
that are retrieved”.

Recall =
|TP |
|π| =

|TP |
|TP |+ |FN | (1)

“Precision is the fraction of retrieved documents that
are relevant”

Precision =
|TP |
|t| =

|TP |
|TP |+ |FP | (2)

The symbols of the two formulas are illustrated and
explained in Fig. 1.

The interviewees stated that, although they are tol-
erant in relatively low numbers of retrieved, actual
dependencies (True Positives - TP), they are more in-
terested in having a minimal amount of falsely detected
dependencies (False Positives - FP). They pointed out
that the FP should be lower than than 30%.

As for the extensibility, they mentioned that the
method should be able to be implemented for an
unsupported language in less than two days.

For the explainability, they said that the algorithm
used in the method should be able to be explained to
a non-technical audience.

The consultants also expressed their interest in
detecting cross-language dependencies that involve
database access, web services and configuration of
bound technologies within a system.

Wilde gives the following definition for dependency:
“From the point of view of the maintainer, there is
a dependency between two components if a change
to one may have an impact that will require changes
to the other.” [6] In this paper, Wilde’s definition is
extended by giving a classification of dependencies.
They are classified according to their strength, which

Figure 1: Metrics used to evaluate accuracy in the
information retrieval domain. In our case Collection
is the set of all possible dependencies that can exist
in the system, Relevant is the set of the actual de-
pendencies in this system, and Retrieved is the set
of dependencies that a dependency detection method
retrieves. (FN=False Negatives, FP=False Positives,
TP=True Positives, TN=True Negatives)

is derived from the type of error that is caused by a
possible change in one of the dependent files:

• Direct - Strong dependencies where a possible
change can cause compilation errors.

• Framework - Weaker type of dependencies which
would probably cause runtime errors.

• Indirect - Even weaker dependencies, which may
cause error in functionality.

Our goal is to create a method for detecting de-
pendencies (considering the above definition) from
the source code, focusing on the three requirements,
namely, accuracy, explainability and extensibility.

3. Related work

This section presents the state of the art methods that
were found by studying the literature in the domain of
cross-language dependency detection. This study does
not include commercial methods because access to the
source code was needed to learn about the algorithms
used.

Moose [7] is a mature framework for software
analysis of homogeneous and heterogeneous systems.
It is written in Smalltalk and it uses the so-called
FM3 language independent meta-meta-model to model
the supported languages. It also provides a framework
for the construction of custom modellers for new
languages. It is the most complete solution found;
however, the support for a new language requires the
creation of a language specific parser, which makes the
framework not easily extensible.

The Eclipse MoDisco project1 is a framework that
uses “model discoverers” to create language indepen-

1. The Eclipse-MDT MoDisco project: http://eclipse.org/MoDisco

dent meta-models for software modules. The Atlan-
Mod Model Weaver2 (AMW) is a component that
automatically creates links among the elements of
these meta-models by using weaving (or dependency)
patterns, which are defined by the analyst. Since it
uses a similar method as Moose, it has the same
disadvantage in extensibility.

GenDeMoG [8] is one of the few dependency de-
tection tools, based on Eclipse EMF3 technologies
as well, for which published information was found
about their evaluation method and the case study used
for the evaluation. Similarly to MoDisco, the tool is
configured by the analyst by defining the dependency
patterns, which are used to match the elements of
the models that are created by parsing the different
software modules. Besides the low extensibility due
to the need of parsers, GenDeMoG did not provide
sufficient documentation, therefore it could not be
installed or used.

DSketch [9] or GrammarSketch, is the only ap-
proach found that does not use meta-modelling tech-
niques to detect dependencies. It is based on regular
expression patterns matching, but provides the devel-
oper/analyst with a language to write these patterns in a
much easier and meaningful way. Currently it supports
Java, XML and SQL but the authors state in [9],
that it is extensible. However, the method is language
specific, and an API for supporting new languages is
not provided.

We observe that the reviewed methods use an inflex-
ible language specific approach. This is explained by
the fact that these methods focus on the accuracy of
the findings. In this paper we propose an alternative,
generic approach that trades off accuracy in favour of
extensibility and explainability.

4. Validation

In order to evaluate our approach, a series of experi-
ments were conducted. The setup for these experiments
and the evaluation process for the proposed method are
described in this section.

4.1. Ground truth method

To validate the results of the proposed method, a
second method for finding cross language dependen-
cies with accurate results, or with a known error rate
is needed, so that we can compare its results with the

2. The Eclipse AMW project: http://www.eclipse.org/gmt/amw
3. The Eclipse EMF project: http://www.eclipse.org/modeling/

emf/?project=emf

results of our method. We call the second method the
ground truth method (GTM), since it gives ground
truth data (GTD) about the dependencies that exist in
the software system.

Although the reviewed methods from section 3 were
candidates for GTM , they were deemed unsuitable for
the following reasons:

• For the methods that were applicable, there was
little evidence for their accuracy.

• The deployment, configuration and usage of the
methods is difficult and there is no proper docu-
mentation to overcome these difficulties.

• They support only a small set of languages, or a
specific type of dependencies, which restricts our
research.

Because of these reasons, we decided to use the
manual checking as the GTM . By “manual checking”
we mean that the subject studies a set of source
files at hand and detects dependencies according to
his/her experience. Manual checking is not automatic,
therefore slow, and it can also be more biased since the
evaluator himself extracts the dependencies. However,
it is selected because:

• Traditionally, manual checking is well accepted
by software evaluators as a cross-language depen-
dency detection method.

• It can show the accuracy of the results in a
common, comparable way for any language com-
bination or dependency type.

4.2. Case study selection

A software project is needed as a case study on
which dependency extraction methods can be executed.
The selection criteria for such a project were:

• The project must be multilingual.
• It should be open-source so that the experiment

can be reproduced.
• Since the dependencies are extracted manually,

the size of the project has to be small and the tech-
nologies/programming languages included should
be familiar to the analyst.

4.3. Evaluation process

During the evaluation process, the proposed method
(PM) is executed and evaluated against the three most
important criteria discussed in section 2. The method
is created through an iterative process of brainstorming
for algorithms, implementation, testing, evaluating and
refinement.

For every iteration, the evaluation process involves
the following steps:

1) Apply the method on the case study project.
2) Retrieve the results.
3) Compare the results with the ones retrieved with

the GTM .
4) Calculate the accuracy metrics (see section 2).
5) Examine the False positives (FP) and the False

Negatives (FN) to improve the algorithm.
6) Judge the algorithm in terms of explainability

and extensibility.

5. Solution

In this section, the proposed solution is described.

5.1. Preparation

Taking into account all the decisions above, a sample
application from the Spring webflow framework or
SWF4 was selected as the case study. The application
is called “booking-faces” and it is a web based hotel
booking application. The Spring framework is a frame-
work for building layered Java enterprise solutions.
SWF is an extension to this framework that enables
the use of flows and transitions from one web page to
another.

The project contains only 98 files, of which the
source files we are interested in, are only 32. It has
Java, XML, XHTML, SQL as main languages and the
technologies it involves are:

• Java
• Java Persistence (Component for database han-

dling)
• Spring Framework & SWF
• Java Server Faces (Presentation layer component

for rich web pages)
XML is a language in which different technologies

are developed or configured. A system usually contains
libraries or components, which belong to different
technologies, and are bound through XML configu-
ration files. Because the consultants were interested
in dependencies among bound technologies, the XML
configuration files are grouped per technology, and are
treated as different languages. In the case study the
following languages were identified:

• WebappXML - the configuration for Java web
applications

• SpringXML - the configuration for the Spring
Framework

• JSFXML - the configuration for Java Server Faces
presentation layer

4. http://www.springsource.org/spring-web-flow
(Version 2.1.0.RELEASE)

• DBAXML - the configuration for Database Ac-
cess layer

The concept of language category was introduced to
cover languages with similar characteristics (notation,
grammar and syntax). In this case, XML is a language
category that includes the aforementioned XML based
technologies.

The GTM was applied on the case study with the
following considerations:

• If two files are dependent in both directions, this
dependency is counted once.

• The dependencies among files of the same lan-
guage are filtered out.

Table 1 displays the information retrieved with a
manual check for dependencies. The terms in the table

Table 1: Ground truth data

Attributes Value
Direct dependencies 6
Framework dependencies 53
Indirect dependencies 35
Total relevant dependencies (π) 94
Collection (C) 400
Non relevant dependencies (Total negatives) 306

are explained in section 2.

5.2. Basic algorithm

The basic algorithm of the proposed method is a
generic, naive approach based on matching common
words between two possibly dependent source files.
The results of this algorithm are improved by applying
a set of statistical filters. The algorithm is shown in Fig.
2.

The following details of the algorithm were omitted
because we want to provide just the basic idea while
keeping it readable in this document:

• A special character is any character except letter,
number and underscore.

• During the tokenising, strings that consist only of
numbers are omitted.

• Tokens with less than one character are also
omitted.

Following the evaluation approach described in sec-
tion 4.3, the results of the method were evaluated in
terms of accuracy. They showed that, in spite of all
dependencies being detected, the precision was very
low (11.6%). The consultants mentioned that the False
Positives should be lower than 30% of the findings,
which means that the precision should be higher than
70%. The next paragraphs describe the steps performed
to improve the accuracy of our algorithm.

1: create a graph of the system’s source files
2: for each file in the graph do
3: replace special characters in the file’s content with spaces
4: tokenise the text by splitting it on white space
5: extract all the words-tokens
6: for each word-token do
7: lookup in the graph if a node with the name of the word

exists
8: if word-node does not exist then
9: create a node with the same name as the word

10: end if
11: create an edge from the file to the word-node
12: end for
13: end for
14: for each word-node do
15: if node is connected with fewer than two files from different

languages then
16: remove node
17: end if
18: end for

Figure 2: Basic algorithm of the token based approach

5.3. Filtering out frequent words

An observation that was made from the source files
is that language reserved words (e.g.,false, true, int,
etc.) appear with high frequency among the total words
of the files of the same language. This led to the
creation of the first statistical filter which calculates all
the frequencies of unique tokens per language within
the project. This is done by creating a map of all
the unique tokens that are extracted from all files per
programming language, and by counting the number
of times each token is found. The input to the filter
is a frequency threshold, which means that words that
appear with higher frequency than the threshold value,
are removed, and are not involved in the detected
dependencies.

5.4. Filtering out frequent words per file, lan-
guage and language category

Occasionally the source files contain a big number of
statements, which do not necessarily include language
specific words. An example that reveals this problem
is a system that has many .java files which have a lot
of lines of code (LOCs). Then the words class, inter-
face, extends, implements will not have high values of
frequency, hence they will not be removed.

In order to overcome this problem, the Words per
files filter is introduced. This filter calculates the
frequency of the words which appear in different
files of the same language. It collects all the unique
tokens(words) for the specific language and then for
each word it counts the files containing it. The filter
calculates for each language, and for each word the

fraction:

Word frequency per files =

=
#files from a language that contain the word

Total#files from this language

Because languages of the same category have words
in common, a derivative of this filter was created which
calculates the same fraction but per language category
instead of per language. The words that appear with
higher frequency than the one of the threshold, are
filtered out.

5.5. Weight filtering

Another observation made after the examination of
the results of the previous experiments is that some
False Positives were caused by dependencies in which
only a small number of words were matched from the
two dependent files. Examples of such words are in,
of, id, encoding, type, etc. In order to remove these FP,
the concept of “weight” as a property of a dependency
was introduced. The value of the weight is the number
of the words which are matched in the two files that
the dependency refers to. Subsequently, we created a
filter that filters out dependencies with low weight. It
gets as input a threshold, i.e., a number, below which
every dependency is removed.

6. Results

Multiple experiments were conducted with all the
possible combinations of thresholds for the above
filters. The most interesting combinations, regarding
the score for the three different accuracy metrics, are
displayed in Table 2.

Table 2: Token based approach with statistical filter-
ing: Best results regarding accuracy from composite
experiment

Recall Precision Parameters
100% 11.6% Basic algorithm, no filters applied

94.7% 37.9% Freq. word/files/language: 60%, Freq.
word/files/category: 55%, Min. weight: 0

92.6% 38.5% Freq. word/files/language: 60%, Freq.
word/files/category: 50%, Min. weight: 0

87.2% 43.9% Freq. word/files/language: 60%, Freq.
word/files/category: 30%, Min. weight: 0

85.1% 48.2% Freq. word/files/language: 60%, Freq.
word/files/category: 25%, Min. weight: 0

39.4% 80.4% Freq. word/files/language: 70%, Freq.
word/files/category: 30%, Min. weight: 4

16% 93.8% Freq. word/files/language: 35%, Freq.
word/files/category: 25%, Min. weight: 4

In the combinations shown in Table 2, the frequent
words filter threshold was 100%. This means that it
did not filter out words, as the other three filters,
were more effective. From the same table we observe
that it is difficult to achieve a parametrisation which
results in very good values for both metrics (i.e., recall
and precision). However, depending on the desired
priority of the accuracy aspect, a high value in the
corresponding metric can be achieved, with a trade-off
in the other. In our case, 94.7% of the dependencies
can be captured, with a precision of 37.9%. On the
other hand, if precision is the top priority, an 80.4%
precision can be achieved while capturing 39.4% of
the dependencies.

It is possible to improve the accuracy with the
application of more statistical filters, e.g., a filter that
removes words with less than a number of characters.
With this research it can be shown that a very simple,
generic and explainable algorithm can be used to detect
dependencies without the input of language specific
information.

In order to generalise our findings, the method was
executed on a large scale project (1MLOC), using the
parametrisation that resulted in 80.4% precision. The
project was based on Java and Web Services tech-
nologies. The recall could not be calculated because
the dependencies could not be manually extracted in
a reasonable time-frame, but the precision was found
to be similar (76.7%). Nevertheless, more projects are
needed to be able to safely generalise the results.

7. Conclusion

With this work, the following contributions are
made:

• Identified the need for a generic cross-language
dependency detection method, with high precision
and easily explainable.

• Defined an evaluation protocol for such a method,
by presenting a ground truth method validating
the findings.

• Developed a solution for the basic algorithm and
the initial filtering approaches.

• Validated the solution with the proposed evalua-
tion protocol.

The following research opportunities are triggered
with this research:

• Create a benchmark of the method behaviour for
categories of projects. For that, a classification
of projects according to their language set and
their size is needed. Then the proposed method
can be applied and validated. If the results are

similar for specific categories of projects, then we
can conclude on the best parametrisation for these
categories.

• Examine the behaviour of the method at com-
ponent level. In order to do that, the file level
dependencies need to be aggregated into compo-
nent level ones. It may be possible to increase the
accuracy of the method by applying other type of
filters on the components or their dependencies.

• Combine the token based approach with a lan-
guage specific one. With a small trade-off in
extensibility it may be possible to greatly increase
the accuracy.

References

[1] T. Polychniatis, “Detecting dependencies across pro-
gramming languages,” Master’s thesis, Utrecht Univer-
sity, July 2012.

[2] S. Kvale and S. Brinkmann, InterViews: Learning the
Craft of Qualitative Research Interviewing, V. Knight,
S. Connelly, L. Habib, A. Virding, and J. Robinson, Eds.
Sage Publications, 2009, vol. 20, no. 3.

[3] L. G. Knudsen, “Developing an OCT imaging system
in java,” Master’s thesis, Informatics and Mathemati-
cal Modelling, Technical University of Denmark, DTU,
2004.

[4] C. Manning, P. Raghavan, and H. Schuetze, Evaluation
in information retrieval, online edi ed. Cambridge UP,
2009, no. c.

[5] S. Alvarez, “An exact analytical relation among re-
call, precision, and classification accuracy in informa-
tion retrieval,” Boston College, Boston, Technical Report
BCCS-02-01, pp. 1–22, 2002.

[6] N. Wilde, “Understanding program dependencies,” Pro-
gram, no. SEI-CM-26, 1990.

[7] S. Ducasse, T. Girba, A. Kuhn, and L. Renggli,
“Meta-environment and executable meta-language using
smalltalk: an experience report,” Software and Systems
Modeling, vol. 8, no. 1, pp. 5–19, 2009.

[8] R.-H. Pfeiffer and A. Wasowski, “Taming the confusion
of languages,” in Proceedings of the 7th European con-
ference on Modelling foundations and applications, ser.
ECMFA’11. Berlin, Heidelberg: Springer-Verlag, 2011,
pp. 312–328.

[9] B. Cossette and R. J. Walker, “Dsketch : Lightweight ,
adaptable dependency analysis,” Change, pp. 297–306,
2010.

	Thesis information
	Introduction
	Context
	Problem description
	Research objective
	Research questions
	Company profile
	Research model
	Scientific relevance
	Social relevance
	Research contribution

	Research method
	Research structure
	Research phase 1: Literature study approach
	Research phase 2: Interview approach
	Interview phases
	Limitations

	Research phase 3: State of the art evaluation
	Research phase 4, 5 & 6: Experimental setup, data analysis, method development and evaluation
	Ground truth method
	Selection criteria for case study
	Evaluation process

	Related literature
	Concepts and definitions
	What is a ``dependency''?
	Classification

	State of the art
	Eclipse MoDisco
	PAMOMO
	GenDeMoG
	Moose
	DSketch
	Source Navigator NG

	State of the art evaluation
	Requirements elicitation
	Rating criteria for requirements
	Must have requirements
	Should have requirements
	Could have requirements
	Prerequisites
	Comparison matrix

	Proposed method
	General description
	Preparation for the evaluation process
	Case study
	Experiment setup

	SIG framework
	Infrastructure
	Pattern based approach
	Database dependency type
	File I/O dependency type

	Token based approach - Ad-hoc filtering
	Basic algorithm
	Base case
	Filtering out language reserved words
	Filtering out project specific words
	Tailored tokenising of XML type documents
	Evaluation of token based approach with Ad-hoc filtering

	Token based approach - Statistical filtering
	Filtering out frequent words
	Filtering out frequent words per language
	Filtering out frequent words per file and language
	Weight filtering
	Composite experiment
	Comparison between statistical and ad-hoc approaches

	Ground truth data (GTD) amendment
	Adding Indirect dependencies
	Treating different XML based technologies as different languages

	Filtering out frequent words per file and language category
	Description
	Composite experiment with amended GTD

	Large scale case study project
	Project description
	Extension for another language of the project
	Challenges
	Evaluation method for large scale systems
	Experiment
	Refinement
	Evaluation

	Discussion
	Answers to research questions
	Validity & Reliability
	Future research

	Conclusion
	References
	Appendix
	Interview form for defining evaluation criteria
	Appendix B - GTD for small case study project
	Appendix C - Draft paper for submission to the CSMR 2013

