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Abstract

In this thesis we attempt to answer the research question:

Can we use a type and effect system in combination with
refinement types to develop a pattern-match analysis for
a non-strict higher-order functional language that is both
performant and precise enough to be of practical use?

In Chapter 1 we present a number of examples to demonstrate
why this is an interesting problem. In Chapter 2 we give a short in-
troduction to the relevant concepts of the research question: higher-
order functional languages and type and effect systems. In Chap-
ter 3 we give an overview of the pattern match analysis we devel-
oped and give a detailed description of the constraint generation
and constraint solving phases in respectively Chapter 4 and Chap-
ter 5. In Chapter 7 we discussion the implementation of the analysis
we have built. We evaluate the effectiveness and limitations of our
analysis in Chapter 6. In Chapter 8 we present work related to our
research question and discuss which aspects of that work are rele-
vant to or different from our proposed system. Finally, in Chapter 9,
we propose a number of directions for further research and future
implementation work to improve the precision and applicability of
the analysis.
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Chapter 1

Introduction

In 1978, Robin Milner [8] famously wrote—and proved—that:

Well-typed programs cannot “go wrong”.

This observation is sometimes optimistically overstated as “if your Haskell
program type checks and compiles it will work.” Even if we ignore logic errors,
such a strong interpretation of Milner’s statement does not hold, as anyone
who has seen the dreaded:

*** Exception: Non-exhaustive patterns in function f

can attest to. To correctly interpret Milner we need to distinguish between three
kinds of “wrongness”:

Getting stuck If a program tries to evaluate a non-sensical expression—such
as 3 + true—it cannot possibly make any further progress and is said to
be “stuck”. This is the “go wrong” Milner referred to. He proved that a
sound type system can statically guarantee such expressions will never
occur or need to be evaluated at run-time.

Diverging If we have a function definition f = f , the evaluation of f  f  ...

will fail to terminate. We might be making progress in a technical sense,
but it will have no useful observable result.

Undefinedness Another source of “wrongness” are partial functions: func-
tions which are not defined on all the elements of their domain. Prime
examples are case-statements with missing constructors and functions
defined by pattern matching but which do not cover all possible patterns.

Unlike Milner, who spoke about the first kind of wrongness and the work
on termination checking, which concerns itself with the second, we shall focus
on the third: a pattern-match analysis which determines if functions are only
invoked on values for which they are defined.

11



12 CHAPTER 1. INTRODUCTION

1.1 Examples

Partial functions Haskell programmers often work with partial functions,
the most common one possibly being head :

main = let xs = if length "foo"> 5 then [1, 2, 3] else [ ]

in head xs

head (x : xs) = x

This program is guaranteed to crash at run-time, so we would like to be
warned beforehand by the compiler or a tool:

On line 2 you applied the function "head" to the empty
list "xs". The function "head" expects a non-empty list
as its first argument.

If the guard of the if-statement had read length "foo"<5 the program would
have run without crashing and we would like the compiler or tool not to warn
us spuriously. In case it is not possible to determine statically whether or not a
program will crash, a warning should still be raised.

Compiler construction Compilers work with large and complex data types
to represent the abstract syntax tree. These data structures must be able to rep-
resent all syntactic constructs the parser is able to recognize. This results in an
abstract syntax tree that is unnecessarily complex and too cumbersome for the
later stages of the compiler—such as the optimizer—to work with. This prob-
lem is resolved by desugaring the original abstract syntax tree into a simpler—
but semantically equivalent—abstract syntax tree than does not use all of the
constructors available in the original abstract syntax tree.

The compiler writer now has a choice between two different options: either
write a desugaring stage desugar :: ComplexAST → SimpleAST —duplicating
most of the data type representing and functions operating on the abstract syn-
tax tree—or take the easy route desugar :: AST → AST and assume certain
constructors will no longer be present in the abstract syntax tree at stages of
the compiler executed after the desugaring step. The former has all the usual
downsides of code duplication—such as having to manually keep the two or
more data types synchronized—while the latter forgoes many of the advan-
tages of strong typing and type safety: if the compiler pipeline is restructured
and one of the stages that was originally assumed to run only after the desug-
aring suddenly runs before that point the error might only be detected at run-
time by a pattern match failure. A pattern match analysis should be able to
detect such errors statically.

Maintaining invariants Many algorithms and data structures maintain in-
variants that cannot easily be encoded into their type. These invariants of-
ten ensure that certain incomplete case-statements are guaranteed not to cause
a pattern match failure. An example is the risers function from [10], calcu-
lating monotonically increasing segments of a list (e.g., risers [1, 3, 5, 1, 2]  
[[1, 3, 5], [1, 2]]):
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risers :: Ord a ⇒ [a ]→ [[a ]]

risers [ ] = [ ]

risers [x ] = [[x ]]

risers (x1 : x2 : xs) = let (s : ss) = risers (x2 : xs)

in if x1 6 x2 then (x1 : s) : ss else [x1 ] : (s : ss)

The let-binding in the third alternative of risers expects the recursive call
to return a non-empty list. A naive analysis might raise a warning here. If
we think a bit longer, however, we see that we also pass the recursive call to
risers a non-empty list. This means we will end up in either the second or third
alternative in the recursive call. Both the second alternative and both branches
of the if-statement in the third alternative result in a non-empty list, satisfying
the assumption we made earlier.

Another example might be a collection of mathematical operations working
on bitstrings (integers encoded as lists of binary digits):

type Bitstring = [Int ]

add :: Bitstring → Bitstring → Bitstring

add [ ] y = y

add x [ ] = x

add (0 : x ) (0 : y) = 0 : add x y

add (0 : x ) (1 : y) = 1 : add x y

add (1 : x ) (0 : y) = 1 : add x y

add (1 : x ) (1 : y) = 0 : add (add [1] x ) y

The patterns in add are far from complete, but maintain the invariant if
passed arguments that satisfy the invariant. So if we are careful to only pass
valid bitstrings into a complex mathematical expression of bitstring-operations
it will result in a valid bitstring without crashing due to a pattern match failure.
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Chapter 2

Context

2.1 Haskell

Haskell is statically-typed functional programming language with non-strict
evaluation semantics [12]. As a functional language it has first-class and higher-
order functions and features a rich type system supporting parametric poly-
morphism and type classes. Programmers can define custom types in the form
of algebraic data types and write functions over them using pattern matching.

Like most functional languages, Haskell can be easily translated into a typed
λ-calculus (System FC). From the point-of-view of the programmer it offers
a wealth of syntactic sugar over a plain λ-calculus—such as guards and list
comprehensions—allowing programs to be expressed concisely and in a read-
able fashion.

The following example demonstrates the syntax of Haskell and some fea-
tures mentioned previously:

data Tree a = Branch (Tree a) (Tree a)

| Leaf a

mapTree :: (a → b)→ Tree a → Tree b

mapTree f (Branch t1 t2 ) = Branch (mapTree f t1 ) (mapTree f t2 )

mapTree f (Leaf a) = Leaf (f a)

instance Functor Tree where

fmap = mapTree

Lines 1–2 define an algebraic data type (ADT) representing a tree. A tree can
be constructed by either a Branch containing a left and a right subtree or by a
Leaf containing a value. The ADT is parameterized by a type a giving the type
of the value stored in the Leaf .

Lines 4–5 define a higher-order function mapTree which applies a given
function f :: a → b to all the values stored in all the leaves of a given Tree

resulting in a new Tree . As the domain and the range of f need not coincide, the
type parameter of the tree changes as well. The body of the function is defined
by pattern matching over the constructors of Tree and recurses in the case of a
Branch and applies the argument f to the field of type a in Leaf otherwise.

15



16 CHAPTER 2. CONTEXT

Lines 8–9 declare the type constructor Tree to be an instance of the type
class Functor , expressing it to be an endofunctor in the category of data types
with its mapping on morphisms given by mapTree .

2.1.1 Pattern Matching

Particularly relevant to our analysis are Haskell’s pattern matching abilities.
We demonstrate some of them in the following function:

rotate (Branch b@(Branch (Leaf x ) (Leaf y)) (Leaf z ))

| z < x = Branch (Leaf z ) b

| z < y = Branch (Branch (Leaf x ) (Leaf z )) (Leaf y)

| otherwise = undefined

The function will rotate a tree (Branch (Branch (Leaf 2) (Leaf 3)) (Leaf 1))

into Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3)). It accomplishes this through
the use of nested pattern matching, as-patterns and guards.

This function only works on trees of a very specific shape. Feeding the
function a tree of a different shape will cause a pattern match failure. Similarly,
an error will be raised if the function reaches the otherwise branch, containing
an undefined value. This would also happen if the branch had called error or
the branch and its guard were left out entirely.

2.2 Type and Effect Systems

Type and effect systems are approaches to program analysis suitable for typed
languages [11]. In this formalism we take the underlying type system of the lan-
guage and (conservatively) extend it by adding annotations to the types (base,
function and other) of the system.

2.2.1 Example

As an example we give an analysis which determines, in the form of an annota-
tion, which values an expression can evaluate to. The language is the simply-
typed λ-calculus with let-bindings and an if-statement. The underlying type
systems is standard and given in Figure 2.1.

The annotated type system is given in Figure 2.2. It does little more than
collecting all constants in the annotations. The only interesting rule is for the if-
statement. We need to take the union over the values collected in both branches
of the if-statement. We could have chosen to make the rule depend on the
annotation of the guard expression, passing on only the values collected in the
then-branch along if we knew it could only be True or only the values collected
in the else-branch if we knew it could only be False from its annotation. This
would make the analysis more precise.

We have also added an inference rule for subeffecting. This allows us to
make the annotation less precise. This is sometimes necessary when applying
a value about which we have very accurate information to a function which
requires a more general argument.
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Γ `UL c : τc
[T-Con]

Γ(x) = τ

Γ `UL x : τ
[T-Var]

Γ[x 7→ τ1] `UL e : τ2
Γ `UL λx.e : τ1 → τ2

[T-Abs]

Γ `UL e1 : τ2 → τ1 Γ `UL e2 : τ2
Γ `UL e1 e2 : τ1

[T-App]

Γ `UL e1 : τ1 Γ[x 7→ τ1] `UL e2 : τ2
Γ `UL let x = e1 in e2 : τ2

[T-Let]

Γ `UL e1 : bool Γ `UL e2 : τ Γ `UL e2 : τ

Γ ` if e0 then e1 else e2 : τ
[T-If]

Figure 2.1: Underlying type system

Γ `AN n : Int{n}
[T-Con]

Γ(x) = τ̂

Γ `AN x : τ̂
[T-Var]

Γ[x 7→ τ̂1] `AN e : τ̂2
Γ `AN λx.e : τ̂1 → τ̂2

[T-Abs]

Γ `AN e1 : τ̂2 → τ̂1 Γ `AN e2 : τ̂2
Γ `AN e1 e2 : τ̂1

[T-App]

Γ `AN e1 : τ̂1 Γ[x 7→ τ̂1] `AN e2 : τ̂2
Γ `AN let x = e1 in e2 : τ̂2

[T-Let]

Γ `AN e1 : bool Γ `AN e2 : τϕ2 Γ `AN e2 : τϕ3

Γ `AN if e0 then e1 else e2 : τϕ2∪ϕ3
[T-If]

Γ `AN e : τϕ

Γ `AN e : τϕ∪ϕ′ [T-Sub]

Figure 2.2: Annotated type system
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2.2.2 Type Inference

An analysis specified as an inference system does not allow us to compute
the result of the analysis directly, as the premises of several of the inference
rules usually require us to guess the correct type annotations for the type and
annotation variables (e.g., in the presence of subeffecting). To overcome this
problem we need a type reconstruction algorithm.

If the underlying type system is Hindley–Milner, then Algorithm W can be
used to infer the types. Algorithm W works bottom-up and can compute types
in a single pass by unifying type variables. This may not always be possible for
the annotations in an annotated type system, however. Here we can use a vari-
ant of Algorithm W to gather a set of constraints on the annotation variables
and solve these constraints with a worklist algorithm in a second phase.

2.2.3 Polyvariance

Consider the following program:

main = let id x = x

in (id 1, id 2)

When performing the analysis given above we would assign the type Int →
Int{1,2} to id and as a result the type Int{1,2} × Int{1,2} to f . Clearly, this result
is not optimal. This loss in precision has been caused by the two separate calls
to id poisoning each other.

A similar situation occurs at the type-level in the function:

main = let id x = x

in (id 1, id true)

Hindley–Milner manages to avoid problems in this situation by a mechanism
called let-generalization. The binding id has the type α→ α. Instead of trying—
and failing—to unify α with both Int and Bool in the body of the let-binding,
the type of id is generalized to the polymorphic type ∀α.α → α. In the body
of the let-binding, id can be instantiated twice: once to Int → Int and once to
Bool → Bool .

A similar trick can be used for the annotated type system, except that in-
stead of quantifying over type variables, we quantify over annotation vari-
ables.



Chapter 3

Pattern Match Analysis

3.1 Overview

The key idea behind the analysis is to keep track of the possible values each
variable and expression can have. When pattern matching with an if-then-else
or case-expression, we verify that the values the scrutinee can have are covered
by the patterns in each of the alternatives.

The set of possible values associated with each variable and expression is
called a refinement and placed as an annotation on the type of that variable or
expression. We call the type without such an annotation the underlying type
of an expression and the type with such an annotation the annotated type or
refinement type.

Examples

True : Bool{True} (3.1)

42 : Int{42} (3.2)

(7,False) : (Int{7},Bool{False})> (3.3)

[3, 2, 1] : [Int{1,2,3}]{( : : : [])} (3.4)

λx. x+ 1 : Int> >→ Int> (3.5)

Similarly, by analyzing the patterns of case-statements we infer the maxi-
mal set of values each variable can have without causing a pattern-match fail-
ure. Thus, if the set of values a variable can have is not a subset of the values
it is allowed to have, we have statically detected a potential source of pattern-
match failures.

3.2 Higher-Order Functions

The analysis should be able to handle higher-order functions. Let us take a
moment to review what the refinements type should look like for higher-order
functions and how they should be interpreted.

19
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Consider the function:

main b f = if b then

if f 42 then 100 else 200

else

if f 43 then 300 else 400

The function main takes a boolean and a function as its arguments. The
argument f is applied to an integer constant in the body of main and—because
it is used as the scrutinee of an if-then-else expression—should return a boolean
as its result. Depending on the values of b and f , the latter after having been
applied to either 42 or 43, the function main will return one of four different
integer values.

From this we can infer the underlying type of main should be:

Bool→ (Int→ Bool)→ Int

Under what conditions is this function guaranteed not to crash due to a pat-
tern match failure? The argument b and function f , after having been applied
to an integer, can evaluate to arbitrary boolean values. The function f , how-
ever, might also cause a pattern match failure while being evaluated. We need
to be sure it does not do so if passed one of the values 42 or 43. An appropriate
choice for the refined type would thus be:

Bool{True,False} → (Int{42,43} → Bool{True,False})→ Int{100,200,300,400}

Note the difference in meaning of the refinement depending on whether
it appears on an underlying type in a covariant or contravariant position. For
clarity, we give the type once more with variance annotations (where + means
covariant and - means contravariant):

Bool{True,False}
− → (Int{42,43}+ → Bool{True,False}

− )→ Int{100,200,300,400}+

Refinements appearing on types in a covariant position give either the mini-
mal set of values that a function can return, or—in the case of arguments passed
to a functional parameter—a minimal set of values that function should be able
to accept without failing due to a pattern match. In all cases the set of values
appearing in the refinement can safely be enlarged.

Refinements appearing on types in a contravariant position give either the
maximal set of values that can be passed to an argument, or—in the case of
a return value of a functional parameter—a maximal set of values which that
function is allowed to return without causing a pattern match failure in the
caller. In all cases the set of values appearing in the refinement can safely be
reduced.

Another valid refinement type for main would be:

Bool{True} → (Int{41,42,43} → Bool{False})→ Int{100,200,300,400,500}

This type is less desirable than the previous refinement type: it accepts
fewer values for the parameter b, the functions satisfying the type Int{41,42,43} →
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Bool{False} form a subset of the functions satisfying Int{42,43} → Bool{True,False}

and the larger refinement on the result type may prevent main from being
passed as an argument to another higher-order function.

The analysis should strive to infer refinement types with the smallest possi-
ble refinements on types in covariant positions and the largest possible refine-
ment on types in contravariant positions.

3.3 Analysis

The analysis is constraint-based and type-directed, meaning it is formulated as a
two part process.

The first is a type system that generates a set of constraints from the abstract
syntax tree. It generates two distinct set of constraints: one set allows us to
infer the underlying type of expressions, the other allows us to construct the
refinements belonging those types.

The second part consists of solving the generated constraints. The first set
of constraints—representing the underlying types—can be solved using uni-
fication. The second set requires a more complex solver based on a worklist
algorithm.

The generation of constraints and the unification algorithm are described
in Chapter 4. The constraint solver for the second constraint set is described in
Chapter 5.
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Chapter 4

Constraint Generation

4.1 Overview

The constraint generation phase of the analysis is built on top of a constraint-
based version of the Hindley–Milner type system [8, 14] extended to handle
annotations and generate constraints on and between those annotations.

As mentioned in Section 3.3 the type system generating the constraints pro-
duces two distinct sets of constraints. The first is a set of equality constraints
between simply annotated types as given in Figure 4.2. Simply annotated types
are annotated, except that all annotations are restricted to be plain annotation
variables. The reason for this is restriction is to make annotated types into a
free algebra, so the constraint set can be solved by a unification algorithm pre-
sented in Section 4.6. The result of the unification algorithm is a substitution
from type variables to simply annotated types, that is applied to both the in-
ferred type and the second constraint set. The second constraint set consists of
subtype constraints (Figure 4.7) between annotations (Figure 4.5).

4.2 Types and Annotations

Throughout this and the next chapter we will assume the following naming
conventions for variables:

x, f ∈ Var variables

τ̂ ∈ T̂ype annotated types

α ∈ TVar type variables

Γ̂ ∈ T̂Env annotated type environments

ϕ ∈ Ann annotations/refinements

β ∈ AVar annotation variables

Figure 4.1: Naming conventions
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An annotated type (Figure 4.2) can be a plain type variable α, a type constant
such as Bool or Int with an annotation ϕ, a tuple of two annotated types, a list
with elements of an annotated type, or a function with the domain and range
being given by annotated types.

τ̂ ::= α

| Boolϕ

| Intϕ

| (τ̂ , τ̂ )ϕ

| [τ̂ ]ϕ

| τ̂1
ϕ→ τ̂2

Figure 4.2: Annotated types

There is no annotation on the type variable as it gains one when it is sub-
stituted by a type constant or constructor. In any other case, we are dealing
with a polymorphic argument of a polymorphic function. As we are not able
to pattern match on such values, it is not useful to keep track of the values such
a variable can have.

The annotations on tuples and functions are not genuinely used, in the
sense that in the current implementation of the analysis their elements are al-
ways picked from the trivial one element lattice. We have included them here
for uniformity and to make the framework more general for future work.

Lists indirectly have an annotation both on the type of its elements and
on the list as a whole. This allows for more flexible ways of specifying the
possible values a list may have. Recall the add example from Section 1.1. While
we could attempt to precisely represent all possible lists that might occur—
remembering both the shape of the list and which values each element at each
each position in the list can have—this approach is unlikely to scale in practice.
The only information necessary for determining that the add function does not
fail due to a pattern match is that its inputs should be lists of integers where
each elements in the lists is an integer in the set {0, 1}. We can also infer it will
always produce such a list. An appropriate type for add would thus be

[Int{0,1}]{?} → [Int{0,1}]{?} → [Int{0,1}]{?}

where the refinement ? represents a list of any shape.
When analyzing polymorphic functions working on lists of any type of ele-

ments, we are likely only interested in the shape of the list and not in the values
of its elements. For example, an appropriate type for head would be:

[α]{( :?)} → α

Like in the Hindley–Milner type system, we represent polymorphic types
by a type scheme (Figure 4.3). The difference here is that we are also able to
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σ̂ ::= ∀αβ. R⇒ τ̂

Figure 4.3: Annotated type schemes

quantify over, not only type variables, but also over annotation variables. Fur-
thermore, we associate a set R of subtype constraints (Figure 4.7) with each
type scheme. These are constraints the constraint solver was unable to dis-
charge when the type was generalized and should be verified to hold when
the type is later instantiated.

Type schemes can be associated with variables using a type environment
(Figure 4.4).

Γ̂ ::= ε | Γ̂, x : σ̂

Figure 4.4: Annotated type environments

Annotations hold the refinements belonging to the underlying type. Refine-
ments form a set of annotation variables and abstract values (Section 4.3).

ϕ ::= β

| {πτ}
| ϕ1 ∪ ϕ2

Figure 4.5: Annotations/refinements

The type system generates a set of equality constraints between annotated
types and a set of subset constraints between refinements:

C ::= {τ̂1 = τ̂2}
| C1 ∪ C2

Figure 4.6: Equality constraints

R ::= {ϕ1 ⊆ ϕ2}
| R1 ∪R2

Figure 4.7: Subset constraints
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4.3 Refinements and Lattices

In the examples we have seen so far, we have used the actual values of a type as
refinements. This approach will at best fail to scale up when analyzing larger
programs, but worse, will likely cause the constraint solver to diverge: while
the refinements naturally form a lattice under subset inclusion with the meet
and join operations given by intersection and union, it will not satisfy the as-
cending chain condition for infinite types, such as integers and list. As a result
the refinements can grow infinitely large.

To overcome this problem we abstract from the concrete values of a type in
its refinement and apply widening to deal with recursive data types.

4.3.1 Booleans

Booleans are a finite type and thus a set of booleans forms finite lattice under
subset inclusion. Finite lattices always satisfy the ascending chain condition,
thus there is little need to abstract the values of a boolean in a refinement.

πBool ::= True

| False

Figure 4.8: Trivial abstraction for Bool

4.3.2 Integers

Integers form an infinite set, so will need to abstract from them. Possible
choices include taking only the sign of an integer into account:

πInt ::= +

| 0

| -

Figure 4.9: Sign abstraction for Int

or only its parity:

πInt ::= Odd

| Even

Figure 4.10: Parity abstraction for Int
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More complicated alternatives are possible. We could take the product of
the sign and parity lattices or partition the integers into a finite number of in-
tervals with the cuts determined by concrete integers appearing in the program
text.

The type system producing the constraints and constraint solver are agnos-
tic towards the actual choice. They only require a number of operations to be
defined: abstracting a concrete value (4.2), computing the greatest lower and
least upper bound of two refinements (4.3 and 4.4) and determining whether
one refinement is contained in (smaller than) another (4.4).

ι : τ → πτ (4.1)

t : ϕ→ ϕ→ ϕ (4.2)

u : ϕ→ ϕ→ ϕ (4.3)

v : ϕ→ ϕ→ Bool (4.4)

Figure 4.11: Operations on refinements

4.3.3 Lists

Lists, being a recursive data type, require a more complicated abstraction. We
might choose to abstract to only the shape of the list, remembering the nesting
of nil and cons constructors, but forgetting the elements of the list stored in the
cons constructors:

πList ::= β

| []

| ( : πList)

| ?

Figure 4.12: Shape abstraction for lists

In order to represent constraints generated by pattern-matching and ap-
plying a cons constructor to another expression, we need to be able to store
annotation variables (β) in the recursive positions of the cons constructor.

As lists can be of infinite length, this is not yet sufficient to guarantee that
the lattice formed by sets of abstracted lists satisfies the ascending chain con-
dition. The constraint solver will thus use widening operators ∇ : ϕ→ ϕ→ ϕ

and ∆ : ϕ → ϕ → ϕ to calculate the greatest lower and least upper bounds
after instantiating annotation variables in an abstracted lists (see Section 5.3.2),
that will limit the depth of an abstract list by replacing the recursive position
of the cons constructor at a user-specified depth by the wildcard ?.
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4.4 Type System

The analysis is defined by the constraint typing relation

Γ̂ ` e : τ̂  C & R.

The relations says that expression e has the annotated type τ̂ in the typing envi-
ronment Γ̂ if the type constraints C and refinements constraints R are satisfied.

The relation is defined by the typing rules given in Figure 4.15 and 4.16.

Implementation notes The implementation of this analysis is also capable
of handling simultaneous and mutually recursive functions and bindings. For
each binding group, we build a graph with a vertex for each binding and edges
from each usage of a particular binding to its definition. We determine the
strongly connected components of this graph—each component being a group
of mutually recursive bindings—and topologically sort the condensed graph to
determine the order in which the let-bindings should be nested. Each mutually
recursive group

let x1 = . . . xi . . . xj . . .

x2 = . . . xi . . . xj . . .

. . .

in . . .

is then treated as a single recursive binding

letrec xr = (. . . πi xr . . . πj xr . . . , . . . πi xr . . . πj xr . . . , . . .)

in . . .

where πk projects the kth element from an n-tuple.
The implementation also supports tuples of arbitrary arity and list literals.

Their type rules subsume T-Tuple and T-Nil.

4.5 Instantiation and Generalization

As in the Hindley–Milner type system, we need to instantiate type schemes
in the T-Var type rule and generalize types to a type scheme in the T-Let and
T-LetRec type rules. This last process is called let-generalization and is what
makes our analysis polyvariant. The addition of constraints—and necessity to
quantify over them—makes the instantiation and generalization slight more
complicated than it is in a plain Hindley–Milner type system.

When instantiating a type scheme we replace all type variables and annota-
tion variables in a type scheme and which are bound by a quantifier with fresh
variables and drop the quantifiers from the type scheme, resulting in a tuple
containing an annotated type and its associated constraint set.

During generalization we will unify the constraint set C and apply the re-
sulting substitution θC to both τ̂ and R (as some of the annotation variables
present in constraints in R may have been unified as well.) Next, we invoke
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θ = [α 7→ α′][β 7→ β′] α′, β′ fresh
inst(∀αβ. R⇒ τ̂) = (θτ̂ , θR)

Figure 4.13: Instantiation

the constraint solver to solve or simplify a part of the constraint set θCR. We
quantify over all annotation variables and type variables that are free in the
environment and store the remaining constraints from θCR—those which were
not solved—in the type scheme.

The essential detail here is choosing which constraints in θCR to solve. We
would like our analysis to be as polyvariant as possible and thus not prema-
turely fix the values of any annotation variables about which we can learn more
later—where “later” should be taken to mean “at the call site of a let-bound
function,” as we gain more information by applying arguments to it.

We thus exclude any constraints that directly or indirectly—through any
transitive constraints, as determined by the dependency analysis (Section 5.2)—
depend on annotation variables appearing in θCτ̂ from being solved and store
them in the type scheme instead, to be solved only at their call sites after hav-
ing been instantiated again. We will call such constraints input-dependent con-
straints.

θC = Û(C)

R′ = input-dependent(θCR, θCτ̂) θR = solve(θCR−R′)

α = ftv(θRθCτ̂)− ftv(Γ̂) β = fav(θRθCτ̂) ∪ fav(θRR
′)

gen(Γ̂, τ̂ , C,R) = ∀αβ. θRR′ ⇒ θRθCτ̂

Figure 4.14: Generalization
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Γ̂(x) = σ̂ inst(σ̂) = (τ̂ , R)

Γ̂ ` x : τ̂  ∅ & R
[T-Var]

Γ̂, x : α ` e : τ̂  C & R α, β fresh

Γ̂ ` λx. e : α
β→ τ̂  C & R ∪ {> ⊆ β}

[T-Abs]

Γ̂ ` f : τ̂f  Cf & Rf Γ̂ ` x : τ̂x  Cx & Rx αr, β fresh

Γ̂ ` f x : αr  Cf ∪ Cx ∪ {τ̂f = τ̂x
β→ αr} & Rf ∪Rx ∪ {β ⊆ >}

[T-App]

β fresh

Γ̂ ` n : Intβ  ∅ & {{ι(n)} ⊆ β}
[T-Int]

β fresh

Γ̂ ` True : Boolβ  ∅ & {{ι(True)} ⊆ β}
[T-True]

β fresh

Γ̂ ` False : Boolβ  ∅ & {{ι(False)} ⊆ β}
[T-False]

Γ̂ ` g : τ̂g  Cg & Rg β fresh

Γ̂ ` e1 : τ̂1  C1 & R1 Γ̂ ` e2 : τ̂2  C2 & R2

C = Cg ∪ C1 ∪ C2 ∪ {τ̂g = Boolβ , τ̂1 = τ̂2}
R = Rg ∪R1 ∪R2 ∪ {β ⊆ {True,False}}

Γ̂ ` if g then e1 else e2 : τ̂1  C & R
[T-If]

Γ̂ ` e1 : τ̂1  C1 & R1 Γ̂ ` e2 : τ̂2  C2 & R2 β fresh

Γ̂ ` (e1, e2) : (τ̂1, τ̂2)β  C1 ∪ C2 & R1 ∪R2 ∪ {> ⊆ β}
[T-Tuple]

Γ̂ ` e : (τ̂1, τ̂2)β  C & R

Γ̂ ` fst e : τ̂1  C & R ∪ {β ⊆ >}
[T-Fst]

Γ̂ ` e : (τ̂1, τ̂2)β  C & R

Γ̂ ` snd e : τ̂2  C & R ∪ {β ⊆ >}
[T-Snd]

Figure 4.15: Type system (part 1)
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α fresh β fresh

Γ̂ ` [] : [α]β  ∅ & {{[]} ⊆ β}
[T-Nil]

Γ̂ ` eh : τ̂h  Ch & Rh Γ̂ ` et : τ̂t  Ct & Rt β1, β2 fresh

C = Ch ∪ Ct ∪ {[τ̂h]β2 = τ̂t} R = Rh ∪Rt ∪ {{( :β2)} ⊆ β1}
Γ̂ ` eh : et : [τ̂h]β1  C & R

[T-Cons]

Γ̂ ` g : τ̂g  Cg & Rg Γ̂ ` en : τ̂n  Cn & Rn α, β1 fresh

C = Cg ∪ Cn ∪ {τ̂g = [α]β1} R = Rg ∪Rn ∪ {β1 ⊆ {[]}}
Γ̂ ` case g of {[]→ en} : τ̂n  C & R

[T-Case-N]

α, β1, β2 fresh

Γ̂ ` g : τ̂g  Cg & Rg Γ̂, h : α, t : [α]β2 ` ec : τ̂c  Cc & Rc

C = Cg ∪ Cc ∪ {τ̂g = [α]β1} R = Rg ∪Rc ∪ {β1 ⊆ {( :β2)}}
Γ̂ ` case g of {(h : t )→ ec} : τ̂c  C & R

[T-Case-C]

Γ̂ ` g : τ̂g  Cg & Rg α, β1, β2 fresh

Γ̂ ` en : τ̂n  Cn & Rn Γ̂, h : α, t : [α]β2 ` ec : τ̂c  Cc & Rc

C = Cg ∪ Cn ∪ Cc ∪ {τ̂g = [α]β1 , τ̂n = τ̂c}
R = Rg ∪Rn ∪Rc ∪ {β1 ⊆ {[], ( :β2)}}

Γ̂ ` case g of {[]→ en; (h : t )→ ec} : τ̂n  C & R
[T-Case-NC]

Γ̂ ` e1 : τ̂1  C1 & R1 gen(Γ̂, τ̂1, C1, R1) = σ̂

Γ̂, x : σ̂ ` e2 : τ̂2  C2 & R2

Γ̂ ` let x = e1 in e2 : τ̂2  C2 & R2

[T-Let]

Γ̂ ` λf. e1 : τ̂r  C1 & R1 gen(Γ̂, τ̂1, C1 ∪ {τ̂1 → τ̂1 = τ̂r}, R1) = σ̂

Γ̂, x : σ̂ ` e2 : τ̂2  C2 & R2

Γ̂ ` let f = e1 in e2 : τ̂2  C2 & R2

[T-LetRec]

Figure 4.16: Type system (part 2)
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4.6 Unification

To solve the constraint set C we use a unification algorithm Û that either com-
putes a substitution θ, such that θC contains only trivial equalities of the form
τ̂ = τ̂ or fails if the constraint set is unsolvable and the program is type incor-
rect.

Û : P(Constr)→ Subst

Û(∅) = id

Û({α = τ̂} ∪ C) = let θ =

{
[α 7→ τ̂ ] if α /∈ ftv(τ̂)

fail otherwise

in Û(θC) ◦ θ

Û({τ̂ = α} ∪ C) = let θ =

{
[α 7→ τ̂ ] if α /∈ ftv(τ̂)

fail otherwise

in Û(θC) ◦ θ
Û({τ̂1

ϕ1→ τ̂2 = τ̂ ′1
ϕ2→ τ̂ ′2} ∪ C) = let θ = V(ϕ1 = ϕ2)

in Û(θ{τ̂1 = τ̂ ′1, τ̂2 = τ̂ ′2} ∪ θC)

Û({Boolϕ1 = Boolϕ2} ∪ C) = let θ = V(ϕ1 = ϕ2)

in Û(θC) ◦ θ
Û({Intϕ1 = Intϕ2} ∪ C) = let θ = V(ϕ1 = ϕ2)

in Û(θC) ◦ θ
Û({(τ̂1, τ̂2)ϕ1 = (τ̂ ′1, τ̂

′
2)ϕ2} ∪ C) = let θ = V(ϕ1 = ϕ2)

in Û(θ{τ̂1 = τ̂ ′1, τ̂2 = τ̂ ′2} ∪ θC)

Û({[τ̂ ]ϕ1 = [τ̂ ′]ϕ2} ∪ C) = let θ = V(ϕ1 = ϕ2)

in Û(θ{τ̂ = τ̂ ′} ∪ θC)

otherwise = fail

The unification algorithms Û relies on a unification algorithm V that unifies
annotations.

V(ϕ1 = ϕ2) =

{
id if ϕ1 = ϕ2

[ϕ1 7→ ϕ2] otherwise

This unification algorithm V is straightforward, because the constraints in
C only concern simply annotated types—remember that these are annotated
types where the annotations can only be annotation variables and nothing else.

The resulting substitution can contain both mappings [α 7→ τ̂ ] from type
variables to annotated types and mappings [β1 7→ β2] from annotation vari-
ables to annotation variables.
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Constraint Solving

5.1 Overview

The constraint generation phase of the analysis generates two constraint sets:
a constraint set C containing equality constraints between simply annotated
types and a constraint set R containing subtype constraints between the an-
notations. As we have seen the constraint set C can be solved by a slightly
modified, but fairly traditional unification algorithm, resulting in a substitu-
tion θC from type variables to annotated types and from annotation variables
to annotation variables.

The first step in solving the constraints set R is to apply the substitution
θC to it, making sure any annotation variables that have been unified while
solving C are also unified in R.

The constraints inR can have various forms, for example: producing a True
will introduce a constraint

{True} ⊆ β

for a fresh annotation variable β. Pattern matching on an empty list (and noth-
ing else) will generate a constraint

β ⊆ {[]}

Recursive data types, such as lists, give rise to a more complicated form of
transitive constraints. For example, pattern matching on a list will generate a
constraint

β1 ⊆ {[], ( :β2)}

where β1 is the annotation variable on the scrutinee of the case-expression and
β2 the annotation on the tail of the list. Intuitively, if we learn something about
β1 this might influence what we know about β2 and vice versa.

To solve the constraint set R we need to find for each annotation variable
β on a type τ an (as large as possible) interval I = (l, u) ∈ L2 of the lattice
L abstracting the underlying type of the annotation variable that is consistent
with the constraint set. As the starting interval we take the whole of the lattice
(⊥L,>L). We then apply a worklist algorithm that will have constraints of

33
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the form {True} ⊆ β1 push the lowerbound l of the interval I1 belonging to β1
upwards and constraints of the form β2 ⊆ {[]} the upperbound u of the interval
I2 belonging to β2 downwards. Transitive constraints such as β1 ⊆ {[], ( :β2)}
will affect the upper- and lowerbounds of both β1 and β2.

5.2 Dependency Analysis

Transitive constraints—such as β1 ⊆ β2—which contain annotation variables
on both the left- and right-hand side of the constraint introduce dependencies
between constraints.

The dependency analysis phase of the analysis determines the dependen-
cies between subset constraints and annotation variables by building two de-
pendency graphs. One between annotation variables and one from annotation
variables to subset constraints. These two graphs are used when determin-
ing the input-independent constraints and by the worklist algorithm described
next.

5.3 Worklist Algorithm

5.3.1 Generic Worklist Algorithm

The constraints solver for the constraint set R is built on top of a generic work-
list algorithm:

worklist :: (a → b → ([a ], b))→ b → [a ]→ b

worklist r [ ] = r

worklist f r (x : xs) = let (ys, r ′) = f x r in worklist f r ′ (xs ++ ys)

The function argument f takes a takes a constraint x :: a and intermediate
result r :: b and returns a new intermediate result r ′ :: b and an additional set
of constraints ys :: [a ] the worklist algorithm has to add to its current working
set.

In our application of this generic worklist algorithm these additional con-
straints will be constraints that have been previously processed, but for which
the dependency checker has determined they may need to be looked at again,
because one or more of their dependent variables have been updated.

While the generic worklist algorithm does not necessarily terminate, it will
in our application. Abstract values are modelled by lattices satisfying the as-
cending chain condition, meaning the dependency analysis will eventually
stop feeding constraints into the worklist when all dependent variables have
reached their fixed points.

5.3.2 Resolving Individual Constraints

The function we pass as the argument f to worklist will—after having assisted
with dependency checking and updating—invoke the function resolveConstr ,
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which updates the intermediate result by making it consistent with an individ-
ual constraint.

In its most generic shape such a constraint will be of the form

β1 ∪ β2 ∪ ... ∪ βm ∪ {K1,K2, ...,Kn} ⊆ β′1 ∪ β′2 ∪ ... ∪ β′m′ ∪ {K ′1,K ′2, ...,K ′n′}

where βi, βi′ are annotation variables and Kj ,Kj′ are elements of some lattice
πτ—they can be thought of as constructors—possibly containing more annota-
tion variables within them.

In order to make the intermediate result consistent with this constraint we
may need to do two things:

1. Raise the lowerbound of refinement variables present—either directly as
one of the βi′s or inside one of the constructors K ′j′—in the right-hand
side of the constraint;

2. Lower the upperbound of refinement variables present in the left-hand
side of the constraint.

In order to accomplish the first resolveConstr will:

1. Instantiate all refinement variables on the left-hand side of the constraint—
including those inside constructors—with the current lowerbound recorded
in the intermediate result. Call this L. (For constructors we assume a
widening operator is applied during instantiation if this is required to
maintain the ascending chain condition of their corresponding lattice.)

2. For each refinement variable β′i′ on the right-hand side resolveConstr will
update θL(β′i′), the lowerbound for that variable as recorded in the inter-
mediate result, to θL(β′i′) t L.

3. For each constructor K ′j′ on the right-hand side resolveConstr will make
new constraints

Πp
Kj′

(L) ⊆ Πp
Kj′

({K ′j′})

where Πp
K projects out the pth field of a K-constructor or gives an empty

result if its input is not a K-constructor. This whole procedure will then
be recursively applied to the newly generated constraints.

In order to accomplish the second we can apply the same procedure mu-
tatis mutandis; in particular the updated value of the intermediate result in the
second step should now become θU(βi) uR.

Example Assume θ(β1) = ({[], ( :[]), ( :( :[]))},>) and θ(β2) = (⊥,>). Given
the constraint

{β1} ⊆ {( :β2)} (5.1)

resolveConstr will instantiate the left-hand side to

{[], ( :[]), ( :( :[]))} ⊆ {( :β2)} (5.2)
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As there is both a []-constructor and a ( : · )-constructor on the right-hand
side, resolveConstr will partition the constraint into two constraints

{[]} ⊆ ∅ (5.3)

{( :[]), ( :( :[]))} ⊆ {( :β2)} (5.4)

As the right-hand side of (5.3) is empty this constraint is discarded. Both left
and right-hand side of (5.4) have top-level ( : · )-constructors. We project out
their fields, resulting in the constraint

{[], ( :[])} ⊆ {β2} (5.5)

To solve this constraint resolveConstr will be recursively called on it. As
there is only a refinement variable on the right-hand side of (5.5) resolveConstr

will update θL(β2) to

⊥ t {( :[]), ( :( :[]))} = {( :[]), ( :( :[]))}

We have now “pushed up” the lowerbound of β2. Next, we “push down”
the upperbound of β1. We begin by instantiating the right-hand side of (5.1) to

{β1} ⊆ {( :[]), ( :( :[])), ..., ( :...( :[])...), ( :...( : ? )...)} (5.6)

We immediately end up with a constraint of the form β ⊆ {...}, so we do not
need to recurse and can update θU(β1) to

> u {( :[]), ( :( :[])), ..., ( :...( :[])...), ( :...( : ? )...)}
= {( :[]), ( :( :[])), ..., ( :...( :[])...), ( :...( : ? )...)}

The resulting intervals are now

θ(β1) = ({[], ( :[]), ( :( :[]))}, {( :[]), ( :( :[])), ..., ( :...( : ? )...)})
θ(β2) = ({( :[]), ( :( :[]))},>)

As the lowerbound of β1 is no longer contained in its upperbound—the
lowerbound includes a []-constructor, while the upperbound does not—we
have detected a possible pattern match failure.
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Evaluation

6.1 Examples

6.1.1 Higher-order functions

Given the program

main = λb → λphi → if b

then if phi 42 then 100 else 200

else if phi 43 then 300 else 400

the analysis will infer the type ∀αβ. {α ⊆ {False,True}, β ⊆ {False,True}} ⇒
(Boolα >→ ((Int{+} >→ Boolβ)

>→ Int{+})).

6.1.2 Detecting pattern match failures

Given the program

main = let f = λb → λphi → if b

then if phi [42] then 100 else 200

else if phi [43] then 300 else 400

g = λx → case x of

[ ]→ True

h = λx → case x of

(a : as)→ True

in f True g

the analysis will report that a pattern match failure occurs. Changing f True g

into f True h will make the pattern match failure—and the reporting of it by
the analysis—go away.

6.1.3 filter

We given the program
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main = let filter = λp → λys → case ys of

[ ] → [ ]

(x : xs)→ let g = p x

in if g then x : filter p xs

else filter p xs

in filter (λx → x ) [True,False ]

the analysis will infer the type [Bool{False,True}]>.

6.2 Limitations

6.2.1 Context-insensitivity

The analysis is context-insensitive. Given the program:

main = let f = λb → let tail = λxss → case xss of

(x : xs)→ xs

in tail (if b then [ ] else [1, 2, 3])

in f False

a pattern match failure will be reported. One does not occur practice, as the
value False passed to b will prevent an empty list being returned from the
if-then-else expression to tail . Section 9.2.2 discusses how to alleviate this lim-
itation.

6.2.2 Structurally recursive functions

Our analysis suffer from another limitation: the inferred type for a number of
structurally recursive function such as map and foldr is not precise enough.

While the inferred type for tail

∀α, (β ⊆ ( :γ)). [α]β → [α]γ

expresses everything we can say about the function—the values of the ele-
ments in the list are preserved and the lenght is output list is one element
shorten than the input—this is not the case for map:

∀α, β, γ. (α→ β)→ [α]γ → [β]>

Our constraint solver is not able to infer from the constraints generated by the
pattern matching on the input list and subsequent cons of the modified head
and tail that map preserves the length of the list. I.e., we would have expected
the type

∀α, β, γ. (α→ β)→ [α]γ → [β]γ

This will be a severe limitation in practice, as even innocent functions such as
head (map id [1 . . 9]) will result in a pattern match warning.
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Implementation

An implementation of the analysis has been implemented in Haskell. It has
been built on top of the haskell-src-exts library, which is used for both pars-
ing of the input and representation of the abstract syntax tree.

Refinements and other extensions on Haskell’s type system that are re-
quired for the analysis are represented using the annotation fields available
in the abstract syntax of Language.Haskell.Exts.Annotated.

An overview of the modules that comprise the implementation can be found
in Figure 7.1.

Additionally, we have build a collection of example functions that where
used for regression testing purposes during the development of the analysis
and its implementation.

A demonstration of the implementation can be found in Appendix A.

Module Lines Description
Main 134 Main
TypeInference 391 Constraint generation
PatternTyping 153 Typing of patterns
Solver 263 Constraint solving
Common 342 Substitution and unification
Refinements 152 Refinements (representation and operations)
Abstract.* 355 Abstract values (unit, booleans, integers, lists)
Util.* 48 Miscellaneous

Figure 7.1: Module overview

39



40 CHAPTER 7. IMPLEMENTATION



Chapter 8

Related Work

8.1 Neil Mitchell’s Catch

Neil Mitchel’s Catch (“CAse Totality CHecker”) [9] is a tool specialized in find-
ing potential pattern match failures in Haskell programs.

8.1.1 Overview

Catch works by calculates preconditions on functions. The preconditions are
given in a constraint language. By varying the constraint language trade-offs
between performance and precision can be made. If the calculated precondi-
tion for main is True, the program does not crash.

Preconditions are calculated iteratively. Precondition start out as True , ex-
cept for error , whose precondition is False .1

Example Following the example given by Mitchell, given the function:

safeTail xs = case null xs of

True → [ ]

False → tail xs

the computed precondition will be:

Precondition(null xs) ∧ (null xs ∈ {True} ∨ Precondition(tail xs)),

stating the necessary precondition for null xs not to crash must be fulfilled and
either null xs must evaluate to True or the necessary precondition for tail xs

not to crash must be fulfilled.
As null xs cannot crash we find its precondition to be simply True and we

can deduce the precondition for tail xs to be xs ∈ {(:)}. Substituting these into
our precondition we find

True ∧ (null xs ∈ {True} ∨ xs ∈ {(:)}),
1Note that undefined is defined in terms of error .
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which simplifies to
null xs ∈ {True} ∨ xs ∈ {(:)}.

The subexpression null xs ∈ {True} forms a postcondition on null xs . From
this postcondition Catch computes the required precondition that satisfies it,
which in this particular case should turn out to be xs ∈ {[]}. Substituting, we
find

xs ∈ {[]} ∨ xs ∈ {(:)},
which, using our knowledge of the list data type, turns out the be a tautology,
i.e. the (trivial) precondition for safeTail is True.

8.1.2 Constraint Systems

The example in the previous section used a simple constraint language, speci-
fying to which set of head constructors an expression should evaluate. Mitchell
developed two more expressive constraint systems: regular expression con-
straints and multipattern constraints.

Regular expression constraints Constraints are formed by a regular expres-
sion over an alphabet of a number of ad-hoc selectors (e.g. hd and tl for lists.)
A precondition for map head xs using regular expression constraints reads
xs ∈ (tl∗ · hd  {(:)}). It should be interpreted as “after applying zero or more
tls to xs and then applying a hd we should find a (:) constructor.”

According to Mitchell regular expression constraints tend to scale badly
as the program increase in size, although he could not identify more specific
condition under which this problem manifests.2

Multipattern constraints Multipatterns are of the form α ? ρ, where α gives
the set of constructors that are valid at the head of the value, while ρ gives
the set of constructors that can appear at the recursive positions (if any) of the
constructor at the head of the value. The elements of these sets can again be
multipatterns. To specify that xs in map head xs should be a list of non-empty
lists, we use the multipattern:

{[], (:)({(:) Any} ? {[], (:) Any})}
?

{[], (:)({(:) Any} ? {[], (:) Any})}

Any is a wildcard that matches any constructor.

8.1.3 Discussion

The analysis of Catch works on a first-order language. The input program
needs to be defunctionalized before it can be analyzed. The defunctionalization
algorithm employed by Catch is not complete.

Calculated preconditions are unnecessarily restrictive in the presence of
laziness (Mitchell, p. 142).

2Personal communication
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t ::= {x|p} Predicate
| x : t1 → t2 Dependent function
| (t1, t2) Constructor
| Any Polymorphic “Any”

Figure 8.1: Syntax of Xu’s contracts

8.2 Static Contract Checking

8.2.1 Overview

Dana Xu’s work on static contract checking for Haskell [19] (including the
ESC/Haskell system [18]) allows checking of arbitrary programmer supplied
pre- and postconditions on functions and is able to detect pattern match fail-
ures in the process.

Programmers define pre- and postconditions in the form of a contract (a
refinement type). An appropriate contract for the head function defined above
might be:

{-# CONTRACT head :: {s | not (null s)) -> {x | True} #-}

This contract states that if head is given a list s for which the predicate¬ (null s)

holds, i.e. it is a non-empty list, the function will not crash3, indicated by the
trivial postcondition True on the return value.

Contracts can be constructed from predicates, a dependent function space
constructor, arbitrary constructors and a polymorphic Any contract that is al-
ways satisfied, including by functions which crash (Fig. 8.1). Any Bool -valued
Haskell expression can be used as a predicate.

Dependent functions are helpful when declaring a contract, e.g. for the
reverse function:

{-# CONTRACT reverse
:: {xs | True} -> {rs | length xs == length rs} #-}

The predicate on the return value depends on the input. Constructors and the
Any contract are useful when declaring a contract for fst :

{-# CONTRACT fst :: (Ok, Any) -> Ok #-}

Here Ok is used as a shorthand for {x | True }. As fst discards the value on the
right in the tuple we should not care if it is an expression that crashes, so we
can not use Ok .

8.2.2 Contract Checking

Haskell’s syntax is extended with two exception values—BAD and UNR—which
are only used internally by the checker. BAD signifies an expression which
crashes and UNR an expression which is either unreachable or diverges.

3The system only guarantees partial correctness, so the term might still diverge.
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In the program that is going to be verified all crashing expressions (includ-
ing error and undefined), as well as missing patterns in case-expressions are
replaced by BAD exceptions.

The verification of the contracts is based on a translation of the contracts
into Findler–Felleisen wrappers [2], which will cause a function to crash (using
BAD) if it disobeys its contract or diverge if it called in a way that is not per-
mitted. While technically interesting it is not directly relevant to the detection
of pattern match failures so we shall not discuss it in more depth.

The actual verification process continues by symbolic evaluation, basically
applying various simplifications to the resulting program including β-reductions.
Any code deemed to be unreachable is pruned from the program.

The presence of recursive functions in the contracts might cause the sym-
bolic evaluation to diverge if care is not taken to limit the number of evaluation
steps. By setting an upper bound on the number of simplification steps we lose
accuracy, but gain decidability of the verification process.

Arithmetical expressions in case-expressions (e.g. case x∗x > 0 of {True →
...; False → BAD }) cannot be handled directly by the symbolic evaluator. These
are collected in a table and send to an external constraint or SMT solver. If the
solver determines these expressions are inconsistent the code is unreachable
and can be pruned.

After the symbolic evaluation has terminated the checker will tell the pro-
grammer if the program is “definitely satisfies the contract” (if no BAD excep-
tions remain anywhere in the program), “definitely does not satisfy the con-
tract” or “don’t know.”

8.2.3 Discussion

Unlike our envisioned system, Xu’s static contract checking requires program-
mer supplied contracts on nearly all functions (contracts on trivial functions
can be omitted and are handled by inlining their definition when called.) Com-
pared to Mitchell’s Catch it can handle higher-order functions natively and has
a more (too?) expressive contract language.

8.3 Dependent ML

DML(L) is an extension of the ML programming language which enriches ML’s
type system with a limited form of dependent types over a (decidable) con-
straint domain (or index language) L [17].

Xi’s initial example—recast in a more Haskell-like syntax—declares a List

data type dependent on an integer corresponding to the length of the list and
a function to concatenate two such lists:

type Nat = {a :: Int | a >= 0}

data List<Int> a = Nil<0>
| {n :: Nat} Cons<n+1> a (List<n> a)
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(++) :: {m :: Nat} {n :: Nat} List<m> a -> List<n> a -> List<m+n> a
(++) Nil ys = ys
(++) (Cons x xs) ys = Cons x (append xs ys)

For many functions producing a list, the exact length might not be derived
by such a trivial calculation (m + n) on the lengths of the input lists. A promi-
nent example is the filter function:

filter :: (a -> Bool) -> {m :: Nat} List<m> a
-> [n :: Nat | n <= m] List<n> a

filter p Nil = Nil
filter p (Cons x xs) | p x = Cons x (filter p xs)

| otherwise = filter p xs

here we only know that the resulting list is equal or shorter in length than the
input list (n 6 m). This is expressed as the dependent sum [n :: Nat | n 6 m ].
In a full-fledged dependently-typed language we would also return a proof
object stating the predicate p holds for all the elements in the output list, but
this is beyond the expressive power of DML.

What we gain is a relief from the need to provide proofs for trivial arith-
metical (in)equalities. Imagine a zip function which requires the two list to be
zipped together to be of equal length. When calling zip (xs ++ ys) (ys ++ xs)

this precondition seems to be intuitively satisfied. From the point-of-view of
the compiler the first list has length m+n and the second lists n+m, however.
In most dependently-typed languages we will now have to invoke a lemma or
tactic proving the commutativity of addition. DML can simply send the con-
straintm+n = n+m to an ILP solver and conclude the constraint is satisfiable.

8.3.1 Discussion

Compared to Xu’s static contract checking, Xi’s DML constrains the constraint
system to a decidable theory. The constraints and indices—such as m + n and
n 6 m—may superficially look like ordinary Haskell expression, but in fact
belong to a much smaller index language. While type checking is decidable,
type inference is not and as a result DML still requires type annotations.

To be applicable to a pattern match analysis we must try to infer a type like:

head :: {n :: Int || n >= 1} [a]<n> -> a

for the head function. We also have to implicitly extend the list data type with
an index representing its length.

This seems significantly more challenging than inferring the Catch-like type

head :: {xs :: [a] | xs ∈ (:) } -> a

The correspondence between the type and the pattern matching happening in
the definition of head is much more direct.
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List a

Singleton a ∨ Nil a

Singleton a Nil a

⊥

Figure 8.2: A lattice of List and its rectypes.

8.4 Refinement Types

Refinement types are a form of subtyping that allow us to state more accurately
what values a variable of a particular type can contain. For example, a refine-
ment type { a :: Int | a < 0 } states that a is a variable of type Int that
can only contain negative numbers.

Freeman and Pfenning [4, 3] give a formal development of refinement types
for the ML programming language that can support recursive types.

Their key contribution is allowing the programmer to define rectypes. Be-
sides defining a recursive type for lists:

data List a = Nil || Cons a (List a)

the programmer can also define a rectype describing singleton lists:

rectype Singleton a = Cons a Nil

Together with an automatically derived rectype for the non-recurisive con-
structor Nil (and a union type contructor) the compiler can construct—using
known algorithms on regular tree grammars [5]—a finite lattice of refinement
types for List a given in Figure 8.2.

8.4.1 Union and Intersection Types

Refinement types are constructed from regular types, including function types,
as well as union and intersection types.

A union type such as Int ∨ Bool, List a ∨ Singleton a or Int -> Int
∨ Bool -> Bool state that a value can be either of the type on the left or of
the type on the right, but we do not know which. In the case of List a ∨
Singleton a we are able to simplify this type to List a, as Singleton a is a
subtype of List a.

An intersection type such as Int ∧ Bool, List a ∧ Singleton a or Int
-> Int ∧ Bool -> Bool state the a value has both the type on the left and the
type on the right. Compared to union types these are more interesting. The
type List a ∧ Singleton a can still be simplified, but now to Singleton a.
A value cannot be of both type Int and Bool, so we can simply the type of such
a value to the bottom or empty type. There do exist functions that are of both



8.5. COMPILING PATTERN MATCHING 47

type Int -> Int and Bool -> Bool, for example id. In fact, intersection types
can in the limit be viewed as a form of parametric polymorphism.

8.4.2 Constructors and Pattern Matching

To infer refinement types more accurate types need to be given to constructors.
This is done by using a restricted4 form of intersection types. For example, the
Cons constructor is given the type:

Cons :: a -> Nil a -> Singleton a
&& a -> Singleton a -> List a
&& a -> List a -> List a

This type can be derived automatically from the rectype declarations. Types
of functions can also be inferred automatically, although there may be a loss of
precision when higher-order functions or polymorphism are involved.

Type inference for intersection types is undecidable in general [13, 15]. Be-
cause the lattice of types is finite the algorithm is effectively able to do an ex-
haustive search over all possible types, however. Higher-order functions can
cause the size of the type to blow up exponentially, each pairing of their range
and domain needs to be included in the intersection type.

A case-statement

case G of
Nil -> E1
Cons a as -> E2

can be seen as a call to a higher-order function

case_List G E1 (\a as -> E2)

where case List has the refinement type

case_List :: forall a. forallR (r1 :: a). forallR (r2 :: a).
Nil a -> r1 -> (List a -> r2) -> r1

/\ Singleton a -> r1 -> (List a -> r2) -> r2
/\ List a -> r1 -> (List a -> r2) -> (r1 \/ r2)

8.5 Compiling Pattern Matching

Case-statements in toy languages often have a very simple decision tree seman-
tics. Case-statements in Haskell have a more complex backtracking automaton
semantics. There is a body of work on compiling the latter into the former.
Maranget [7] gives an algorithm for determining whether a case-statement is
exhaustive and whether all patterns are useful. As the analysis does not con-
sider any dataflow information it is much too imprecise for our purpose. It

4We only take intersections of subtypes of the same data type.
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does turn out that the analysis closely follows, but can at places be simpli-
fied with respect to, the manner in which pattern matching is compiled. This
indicates we might also be able to follow such an approach when analyzing
case-statements in our pattern-match analysis.
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Conclusions and Further
Research

9.1 Conclusions

Using our analysis we are able to statically detect pattern match failures—or
the absence of them, where a more naive totality checker would have given
us spurious warnings. Using a type and effect system to do pattern match
analysis certainly appears to be a viable approach.

As we demonstrated in Chapter 6, there are a number of limitations to our
current analysis that may result in reduced accuracy, that is, an increase in the
number of false positives. We will present a number of suggestion for further
research that may help overcome these limitations.

9.2 Improving Precision

9.2.1 Intersection Types

The analysis sketched so far falls short if we want to analyze functions using
common operators such as (+) or (6). To see the problem here we should ask
ourself what type we would like to assign to such expressions. The operator
(6) can take any integer arguments—which does not cause a pattern match
failure when evaluated—and returns either True or False without causing a
pattern match failure itself. The most reasonable annotated type for this oper-
ator thus seems to be:

(6) : Int> → Int> → Bool>

Using the operator in the following situation:

f x = if 0 6 1 then x else crash

will produce a spurious warning about a pattern-match error occurring.
The guard of the if-then-else expression will always evaluate to True, but be-

49



50 CHAPTER 9. CONCLUSIONS AND FURTHER RESEARCH

cause of the type we have assigned to (6) the analyzer will believe it might
evaluate to False as well.

The root of the problem is that we can assign several different valid refine-
ment types to (6):

(6) : Int{−} → Int> → Bool{True}

(6) : Int{0,+} → Int{−} → Bool{False}

(6) : ...

neither of which is a principal type—that is having as its refinements a strictly
minimal set of values on types in a covariant positions and a stricly maximal
set of values on types in a contravariant position.

A solution would be to assign this expression a more accurate intersection
type (see Section 8.4.1). For example, when using a sign abstraction for integers:

(6) : Int{−} → Int> → Bool{True} ∧ Int{0,+} → Int{−} → Bool{False} ∧ ...

Note that—for our purposes at least—if we assign some expression e the
intersection type τ̂1 ∧ τ̂2 ∧ ... ∧ τ̂n then any two annotated types τ̂i and τ̂j will
have the same underlying type (bτ̂ic = bτ̂jc) and the two types will thus only
differ in their annotations.

To represent intersection types we therefore only have to keep track of the
various possible assignments of the annotation variables. We can integrate this
concept neatly into our type system by modifying the typing relation Γ̂ ` e :

τ̂  C & R to a typing relation

Γ̂ ` e : τ̂  C & R̄

where R̄ is a set of constraint sets over the refinements, expressing the various
possible assignments of annotations; one constraint set for each components of
the intersection type.

All typing judgments will need to be modified to properly propagate the
sets of constraint sets. During simplification any constraint sets that are incon-
sistent can be removed.

9.2.2 Implication Constraints

In k-CFA data-flow is used to improve the precision of the control-flow analysis
[16]. Conversely, we can try to improve the precision of our data-flow anlysis
by considering the control-flow.

Consider again the program we saw in Section 3.2:

main b f = if b then

if f 42 then 100 else 200

else

if f 43 then 300 else 400

We assigned this the type:

Bool{True,False} → (Int{42,43} → Bool{True,False})→ Int{100,200,300,400} (9.1)
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If we have more knowledge about the exact value of b, e.g. b being always
True or False, we can infer the more precise types

Bool{True} → (Int{42} → Bool{True,False})→ Int{100,200} (9.2)

and
Bool{False} → (Int{43} → Bool{True,False})→ Int{300,400} (9.3)

This knowledge can be expressed using implication constraints

ρ1 ⊆ ρ2 |= ρ3 ⊆ ρ4

where the constraint ρ3 ⊆ ρ4 on the right-hand side only has to hold if the
constraint ρ1 ⊆ ρ2 on the left-hand side holds.

The original type (9.1) and additional types (9.2) and (9.3) can together be
represented as a single type using implication constraints:

∀α, β, γ. {{True} ⊆ α |= {42} ⊆ β, {True} ⊆ α |= {100, 200} ⊆ γ,
{False} ⊆ α |= {43} ⊆ β, {False} ⊆ α |= {300, 400} ⊆ γ,

α ⊆ {True,False}} ⇒ Boolα → (Intβ → Bool{True,False})→ Intγ

It is not yet clear if implications constraints would be orthogonal to inter-
section types. We could represent the type equivalently as:

Bool{True,False} → (Int{42,43} → Bool{True,False})→ Int{100,200,300,400}

∧ Bool{True} → (Int{42} → Bool{True,False})→ Int{100,200}

∧ Bool{False} → (Int{43} → Bool{True,False})→ Int{300,400}

9.2.3 Set-based Constraints

It is worth investigating if the generated constraints can be formulated in terms
of set-based constraints [1, 6]. More elaborate solvers (such as BANE) have been
developed for this type of constraints and may give more accurate results than
our current solver.

9.3 Improving Applicability

9.3.1 Handling undefined

While our analysis can detect pattern match failures due to missing alterna-
tives in case-expressions, we would also like to detect failures occurring due to
evaluating undefined or error .

A straightforward approach would seem to add an additional value ⊥—
not to be confused with the least element of a lattice—to the language of re-
finements ϕ, representing a value the diverges if evaluated. The type rules
for constructs that perform pattern matching already, such as T-If and T-App,
already ensure that such values would not be allowed as the scrutinee of a
pattern match.

There are still two hurdles that need to be overcome, however:
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1. While the type constructors for lists, tuples and functions already come
prepared with an annotation in which the diverging value⊥ can be stored,
undefined itself has the polymorphic type ∀α. α. Type variables, how-
ever, do not come equipped with an annotation, so we cannot assign it
the obvious type ∀α. α{⊥}.

2. Without context-sensitivity in the type rules T-If and T-Case, they will
simply propagate the diverging value forward if it occurs in any one
of the branches of an if-then-else or case-expression. Adding context-
sensitivity as described Section 9.2.2 would be a prerequisite.



Appendix A

Demonstration of
Implementation

A.1 Input

main = let f = \b -> \phi -> if b
then if phi [42] then 100 else 200
else if phi [43] then 300 else 400

g = \x -> case x of
[] -> True

h = \x -> case x of
(a:as) -> True

in f True g

A.2 Output

"== [1] REFINEMENT TYPES =============================="
?148
-- [2] --------------------
[?0 = [?15]@?27 | ?
,?1 = [?46]@?82 | ?
,?4 = Bool@?193 | ?
,Int@?247 = Int@?274 | ?
,?2299 = Bool@?463 | ?
,Int@?247 = Int@?355 | ?
,?58 = (?1003 -> ?2299)@?3595 | app1
,?1003 = [?571]@?3163 | app2
,Int@?4459 = ?571 | ?
,?2326 = Bool@?490 | ?
,Int@?274 = Int@?382 | ?
,?58 = (?1030 -> ?2326)@?3622 | app1
,?1030 = [?598]@?3190 | app2
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,Int@?4486 = ?598 | ?
,?418 = (?67 -> ?148)@?229 | app1
,?67 = (?1 -> Bool@?28)@?10 | app2
,(?4 -> (?58 -> Int@?247)@?85)@?31 = (?175 -> ?418)@?661 | app1
,?175 = Bool@?94 | app2
]
-- [3] --------------------
λ ⊆ ?3
?27 ⊆ {_:?39}
{True} ⊆ ?12
λ ⊆ ?10
?82 ⊆ {[]}
{True} ⊆ ?28
λ ⊆ ?31
λ ⊆ ?85
?193 ⊆ {False,True}
?463 ⊆ {False,True}
λ ⊆ ?3595
{_:[]} ⊆ ?3163
{+} ⊆ ?4459
{+} ⊆ ?247
{+} ⊆ ?355
?490 ⊆ {False,True}
λ ⊆ ?3622
{_:[]} ⊆ ?3190
{+} ⊆ ?4486
{+} ⊆ ?274
{+} ⊆ ?382
λ ⊆ ?229
λ ⊆ ?661
{True} ⊆ ?94
-- [4] --------------------
?0 7→ [?15]@?27
?1 7→ [Int@?4459]@?82
?1003 7→ [Int@?4459]@?82
?1030 7→ [Int@?4459]@?82
?148 7→ Int@?382
?175 7→ Bool@?94
?2299 7→ Bool@?28
?2326 7→ Bool@?28
?4 7→ Bool@?94
?418 7→ (([Int@?4459]@?82 -> Bool@?28)@?10 -> Int@?382)@?229
?46 7→ Int@?4459
?571 7→ Int@?4459
?58 7→ ([Int@?4459]@?82 -> Bool@?28)@?10
?598 7→ Int@?4459
?67 7→ ([Int@?4459]@?82 -> Bool@?28)@?10
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. .[5]. . . . . . . . . . .
?193 7→ ?94
?247 7→ ?382
?274 7→ ?382
?31 7→ ?661
?3163 7→ ?82
?3190 7→ ?82
?355 7→ ?382
?3595 7→ ?10
?3622 7→ ?10
?4486 7→ ?4459
?463 7→ ?28
?490 7→ ?28
?85 7→ ?229
---------------------------
Sanity check: PASSED
-= [6] =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
Int@?382
-- [7] --------------------
λ ⊆ ?3
?27 ⊆ {_:?39}
{True} ⊆ ?12
λ ⊆ ?10
?82 ⊆ {[]}
{True} ⊆ ?28
λ ⊆ ?661
λ ⊆ ?229
?94 ⊆ {False,True}
?28 ⊆ {False,True}
λ ⊆ ?10
{_:[]} ⊆ ?82
{+} ⊆ ?4459
{+} ⊆ ?382
{+} ⊆ ?382
?28 ⊆ {False,True}
λ ⊆ ?10
{_:[]} ⊆ ?82
{+} ⊆ ?4459
{+} ⊆ ?382
{+} ⊆ ?382
λ ⊆ ?229
λ ⊆ ?661
{True} ⊆ ?94
-= [8] =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
Lower: {[?27 ˜> {?27 ⊆ {_:?39}}]}
Upper: {[?39 ˜> {?27 ⊆ {_:?39}}]}
. .[9]. . . . . . . . . . .
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"?10 ˜> {}"
"?12 ˜> {}"
"?229 ˜> {}"
"?27 ˜> {\"?39\"}"
"?28 ˜> {}"
"?3 ˜> {}"
"?382 ˜> {}"
"?39 ˜> {\"?27\"}"
"?4459 ˜> {}"
"?661 ˜> {}"
"?82 ˜> {}"
"?94 ˜> {}"
-- [10] -------------------
Input vars : fromList []
Input-dependent vars: fromList []
-- [11] -------------------
. .[12] . . . . . . . . . .
λ ⊆ ?3
?27 ⊆ {_:?39}
{True} ⊆ ?12
λ ⊆ ?10
?82 ⊆ {[]}
{True} ⊆ ?28
λ ⊆ ?661
λ ⊆ ?229
?94 ⊆ {False,True}
?28 ⊆ {False,True}
λ ⊆ ?10
{_:[]} ⊆ ?82
{+} ⊆ ?4459
{+} ⊆ ?382
{+} ⊆ ?382
?28 ⊆ {False,True}
λ ⊆ ?10
{_:[]} ⊆ ?82
{+} ⊆ ?4459
{+} ⊆ ?382
{+} ⊆ ?382
λ ⊆ ?229
λ ⊆ ?661
{True} ⊆ ?94
-- [13] -------------------
?10 7→ (λ,λ)
?12 7→ ({True},{False,True})
?229 7→ (λ,λ)
?27 7→ ({},{_:[],_:_:[],_:_:_:[],_:_:_:_:[],_:_:_:_:_:*})
?28 7→ ({True},{False,True})
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?3 7→ (λ,λ)
?382 7→ ({+},{-,0,+})
?39 7→ ({},T_List)
?4459 7→ ({+},{-,0,+})
?661 7→ (λ,λ)
?82 7→ ({_:[]},{[]})
?94 7→ ({True},{False,True})
---------------------------
Sanity check: FAILED
Sanity check: FAILED
-- [14] -------------------
>> PATTERN-MATCH FAILURE DETECTED!!! <<
---[15] -------------------
forall. [] => Int@{+}

A.3 Legend

The individual sections of the output generated by our implementation of the
analysis are:

1. The inferred type τ̂ (without any substitutions having been applied to it.)

2. The inferred equality constraint set C (without any substitutions having
been applied to it.)

3. The inferred subset constraint set R (without any substitutions having
been applied to it.)

4. The substitution θC of type variables found by unifying C.

5. The substitution θC of annotation variables found by unifying C.

6. The inferred type τ̂ with the substitution θC applied to it.

7. The inferred subset constraint setR with the substitution θC applied to it.

8. Dependency analysis of the constraints.

9. Dependency analysis of the annotation variables.

10. List of input and input-dependent variables.

11. Input-dependent constraints (R′).

12. Input-independent constraints (R−R′).

13. Solution of R−R′ found by constraint solver.

14. Result of the analysis (“pattern match failure detected” or “no pattern
match failure can occur at run-time.”)

15. Inferred type after generalization.

The intermediate steps of the analysis are shown for the top-level binding only.
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