
[Faculty of Science
Information and Computing Sciences]

Security Type Error Diagnosis

Jurriaan Hage
Joint work with Jeroen Weijers and Stefan Holdermans

Department of Information and Computing Sciences, Universiteit Utrecht
J.Hage@uu.nl

February 26, 2013

[Faculty of Science
Information and Computing Sciences]

2

Some things about me

I PhD at Uni. Leiden under Grzegorz Rozenberg on
algorithms and combinatorics of graphs and groups
(switching classes)

I Commercial educator at Leiden during 1999-2000

I With Doaitse Swierstra (Johan Jeuring, etc.) since Nov
2000

I Topics of interest:
I static analysis and software analysis
I mostly functional languages
I plagiarism detection
I “testing”
I “SOA”
I type error feedback

I I try to frequent conferences like POPL, ICFP, PEPM

[Faculty of Science
Information and Computing Sciences]

3

Blatant advertisement

I Next year, I chair
I PEPM 2014, San Diego, co-located with POPL
I TFP 2014, somewhere in the Netherlands

I Start saving up papers to submit!

[Faculty of Science
Information and Computing Sciences]

4

Type error diagnosis

I Slogan of the static analyst: bigger, faster, more (precise)

I Complicated languages and complicated analyses are
difficult to communicate about

I Plenty of work on type error diagnosis for the polymorphic
lambda-calculus

I But little or nothing on other validating analyses

I In this talk: Security Analysis (a la Volpano and Smith)

I Caveat: this talk is not really about security analysis

[Faculty of Science
Information and Computing Sciences]

4

Type error diagnosis

I Slogan of the static analyst: bigger, faster, more (precise)

I Complicated languages and complicated analyses are
difficult to communicate about

I Plenty of work on type error diagnosis for the polymorphic
lambda-calculus

I But little or nothing on other validating analyses

I In this talk: Security Analysis (a la Volpano and Smith)

I Caveat: this talk is not really about security analysis

[Faculty of Science
Information and Computing Sciences]

5

Security Analysis

I A security type system can be imposed on a (functional)
language to ensure that programs preserve confidentality

I ⊥ line: highly confidential values may not flow to not so
confidential locations (in the talk: L @ H)

I Example:

showLow :: αL → IO ()L

showLow
(if (True :: BoolH) then (True :: BoolL)
else (False :: BoolL) :: BoolH)

I To write practical programs we need declassify, just as
you need unsafePerformIO in Haskell

[Faculty of Science
Information and Computing Sciences]

6

Security type system

I Implemented as a non-standard type system (annotations
on top of the intrinsic type system)

I Security Analysis is an instance of a dependency analysis
(Abadi99)

I Therefore, it deviates in some respects from the intrinsic
type system

I Type system is “state of the art”:
I subeffecting (but no full subtyping),
I polyvariant (but no higher-ranked polyvariance)
I underlying language polymorphic

[Faculty of Science
Information and Computing Sciences]

7

The subject language (a la FlowCaml)

I A program consists of declarations f = e

I Expressions consist of
I numbers, booleans, variables
I functions: fn x ⇒ e0 and fun f x ⇒ e0
I application: e0 e1
I conditionals: if e0 then e1 else e2
I recursive let let x = e0 in e1
I unary and binary operators: e1 ⊕ e2 and u e1
I built-in lists and pairs: Cons e1 e2, Nil and (e1, e2)
I deconstructors: fst e1, snd e1, null e1, hd e1, and tl e1.
I unsafe-perform-declassify: declassify e0 s

(s must be at most as confidential as e0)
I To increase confidentiality: protect e0 s

(s must be at least as confidential as e0)

I s ranges over any complete confidentiality lattice

[Faculty of Science
Information and Computing Sciences]

8

Annotate the types

I Annotated types τϕ where ϕ a security level or variable,
and τ taken from

I Int
I Bool
I List τϕ

I (τ1
ϕ, τ2

ϕ), and
I τ1

ϕ → τ2
ϕ

I The spine of a list may be protected at H while the
elements are of low confidentiality: (List αL)H

I Generalisation over type variables and annotation variables
I Polymorophic and polyvariant

I Constraint solving takes place per binding group.

[Faculty of Science
Information and Computing Sciences]

9

A few type rules

Γ, C ` e0 : Boolϕ1 Γ, C ` e1 : τϕ2 Γ, C ` e2 : τϕ3

Γ, C ` if e0 then e1 else e2 : τϕ1tϕ2tϕ3
[t-if]

Γ, C ` e1 : (List τϕ1)ϕ

Γ, C ` hd e1 : τϕ1tϕ [t-hd]

Γ, C ` e : τϕ C ` ϕ0 v ϕ

Γ, C ` declassify e ϕ0 : τϕ0
[t-declass]

Γ, C ` e : τϕ C ` ϕ v ϕ0

Γ, C ` protect e ϕ0 : τϕ0
[t-protect]

[Faculty of Science
Information and Computing Sciences]

10

Approach

0 Implement type system by generating (security)
constraints, solve by fixpoint iteration

I If constraints consistent, then done, otherwise

1 compute a security type error slice.
I Everything outside the slice can be safely ignored

I And must not play any role in diagnosis

2 Apply various heuristics to constraints in the slice to

a further narrow down locations to the more likely causes
b suggest fixes for the mistake

I Construct error report from the remaining constraints, and
which heuristics “fired”

[Faculty of Science
Information and Computing Sciences]

10

Approach

0 Implement type system by generating (security)
constraints, solve by fixpoint iteration

I If constraints consistent, then done, otherwise

1 compute a security type error slice.
I Everything outside the slice can be safely ignored

I And must not play any role in diagnosis

2 Apply various heuristics to constraints in the slice to

a further narrow down locations to the more likely causes
b suggest fixes for the mistake

I Construct error report from the remaining constraints, and
which heuristics “fired”

[Faculty of Science
Information and Computing Sciences]

10

Approach

0 Implement type system by generating (security)
constraints, solve by fixpoint iteration

I If constraints consistent, then done, otherwise

1 compute a security type error slice.
I Everything outside the slice can be safely ignored

I And must not play any role in diagnosis

2 Apply various heuristics to constraints in the slice to

a further narrow down locations to the more likely causes
b suggest fixes for the mistake

I Construct error report from the remaining constraints, and
which heuristics “fired”

[Faculty of Science
Information and Computing Sciences]

11

Step 0: the move to constraints

I Type system implemented as the solving of a set of
constraints, generated from the program
β v H, β1 v β2, H v L

I Essentially: β1 v β2 means that β2 is at least as
confidential as β1

I β v H is a tautology, H v L is in fact unsatisfiable, and for
β1 v β2 it all depends on what we know about β1 and β2

I Refactor type rules (a bit)

[Faculty of Science
Information and Computing Sciences]

12

Toward constraints

Γ, C ` e0 : Boolϕ1 Γ, C ` e1 : τϕ2 Γ, C ` e2 : τϕ3

Γ, C ` if e0 then e1 else e2 : τϕ1tϕ2tϕ3
[t-if]

becomes

Γ, C ` e0 : Boolϕ0 Γ, C ` e1 : τϕ1 Γ, C ` e2 : τϕ2

Γ, C ` if e0 then e1 else e2 : τϕ
[t-if]

where additionally ϕ0 v ϕ, ϕ1 v ϕ, and ϕ2 v ϕ
Typically: each expression gets a fresh annotation variable β.

[Faculty of Science
Information and Computing Sciences]

13

Some words on solving constraints

I To achieve polyvariance, solving takes place just before
generalisation, i.o.w., per binding group. To find out...

I which annotation variables should be generalized
I which should be existentially quantified

I They only play a role locally

I which should be left alone

I To every annotation variable, we associate a lowest and
highest confidentiality [ϕ0, ϕ1]

I Some constraints push up ϕ0, others push down ϕ1

I If ϕ1 ends up under ϕ0, we have caught an inconsistency.

[Faculty of Science
Information and Computing Sciences]

14

Step 1: security type error slicing

I Based on Haack and Wells (ICFP 2003/SciCom 2004) and
Stuckey et al (Haskell 2003)

I Computes all locations in the program that generate
constraints that contribute to the inconsistency of the
constraint set

I Short algorithm but not trivial

[Faculty of Science
Information and Computing Sciences]

15

Step 2: apply heuristics

I Step 1 delivers a set of constraints

I It may be large, and a slice does not provide suggestions
and reasons for inconsistencies

I We apply a series of heuristics to arrive at a more precise
diagnosis in many cases

I but at the risk of being wrong!

[Faculty of Science
Information and Computing Sciences]

15

Step 2: apply heuristics

I Step 1 delivers a set of constraints

I It may be large, and a slice does not provide suggestions
and reasons for inconsistencies

I We apply a series of heuristics to arrive at a more precise
diagnosis in many cases

I but at the risk of being wrong!

[Faculty of Science
Information and Computing Sciences]

16

Classes of heuristics

1 generic heuristics, e.g., a majority heuristic and avoid
irrefutable constraints

2 the propagation heuristics: do not blame security-agnostic
functions that only propagate security levels

3 security specific heuristics: confusing protect and
declassify

4 dependency analysis specific heuristics: up next...

[Faculty of Science
Information and Computing Sciences]

16

Classes of heuristics

1 generic heuristics, e.g., a majority heuristic and avoid
irrefutable constraints

2 the propagation heuristics: do not blame security-agnostic
functions that only propagate security levels

3 security specific heuristics: confusing protect and
declassify

4 dependency analysis specific heuristics: up next...

[Faculty of Science
Information and Computing Sciences]

16

Classes of heuristics

1 generic heuristics, e.g., a majority heuristic and avoid
irrefutable constraints

2 the propagation heuristics: do not blame security-agnostic
functions that only propagate security levels

3 security specific heuristics: confusing protect and
declassify

4 dependency analysis specific heuristics: up next...

[Faculty of Science
Information and Computing Sciences]

16

Classes of heuristics

1 generic heuristics, e.g., a majority heuristic and avoid
irrefutable constraints

2 the propagation heuristics: do not blame security-agnostic
functions that only propagate security levels

3 security specific heuristics: confusing protect and
declassify

4 dependency analysis specific heuristics: up next...

[Faculty of Science
Information and Computing Sciences]

17

The everyday functional programmer...

I may be used to the intrinsic type system,
but less used to security types

I Intuitions of intrinsic type do not always carry over to
security type system

I Inventory of differences between Hindley-Milner and the
security type system

I For each such difference we implemented a heuristic to
discover whether an inconsistency can be explained from
the difference

[Faculty of Science
Information and Computing Sciences]

18

Back to the example (almost)

showLow :: αL → IO ()L

showLow
(if (True :: BoolH) then (True :: BoolL)
else (False :: BoolL) :: BoolL)

The mistake may be that the H on the condition is ignored,
because the value of the condition does not flow to the result of
the conditional. But the value of the conditional does depend
on the value of the boolean!

[Faculty of Science
Information and Computing Sciences]

19

Back to the rules

Γ, C ` e0 : Boolϕ1 Γ, C ` e1 : τϕ2 Γ, C ` e2 : τϕ3

Γ, C ` if e0 then e1 else e2 : τϕ1tϕ2tϕ3
[t-if]

The give away: Bool does not influence τ , but ϕ1 does
influence the annotation on τ

Γ, C ` e1 : (List τϕ1)ϕ

Γ, C ` hd e1 : τϕ1tϕ [t-hd]

Extracting a value from a list also tells us something about the
structure of the list: that it is non-empty

[Faculty of Science
Information and Computing Sciences]

19

Back to the rules

Γ, C ` e0 : Boolϕ1 Γ, C ` e1 : τϕ2 Γ, C ` e2 : τϕ3

Γ, C ` if e0 then e1 else e2 : τϕ1tϕ2tϕ3
[t-if]

The give away: Bool does not influence τ , but ϕ1 does
influence the annotation on τ

Γ, C ` e1 : (List τϕ1)ϕ

Γ, C ` hd e1 : τϕ1tϕ [t-hd]

Extracting a value from a list also tells us something about the
structure of the list: that it is non-empty

[Faculty of Science
Information and Computing Sciences]

20

The propagation heuristic

id :: αβ → αβ

showLow :: αL → IO ()L

showLow
(if (id (True :: BoolH)) then (True :: BoolL)
else (False :: BoolL) :: BoolL)

Makes no sense to blame the call to id , so we ignore the
constraints that propagate security annotations through security
agnostic functions.

[Faculty of Science
Information and Computing Sciences]

21

A sizable example

log = fn x ⇒ protect x Low

boolVal = protect True Low
lVal = protect 2 Low

zl = Cons (protect 1 Low) (protect Nil High)

id = fn x ⇒ let y = x in y

main = log (if id (id boolVal) then id lVal else hd zl)

The structure of list: zl at (l 11, c 40) passed to

hd in the expression: hd zl at (l 11, c 37) is

protected at level: High. This causes the result of

hd to be protected at level: High. Instead a value

protected at level: Low was expected by: log

[Faculty of Science
Information and Computing Sciences]

22

Majority heuristic example

one = protect 1 Low
two = protect 2 Low
three = protect 3 Low
four = protect 4 Low
five = protect 5 High
fifteen = print (one + two + three + four + five)

Error in application:

(print ((((one + two) + three) + four) + five))
at: (l 6, c 12)

Expected an argument protected at at most level: Low
The argument is protected at level: High
Because of the following subexpression(s):

five at: (l 6, c 46)

[Faculty of Science
Information and Computing Sciences]

23

Related Work

I FlowCaml (Pottier, Simonet, TOPLAS ’03): formally our
basis, no attention paid to type error diagnosis

<loc>: This expression generates the following

information flow: root < everyone

which is not legal.

I Jif system (King et al): Java based, provides sliced
execution trace, no higher-order functions, no
polymorphism, limited polyvariance by duplication

I Russo, Claessen and Hughes (Haskell ’08): embedded into
Haskell, no separation of type and annotation

I See my talk on Friday!

[Faculty of Science
Information and Computing Sciences]

23

Related Work

I FlowCaml (Pottier, Simonet, TOPLAS ’03): formally our
basis, no attention paid to type error diagnosis

<loc>: This expression generates the following

information flow: root < everyone

which is not legal.

I Jif system (King et al): Java based, provides sliced
execution trace, no higher-order functions, no
polymorphism, limited polyvariance by duplication

I Russo, Claessen and Hughes (Haskell ’08): embedded into
Haskell, no separation of type and annotation

I See my talk on Friday!

[Faculty of Science
Information and Computing Sciences]

24

Summary

I A superficial impression of
I how to design a security analysis as a type and effect

system
I four classes of heuristics to specialize the type error

diagnosis, after a first approximation computed by type
error slicing

I a few examples to show the results of our work

I First to combine slicing with heuristics

I The paper contains many many more details

[Faculty of Science
Information and Computing Sciences]

25

Future Work

I How well does our work perform on realistic programs?
I how often are the heuristics wrong?
I how well do the heuristics perform without the slicing?
I how large are the slices anyway?
I how often does which heuristic contribute to reduce the

number of constraints?
I how often does it reduce the size of remaining constraints

to a singleton?

I Does anybody have a collection of security incorrect
programs?

I Security analysis is a validating analysis. Can we give it the
higher-ranked polyvariance treatment (Holdermans and
Hage, ICFP 2010)?

[Faculty of Science
Information and Computing Sciences]

25

Future Work

I How well does our work perform on realistic programs?
I how often are the heuristics wrong?
I how well do the heuristics perform without the slicing?
I how large are the slices anyway?
I how often does which heuristic contribute to reduce the

number of constraints?
I how often does it reduce the size of remaining constraints

to a singleton?

I Does anybody have a collection of security incorrect
programs?

I Security analysis is a validating analysis. Can we give it the
higher-ranked polyvariance treatment (Holdermans and
Hage, ICFP 2010)?

[Faculty of Science
Information and Computing Sciences]

25

Future Work

I How well does our work perform on realistic programs?
I how often are the heuristics wrong?
I how well do the heuristics perform without the slicing?
I how large are the slices anyway?
I how often does which heuristic contribute to reduce the

number of constraints?
I how often does it reduce the size of remaining constraints

to a singleton?

I Does anybody have a collection of security incorrect
programs?

I Security analysis is a validating analysis. Can we give it the
higher-ranked polyvariance treatment (Holdermans and
Hage, ICFP 2010)?

[Faculty of Science
Information and Computing Sciences]

26

Thank you for your attention

