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In this thesis we introduce stable Voronoi treemaps, a visualization technique that is

designed for software quality monitoring. When monitoring the quality of a software

system the analysis results of multiple versions of a software system have to be inter-

preted. Stable Voronoi treemaps help with interpreting the analysis results by creating

stable and deterministic pictorial representations. This means that insight gained in one

pictorial representation can easily be carried over to another.

As part of our implementation of stable Voronoi treemaps we introduce a sweep line

algorithm for additively weighted power Voronoi diagrams. The algorithm extends For-

tune’s algorithm for Voronoi diagrams by adding weights to the Voronoi sites and using

the power distance function that takes those weights into account.

To provide stability to Voronoi treemaps we introduce an algorithm based on scaled

Hilbert curves that places Voronoi sites in a deterministic manner. By also enforcing a

strict order on the data being visualized we can ensure that the pictorial representations

remain visually close to each other while clearly showing the difference.

Using an empirical study we validate our result and conclude that stable Voronoi treemaps

are useful for software quality monitoring and software quality assessment in general.
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Chapter 1

Introduction

Software visualization is the process of giving a pictorial representation of a software

system. These pictorial representations are used to visualize many aspects of software

systems, such as algorithm, control flow and metrics. Every aspect of a software system

can be visualized in some way, shape or form, from indentation in integrated develop-

ment environments to a three-dimensional representation of the control flow.

Software visualizations are often used to give the viewer an easier way of grasping a

certain aspect of the software system than looking at the raw source code. When the

visualized software system is small, the resulting picture is easy to interpret as a whole.

But when software systems get larger, the amount of information present in the visual-

ization grows too. The interpretation gets a lot harder when the viewer is bombarded

with sensory data. Several special visualizations have been developed to cope with large

amounts of data.

Most current software visualizations are geared towards a one-time visualization of a

software system. When visualizing multiple versions of the same software system a new

set of problems appears. Consistency of visualizations of different versions of the same

software system is needed to guarantee that the viewer is able to take insights from one

version and transfer them to another. The changes between versions should be easy to

spot in order to allow the viewer to update his insight instead of having to create it anew.

Voronoi treemaps are well suited for visualizing large software systems. Voronoi treemaps

use Voronoi tessellation to build very readable and aesthetically pleasing pictorial rep-

resentations of treelike structures. They are inherently suited for visualizing software

1



Chapter 1. Introduction 2

systems, because these systems often have a treelike structure. For example, inheritance

and package structures are often treelike. However, the original Voronoi treemap al-

gorithm is not usable when visualizing different versions of the same software system,

because it generates wildly different visualizations. We will extend the original Voronoi

treemap algorithm in such a way that it can be used to visualize multiple versions of

the same software system. We will also extend it so that it can be used in an interactive

environment.

1.1 Thesis focus

This work focuses on the development of a software visualization technique that can

be used to produce easy to interpret pictorial representations of large software systems.

These pictorial representations should not only be easy to interpret, but also be consis-

tent. This means that when two versions of the same software system are visualized,

you can easily see that they are related. The visualization technique is used on several

different software systems to evaluate the pictorial representations that are produced.

The requirements for the software visualization are as follows.

• The visualization technique should produce pictorial representations of large soft-

ware systems that allow the viewer to get a better understanding of the software

systems.

• The visualization technique should be deterministic: it should produce the same

pictorial representation for multiple runs on the same input data.

• The visualization technique should be versatile enough to allow the creation of

pictorial representations of different aspects of the same software system.

• Pictorial representations of different aspects of the same software system should

be similar enough to identify the same object with ease.

• Pictorial representations of different versions of the same software system should

be consistent enough for the viewer to easily identify that it is in fact the same

system that is being looked at, unless it has changed significantly.

• Pictorial representations of different versions of the same software system should

allow the viewer to identify changes between the versions.
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• The visualization technique should be able to create the pictorial representation

with reasonable speed.

1.2 Main contributions

In this thesis we introduce stable Voronoi treemaps based on two new algorithms: a

sweep line algorithm for additively weighted power Voronoi diagrams and an algorithm

to create stable Voronoi treemaps.

Our sweep line algorithm for additively weighted power Voronoi diagrams is based on

Fortune’s algorithm for Voronoi diagrams. We extend Fortune’s algorithm with weighted

Voronoi sites and the power distance function.

To create stable Voronoi treemaps we develop an algorithm based on Hilbert curves. We

enforce a strict order on the data we visualize and use Hilbert curves to place the data

points on the visualization in a deterministic fashion. We also improve the algorithm,

based on our observation that we can optimize the placement of data points. This

improves the speed of the creation of stable Voronoi treemaps.

1.3 Thesis organization

This thesis builds stable Voronoi treemaps from the bottom up. We start by identifying

the benefits and drawbacks of Voronoi treemaps. Then we extend Fortune’s algorithm

for Voronoi diagrams to be able to create additively weighted power Voronoi diagrams.

Next, we build on the extended algorithm to create Voronoi treemaps. Finally, we

introduce our algorithms to create stable Voronoi diagrams. We validate our results by

using an empirical study.

Chapter 2 introduces the problem domain of the SIG and the value of visualization.

We also discuss several visualization techniques and show why Voronoi treemaps are the

focus of the rest of this thesis.

Chapter 3 builds a sweep line algorithm for additively weighted power Voronoi diagrams

based on Fortune’s algorithm. We first show what Voronoi diagrams are and then how

they are constructed using Fortune’s algorithm. After that, we extend that algorithm

for additively weighted power Voronoi diagrams.

Chapter 4 uses the algorithms introduced in Chapter 3 to create Voronoi treemaps. We

explain how to recursively build a Voronoi treemap.
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Chapter 5 introduces stable Voronoi treemaps. By using deterministic Voronoi site

placement we are able to create stable Voronoi treemaps. We also show that based on

the new deterministic site placement we can improve the creation time of a Voronoi

treemap.

Chapter 6 validates the results of our work in an empirical study. We create a web

application that allows users to create and interact with Voronoi treemaps. Using this

web application we evaluate the usefulness of stable Voronoi treemaps.

Chapter 7 gives the conclusion of our work. We also discuss possible future work.



Chapter 2

Background

This chapter gives an overview of what software visualization is, how software visu-

alization is used and how the value of the resulting pictorial representations can be

determined. The information in this chapter is used as the basis for refining a software

visualization technique to suit the needs of the Software Improvement Group (SIG).

Section 2.1 explains the concept of software visualization. The Software Improvement

Group is introduced in Section 2.2. Section 2.3 gives several examples of software visual-

ization techniques and evaluates them based on criteria from Section 2.1 and Section 2.2.

2.1 Software visualization

Software visualization is a general term that refers to the process of giving a graphical

representation of software characteristics and entities. Or as Price et al. put it in [15],

“We define [software visualization] as the use of the crafts of typography, graphic design,

animation, and cinematography with modern human-computer interaction technology

to facilitate both the human understanding and effective use of computer software.”

This is a very broad definition. It encompasses such things as syntax coloring in modern

IDEs and the animation of algorithms. In Subsection 2.1.1, we explore how to determine

the value of a visualization. Subsection 2.1.2 identifies several uses of, or intentions in,

software visualization. In Subsection 2.1.3, several taxonomies are discussed, which will

be used in Subsection 2.2.3 to identify the SIG software visualization niche.

5
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2.1.1 The value of visualization

The value of visualization is expressed in the value of the information that is extracted

by the viewer. As Myers et al. said in [16], “Human information processing is clearly

optimized for pictorial information, and pictures make data easier to understand for the

programmer”, we always benefit from creating a pictorial representation of its raw data

counterpart. But as Tudoreanu remarked in [17], while humans are good at interpreting

pictures, users need to be able to have control over what is displayed. Otherwise, it

would be easy to overload the viewer and render the benefits of the visualization void.

Van Wijk [1] described the cognitive economy model that depicts the factors that come

into play when making good visualizations. In Figure 2.1, we can see that the amount

of knowledge gained from the pictorial representation not only depends on the prior

knowledge and the perceptual and cognitive ability of the user, but also on the quality

of input data and the visualization algorithm.

Figure 2.1: Cognitive economy model (reproduced from [1])

• V: the actual visualization

• D: the data to be visualized according to specification S (selection of data, algo-

rithm)

• S: the specification of how to transform the data into a picture

• I: the image that is presented to the viewer

• K: the current knowledge of the viewer

• P: the perceptual and cognitive ability of the viewer

• E: controller allowing the viewer to change the view on the data
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2.1.2 Intentions in software visualization

The function of software visualization depends on the intentions and needs of the audi-

ence. Experts will use visualizations differently from novice programmers or non-experts.

Petre, Blackwell and Green [18] identified a set of visualization “intentions” for experts

and a set for non-experts. At the end of this subsection, we give a condensed version of

the sets of intentions. These sets give a good overview of what purposes visualizations

can have. We can use these sets as guidelines when designing and evaluating visualiza-

tions. Maletic et al. [19] pointed out that there is no single visualization that can fulfill

all purposes; different visualizations are needed to support different purposes. In [20],

this is summarized quite nicely:

Some software visualisation provides an alternative formalism, not a data

picture or a machine model, but a regular, symbolic re-presentation of soft-

ware with a new emphasis, in order to support an otherwise ill-supported

style of reasoning. The notion is that an effective display can ease the user’s

reasoning; the likelihood is that having an effective display changes the user’s

tactics, if not the nature of the user’s reasoning. The display becomes a focus

for reasoning, for example by replacing some internal representations with

external ones, and hence allowing the user to use different tactics in finding,

recalling, examining, or comparing information.

2.1.2.1 A condensed version of the visualization “intentions” for experts

• Externalize images: getting a pictorial representation close to the experts mental

model. This can be used in communication with other experts or serve as a backup

or external memory so that the expert can come back to it later, without much

effort.

• To provide tools for thinking: provide a representation that complements and

supplements the experts thinking and giving alternative views or mappings that

help the expert to understand the data and navigate through it.

• To harness the computer as a collaborator in problem solving: using the computers

computational skills to do part of the reasoning for the expert by programming it.

Programming it to detect trends and anomalies, and inform the expert on them.
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2.1.2.2 A condensed version of the visualization “intentions” for non-experts

• To provide a glimpse inside the experts mind: to give an impression of the experts

reasoning, allow non-experts to understand the experts opinion.

• To teach a non-expert: to show how an algorithm works by visualizing its stages, to

teach a non-expert how to use a programming paradigm and to visualize relations

that are not explicit.

2.1.3 Software visualization taxonomies

Software visualization is a large field, and to bring some order to the field several tax-

onomies have been presented. One of the first taxonomies was presented by Myers [21]

and has served as basis for other studies. Myers identified three visualization subject

categories: code, data and algorithms. Furthermore he identified whether the visual-

izations are static or dynamic. Stasko [22], Roman [23] and Price et al. [15] extended

this basic categorization. Of these extensions the taxonomy of Price et al. is the most

extensive and flexible and will be the focus of the rest of this subsection.

Price et al. identified six major categories, each with several minor categories. These

minor categories can have subcategories and those subcategories in turn can have sub-

categories. This makes for a very versatile taxonomy. Each of the major categories can

be characterized as follows.

• Scope: What range of programs can the software visualization system take as input

for visualization? Does the system allow the user to input his own programs or

does it show a set of predefined examples? What restrictions are placed on the

visualized program, is concurrency supported, and how large and complex can the

program and data set be?

• Content: What subset of information about the software is visualized by the soft-

ware visualization system? Does the system visualize program structure, code,

control flow, data, data flow, or is it an algorithm visualization system? The

line between program visualization and algorithm visualization is a fine one. If

the system is for teaching an algorithm as opposed to showing the working of an

implementation, then it can be said to be algorithm visualization.

• Form: What are the characteristics of the output of the system? To what does the

visualization produce its output, is it printed or presented on a screen? Is visual-

ization used to display temporal information? What kind of graphical vocabulary
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is used, does the visualization use color, shape or extra dimensions (3D)? Does the

system allow you to zoom in or out, show low-level detail or a high-level overview?

Can you view the same data from different angles? And can you visualize two

distinct programs simultaneously to compare them?

• Method: How is the visualization specified? Does the visualization system require

human action to visualize the program, or is it fully automatic? Can the visual-

izations be scripted and customized? How does the visualization system connect

to the program to get the data to visualize?

• Interaction: How does the user of the software visualization system interact with

it and how does he/she control it? Is the result of a visualization a static picture or

does it allow the user to change the view and navigate through the visualization?

Does the system allow the saving and recording of visualizations?

• Effectiveness: How well does the system communicate information to the user?

This is a generalization of what has been discussed in Section 2.1.1.

2.2 The Software Improvement Group

The Software Improvement Group (SIG) is an international software consultancy firm.

The SIG specializes in analyzing large software systems to assess them on their technical

quality and maintainability. The two main services provided by the SIG that give in-

sight in the technical quality of a software system are Software Risk Assessment (SRA)

and Software Monitoring Service. During an SRA a software system is subjected to a

one-time in-depth analysis of its source code. Based on the analysis results the consul-

tants write a software health report. Software Monitoring also does an analysis of the

source code, although it is of a recurring nature. New versions of a software system are

analyzed and automated reports are generated based on the analysis results.

2.2.1 Software Risk Assessment

Software systems generally are in use for a long time. During that time the needs and

demands of the users of the system will change. The system will have to adapt to these

new needs and the system will have to keep evolving as long as it is in use. This means

that a software system not only has to do its current job well, it also has to be future-

proof. For a software system to be future-proof its most fundamental building blocks

must be future-proof. The source code of a software system has to be of high quality;
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then it can easily be extended, changed and maintained.

A Software Risk Assessment (SRA) gives insight in the code quality of a software sys-

tem. During an SRA the source code of a software system is subjected to a detailed

and automated analysis. The analysis results are supplemented with interviews and

consultations with system experts. All gained insight is compiled into a comprehensive

document detailing all the quality aspects of the software system source code.

During an SRA several techniques to visualize the analysis results are used. The result-

ing visualizations are used by the SIG experts to get an overview of the software system

that they are analyzing, but also to report their findings to the customer. Different visu-

alizations are needed for the different audiences. The SIG experts can read call graphs

and other technical visualizations. The customers might not always be able or want to

do that, because usually they are upper management and have no programming experi-

ence. This requires a different set of visualizations: visualizations that give a high-level

overview.

Both types of visualizations are not without their problems. When the software system

being analyzed is large, the amount of information that needs to be visualized is stag-

gering. Especially the detailed visualizations for the SIG experts suffer from this.

2.2.2 Software Monitoring

Software systems continually evolve to reflect the new needs and demands of the users.

Maintainability is a key aspect of the source code of a software system that reflects

how future-proof it is. Keeping an eye on software maintainability is a must during

development. Software Monitoring allows you to get an ongoing report of your software

maintainability as the system evolves.

At set intervals, Software Monitoring analyzes the source code of a software system and

gives a detailed report. This, coupled with the older reports, makes it possible to keep

track of the software quality as the system is being developed. The reports are available

at several levels of detail: upper management gets a bird’s-eye view with reported totals;

developers and architects can get a more detailed report.
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The reports are supplemented with visualizations that allow the viewer to understand

the reports more easily. In the case of Software Monitoring it is also important that the

visualizations are consistent over the analyses done at intervals.

2.2.3 The SIG visualization niche

The intended audience of the visualizations that the SIG uses can be categorized in two

main categories. The reports the SIG writes during an SRA are written to support the

upper management of a company to make strategic decisions about the software systems.

In these reports a high-level overview is given and little technical detail is presented. On

the other hand, you have the SIG consultants that write the reports. They need to get

down to the nitty-gritty details of the software system. The software analysis results

give them these details, but there are so many details present in the analysis results

that finding the details of interest can be quite a chore. Visualization can give the ”big

picture” in which the SIG consultant can quickly find the areas of interest and zoom in

on those.

Software Monitoring has the same two categories of intended audience. The upper

management keeps track of the software development using a high-level overview; the

programmers and architects use a more low-level view to see the details of what has

to be done. The programmers and architects, just like the SIG consultants, can use a

high-level overview to drill down to the details that need their attention.

High-level overviews of a software system are relatively easy to generate using existing

visualization techniques. Pie charts and graphs can give a reasonable overview of the

general state of a software system. But when trying to use those to visualize all the detail

that is available in the source code analysis results, they become impossible to read. A

visualization that can cope with the amount of analysis results that is generated when

analyzing a large software system is a must. In the next section we will show several

software visualization techniques that could be used to visualize large amounts of data.

2.3 Software visualization techniques

In this section, we give an overview of several visualization techniques that show potential

for the SIG. Each of these visualizations will be introduced and evaluated, using the
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criteria that were identified in the previous sections.

2.3.1 Voronoi treemaps for visualization of software metrics

Balzer, Deussen and Lewerentz [2] introduced a variation on traditional treemaps that

is more suited for software visualization: Voronoi treemaps. Software systems usually

have a rich hierarchical structure; it is not unthinkable that it is twenty levels deep

or more. Visualizing metrics in such hierarchies using traditional treemaps has several

drawbacks. The subdivision of available space is solely done in one dimension, which

results in thin, elongated rectangles with a high aspect ratio. This makes understanding

the information much harder. Using polygons instead of rectangles can solve this issue.

Using Voronoi tessellation to divide the available space for the top-level and recursing

into the other levels will result in a treemap that is easier to read, as can be seen in

Figure 2.2. This is due to the fact that the aspect ratio approaches one for each element

in the tree, which helps in comparing the relative size of elements.

Figure 2.2: Voronoi treemaps (reproduced from [2])

2.3.2 Visualizing test suites to aid in software understanding

Test driven software development has gained more support in the last few years. This

has as advantage that many newly developed software systems are accompanied by a

large set of unit tests. These tests are a good starting point when trying to understand

a software system, because they test one single aspect of the total system. Still, you

have to browse code to grasp what it does. Visualizing the unit test allows the viewer

to easier understand the aspect that is being looked at. Cornelissen et al. [3] developed

the SDR framework to do just that: they visualize JUnit test execution traces. Using
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a debugger, a profiler, and instrumentation through aspects, they create traces of the

JUnit test run. Using filtering they can show different abstraction levels, allowing you

to see the nitty-gritty details or a high-level overview of a single aspect within the larger

software system. Figure 2.3 shows a visualization of the methods executed during a test

run.

Figure 2.3: SDR framework (reproduced from [3])

2.3.3 Java Interactive Visualization Environment

Java Interactive Visualization Environment (JIVE) [4] is a run time visualization and

analysis system. It allows for multiple concurrent representations of program state

and execution history, has support for forward and reverse execution, and supports

graphical queries over program execution. JIVE works on Java programs, using the

Java Platform Debugger Architecture. When the state of the subject program changes,

the program execution is suspended, the views in JIVE are updated, and the subject

program execution is then resumed. As this continues the complete program can be

visualized. JIVE has several views on the execution, for example syntax highlighting

and highlighting of the statement that is being executed. It also provides a sequence

diagram view and a call path view. Figure 2.4 shows an object diagram and Figure 2.5

shows a sequence diagram of the same program execution.

2.3.4 SDP layout of high-dimensional data

In [5], David Gleich et al. describe a method of visualizing relations between music

artists based on user preference.

The music rating site Yahoo! Music collects user ratings of artists. If a user gives two

or more artists the same rating, then these artists can be said to have a relation. Using

the ratings from all users allows Gleich et al. to build a huge set of relations between
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Figure 2.4: JIVE, an object diagram (reproduced from [4])

Figure 2.5: JIVE, a sequence diagram (reproduced from [4])

artists that can be weighted by the number of users that rate both artists. This can

be seen as creating a similarity graph. The similarity graph is used in a non-linear

low-dimensional embedding constrained to the surface of a hypersphere. This results in

a point cloud, mapped to the surface of the hypersphere, where closely related artists

are grouped together. Drawing the twenty strongest relations of each artist gives a view

of how groups of artists are connected, without overloading the viewer. Unrolling the

spherical representation gives a visually pleasing overview of artist relations, and clearly

shows the grouping of styles and which artist bridges the gap between styles. Figure 2.6

shows a high-level overview of the visualization and Figure 2.7 zooms in on the central

cluster.

Using the same layout algorithm on call relations between programming entities would



Chapter 2. Background 15

result in a nice overview of a software system that clearly shows which entities are closely

related. An alternative approach could be to use the coupling between programming

entities as similarity graphs, and visualizing the calls between the entities. This would,

in theory, show which entities are closely related but not necessarily call each other.

Figure 2.6: SDP layout of high-dimensional data (reproduced from [5])

Figure 2.7: Zoomed in view of SDP layout of high-dimensional data (reproduced from
[5])

2.3.5 Hierarchical edge bundles

Dynamic execution traces are a useful tool when trying to understand the inner working

of a complex software system. Such traces tend to get very large; even a simple program
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will have thousands of execution steps per trace. Visualizing such traces is a problem;

often the visualization will be cluttered and hard to understand. This is partly due to

the fact that when many calls from one entity to another occur, the line representing

this will obscure other call relations. To solve this, Holten [6] introduced hierarchical

edge bundles. When the program entities are placed on the screen, all calls between

entities that are visually close to each other will be bundled so that there is less clutter

on the screen. In [24] is shown how this can be implemented using a circular bundle

view. Entities are placed on the ring of a circle and all calls go through that circle.

Figure 2.8 shows an example of a circular bundle view and of hierarchical edge bundles

on a treemap.

Figure 2.8: Hierarchical edge bundles, a circular view (left) and a treemap view (right)
(reproduced from [6])

2.3.6 A space of layout styles for hierarchical graph models of software

systems

Hierarchical graphs are widely used as models of the structure of software systems.

Visualizing these graphs poses some interesting problems though. For example, how do

we position the nodes in two- or three-dimensional space? In [7], Noack and Lewerentz

tackled this layout problem. For a variety of analyses of the static structure of software

systems they derived the requirements for graph layouts that support those analyses.

Because no single layout can satisfy all requirements, they introduced a space of layout

styles. In this space, the layout styles are organized along the following three dimensions.

• Degree of clustering: layouts with meaningful distances between single nodes (for

analyses concerning the local neighborhood of software entities) versus layouts
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with meaningful distances between groups of nodes (for analyses concerning the

global structure of the software system). Figure 2.9 shows an example.

• Degree of hierarchicalness: layouts that reflect the existence of edges between

nodes (for analyses of relationships between software entities) versus layouts that

reflect the existence of a common ancestor in the hierarchy tree (for analyses of

containment hierarchy).

• Degree of distortion: layouts that faithfully reflect the size of nodes and edges, i.e.

the number of low-level nodes and edges that they represent (for analyses with a

fairly uniform granularity of the involved entities and relationships) versus layouts

where certain edges are magnified (for analyses of details in their global context).

They extended the minimization of energy function, a widely used method for computa-

tion of graph layouts, with the degree of clustering, the degree of hierarchicalness, and

the degree of distortion. This allows for automatic computation of layouts for analyses.

2.3.7 Visualizing multiple evolution metrics

Software visualization is intrinsically suited for observing the evolution of software sys-

tems. Showing the visualization of two versions of the same software system next to each

other allows the viewer to determine where things have changed and what has stayed

the same. However, there are some challenges, such as that the visualization of both

versions should be easily comparable, meaning that objects should be in approximately

the same place. Pinzger et al. [8] introduced a system to do just that. The metrics and

relations of multiple versions are superimposed on a Kiviat diagram, as seen in 2.10.

2.3.8 An open visualization toolkit for reverse architecting

The open visualization toolkit introduced in [9] is a toolkit geared towards visualizing

graphs to facilitate the reconstruction of the architecture of a large software system.

The toolkit takes a graph that can have values associated with the nodes as input. The

scripting language TCL can be used to make selections and mappings on the graph.

The transformed graph is then visualized. There are several predefined visualizations

available. Figure 2.11 shows two examples.

2.3.9 EVolve: an open extensible software visualization framework

EVolve [10] is a visualization framework that is not tailored to one specific language,

algorithm or analysis, but allows one to plugin new data sources and visualizations.
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Figure 2.9: Hierarchical graph model using the degree of clustering layout (reproduced
from [7])
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Figure 2.10: Kiviat diagram visualizing multiple evolution metrics (reproduced from
[8])

Figure 2.11: Open visualization toolkit (reproduced from [9])



Chapter 2. Background 20

This is realized by providing an API to specify visualizations and manipulate data,

so that it can be used by the framework. The framework handles all user interaction

and the communication between data source and visualizations. Figure 2.12 shows four

visualizations of program execution metrics.

Figure 2.12: EVolve (reproduced from [10])

2.3.10 Comparison matrix of visualization techniques

In Table 2.1 we compare the visualization techniques described in this section. We

identified several key aspects that a visualization requires to be usable for the intended

purposes of the SIG. The visualization techniques are compared using these key aspects.

If a visualization has a certain aspect, we mark it with a plus sign (+); if it does not

have that aspect, we mark it with a minus-sign (−).
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Voronoi treemaps 2.3.1 + + + − + + −
SDR framework 2.3.2 − + − − − − +

JIVE 2.3.3 − + − + − − +

SDP layout 2.3.4 + − + − − − +

Hierarchical edge bundles 2.3.5 + + + + − − +

A space of layout styles 2.3.6 + − + − − − +

Multiple evolution metrics 2.3.7 − + − − + + −
Reverse architecting 2.3.8 + + + + − − −
EVolve 2.3.9 − + − + + + −

Table 2.1: Comparison matrix of visualization techniques

2.4 Chosen visualization

After looking at the visualizations presented in the previous section and filling in the

comparison matrix, we asked the intended users of our tool which visualization would

best fit their needs. It was decided that Voronoi treemaps would best fit the needs of

the SIG. In this section, we will first give a short history of treemaps and show why they

are useful. Then we show the added benefits of Voronoi treemaps. We also discuss the

drawbacks of Voronoi treemaps. We then introduce our proposed solution.

2.4.1 Treemaps: an overview

In the early 1990’s when 80-megabyte hard disks were still common, Ben Shneiderman

became obsessed with creating a compact visualization of directory structures that would

show him where his precious hard disk space went. He stumbled upon the idea to split

his computer screen into rectangles, in alternating horizontal and vertical directions as

you traverse down the directory tree. The size of the rectangles reflected the size of the

directories or files on the file system. This solution makes optimal use of the limited

screen space available in the 1990’s. In 1992, the first paper on the solution by Shneider-

man [25] was published. In this paper the term treemap was introduced. It was thought
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to best describe the notion of turning a tree into a planer space-filling map, see Figure

2.13. Figure 2.14 shows one of the early treemap visualizations with added color for

different file types.

Figure 2.13: Tree diagram and corresponding treemap (reproduced from [11])

Figure 2.14: Original treemap implementation (reproduced from www.cs.umd.edu)

In later years, many extensions of the original treemap algorithm have been made, from

adding color to distinguish between file types, to sounds for another characteristic of the

file. Treemaps have even been used to visualize stock portfolios. The original algorithm

has one shortcoming, one that most extensions inherit: it divides the space for each

step solely in one dimension. If many objects or objects with a big difference in size

on the same tree level are visualized, this can result in thin elongated rectangles with

http://www.cs.umd.edu/hcil/treemap-history/
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a high aspect ratio. Comparing the size of such elongated rectangles and other, not so

elongated rectangles, becomes quite a chore. Figure 2.14 shows some good examples of

this phenomenon.

Ben Shneiderman and Martin Wattenberg [26] introduced ordered treemaps. Ordered

treemaps use a different division algorithm, resulting in rectangles that have an aspect

ratio close to one. Squarified treemaps [11] and clustered treemaps [27] each solve the

same problem with their own division algorithm. While all these different space division

algorithms solve the problem of extreme aspect ratios, they do not tackle the problem

of hierarchy visualization. For squarified treemaps we can see this in Figure 2.15. In

the original treemap implementation hierarchy was reasonably visible, because of alter-

nating the horizontal and vertical division for each level. In the new algorithms this

is lost and consequently the hierarchical element of the visualized objects is lost or at

least hard to discern. Van Wijk and van de Wetering [28] solved this by introducing

cushioned treemaps. Cushioned treemaps add shading to each rectangle in such a way

that it is easier to distinguish the parent-child relationships in the tree. Figure 2.16

shows the same tree as Figure 2.15, but using the cushioned treemap method.

Figure 2.15: Squarified treemaps (reproduced from [11])

2.4.2 Voronoi treemap benefits

Voronoi treemaps [2] are another way of solving both the space division problem and the

hierarchy visibility problem. Instead of using rectangles, Voronoi treemaps use polygons

to divide the screen space. Voronoi treemaps allow for easy distinction of level, because

the edges that bound an object in the tree do not line up. This means that an edge

of a parent object will not line up with one of its children, or even with the edges of

any of its neighbors. Because of the way the polygons are constructed, the aspect ratio
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Figure 2.16: Cushioned treemaps (reproduced from [11])

approaches one. This makes it easy to compare the size of objects. Figure 2.17 shows

an example of a Voronoi treemap.

Figure 2.17: A Voronoi treemap (reproduced from [2])
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2.4.3 Voronoi treemap drawbacks

Voronoi treemaps as they are presented in [2] have one major drawback when visualizing

the same data multiple times. Because the algorithm is based on a random initialization,

each visualization is very different. This means that in its current form Voronoi treemaps

can not be used to visualize the same data set multiple times. We also can not use these

Voronoi treemaps to visualize different versions of the same system, see Figure 2.18.

Figure 2.18: Comparison of two Voronoi treemaps of the same system (reproduced
from [12])

2.4.4 Stable Voronoi treemaps

To remove the drawbacks currently present in Voronoi treemaps, we introduce stable

Voronoi treemaps. Stable refers to the fact that the visualization of a system will always

be the same when the same data is visualized. We also extend this stabilized version of

Voronoi treemaps to handle visualizing multiple versions of the same system. Creating

the algorithms for stable Voronoi treemaps is the focus of the rest of this thesis.
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Sweep line algorithm for

additively weighted power

Voronoi diagrams

Treemaps are a space-filling recursive subdivision of a given area without gaps or overlap.

In Voronoi treemaps this recursive subdivision is based on Voronoi diagrams. Voronoi

diagrams divide an area into Voronoi regions based on a set of points, called sites. Each

Voronoi region corresponds to a site and consists of all points closer to the site than to

any other site.

In treemaps the size of a subdivision represents some metric. Voronoi diagrams tradi-

tionally are not created with a predefined size for a Voronoi region. This means that to

use Voronoi diagrams as basis for treemaps, there needs to be a way to influence the size

of the Voronoi regions. Additively weighted power Voronoi diagrams allow for a greater

degree of influence on the area of a Voronoi region. The Voronoi site has a weight in

addition to a location.

In this chapter, we first introduce Voronoi diagrams and show how they are constructed

using Fortune’s algorithm. Then we introduce our sweep line algorithm for additively

weighted power Voronoi diagrams based on Fortune’s algorithm.

3.1 What is a Voronoi diagram?

Voronoi diagrams are named after their inventor, the Russian mathematician Georgi

Voronoi [29]. Voronoi diagrams have many uses, from biology to computer science. For

example, Voronoi diagrams are used to model crystal growth and to visualize cell growth.

26
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In computer science, Voronoi diagrams are used to compute shortest path and traveling

salesman solutions.

3.1.1 Voronoi diagram definition

A Voronoi diagram of a set of points, called sites, divides a plane into regions. Each

region corresponds to one of the sites and consists of all points closer to its site than to

any other site. In this thesis we will use the following definitions.

• Site: a point in the Euclidean plane that defines a Voronoi region.

• Voronoi region of site s: the set of points closer to s than to any other site.

• Edge: the ray or line segment that bisects two neighboring sites in the Voronoi

diagram.

• Bisector: the perpendicular bisector of line segment pq, where p and q are points.

• Vertex: a point that is equidistant from three or more sites.

• Voronoi tessellation: the process of dividing the plane into Voronoi regions.

• Voronoi diagram: the set of all Voronoi regions and their edges.

The generic definition of a Voronoi diagram of a set S is as follows. Let S = {s1, s2, . . . sn}
be a set of n distinct sites in R2. The Voronoi diagram of S is the partitioning of the

plane into n Voronoi regions and their edges, see Figure 3.1. The region of site si con-

sists of all points q ∈ R2 where dist(q, si) < dist(q, sj) for each sj ∈ S with j 6= i.

The function dist(p, q), where p = (px, py) and q = (qx, qy), is the Euclidean distance

function dist(p, q) =
√

(px − qx)2 + (py − qy)2. Two adjacent regions belonging to sites

si and sj share an edge that is equidistant from si and sj . This edge is a segment of

the perpendicular bisector of the line segment sisj . The edge can be bounded at both

ends, bounded at one end or unbounded. A point on the plane that is equidistant from

three or more sites is called a vertex. A vertex is the begin or end point of an edge that

bisects two sites that are equidistant from the vertex.

3.2 Fortune’s algorithm

Fortune’s algorithm was introduced in 1987 in his paper A sweep line algorithm for

Voronoi diagrams [30]. In Subsection 3.2.1, we will introduce the concept behind this
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Figure 3.1: Voronoi diagram

algorithm by introducing a three-dimensional version. In Subsection 3.2.2, we abstract

away from the three-dimensional algorithm and introduce a two-dimensional approach.

Then we go one step further in Subsection 3.2.3 and introduce the actual algorithm.

3.2.1 Concept behind Fortune’s algorithm

Fortune’s algorithm is a sweep line algorithm. Sweep line algorithms use a conceptual

horizontal line to sweep over the plane from top to bottom. As the sweep line moves

over the plane, we keep track of what it encounters to be able to compute the desired

structure. To be more concise, information is maintained about the intersection of the

structure and the sweep line. In traditional sweep line algorithms, everything above the

sweep line is fully computed and independent from everything below the sweep line.
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To introduce the sweep line algorithm for Voronoi diagrams, we will use a three-dimensional

approach instead of the two-dimensional Euclidean plane. We place cones with a 45-

degree angle above all sites, see Figure 3.2. Because of the shape and placement of

each cone we can now easily determine the bisector of two sites by looking where the

corresponding cones intersect. The projection of the intersection of two cones on the

ground plane corresponds to the bisector of the two sites that the cones belong to. By

using this fact, we can construct a sweep line algorithm. Because we are working in

a three-dimensional space, we will use a plane instead of a line. For reasons that will

become obvious later in this subsection, the sweep plane has a 45-degree angle to the

ground plane, as seen in Figure 3.2.

Figure 3.2: Cones and sweep plane (reproduced from [13])

When we sweep the plane over the ground plane, we keep track of all places the sweep

plane intersects with two or more intersecting cones. This way we have all bisectors

between sites that the sweep plane passed. However, we are not interested in all bi-

sectors, but only in the segments of bisectors that are actually edges in the Voronoi

diagram. The bisector segments that are edges in the Voronoi diagram can be found by

only considering the cone intersections that do not lie inside another cone.

By projecting the relevant intersections encountered by the sweep plane onto the ground

plane we create the Voronoi diagram. This shows that by using the three-dimensional

sweep plane approach we can construct a Voronoi diagram. However, the use of cones

and a sweep plane introduces a lot of complex math that we can abstract away from.

In the next subsection, we will do just that and introduce a two-dimensional approach.
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3.2.2 2D approach

In this subsection, we take the previously introduced three-dimensional sweep line al-

gorithm and transform it into a two-dimensional sweep line algorithm. As discussed in

Subsection 3.2.1, the relevant intersections are projected onto the ground plane. Instead

of going through the trouble of sweeping a plane and projecting the relevant intersec-

tions, we could directly compute the edges on the two-dimensional Euclidean plane.

As explained in Subsection 3.2.1, sweep line algorithms maintain information about the

intersection of the sweep line and the data structure of interest. In traditional sweep line

algorithms the computation of the partial result above the sweep line is independent of

everything below the sweep line. But in the case of Voronoi diagrams, sites that are yet

to be encountered by the sweep line can have an influence on regions above the sweep

line. For example, when the sweep line is at the location of the topmost vertex of the

region of a site, it has not yet encountered the site itself. In Figure 3.3, we can see

that not everything above the sweep line is fully known. This means that we do not yet

have all the information that is needed to compute the vertices. To solve this, instead

of maintaining the intersections of the Voronoi diagram and the sweep line, we maintain

information about the part of the Voronoi diagram that cannot be influenced by sites

below the sweep line.

We determine which part of the Voronoi diagram above the sweep line cannot be influ-

enced by sites below the line by making use of the fact that edges and vertices of regions

of neighboring sites are equidistant from those sites. That means that if the sweep line

has not yet encountered a new site, a site above the sweep line either has a complete

region or a partial region that is bounded by a line that is equidistant from the sweep

line and the site. That line has the shape of a parabola. Each point on the parabola is

equidistant from the site that it bounds and the sweep line, see Figure 3.4. As the sweep

line moves, the shape of the parabola changes to reflect that the known size of a region

changes. When the sweep line has encountered the first two sites, the intersection of the

parabolas of those sites trace out the edge between them. This is due to the fact that the

intersections are equidistant from both sites and the sweep line, see Figure 3.4. As the

sweep line moves we are only interested in the parabolas of sites that have regions that

are not yet fully computed. To be more concise, we are only interested in some parts of

these parabolas, the beach arcs, which together form the beach line. The beach line is

the function that for each x-coordinate passes through the lowest point of all parabolas

at that x-coordinate.
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Figure 3.3: Fortune’s sweep line algorithm
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Figure 3.4: Beach line is equidistant from the sweep line and the Voronoi sites

Just like in the traditional sweep line algorithm, we maintain a structure while the sweep

lines moves. But now we do not maintain the completed structure above the sweep line;

instead we maintain the ever changing beach line. The only two events that are of

importance when maintaining the beach line are when a parabolic arc enters the beach

line and when one leaves the beach line. A new parabolic arc enters the beach line when

the sweep line encounters a site. We call this event where a new site is encountered a

site event. At the site event the parabola of the new site is at first a ray, starting in the

site and perpendicular to the sweep line. This ray will intersect with the beach line. At

this point of intersection the new parabolic arc will be inserted into the beach line, see

Figure 3.5. The new parabola will intersect with at most two arcs on the beach line. A

single site can contribute multiple times to the beach line as its parabola gets divided by

new intersections with other arcs. As the sweep lines moves, arcs will grow and shrink,

while their intersections with other arcs trace out the edges of the Voronoi diagram.

Figure 3.5: Site event: a new arc is added to the beach line (adapted from [14])
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When a parabolic arc shrinks to a point, its neighboring parabolic arcs will meet. Figure

3.6 shows what happens when a parabolic arc shrinks to a point. This point where all

three parabolic arcs meet is equidistant from three sites; therefore it is a vertex in the

Voronoi diagram. This vertex is also the same distance from the sweep line as it is from

the three sites. We can think of the vertex as the center point of a circle with a radius

that is equal to the distance of the vertex to the sweep line or each of the three sites.

When a parabolic arc disappears from the beach line, the sweep line passes through the

lowest point of the circle. This is called a circle event.

Figure 3.6: Circle event: an arc is removed from the beach line (adapted from [14])

There are only two events which change the structure of the beach line: a site event and

a circle event. The only time a new parabolic arc is added to the beach line is at a site

event. A parabolic arc is only removed from the beach line at a circle event. This means

that the sweep line does not have to sweep the whole plane; instead, we can only sweep

over those points that are of interest. In the next subsection we show how Fortune used

this to his advantage in his algorithm.

3.2.3 Fortune’s algorithm

In the previous two subsections we discussed the theory behind Fortune’s algorithm. In

this subsection, we introduce the actual algorithm and the data structures that are used.

We closely follow the algorithms that are presented in Chapter 7 of [14]. To construct

the Voronoi diagram we obviously need a way to store the current state of the Voronoi

diagram. We also need a way to represent the beach line and a stucture to store the

events that change the beach line, the event queue.
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The part of the Voronoi diagram that is constructed is stored as a doubly-connected

edge list. Each edge in a doubly-connected edge list stores two half-edges. The two

half-edges are said to be twins of each other; if one half-edge starts in vertex v1 and

ends in vertex v2, the twin starts in v2 and ends in v1. The half-edges enclosing a site

form a counterclockwise cycle. Each half-edge stores a pointer to the next half-edge and

a pointer to the previous half-edge. The half-edges also store the site they belong to

and a pointer to their twin. Normally, doubly-connected edge lists can only deal with

line segments. During the construction of the Voronoi diagram, not both the start and

end point of all edges are known. Fortunately, this is no problem, because we can use

the beach line to keep track of these unfinished edges. However, even in the completed

Voronoi diagram, there are Voronoi regions that are not completely enclosed by edges.

We add a bounding box to solve the problem of unfinished edges by connecting them to

the sides of the bounding box. The bounding box is at least large enough to contain all

the sites of the Voronoi diagram. This way we get a valid doubly-connected edge list.

To represent the beach line we use a balanced binary search tree. Each leaf in the tree

corresponds to an arc on the beach line. The leafs are stored in an ordered manner:

the leftmost leaf represents the leftmost arc, the next leaf represents the second leftmost

arc, and so on. Actually, not the arcs are stored in the leafs but the sites that define the

arcs. The internal nodes in the tree represent the intersection of two arcs. We store the

intersections as ordered tuples of two sites < si, sj >, where si can be used to compute

the parabola on the left of the intersection and sj can be used to compute the parabola

on the right side of the intersection. When a new site is encountered by the sweep line,

we have to look up which arc the parabola of the site will intersect with. Because the

parabola at the moment of intersection of the sweep line and the site is a zero width

parabola, we can look for the arc that is directly above the site. To find that arc in the

beach line, we simply compare the x-coordinate of the site with the x-coordinate of the

intersection that a node represents and traverse the tree accordingly. We do not directly

store parabolas or arcs in the tree nodes, but we compute the intersections each time

we do a look up by using the tuples of sites and the position of the sweep line.

Each internal node of the binary search tree not only stores the two sites that have

intersecting arcs, but it also stores a pointer to a half-edge in the doubly-connected edge

list. The pointer is to one of the half-edges of the edge that is being traced by the inter-

section that the node represents. Each leaf of the binary search tree stores a pointer to

the node in the event queue that stores the circle event in which the arc corresponding

to the leaf will disappear from the beach line. Since it is not known beforehand if and

when an arc will disappear from the beach line, this pointer can be empty.
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To store upcoming events we use a priority queue, the event queue. The priority queue

is sorted on decreasing y-coordinate. Should two or more events have the same y-

coordinate, we use their x-coordinates to determine which of them has a higher priority.

For a site event we simply store the site itself. For circle events we store the lowest point

of the circle and a pointer to the leaf in the binary search tree that corresponds to the

arc that will disappear in the event.

In the previous subsections, we have discussed the concept behind the sweep line algo-

rithm. We have introduced site events and circle events, the only two events in which

the beach line changes. We know how to find site events; however, we have not discussed

how circle events can be detected without sweeping the sweep line over the entire plane.

We know from Subsection 3.2.2 that a circle event will take place when an arc shrinks

to a point and its neighboring arcs meet. This means that when we want do detect

circle events we have to look at three consecutive arcs. When a new site enters the

beach line up to three of such triples can appear: one where the new site defines the left

arc, one where it defines the middle arc and one where it defines the right arc. For the

triples where a new arc appears on the left or right side we check if the two points of

intersection converge to a single point. The triple where a new arc appears in the middle

has two points of intersection that diverge so we do not have to check this triple. If the

two points of intersection do converge for one of the other triples, the middle arc of the

triple will disappear and we create a circle event. The middle arc will get a pointer to

the circle event and the event is put into the event queue. Even if the two points of

intersection converge to a single point, the circle event need not take place. For example,

when a new site enters the beach line it can break up several existing triples.

We now have all the ingredients needed to give the full algorithm. However, we should

note that after the event queue is empty we still have a beach line with pointers to half-

edges of incomplete edges. As a doubly-connected edge list can not deal with incomplete

edges, we still have to connect those to a bounding box. The algorithm is shown in Algo-

rithm 1. The procedures that we define in this thesis and use in the algorithms are shown

in capital letters. For example, Algorithm 1 uses Procedure HANDLESITEEVENT and

Procedure HANDLECIRCLEEVENT. We use this convention for the rest of the thesis.
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Input: A set S = {s1, . . . , sn} of sites in the Euclidean plane
Output: The Voronoi diagram for set S
begin

Initialize priority queue Q with all site events;
Initialize an empty binary search tree T ;
Initialize an empty doubly-connected edge list D;
while Q is not empty do

Remove the event with largest y-coordinate from Q;
if the event is a site event, occurring at site si then

HANDLESITEEVENT(si);
else

HANDLECIRCLEEVENT(y), where y is the leaf of T representing the arc
that will disappear;

end

end
The nodes still in T correspond to unfinished edges of the Voronoi diagram. Use a
bounding box to connect all the unfinished edges to.

end

Algorithm 1: Fortune’s sweep line algorithm for Voronoi diagrams

begin
if T is empty then

insert si into T , T now consists of a single leaf storing si;
else

Search in T for the arc a vertically above si. If the leaf representing a has a
pointer to a circle event in Q, this circle event will not take place and is deleted
from Q;
Replace the leaf of T that represents a with a subtree that has three leaves.
The middle leaf stores si, the other two leaves store sj , the site that was
originally stored at a. The two new nodes store the tuples < sj , si > and
< si, sj >, representing the new arc intersections in the beach line. Balance the
tree if necessary;
Create new half-edge records in the Voronoi diagram structure for the edge
separating the region of si and the region of sj . This edge will be traced out by
the intersections of the new arcs;
Check the triple of consecutive arcs where the new arc for si is either the right
or left arc for converging arc intersections, i.e. check if the middle arc will
disappear from the beach line. If the arc intersections converge, insert a circle
event into Q and add pointers between the node in T and the node in Q;

end

end

Procedure HANDLESITEEVENT(si)
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begin
Delete the leaf y that represents the disappearing arc a from T . Update the
node-tuples representing arc intersections. Re-balance T if necessary. Delete all
circle events involving a from Q; This can be done by checking if the original
neighboring arcs of a have a circle event associated with them;
Add the center of the circle causing the event as vertex record to the
doubly-connected edge list. Create two half-edge records corresponding to the new
edge that appears at the new arc intersection. Attach the vertex to all half-edges
that end in that vertex. Do the same for the half-edges that start in that vertex;
Check the new triple of consecutive arcs that has the former left neighbor of a as
its middle arc to see if the two arc intersections of the triple converge. If so, insert
a new circle event into Q. Set the pointers between the new circle event in Q and
the corresponding leaf of T . Do the same for the triple where the former right
neighbor is the middle arc;

end

Procedure HANDLECIRCLEEVENT(si)

3.3 Fortune’s algorithm extended to additively weighted

power Voronoi diagrams

In this section, we explore the differences between the traditional Voronoi diagrams and

additively weighted power (AWP) Voronoi diagrams. We will also show the changes

that we made to Fortune’s algorithm to create AWP Voronoi diagrams.

3.3.1 Additively weighted power Voronoi diagram definition

Additively weighted power Voronoi diagrams differ from traditional Voronoi diagrams

by adding weights to the Voronoi sites and using a distance function that takes these

weights into account. The distance function used is the power distance function. The

power distance between Voronoi site O with weight w and point P is the square of the

length of the line segment (PT ) from P to a point T . T is the point on the circle with

center point O and radius
√
w, such that PT is tangent to this circle. As seen in Figure

3.7, points P , T and O form a triangle with a right angle. Then it follows that the

power distance between O and P is ‖P −O‖2 − w. This gives us the distance function

for point p and site q with weight qw as shown in Equation 3.1.

The weight added to a Voronoi site for AWP Voronoi diagrams has one restriction: it

has to be greater than or equal to zero. This is explained by the fact that the weight can

be seen as the radius of a circle squared. When we talk about the circle corresponding

to a Voronoi site q, we mean the circle with center point q and radius
√
qw. We also

refer to this circle as ”the circle of Voronoi site q”.
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Figure 3.7: Power distance from point P to site O with weight = r2 (reproduced from
wikipedia.org)

dist(p, q, qw) = (px − qx)2 + (py − qy)
2 − qw (3.1)

The set of points at which tangents drawn to two circles have the same length is called

the radical axis of those circles, see Figure 3.8. So the radical axis gives all points from

which the power distance to the Voronoi sites of the corresponding circles is equal. The

radical axis is a straight line perpendicular to the line segment between two Voronoi

sites. This means that similar to Voronoi diagrams the Voronoi regions created using

the power distance function are convex polygons. Figure 3.9 shows a Voronoi diagram

and an AWP Voronoi diagram of the same set of sites; the difference that the distance

function and the weights make is clearly visible.

Figure 3.8: For any point p on the radical axis, tangents drawn from it to C1 and C2

are of equal length, i.e. PA = PB (reproduced from cuemath.com)

http://en.wikipedia.org/wiki/Power_diagram
http://www.cuemath.com/iit-jee-mathematics/cr015-equation-of-common-chord-of-two-circles/
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Figure 3.9: Voronoi diagram (left) and AWP Voronoi diagram (right) of the same set
of sites

3.3.2 Sweep line, beach line and events

To extend Fortune’s algorithm to create AWP Voronoi diagrams, we first need to identify

how the Voronoi sites that the sweep line encounters influence the beach line. We also

need to determine when a beach arc enters and disappears from the beach line. After

that, we have to determine the order of the events and the changes needed to make

AWP Voronoi diagrams.

3.3.2.1 Site events

When moving the sweep line over a set of weighted sites, there are two places where a

Voronoi site could have an effect on the beach line: at the top of its circle and at the

site itself. When the sweep line touches the top of the circle, the power distance from

the sweep line to the Voronoi site is zero. When this happens we originally thought that

this would introduce a new beach arc into the beach line. This turned out to be wrong.

As shown in Figure 3.10, Voronoi sites that will be encountered later by the sweep line

than the top of the circle of a Voronoi site with a large weight can influence the beach

line before the big weighted Voronoi site influences it. This means that the order of site

events remains the same as in the original algorithm. So we insert a new beach arc into

the beach line when the site itself is encountered.

3.3.2.2 Circle events

The second event that we need to consider is the circle event. In Fortune’s algorithm a

circle event occurs when three Voronoi sites are on the same circle. When using weighted

Voronoi sites and the power distance function, we can not use the same method. What

we can use is the radical center of three circles corresponding to three Voronoi sites. The
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Figure 3.10: An AWP Voronoi diagram of three sites, one site with a large weight
and its corresponding circle and two sites that lie lower than the top of that circle

radical center can easily be found by intersecting the radical axis of each pair of the three

circles, see Figure 3.11. The circle with its center at the radical center and orthogonal

to all three circles, is the circle for our circle event for AWP Voronoi diagrams. When

the sweep line encounters the bottom of this orthogonal circle, an arc disappears from

the beach line.

Figure 3.11: The radical center and the orthogonal circle of three circles corresponding
to weighted Voronoi sites (reproduced from wikipedia.org)

http://en.wikipedia.org/wiki/Radical_axis
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3.3.2.3 Sweep line and beach line

The beach line used in our algorithm is largely similar to what is used in Fortune’s

algorithm. Instead of using the Euclidean distance function to calculate the arc inter-

sections, we use the power distance function. Later on in this section we will show that

we need to add one more change.

The sweep line we use in our algorithm differs greatly from the one used in Fortune’s

algorithm. In Fortune’s algorithm the sweep line is a straight line. We found that this

will not work for AWP Voronoi diagrams. When the sweep line encounters the top of a

circle of a Voronoi site, it does not introduce a new beach arc into the beach line. But

it does have an effect when the sweep line enters a circle. In Figure 3.12, we see three

parabolas (blue, red, purple), their corresponding sites, and the sweep line (black). We

also see one Voronoi site with a large weight that the sweep line has not yet encountered

the site event for. We can clearly see that parts of the beach line lie within the circle of

this site. This is not correct. The beach arcs describe the area of a Voronoi region that

is completely known, but in this case the Voronoi region should not extend to inside the

circle.

Figure 3.12: Beach line and sweep line with a site with a large weight that is yet to
be encountered

Our solution to the problem of the beach line entering a circle of a site is the introduction

of a new event and a small change to the beach line. The location of the new event is

where the sweep line encounters the top of the circle of a site; we call this a ”top site

circle event”. We look for the beach arc that lies directly above the site. We mark this

arc and maybe its neighbors. This mark indicates that the arc is influenced by the site.

When computing intersections of beach arcs we use this information. We found that the

marked arc should not be at equal power distance from the sweep line, but from the site

it is marked with. When one of two arcs is marked, we calculate the bisector of the site
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corresponding to the marked arc and the site the arc is marked with. We also calculate

the bisector of the neighbor site and the site the other arc is marked with. We then

intersect the two bisectors, and check if the power distance from the intersection to the

sweep line is smaller than to the sites. If it is closer to the sweep line, we use the normal

intersection calculation. Otherwise, we use the intersection of the bisectors. Figure 3.13

shows how this would look by approximation. In Subsection 3.3.2.5 we will go into the

details of how we mark beach arcs.

Figure 3.13: Updated beach line with bisectors

There is another problem that the weighted sites introduce: when the site event of a

site with a large weight has not happened yet, circle events that have an event location

that lie within the circle of the site do happen. This means that we remove an arc

from the beach line, create a new vertex and a new edge. None of these actions should

happen. To solve this, we change the sweep line from just a straight line to a line that

incorporates the circles of sites that are yet to be encountered. In Figure 3.14 you can

see what this would look like. We use this new sweep line to check whether circle events

may happen, based on whether a circle event location is above or below the sweep line.

We remove a circle from the sweep line when its corresponding Voronoi site has entered

the beach line. This means that on a site event we can remove the circle from the

sweep line. When the sweep line has not fully passed through the circle of a site, it will

still produce a useful parabola that we can use to calculate the beach arc intersections.

Figure 3.15 shows two examples. From these examples we can see that the parabolas

are not correct below the sweep line. As we make no claims about anything below the

sweep line, this is not a problem.
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Figure 3.14: Updated sweep line with a site that is yet to be encountered

Figure 3.15: The parabolas of two Voronoi sites when the sweep line is below the
site, but not below the corresponding circle

3.3.2.4 Top site circle event

Top site circle (TSC) events happen when the sweep line encounters the top of a circle

corresponding to a Voronoi site. Therefore, we can order the events by the y-coordinate

of the top of the circles. If two events have the same y-coordinate we use the x-coordinate

of the Voronoi sites.

3.3.2.5 Beach arcs

As described in Subsection 3.3.2.3, we had to make a small change to the beach arcs.

In Fortune’s algorithm a beach arc consists of a Voronoi site, a left and right neighbor,

and possibly the reference to a circle event. We add two possible references to Voronoi
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sites that influence a beach arc. One reference to the site that is used to calculate the

left intersection and one to the site that is used to calculate the right intersection. A

beach arc can be infinitely large and might be influenced by many sites, but we are

only interested in the leftmost and rightmost that lie below the arc. So just keeping

a reference to the leftmost and rightmost suffices. When the beach arc is small or the

Voronoi site that influences it has a large weight, both the left and right reference can

point to the same Voronoi site.

When a TSC event happens, we find the arc that lies right above the site that the event

belongs to. If the arc is not marked yet, we set both the left and right reference. We

then check for all neighbors if they are also influenced by the TSC event. If they are, we

also mark them. To check if an arc is influenced by a Voronoi site, we check if the arc

is (fully or partially) above the circle. We also check the neighbors if this is the case.

When an arc is already marked with a reference to a site, and another TSC event also

influences it, we check whether the new site is leftmost or rightmost. If it is leftmost

or rightmost we update the corresponding reference. We also check the corresponding

neighbor arc.

When a site event happens and a new arc is introduced into the beach line, we check

if the neighbors of the new arc had references to the site belonging to the new arc. We

remove all of those references. We also check if the updated arcs are above the circle of

a site that is still in the sweep line and set the correct references.

One special case we have to take into account is that the first TSC event is always before

a site event and we need to handle that correctly. If a TSC event happens and the beach

line is empty, we postpone it until we have at least one beach arc in the beach line.

When calculating the beach arc intersections, we use the references to calculate the

intersections. If we calculate the left intersection of an arc, we check if the arc or its

left neighbor have a reference to a site. For the current arc we check the left reference,

and for the left neighbor we check the right reference. If there is only one reference,

we calculate the intersection of the bisector of the arc site and the reference site and

the bisector of the left neighbor site and the reference site. If both have a reference, we

check the intersection of the bisectors of the arc site and the corresponding reference

site. We then check if the found intersection is closer to the sweep line or to the reference

site(s). If it is closer to the sweep line we fall back on the traditional arc intersection by

calculating the intersection of the parabolas.
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3.4 Algorithm limitations

Due to the way we order events, a site should not be located in the circle corresponding

to another site. If a site lies within the circle of another site, the beach line intersections

we calculate would sometimes give incorrect results. Overlap of circles is not a problem.

3.5 The algorithm

Putting all our changes together with Fortune’s algorithm, we get the algorithm as shown

in Algorithm 2.

Data: A set S = {s1, ..., sn} of weighted sites with no site in the circle of another site
A convex polygon P that bounds the sites in S
Result: The bounded additively weighted power Voronoi diagram of S in a

doubly-connected edge list D
begin

Initialize site event queue SQ with all site events from S;
Initialize TSC event queue TQ with all TSC events from S;
Initialize an empty circle event queue CQ;
Initialize an empty beach line B;
Initialize an empty sweep line L;
Initialize an empty doubly-connected edge list D;
Pop site event from SQ and insert the corresponding site into B;
se← pop site event from SQ;
te← pop TSC event from TQ;
while true do

ce← FINDNEXTCIRCLEEVENT(CQ, L);
if se == null and ce == null then

break;
end
else if se < te and se < ce then

HANDLESITEEVENT(se, B, CQ, D, L);
se← pop site event from SQ;

end
else if te < se and te < ce then

HANDLETSCEVENT(te, B, L);
te← pop TSC event from TQ;

end
else if ce < se and ce < te then

HANDLECIRCLEEVENT(ce, B, CQ, D);
end

end
Intersect D with P to create the bounded Voronoi diagram;

end

Algorithm 2: Sweep line algorithm for AWP Voronoi diagrams
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Data: Site event se
Beach line B
Circle event queue CQ
Doubly-connected edge list D
Sweep line L
Result: D updated with new edges
CQ updated with possible new circle events
begin

s← site corresponding to se;
Remove s from L;
Update all arcs that reference s;
a← beach arc in B vertically above s;
if a has associated circle event then

remove circle event from CQ;
end
sa← the site associated with a;
Split a into two arcs al and ar;
Create new beach arc an with site s;
Insert an between al and ar;
Update B;
Create edge e between s and sa;
Insert e into D;
Check for a circle event for al and its two neighbors;
Check for a circle event for ar and its two neighbors;
Insert found circle events into CQ;

end

Procedure HANDLESITEEVENT(se, B, CQ, D, L)
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Data: Circle event ce
Beach line B
Circle event queue CQ
Doubly-connected edge list D
Result: D updated with new edges
CQ updated with possible new circle events
begin

remove ce from CQ;
s← site corresponding to ce;
a← beach arc associated with ce;
e← edge associated with a;
al← left neighbor of a;
ar ← right neighbor of a;
v ← center point of circle event ce;
End e in vertex v;
Connect al and ar so that they are direct neighbors;
Create edge f between the sites of al and ar;
Start f with vertex v;
Add f to D;
Update B;
Check for a circle event for al and its two neighbors;
Check for a circle event for ar and its two neighbors;
Update site references for al;
Update site references for ar;
Insert found circle events into CQ;

end

Procedure HANDLECIRCLEEVENT(ce, B, CQ, D)
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Data: TSC event te
Beach line B
Sweep line L
Result: Arcs in B updated to reflect new site references
begin

s← site belonging to te;
a← beach arc in B vertically above s;
sl← left site reference of a;
sr ← right site reference of a;
if sl == null or s.x < sl.x then

Set left reference of a to s;
if intersection of a and left neighbor above circle s then

SETARCSITEREFERENCE(e, a.leftNeighbor, L);
end

end
if sr == null or s.x > sr.x then

Set right reference of a to s;
if intersection of a and right neighbor above circle s then

SETARCSITEREFERENCE(e, a.rightNeighbor, L);
end

end

end

Procedure HANDLETSCEVENT(te, B, L)

Data: Circle event queue CQ, events are ordered by their y-coordinate
Sweep line L
Result: The next circle event that may happen
begin

foreach ce ∈ CQ do
if ce above y-coordinate L then

neverinside← true;
foreach s that is on L do

if ce event location inside circle of s then
neverinside← false;
break;

end

end
if neverinside then

return ce;
end

end
else

break;
end

end
return null;

end

Procedure FINDNEXTCIRCLEEVENT(CQ, L)
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Data: TSC event te
Beach arc a
Beach line L
Result: Updated arc with left and right site reference
begin

s← site belonging to te;
sl← left site reference of a;
sr ← right site reference of a;
if sl == null or s.x < sl.x then

Set left reference of a to s;
if intersection of a and left neighbor above circle s then

SETARCSITEREFERENCE(e, a.leftNeighbor, L);
end

end
if sr == null or s.x > sr.x then

Set right reference of a to s;
if intersection of a and right neighbor above circle s then

SETARCSITEREFERENCE(e, a.rightNeighbor, L);
end

end

end

Procedure SETARCSITEREFERENCE(te, a, L)
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Voronoi treemaps

In Chapter 3, we have shown how to compute additively weighted power Voronoi di-

agrams. In this chapter we will show how we use those diagrams to create a Voronoi

treemap. First, we introduce centroidal Voronoi diagrams and the changes needed for

Voronoi treemaps. Then we show how we combine it all to create a Voronoi treemap.

4.1 Centroidal Voronoi diagrams

Centroidal Voronoi diagrams, more often referred to as centroidal Voronoi tessellations,

are Voronoi diagrams where the sites are at the center of weight, the centroid, of their

Voronoi region. Centroidal Voronoi diagrams have as property that the plane is divided

in such a manner that all Voronoi regions have approximately the same area. Centroidal

Voronoi diagrams are often used to study the territorial behaviour of animals. In [31],

the authors give a concise overview of centroidal Voronoi diagrams, their uses and the

algorithms to create them.

To compute a centroidal Voronoi diagram we use Lloyd’s algorithm as described in [31].

Lloyd’s algorithm uses iterative relaxation of the Voronoi diagram. First, the original

Voronoi algorithm is used to compute the Voronoi regions of a set of sites. Second, each

site is placed at the center of weight of its region. To compute the center of weight

for each region we compute the centroid C, where C = (Cx, Cy), using equation 4.2 to

compute Cx and equation 4.3 to compute Cy. Both of these equations use the area A

of the Voronoi region, which is given by equation 4.1. All three equations assume that

the Voronoi region is closed, which is no problem because we close all open Voronoi

regions with a bounding box. The vertices (x0, y0), (x1, y1), ..., (xn−1, yn−1) of the region

are ordered counterclockwise and the vertex (xn, yn) is the same as (x0, y0). We use the

50
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center of weight of each region as the new location for each of the sites to compute the

new Voronoi diagram. We repeat this till we come to a stable point, where each site

is already at the center of weight of its Voronoi region. Figure 4.1 shows the results

of Lloyd’s algorithm at several intervals. Usually, we allow for a small margin of error,

where each site is at a small distance from the center of weight. This ensures that the

algorithm finishes in a timely manner. The algorithm is given in Algorithm 3.

A =
1

2

n−1∑
i=0

(xi yi+1 − xi+1 yi) (4.1)

Cx =
1

6A

n−1∑
i=0

(xi + xi+1)(xi yi+1 − xi+1 yi) (4.2)

Cy =
1

6A

n−1∑
i=0

(yi + yi+1)(xi yi+1 − xi+1 yi) (4.3)

Data: A set S = {s1, ..., sn} of sites
The minimal distance d that a site needs to move
Result: The centroidal Voronoi diagram of S in a doubly-connected edge list D
begin

D ← CreateVoronoiDiagram(S);
notdone← true;
while notdone do

notdone← false;
foreach s in S do

a← Voronoi region of s in D;
cow ← center of weight of a;
if distance(s, cow) > d then

notdone← true;
end
Set location of s to cow;

end
D ← CreateVoronoiDiagram(S);

end
return D;

end

Algorithm 3: Lloyd’s algorithm for computing centroidal Voronoi diagrams

4.2 Additively weighted power centroidal Voronoi diagrams

To create Voronoi diagrams, we have to divide an area into subdivisions that have a size

corresponding to a metric. By using AWP Voronoi diagrams alone we can not create such

subdivisions. However, if we combine AWP Voronoi diagrams with centroidal Voronoi
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Figure 4.1: Several iterations of Lloyd’s algorithm
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diagrams and not only change the location of the site but also its weight, we can create

the desired subdivisions. We also change the condition on which the algorithm stops.

We check the size of the subdivisions and when all subdivisions are within a small margin

of error of their desired size we stop. This algorithm was first described in [2] and later

extended in [12]. Our algorithm very closely resembles the algorithm as described in

[12], but due to our different data structures it differs slightly.

In [12], Nocaj and Brandes identify two distinct steps in each iteration of the algorithm.

In the first step they change both the position and the weight of a Voronoi site. In the

second step they only change the weights. While both steps change the weight, the way

they do it is different.

In the first step, they start by moving the site to the centroid of its Voronoi region.

Then they change the weight, but not in relation to the desired size of the region. When

moving a site with a large weight, its corresponding circle might accidentally overlap

with a neighboring site, and as per Section 3.4 this is not allowed. They prevent this by

changing the weight after the site has been moved. The weight is changed if the radius

of the circle is larger than the Euclidean distance to the nearest edge. Figure 4.2 shows

that if site s is moved and its original weight (red) is kept, then its circle will overlap

with site v. By changing the weight such that the circle lies within the Voronoi region

of s (blue), this is prevented.

The second step is used to influence the size of the region belonging to the site. Consider-

ing the limitations of our algorithm, as described in Section 3.4, the circle corresponding

with the site should never be so large that it overlaps with another site. Therefore, we

limit the weight in such a way that the circle cannot overlap with the neighbors of the

site. We have to use the neighbors in the standard Voronoi diagram, because a site might

be a neighbor of a site in the ordinary Voronoi diagram, without being its neighbor in

the AWP Voronoi diagram, see Figure 4.3.

Taking all this into consideration we come to Algorithm 4 to create a single layer of a

Voronoi treemap.

4.3 Recursively building a Voronoi treemap

We now have all the ingredients needed to create a Voronoi treemap. We know how

to compute the individual subdivisions, so all that is left is to combine them with a

hierarchical graph. Algorithm 5 shows how this is done. We start with creating the first

level of the Voronoi treemap by providing the algorithm with the hierarchical graph and

a convex polygon that will bound the Voronoi treemap. We divide the convex polygon
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Figure 4.2: Moving site s without changing its original weight would mean that site
v lies within the circle belonging to s. (reproduced from [12])

Figure 4.3: If we increase the weight of site v and only take into account its neighbors
in the AWP Voronoi diagram, then the circle belonging to v might overlap with site s.
This is prevented by using the neighbors in the standard Voronoi diagram (dotted blue

line). (reproduced from [12])
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Data: A set S = {s1, ..., sn} of weighted sites with no site in a circle corresponding to
another site

Each site in S has an associated desired area
Each site in S has a starting weight of 1
A convex polygon P that bounds S
imax max number of iterations
Ethreshold error threshold
Result: A doubly-connected edge list D bounded by P
begin

D ← initialize empty doubly-connected edge list;
for i← 1 to imax do

D ← create an AWP Voronoi diagram of S bounded by P ;
ADAPTPOSITIONSANDWEIGHTS(D, S);
D ← create an AWP Voronoi diagram of S bounded by P ;
totalError ← ADAPTWEIGHTS(D, S, P );

error ← totalError
2×Area(P ) ;

if error < Ethreshold then
return D;

end

end
return D;

end

Algorithm 4: Compute Voronoi treemap (single layer)

Data: A set S = {s1, ..., sn} of weighted sites with no site in a circle corresponding to
another site

Each site in S has an associated desired area
A bounded doubly-connected edge list D
Result: All sites in S updated with a new location and weight
begin

foreach s ∈ S do
a← the Voronoi region of s in D;
cow ← the center of weight of a;
Set location s to cow;
minBorderDist← min distance from s to edges in D;
weight← weight of s;
newWeight← min(weight,minBorderDist2);
Set weight of s to newWeight;

end

end

Procedure ADAPTPOSITIONSANDWEIGHTS(D, S)
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Data: A set S = {s1, ..., sn} of weighted sites with no site in a circle corresponding to
another site

Each site in S has an associated desired area
A bounded doubly-connected edge list D
A convex polygon P
Result: All sites in S with updated weight
The sum of errors of the desired size of each site versus the actual size
begin

// Please note we create a normal Voronoi diagram

D′ ← create a Voronoi diagram of S bounded by P ;
totalError ← 0;
foreach s ∈ S do

nn← nearest neighbor of s in D′;
acurrent ← current size of the Voronoi region of s in D;
adesired ← desired size of the Voronoi region of s;
totalError ← totalError + abs(acurrent − adesired);
factor ← adesired

acurrent
;

w ← current weight of s;
newWeight← min(w × factor, distance(s, nn)2);
Set weight of s to max(newWeight, 1);

end
return totalError;

end

Procedure ADAPTWEIGHTS(D, S, P )

into Voronoi regions, one for each of the children of the root node in the hierarchical

data. These Voronoi regions are then divided for each of their children. We keep doing

this till we have created a Voronoi region for every node in the hierarchical data.
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Data: A hierarchical graph H with nodes with associated metric m
A convex polygon P
Result: A Voronoi treemap as a hierarchical graph of doubly-connected edge lists
begin

r ← get root node of H;
N ← child nodes of r in H;
S ← empty collection of Voronoi sites;
a← area size of P ;
foreach n ∈ N do

s← create a new Voronoi site that lies in P ;
sdesiredarea ← a× nm

rm
;

Add s to S;

end
D ← compute the single layer of S bounded by P ;
foreach n ∈ N do

if n has children in H then
s← the site in S that corresponds to n;
P ′ ← get the polygon of s in D;
H ′ ← get sub graph with root n from H;
D′ ← CreateVoronoiTreemap(P ′, H ′);
Add D′ to D as child;

end

end
return D;

end

Algorithm 5: Voronoi treemap creation
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Stable Voronoi treemap algorithm

Up until now the Voronoi treemaps do not take the order and placement of the Voronoi

sites into account. This means that each Voronoi treemap will be completely different,

even when visualizing the same data. When we visualize the same data multiple times we

can not easily relate the visualizations to each other. This also holds for visualizing data

that changes over time. Each visualization is completely different while the underlying

data might not differ that much.

To solve this, we introduce several algorithms that ensure that visualizations that do

not differ in underlying data do not differ visually. We also show that these algorithms

can be used to visualize data that changes over time.

5.1 Voronoi site ordering

One of the reasons Voronoi treemaps differ from each other is that there is no well-

defined order of Voronoi sites. Each time data is used to create a Voronoi treemap, sites

are created in a random order.

We propose to enforce a strict order on the creation of Voronoi sites. The order we

propose to use is the order of the underlying data. If one data point is presented later

in the data than another, then its Voronoi site will be created later. This ensures that

the order of Voronoi sites is equal to the order of the underlying data. This means that

the algorithms need to be provided with a data set that has a well-defined order. If

the data is not ordered, the visualization will not be either. If we visualize data that

changes over time but we do keep the same order, then the visualizations will also keep

their order.

58
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5.2 Hilbert curve Voronoi site placement

The second problem we face when trying to create a stable Voronoi diagram algorithm

is the placement of Voronoi sites. Even if we enforce a strict order on the creation of

Voronoi sites, but then place them at random locations, we still get completely random

Voronoi treemaps.

Order is enforced on the data; therefore the creation of Voronoi sites can be seen as

placing all sites in a single line. By using a space-filling curve, we can place this line

over the polygon used for our visualization and place the Voronoi sites accordingly. This

ensures that we place them at a predictable location. The space-filling curve we use is

the Hilbert curve. Figure 5.1 shows Hilbert curves of order 1, 2 and 3. Hilbert curves

are constructed by visiting every cell in a square grid. The order in which each cell is

visited is based on a simple recursive algorithm that is described in Chapter 14 of [32].

When we visit a cell we add the center point of the cell to a list of points on the Hilbert

curve. This list of points is what we are interested in.

Figure 5.1: Hilbert curves of order 1, 2, and 3 (reproduced from opengl.org)

When creating Voronoi sites we have to place them within the convex polygon that

we are dividing. We place a Hilbert curve over the polygon, but a Hilbert curve, by

definition, lies in a perfect square and the polygon most likely will not be a square at all.

We solve this by scaling and moving the Hilbert curve, so that it covers the complete

polygon. We move the Hilbert curve until the lowest point of the polygon lines up with

the lowest edge of the Hilbert square. We also position the left edge of the Hilbert

square such that it lines up with the leftmost point of the polygon. We then scale the

Hilbert square to cover the complete polygon. By intersecting the points on the Hilbert

curve with the polygon, we get the set of points we can use to create Voronoi sites,

see Figure 5.2. When creating Voronoi sites, we pick points from this set at regular

https://www.opengl.org/discussion_boards/showthread.php/160178-Space-filling-curve-primitive
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intervals. We pick them in the order that they occur on the Hilbert curve, see Figure

5.3 and Algorithm 6.

Figure 5.2: A Hilbert curve intersected with a polygon

Figure 5.3: A Hilbert curve intersected with a polygon and four Voronoi sites placed
at equal intervals

In our examples we use Hilbert curves of at most order 4, but in our actual implementa-

tion we use a grid of 28× 28. This gives us a greater number of points in case the shape

of the polygon is very elongated and would otherwise intersect with very few points.
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Data: A set P = {p1, ..., pi}, consisting of all points in the intersection of the Hilbert
curve and some convex polygon

A set N = {n1, ..., nj} of nodes
Result: A set S = {s1, ..., sj} of Voronoi sites
begin

i← number of points in P ;
j ← number of nodes in N ;

stepsize← i
j ;

index← stepsize
2 ;

foreach n ∈ N do
Create Voronoi site s at pindex;
index← index + stepsize;
Add s to S;

end
return S;

end

Algorithm 6: Hilbert curve Voronoi site creation

5.3 Variable Hilbert curve Voronoi site placement

We realized that using a Hilbert curve to place Voronoi sites could be extended to take

the desired area of the region of the sites into account. Instead of placing the sites at

equal intervals, we could scale them according to the desired size of their region. We

also refer to the size/area of the region of a site as “the size/area of a site”. The first

algorithm we tested is shown in Algorithm 7. The aim of the algorithm is to provide

a Voronoi site with enough space from the start, so that we can reduce the number of

iterations in Algorithm 4. Unfortunately, Algorithm 7 is not able to do this reliably,

because the Hilbert curve turns back on itself. Points later on the curve can be at a

small distance from points early on the curve. This means that if we place a Voronoi

site with a large desired area close to the center of the Hilbert curve square, it is very

likely that another site will be placed close by. Figure 5.3 shows that even though the

intervals between the sites on the Hilbert curve are equal, the distance between the sites

is not. When we visualize the Euclidean distance between any two points on a Hilbert

curve of order 8, using a heat map, we get the visualization as shown in Figure 5.4.

This heat map can be seen as the matrix of distances with at the top-left corner the

first point on the Hilbert curve. As we move to the right we move along the Hilbert

curve until we reach the last point on the Hilbert curve at the top-right corner. The

same happens moving down until we reach the last point on the Hilbert curve at the

bottom-left corner. The brightness of the color shows the distance between two points;

the brighter the color the larger the distance. We can clearly see that we might place

sites closer together than intended.
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Figure 5.4: A heat map of the Euclidean distance between any two points on a Hilbert
curve of order 8 (reproduced from datagenetics.com)

Data: A set P = {p1, ..., pi}, consisting of all points in the intersection of the Hilbert
curve and some convex polygon

A hierarchical graph H with nodes with associated metric m
Result: A set S = {s1, ..., sj} of Voronoi sites
begin

r ← get root node of H;
N ← child nodes of r in H;
S ← empty collection of Voronoi sites;
i← number of points in P ;
index← 0;
foreach n ∈ N do

fraction← nm
rm

;

step← fraction× i;
Create Voronoi site s at pindex+ step

2
;

index← index + step;
Add s to S;

end
return S;

end

Algorithm 7: Scaled Hilbert curve Voronoi sites

We solve this problem by using four Hilbert curves instead of a single Hilbert curve.

When we create a new Voronoi site we determine which Hilbert curve to use based on

the desired size of the region. The larger the desired area, the lower the order of Hilbert

curve we use. This ensures that the location of new Voronoi sites will not accidentally

lie close to other sites. In Figure 5.5, we can see that the lower the order of a Hilbert

curve, the more guaranteed space each point has. We can use different order of Hilbert

curves for different sites, because the general location of points in relation to each other

http://datagenetics.com/blog/march22013/index.html
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is preserved. In this new algorithm we do not first find all the points on the Hilbert

curves that lie within a convex polygon, but we check each point we intend to use. Our

algorithm uses the Hilbert curves of order 1, 2, 3, and 8. For each site, we determine

which of the curves to use based on the percentage of the bounding square the desired

area of a Voronoi site is. We then use that curve to find a suitable point that lies

within the bounding polygon. If we cannot find one we fall back to a higher order

curve. Once we reach the eighth order we keep trying till we find a suitable point. This

gives us the algorithm as described in Algorithm 8. We should note that in Procedure

FINDPOINTFORNODE we use a special Hilbert curve of order 1 (HC ′1): we added

three points to the Hilbert curve to give us a little more choice when looking for a

location for a new Voronoi site, see Figure 5.6.

Figure 5.5: Three superimposed Hilbert curves of order 1, 2 and 3 (reproduced from
wolfram.com)

5.4 Optimizing stable Voronoi treemap creation

Using the algorithms in Section 5.3, we found that we create good starting locations for

the Voronoi sites when creating a single level of the Voronoi treemap. By also giving

a good starting weight we could do even better. We originally started Algorithm 4

with sites that all have a weight of 1. We improve this by introducing an extra step

in Algorithm 4 in which we compute a good starting weight. We do this by creating

a traditional Voronoi diagram. Using this Voronoi diagram we check the area of the

current Voronoi region of each site, and compare it with its desired area. We then

change the weight based on the current area and how much the area needs to grow or

shrink. When changing the weight we make sure that the circle of the site will not overlap

http://demonstrations.wolfram.com/HilbertAndMooreFractalCurves/
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Figure 5.6: Three new points (blue) added to the Hilbert curve of order 1 (adapted
from opengl.org)

with another site. Procedure COMPUTESTARTWEIGHTS shows how we compute the

starting weight and Algorithm 9 shows how it is used.

Another optimization we did was improving the speed at which Voronoi sites with a

small desired area reach their desired area. When a site reaches the lower bound of

weight, it is totally dependent on its neighbors to increase their weight to get its desired

area. We found that the second half of the iterations of Algorithm 9 was mostly spend

on slowly propagating weight changes from all over the AWP Voronoi diagram to shrink

the area of a few sites with a small desired area. We speed up this process by moving

Voronoi sites with a small desired area that are at the lower bound of weight closer to

one of its neighbors. By moving the site closer to its neighbor we ensure that the area

shrinks, even if the weight does not change. The neighbor we move it closer to is the

neighbor that has the smallest weight; this has the largest effect area wise. Procedure

ADAPTPOSITIONSANDWEIGHTS’ shows how we do this.

5.5 Incremental Voronoi treemap creation

We also tried to create stable Voronoi treemaps by using an incremental algorithm. To

keep Voronoi treemaps as similar as possible, we create a new Voronoi treemap based on

a previous one. When creating a Voronoi treemap we not only save the visualization, but

also all the original data we used to create it, including the hierarchy of doubly-connected

edge lists. When creating a new Voronoi treemap, we can provide the algorithms with

a starting point. This starting point is the data and Voronoi treemap from an earlier

visualization.
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Data: The polygon P that has to contain the Voronoi sites
A hierarchical graph H with nodes with associated metric m
Result: A set S = {s1, ..., sj} of Voronoi sites
begin

r ← get root node of H;
N ← child nodes of r in H;
S ← empty collection of Voronoi sites;
B ← the bounding perfect square of P ;

areafraction← Parea
Barea

;

indexfraction← 0;
foreach n ∈ N do

fraction← nm
rm
× areafraction;

if fraction <= 0.05 then
(p, indexfraction)← FINDPOINTFORNODE(P, r, n, fraction, 8);

end
if fraction > 0.05 and fraction <= 0.10 then

(p, indexfraction)← FINDPOINTFORNODE(P, r, n, fraction, 3);
end
if fraction > 0.10 and fraction <= 0.225 then

(p, indexfraction)← FINDPOINTFORNODE(P, r, n, fraction, 2);
end
if fraction > 0.225 then

(p, indexfraction)← FINDPOINTFORNODE(P, r, n, fraction, 1);
end
Create Voronoi site s at p;
Add s to S;

end
return S;

end

Algorithm 8: Variable Hilbert curve Voronoi sites

As Voronoi treemaps visualize hierarchical graphs, we can easily walk the graph of the

new data and the graph of the previous visualization. While walking both graphs we

only note the added and deleted nodes. We simply remove the deleted nodes from the

previous Voronoi treemap. For nodes that are new, we look at the node that precedes

them in the data, and look where it is in the visualization. We then introduce a new

Voronoi site on the center of one of the edges of the region of the Voronoi site belonging

to the preceding data, see Figure 5.7. If we can, we choose the edge that is shared with

the Voronoi site that belongs to the data after the new node.

This approach does deliver very similar Voronoi treemaps when visualizing snapshots

with only small differences. When old data is removed and new data is added in such

a way that we cannot find edges to insert the new Voronoi sites, the algorithm breaks

down. While we could have developed this algorithm further to better cope with these

cases, we found that the Voronoi treemaps created by using variable Hilbert curves are
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Data: P the polygon that has to contain the Voronoi sites
r root node with metric m
n node with metric m
fraction the start fraction of the Hilbert curve
l the Hilbert curve order to start with
Result: A point p that lies in P
The current fraction
begin

HC ′1 ← the points on the extended Hilbert curve of order 1;
HC2 ← the points on the Hilbert curve of order 2;
HC3 ← the points on the Hilbert curve of order 3;
HC8 ← the points on the Hilbert curve of order 8;
B ← the bounding perfect square of P ;

stepfraction← nm
rm
× Parea

Barea
;

if l == 8 then
x← SizeOf(HC8);
return FINDPOINTFORNODEINCURV E(HC8, P, r, n, fraction, x);

end
if l == 3 then

(p, fraction′)←
FINDPOINTFORNODEINCURV E(HC3, P, r, n, fraction, 8);
if p is null then

return FINDPOINTFORNODE(P, r, n, fraction, 8);
end
return (p, fraction′);

end
if l == 2 then

(p, fraction′)←
FINDPOINTFORNODEINCURV E(HC2, P, r, n, fraction, 4);
if p is null then

return FINDPOINTFORNODE(P, r, n, fraction, 3);
end
return (p, fraction′);

end
if l == 1 then

size← SizeOf(HC ′1);

index← size× (fraction + stepfraction
2 );

p← point in HC ′1 at index;
if p inside P then

return (p, fraction + stepfraction);
end
index← index + 1;
p← point in HC ′1 at index;
if p inside P then

return (p, fraction + stepfraction);
end
return FINDPOINTFORNODE(P, r, n, fraction, 2);

end

end

Procedure FINDPOINTFORNODE(P , r, n, fraction, l)
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Data: HC a set of points on a Hilbert curve
P the polygon that has to contain the Voronoi sites
r root node with metric m
n node with metric m
fraction the start fraction of the Hilbert curve
imax max number of iterations
Result: A point p that lies in P or null
The current fraction
begin

B ← the bounding perfect square of P ;

stepfraction← nm
rm
× Parea

Barea
;

size← SizeOf(HC);

index← size× (fraction + stepfraction
2 );

step← size× stepfraction
2 ;

currentstep← step;
p← point in HC at index;
i← 0;
while p not inside P and i < imax do

i← i + 1;

currentstep← currentstep
2 ;

if currentstep < 1 then
currentstep← 1;

end
index← index + currentstep;
p← point in HC at index;

end
if p inside P then

return (p, size
index+step);

end
return (null, 0);

end

Procedure FINDPOINTFORNODEINCURVE(HC, P , r, n, fraction, imax)

Figure 5.7: Inserting a new Voronoi site on the edge of the regions of two Voronoi
sites

visually very close to what we could achieve by improving this algorithm. Another

drawback of the incremental algorithm is that it needs a Voronoi treemap to start with,

which means that we still have to use our variable Hilbert curve algorithm. Therefore
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Data: A set S = {s1, ..., sn} of weighted sites with no site in the circle of another site
Each site in S has an associated desired area
Each site in S has a starting weight of 1
A convex polygon P that bounds S
imax max number of iterations
Ethreshold error threshold
Result: A doubly-connected edge list D bounded by P
begin

D ← initialize empty doubly-connected edge list;
COMPUTESTARTWEIGHTS(S, P );
for i← 1 to imax do

D ← create an AWP Voronoi diagram of S bounded by P ;
// Please note we use the primed procedure

ADAPTPOSITIONSANDWEIGHTS’(D, S);
D ← create an AWP Voronoi diagram of S bounded by P ;
totalError ← ADAPTWEIGHTS(D, S);

error ← totalError
2×Area(P ) ;

if error < Ethreshold then
return D;

end

end
return D;

end

Algorithm 9: Compute Voronoi treemap (single layer) improved

Data: A set S = {s1, ..., sn} of weighted sites with no site in the circle of another site
P the bounding convex polygon
Result: All sites in S with updated weight
begin

// Please note we create a normal Voronoi diagram

D ← create a Voronoi diagram of S bounded by P ;
totalError ← 0;
foreach s ∈ S do

nn← nearest neighbor of s in D;
acurrent ← current size of the Voronoi region of s in D;
adesired ← desired size of the Voronoi region of s;
weight← acurrent

π ;
factor ← adesired

acurrent
;

newWeight← min(weight× factor, distance(s, nn)2);
Set weight of s to max(newWeight, 1);

end
return totalError;

end

Procedure COMPUTESTARTWEIGHTS(S, P )
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Data: A set S = {s1, ..., sn} of weighted sites with no site in the circle of another site
Each site in S has an associated desired area
A bounded doubly-connected edge list D
Result: All sites in S updated with a new location and weight
begin

foreach s ∈ S do
weight← weight of s;
a← the Voronoi region of s in D;
cow ← the center of weight of a;
Set location s at cow;
if weight == 1 then

neighbor ← get neighbor of s with smallest weight in D;
borderDist← get distance to edge between s and neighbor in D;
acurrent ← current size of the Voronoi region of s in D;
adesired ← desired size of the Voronoi region of s;
factor ← adesired

acurrent
;

movedist← borderDist× factor;
Move s movedist along the line segment between cow and neighbor;

end
else

minBorderDist← min distance from s to edges in D;
newWeight← min(weight,minBorderDist2);
Set weight of s to newWeight;

end

end

end

Procedure ADAPTPOSITIONSANDWEIGHTS’(D, S)

we decided to not further develop this incremental algorithm.
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Empirical validation

To be able to validate the visualizations obtained from our optimized stable Voronoi

treemap algorithm, as described in Section 5.4, a web interface was build. The web

interface allows a user to interactively create visualizations. To allow the users to get

a complete overview of the visualizations, several example cases were provided. In this

chapter an overview of the web interface and the example cases are given. The validation

sessions with users will be described and the results discussed.

6.1 Web application

To provide the users with an easy way to interact with the algorithms and the resulting

Voronoi treemaps, a web application was build. To create Voronoi treemaps, the algo-

rithms need software analysis results; the application organizes these analysis results by

software project and release, see Figure 6.1 and 6.2.

Figure 6.1: Web application project overview

6.1.1 Adding analysis results

To create visualizations, the algorithms need a hierarchical graph with metric values

for each node in the graph. The application itself is not able to compute a graph and

70
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Figure 6.2: Web application release overview

metrics. Therefore, they need to be supplied by an external tool. Since a web application

is used, an upload function is provided to upload such a graph. The graph has to be in

the format GEXF (Graph Exchange XML Format).

GEXF is an extensible XML-based file format that can describe complex network struc-

tures, their associated data and their dynamics. The format has a special construct

to accommodate hierarchical network structures, as shown in Listing 6.1. As shown in

Listing 6.2, attributes can be defined and added to the nodes. These two constructs are

enough to provide the algorithms with enough data to create Voronoi treemaps.

The “label” attribute is used in the Voronoi treemaps as textual identification of a node.

The “id” attribute is used to uniquely identify a node.
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<?xml version="1.0" encoding="UTF -8"?>

<gexf xmlns="http://www.gexf.net /1.2 draft"

xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http: //www.gexf.net /1.2 draft http://www.gexf.net /1.2 draft/gexf.xsd"

version="1.2">

<graph mode="static" defaultedgetype="directed">

<nodes>

<node id="a" label="root">

<nodes>

<node id="b" label="child1">

<nodes>

<node id="c" label="grandchild1"/>

<node id="d" label="grandchild2"/>

</nodes >

</node>

<node id="e" label="child2">

<nodes>

<node id="f" label="grandchild3"/>

</nodes >

</node>

</nodes >

</node>

</nodes>

</graph>

</gexf>

Listing 6.1: Hierarchical GEXF
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<?xml version="1.0" encoding="UTF -8"?>

<gexf xmlns="http://www.gexf.net /1.2 draft"

xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http: //www.gexf.net /1.2 draft http://www.gexf.net /1.2 draft/gexf.xsd"

version="1.2">

<meta lastmodifieddate="2009 -03 -20">

<creator >Gephi.org</creator >

<description >A Web network </description >

</meta>

<graph defaultedgetype="directed">

<attributes class="node">

<attribute id="0" title="url" type="string"/>

<attribute id="1" title="indegree" type="float"/>

<attribute id="2" title="type" type="int">

<default >true</default >

</attribute >

</attributes >

<nodes>

<node id="3" label="BarabasiLab">

<attvalues >

<attvalue for="0" value="http:// barabasilab.com"/>

<attvalue for="1" value="3.14"/>

<attvalue for="2" value="1"/>

</attvalues >

</node>

</nodes >

</graph>

</gexf>

Listing 6.2: Data GEXF

To actually upload a GEXF file, a .gexf file has to be selected and a description can be

provided, as shown in Figure 6.3. The file will be shown in the release overview, where

it can be used to create Voronoi treemaps.

Figure 6.3: Web application adding analysis results

6.1.2 Creating a Voronoi treemap

Voronoi treemaps are created by selecting the “Add visualization” link for a particular

analysis result, as shown in Figure 6.4. The user is then presented with a screen where
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the size and sorting attributes can be selected, as seen in Figure 6.5 and 6.6. All the

attributes that are available for selection are the metrics that have been provided in the

uploaded GEXF file. The size attribute will be used to compute the relative size of the

areas for each node, as described in Chapter 4. To create a stable Voronoi treemap the

sorting attribute is used as described in Chapter 5. By clicking the “Add” button, the

selected options and the graph will be fed to the algorithms and the resulting Voronoi

diagram will be shown.

Figure 6.4: Web application analysis results overview

Figure 6.5: Available size attributes in web application “Add visualization”

Figure 6.6: Available sort attributes in web application “Add visualization”

6.1.3 Interacting with a Voronoi treemap

Once a Voronoi treemap has been created, it will be listed in the overview beneath the

corresponding GEXF file. By selecting it, the user is taken to a full-screen version of the



Chapter 6. Empirical validation 75

Voronoi treemap. The treemap is rendered as a Scalable Vector Graphics (SVG) picture.

The use of a vector graphics means that zooming in will not result in artifacts and loss

of detail. Figure 6.7 shows a part of the same Voronoi treemap at different zoom levels.

When hovering over an area in the Voronoi treemap the corresponding label is shown,

as seen in Figure 6.8. Clicking on an area will show all the information we have on the

corresponding node; all the attributes are shown with their values. Because it is only

possible to click on leaf nodes, we also provide a tree list of the ancestors of the selected

node.

Figure 6.7: Voronoi treemap at several zoom levels

Figure 6.8: A tooltip shown when hovering over a Voronoi treemap

By default, the colors of the Voronoi treemap represent the McCabe complexity of each

leaf node. This can be changed by selecting another attribute in the color attribute drop-

down. By giving the minimal and maximal value expected for the selected attribute, a

range is computed from green to red. The minimal value will be green and the maximal

red.

6.1.4 Comparing Voronoi treemaps

Comparing two Voronoi treemaps is done by selecting one and clicking the “Compare”

button. This brings up a screen to select a Voronoi treemap to compare with. On
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this screen the user can also select the attribute to use for the comparison. By clicking

”OK” the originally selected Voronoi treemap is shown, but the color now represents the

difference between the two Voronoi treemaps for the selected attribute. The intensity

in blue shows decrease in percentage. The intensity in orange shows the increase in

percentage. White means no change and green means that the node was not present in

the Voronoi treemap that is selected to compare with. Figure 6.9 and 6.10 show two

examples.

Figure 6.9: The difference between Apache Jackrabbit 1.5.0 and 1.6.0

The available interaction is the same as with a normal Voronoi treemap, except when

selecting a node, not only the current values are shown, but also the delta.

6.2 Validation cases

Because of the short time limit set for the empirical validation two example cases were

selected, instead of using systems that the participants had prior experience with. We

used the data set [33], which contains analysis results from the Maven repository. For

each project in the Maven repository are analysis results for several versions available.

Two representative projects were selected and extensively studied, so that they could

be used in the empirical validation: Checkstyle and Apache Jackrabbit Core.
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Figure 6.10: The difference between Apache Jackrabbit 2.0.0-beta1 and 2.0.0-beta3

6.2.1 Checkstyle

Checkstyle is a development tool to help programmers write Java code that adheres to a

coding standard. It automates the process of checking Java code to spare humans of this

boring (but important) task. Historically, its main functionality has been to check code

layout issues, but since the internal architecture was changed in version 3, more and

more checks for other purposes have been added. Now, Checkstyle provides checks that

find class design problems, duplicate code, or bug patterns like double checked locking.

Checkstyle provides a beautiful code base that has two interesting features that makes

it ideal for validating the visualizations.

First, Checkstyle has both generated code and handwritten code. The two are easily

distinguished in the visualizations. In Figure 6.11, Checkstyle version 5.4 is visualized

with lines of code as size and McCabe complexity as color. Generated code shows as

large bright red regions and handwritten code as small green regions.

Second, with around 18.000 lines of beautiful handwritten code, Checkstyle can easily

be used to check conclusions drawn from the visualizations. As expected, the generated

code is not as beautiful, but does serve as a good example of complex code.
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Figure 6.11: Checkstyle 5.4

6.2.2 Apache Jackrabbit Core

Apache Jackrabbit Core is the core component of the Apache Jackrabbit project. Apache

Jackrabbit is a fully featured content repository that implements the entire JCR API.

With 265.000 lines of code, Apache Jackrabbit Core is a large software system, and with

over 35 snapshots in the SIG data set, a good fit for our empirical validation.

The snapshots range from version 1.0.0 to 2.2.7 and show a good amount of evolution be-

tween the versions. The snapshots also contain a run of versions that are close together:

2.0.0-beta1 through 2.0.0 final with four betas in between.

The stability of the Voronoi treemaps can easily be shown by visualizing these snapshots.

Figure 6.12, 6.13 and 6.14 show three beta versions of Apache Jackrabbit 2.0.0. Figure

6.15 shows the final 2.0.0 version. There are only small changes between beta1 and

beta3; the visualizations reflect this by being very similar. The visualizations of beta3

and beta5 show a bigger difference, which is due to the fact that there is a bigger

difference in the software. Even with this bigger difference the two visualizations are

very similar.
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Figure 6.12: Apache Jackrabbit 2.0.0-beta1

Figure 6.13: Apache Jackrabbit 2.0.0-beta3
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Figure 6.14: Apache Jackrabbit 2.0.0-beta5

Figure 6.15: Apache Jackrabbit 2.0.0
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6.3 User sessions

Because Voronoi treemaps might be valuable at several stages in software development

and software quality assessment, people with different backgrounds were selected to

participate in the empirical validation. The backgrounds ranged from project manager

to software quality assessor. Validation was done in two different types of sessions:

interactive sessions and demo sessions. In Table 6.1 we give an overview of the sessions.

During each session, three main areas of interest were discussed: the value of Voronoi

treemaps themselves, the added value of stability when visualizing different versions of

the same software system, and the added benefit of speed.
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Team role

Demo 1 45 .Net > 12.5 Software architect

Interactive 1 75 .Net > 12.5 Software architect

Demo 1 60 .Net > 12.5 Project lead

Demo 2 60
.Net > 12.5 Project lead

Java > 12.5 Software architect

Interactive 1 75 .Net > 12.5 Software architect

Interactive 1 45 .Net > 5 Lead developer, scrum master

Demo 2 45
− > 12.5 Project manager

.Net > 7.5 Technical analyst

Demo 1 60 .Net, Java > 25 Technical analyst, software quality assessor

Table 6.1: Overview of user sessions

6.3.1 Voronoi treemap validation

While publications about Voronoi treemaps have been around for some time, an empir-

ical validation of the visualizations has never been published. Therefore, it was decided

that it would be beneficial to include a validation of Voronoi treemaps as starting point

for the validation of the rest of this master thesis project.
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At the beginning of each validation session, the participant was given a short introduction

to Voronoi treemaps, including how they visualize hierarchical graphs and use size to

depict one metric and color as a second metric. After this short introduction, several

example Voronoi treemaps were shown. These example Voronoi treemaps came from

both Checkstyle and Apache Jackrabbit Core.

For each Voronoi treemap, the value of the visualization itself was discussed.

6.3.2 Speed validation

One of the benefits of the algorithms described in this thesis is the speed. Creating a

Voronoi treemap for analysis results with a specific set of metrics takes mere seconds.

During the interactive sessions participants were asked to form an opinion on one of the

example cases. They were given the analysis results, access to the source code of the

system and the web application, and asked to explore the system and form an opinion

of the system.

During 30 minutes the interactions of the participant and the web application were

observed. After 30 minutes the results were discussed.

For non-interactive sessions the participants were given the option to create a few Voronoi

treemaps, but not without previously been given an explanation of the system being

visualized.

6.3.3 Stability validation

The most important addition to Voronoi treemaps that this thesis proposes is the ad-

dition of stability. To verify if our algorithm provides useful stability, the participants

of validation sessions were shown multiple Voronoi treemaps of different versions of a

system. They were also shown comparisons between Voronoi treemaps. The benefits

of the stability were discussed after participants had a chance to create and look at

multiple Voronoi treemaps.

6.3.4 User validation strengths and limitations

We tried to get a fair and balanced validation of our results, but we identified several

limitations in our validation setup. We also identified several strengths. Taking these

strengths and limitations into account we consider the results of our empirical study

valid.
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Limitations:

• All validation sessions were done with people from the same company. Even though

the company in question prides itself in its rigorous quality guidelines, it does mean

that all participants view our results within those guidelines and company culture.

• Most of the user sessions were conducted with people with a .Net background

while our example cases were in Java. Java and .Net are very similar and the

participants could still follow the code, but unfortunately the finer details might

have been lost to them.

• None of the participants had prior knowledge of the example software systems we

used. By studying the software ourselves we were able to answer most questions

the participants had.

Strengths:

• All participants in the user sessions have at least 5 years of experience with software

development; most have more than 12.5 years of experience.

• The user sessions were conducted with people that have different backgrounds and

roles. We tried to get a cross section of all people that have a direct stake in

monitoring software quality.

• Several participants have done software quality assessments or were directly in-

volved in software quality control.

• We chose representative example software systems from the available systems in

[33].

• The two example systems show a wide range of situations, from beautiful hand-

written code to extremely complex generated code.

6.4 Validation results

In each validation session valuable remarks were made. The most important and recur-

ring remarks are summarized here.

• Voronoi treemaps give a good bird’s-eye view of a software system.

• A single Voronoi treemap is not enough to show software quality, but offers a good

starting point for investigation or discussion.



Chapter 6. Empirical validation 84

• The possibility to create many Voronoi treemaps showing different metrics of a

system in a short time is a strong feature when investigating a new software system.

Especially when taking over development or maintenance of an existing software

system.

• The speed and stability of the algorithms help to quickly apply the gained insight

of one visualization to another visualization.

• The stabilized Voronoi treemaps allow for continuous feedback on the development

of software systems. This is especially valuable in larger teams on products that

are developed over a longer period of time. Accumulating disjointed small changes

can inadvertently lead to degrading software quality; by creating Voronoi treemaps

at small intervals this can be identified early on.

• The ability to compare different versions of the same software system is valuable

when keeping track of the development process and the quality of the resulting

software.

• Comparing two Voronoi treemaps with respect to absolute sizes is hard. The sizes

of areas in a Voronoi treemap are relative to the other areas of the same Voronoi

treemap. But not relative to the areas in a different Voronoi treemap. To solve

this, the absolute size of the system could be used to scale the complete Voronoi

treemap. This would allow for correctly comparing sizes of areas between two

Voronoi treemaps.

Given these results we can conclude that stable Voronoi treemaps fulfill all the require-

ments presented in Section 1.1. The participants in validation sessions also noted that

there was room for improvement. These improvements were not in the algorithms or

Voronoi treemaps themselves, but in the web application used to interact with them, or

in the metrics available for the visualizations.
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Conclusion and future work

In this master thesis we introduced interactive stable Voronoi treemaps. To be able to

create these interactive stable Voronoi treemaps we developed two novel algorithms: a

sweep line algorithm for additively weighted power Voronoi diagrams and an algorithm

that creates stable Voronoi treemaps. We verified the usefulness of the interactive stable

Voronoi treemaps by doing an empirical study.

7.1 Sweep line algorithm for additively weighted power

Voronoi diagrams

One of the contributions of this thesis is a sweep line algorithm for additively weighted

power Voronoi diagrams. Using this algorithm to create Voronoi treemaps and verifying

that these treemaps are correct, we indirectly showed that the AWP Voronoi diagrams

we created are correct. The empirical study also showed that our algorithm is fast

enough to provide an interactive environment for stable Voronoi treemaps.

We never compared our algorithm to other known algorithms for AWP Voronoi diagrams.

We think that it would be useful to do these comparisons, especially on run time and

complexity. We also suspect that our algorithm can be simplified by further examining

the top site circle event and its interaction with both the sweep line and the beach line.

7.2 Stable Voronoi treemap algorithm

The main contribution of this thesis is the introduction of stability to Voronoi treemaps.

We created several algorithms that are able to provide stability and finally settled on

85
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the algorithm based on scaled Hilbert curves. By using a web application that enables

users to create and interact with stable Voronoi treemaps, we were able to show that

our implementation of stable Voronoi treemaps meet the requirements set in Section 1.1.

Stable Voronoi treemaps are able to convey software quality and are especially useful in

software quality monitoring.

We also showed that using our scaled Hilbert curve algorithm we are able to improve

the time it takes to create Voronoi treemaps. This improvement was achieved by intro-

ducing an algorithm that creates a better starting weight for the Voronoi sites. This in

combination with the sweep line AWP Voronoi diagram algorithm allows us to create

stable Voronoi treemaps fast enough for users to quickly explore the quality of a software

system. This was confirmed in the empirical validation.

The scaled Hilbert curve algorithm produces stable Voronoi diagrams, but was never

analyzed in depth. We think that the constants currently present in the algorithm could

be improved on. A study into the relation between these constants and the stability of

the resulting treemap could further improve the stability of Voronoi treemaps. We also

foresee that the order of Hilbert curves we use can be improved upon, not only to improve

the stability but also to create a better starting situation for the other algorithms.
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Implementation details

The implementation of our application used in Chapter 6 can be divided in two separate

parts: the part that creates a stable Voronoi treemap and the part that provides all the

needed data and displays the result. Creating a stable Voronoi treemap is done by using

the library described in Section A.1. The web application described in Section A.2 is

used to interact with the library.

A.1 Stable Voronoi treemap library

The stable Voronoi treemap library is written in Java and has no dependencies on other

libraries. The library exposes several public functions, the most important of which is

the creation of stable Voronoi treemaps. It also exposes functions to create bounded

and unbounded AWP Voronoi diagrams. To create a stable Voronoi treemap we have

to provide the library with a hierarchical set of Voronoi sites and a bounding convex

polygon. The Voronoi sites do not need a location or a weight, only a desired size.

The location and the weight will be computed by the library. The Voronoi sites also

have a reference to the data that they represent; this data can later be used in the

visualizations.

The library has a total size of 3760 source lines of code (SLOC). All the functionality that

is exposed is implemented as static functions. This means that the functions are thread-

safe and can be used concurrently. Figure A.1 shows the structure of the library. For

each file we show the source lines of code and give a short description of its functionality

when it is not directly apparent from its name.
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src/main/java

AWPBoundedVoronoi.java.........................................251 SLOC

Creates an AWP Voronoi diagram bounded by a convex polygon

for a set of weighted Voronoi sites.

AWPTreeMapVoronoi.java.........................................270 SLOC

Creates a stable Voronoi treemap bounded by a convex

polygon for a hierarchical data set of weighted Voronoi

sites with associated desired area. Implements Algorithm

9.
AWPVoronoi.java..................................................95 SLOC

Creates a Voronoi diagram for a set of weighted Voronoi

sites. Implements Algorithm 2.

BeachArc.java ................................................... 284 SLOC

Represents a beach arc in the beach line. Implements the

logic for finding beach arc intersections as described in

Subsection 3.3.2.3 and Subsection 3.3.2.5.
BeachLine.java..................................................306 SLOC

Represents the beach line. Implements the logic for

finding a beach arc directly above a site and the logic

for inserting a new arc into the beach line as described

in Subsection 3.3.2.3.
Circle.java......................................................114 SLOC

Used as circle event.

ConvexPolygon.java..............................................292 SLOC

Edge.java........................................................115 SLOC

HalfEdge.java.....................................................64 SLOC

Circle.java......................................................378 SLOC

Used to place Voronoi sites using multiple order of

Hilbert curves. Implements Algorithm 8.

Point.java........................................................56 SLOC

Site.java........................................................153 SLOC

A weighted Voronoi site. Also used as site event and as

TSC event.
SweepArc.java.....................................................51 SLOC

Part of the sweep line that holds a reference to a Voronoi

site that influences the sweep line.

SweepLine.java..................................................128 SLOC

Holds the current y-coordinate of the sweep line and a

collection of SweepArcs. Is used to determine if a circle

is above or below the sweep line.

Figure A.1: Stable Voronoi treemap module
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TreeSite.java.....................................................94 SLOC

Extends the normal Voronoi site to support a hierarchical

structure.
VoronoiUtil.java................................................669 SLOC

Utility class that holds all the mathematical functions

that are needed to compute Voronoi treemaps.

redblacktree

RedBlackTree.java............................................334 SLOC

An implementation of red-black trees that exposes parts

of its internals so we can use it in our implementation of

the beach line.
RedBlackTreeNode.java....................................... 106 SLOC

The nodes for the red-black tree, used by the beach arcs.

Figure A.1: Stable Voronoi treemap module continued

A.2 Web application

The web application that we developed to interact with the stable Voronoi treemap

library allows users to create and interact with stable Voronoi treemaps using their

browser. The functionality of the application is explained in Chapter 6. The application

architecture is based on a RESTful Model-View-Controller (MVC) pattern and can be

divided in a front-end and a back-end. The front-end is the HTML and JavaScript used

by the browser. The back-end provides the data and interacts with the stable Voronoi

treemap library.

The web application uses many standard components; Table A.1 shows each component

and how it is used. In Figure A.2 the structure of the back-end code is shown. For

each directory we show the total source lines of code and the function of the code in the

directory. The back-end is completely written in Java and has a total of 2141 source

lines of code written by us. The front-end structure is shown in Figure A.3. Again we

show the function of the contents of each directory, but we only show the source lines

of code of JavaScript that we have written. In total, we have written 295 source lines of

JavaScript code.
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Project Function URL

Spring Boot Java MVC framework with embedded web server.
Forms the basis of our back-end.

projects.spring.io/
spring-boot/

Bootstrap 3.0 HTML, CSS and JS framework. Used to create our
HTML interface.

getbootstrap.com

Thymeleaf A modern Java HTML templating engine. Used to
create the HTML send to the browser.

thymeleaf.org

Gephi Toolkit Stand-alone toolkit that exposes Gephi features as a
Java library. Used to read .GEXF files.

wiki.gephi.org/
index.php/
Toolkit portal

D3js JavaScript library for manipulating documents based
on data. Used to render the stable Voronoi treemaps
and provide interactivity.

d3js.org

gexf-parser JavaScript library that reads .GEXF files and ex-
poses them as plain JS objects. Used to interact with
analysis result data.

github.com/ Yom-
guithereal/ gexf-
parser

underscore.js JavaScript library that provides functional program-
ming helpers. Used to efficiently handle the object
graphs.

underscorejs.org

Table A.1: Libraries and frameworks used in the web application

http://projects.spring.io/spring-boot/
http://projects.spring.io/spring-boot/
http://getbootstrap.com/
http://www.thymeleaf.org/
https://wiki.gephi.org/index.php/Toolkit_portal
https://wiki.gephi.org/index.php/Toolkit_portal
https://wiki.gephi.org/index.php/Toolkit_portal
http://d3js.org/
https://github.com/Yomguithereal/gexf-parser
https://github.com/Yomguithereal/gexf-parser
https://github.com/Yomguithereal/gexf-parser
http://underscorejs.org/
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src/main/java

domain ........................................................... 297 SLOC

Domain objects such as analysisResultGraph,

project, and release.

gephi.............................................................167 SLOC

The code for handling .GEXF files.

mvc...............................................................448 SLOC

Controllers with HTML endpoints and JSON

endpoints.

dto............................................................567 SLOC

Data transfer objects/models that are used

in the controllers to generate HTML or

serialized as JSON and send to the browser.
service..........................................................317 SLOC

Database connections, domain repositories, and

search logic.

dto.............................................................66 SLOC

Data transfer objects with summaries of

database objects.

treemap..........................................................245 SLOC

Glue code to interact with the Voronoi treemap

module.
Application.java.................................................34 SLOC

Entry point of the Spring Boot application.

Figure A.2: Web application back-end
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Web application

src/main/resources

fragments

Thymeleaf template fragments that are reused in

other Thymeleaf templates.

static

Static assets such as css, font, and javascript

files.
css

Bootstrap 3.0 css files.

fonts

Bootstrap 3.0 font files.

js

D3js, gexf-parser, underscorejs, and

Bootstrap 3.0 JavaScript files.

templates

Thymeleaf templates that are used in the

controllers to render HTML. Each subdirectory

contains templates used for the specific domain

object that the directory is named after.

analysisResultGraph........................................10 SLOC

project.....................................................10 SLOC

release.....................................................10 SLOC

visualization ............................................. 265 SLOC

Figure A.3: Web application front-end
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