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Abstract

Modern day compilers are designed in such a way they can be easily retargeted to different
machines. A common way to model such a retargetable compiler is by seperating the compiler
into a language dependent front-end and a machine dependent back-end. The front-end
translates an intermediate program into an intermediate presentation. The back-end generates
machines code for some machine from this intermediate program. The back-end is usually
generated by feeding a machine description into some generic back-end. This is done at
compile-compile time, making it possible to partially evaluate parts of the back-end.

An important part of the back-end is the instruction selection problem. The goal of instruction
selection is to find the optimal set of instruction which can be used to represent the entire
intermediate program. In this thesis we examine how the instruction selection problem can
be solved using attribute grammars. We start by introducing a basic and inefficient tree
matching method. This method is improved until we get an efficient compiler. Besides some
small partial evaluations their are two major techniques introduced to achieve our goal.

Looking at the instruction selection problem using attribute grammars it is obvious we have
a lot of attributes for every nonterminal. For every node the attributes depend merely on
a small subset of the attributes of its children. By modelling the tree matcher in the right
way this dependencies can be found by analyzing the attribute grammar. By doing so we can
introduce a specialized version of the attribute grammar which holds only those attributes
needed. Such an analysis can not only be used for the tree matcher, but for any attribute
grammar having not needed attributes at some point. The analysis is modelled in such a way
that it can be used for any attribute grammar.

Although removing the attributes creates a more efficient tree matcher, there are still a lot
of calculations necessary at every node. Inspecting the tree matcher shows this calculations
only depend on two things: the operators node and the costs for every storage class at the
children. The number of operators is limited. The number of costs for every storage class
can be limited by using normalized costs instead of absolute costs. When both these are
limited we can partially evaluate the attribute grammar for the tree matcher and construct
an automaton for every possible operator and set of costs per storage class. When we have
such an automaton the tree matching at compile time is no more then a table lookup, taking
only constant time at every node of the input program. This gives us an efficient tree matcher
constructed using attribute grammars.
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Chapter 1

A common model for retargetable
compilers

1.1 Preface

The subject of designing efficient compilers which are able to produce efficient program code
has been studied for a long period of time. Since higher level programming languages became
more popular, people got interested in the possibility to compile one program to different
machines. Most higher level languages are machine independent. Hence it is possible to write
a compiler for such a language for many machines. If we code each compiler by hand, we are
doing a lot of unnecessary work. The compilers share identical optimizations and possibly
identical bugs. Obviously a lot of effort has been made to write compilers in such a way, that
they can be easily adapted to compile for some new machine. When a compiler is designed
that way, we speak of a retargetable compiler.

There already has been done much work in the field of retargetable compilers. Our goal is
to show how a part of the compiler can be implemented using attribute grammars. We will
only focus on a small part of a compiler. To clarify which part this is, we will first need an
understanding of the different parts of a compiler.

1.2 Structure of a compiler

Basically a compiler just reads an input program and transforms it into some lower level
program. A C-compiler for Intel x86 based machines will read any C-program and deliver
x86-assembler as result. Of course this process can be seen as a couple of loose tasks. First
of all a compiler must be able to parse input C-programs. It must be able to select and
schedule machine instructions and it must allocate memory and registers. In most cases we
want our compiler to perform some optimizations too. We want the compiler to select those
instructions which will result in fast program execution. This is just an example; we can
optimize on many aspects of the program. We can for instance be not so much interested in
program execution speed, but more in program size. Then a different way of optimization
is necessary. Retargetable compilers take a machine description in addition to the input
program. This is a description of the machine we are compiling to.
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Figure 1.1: Structure of a retargetable compiler
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In most cases this model is expanded a little bit. Since most parts of the compiler are
machine independent (for instance parsing of a C-program) most compilers are split into
a front end and a back end. The front end is source language dependent but completely
machine independent. The back end is source language independent and handles all the
machine dependent tasks (see figure refcompstruct). In this case, it suffices to only feed the
machine description into the back end. The front end parses the program and performs any
other tasks which can be done without knowledge about our target machine. This results in
a program in some intermediate representation. The back end then takes this intermediate
program and produces the machine dependent code for it. This gives us another advantage.
We can write front end code for different languages. Making them all result in programs in
the same intermediate representation we can use the same back end for all these different
programming languages. In this way we get a compiler which can be used to map many
different program languages to many different target machines. All optimization techniques
embedded in the back end will be available for all the languages, which saves lots of repetitive
work. In most cases the front end performs any possible machine independent optimizations.

We generate machine specific back ends by feeding machine descriptions into a generic back
end. The machine descriptions are known when we are designing the compiler. This raises
the question if it is possible to exploit the fact that the compiler uses identical calculations at
some part. It is interesting to search for such identical calculations. If we find them it may be
possible to create a more efficient back end by partially evaluating the back end. A common
approach is to use a back end generator. This generator reads some machine description and
delivers a machine specific back end. We only need to generate this back end once for every
machine description. This can be done at compile-compile time (being the compilation time
of the compiler itself, not at the time the compiler compiles some input program). When we
do this at compile-compile time, we get a faster compiler. It also makes it possible to exploit
the fact that large parts of the back end may be partially evaluated. For this thesis we are
only studying how to generate a small part of the back end of a compiler. The goal is not
to build a complete working compiler, we are just examining how one solves a small part of
the whole problem. For further reading about complete compiler generation see [4] and for a
complete implementation of a C compiler written in C, read the book on compiler design by
Hanson and Fraser[5].
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1.3 The back end in detail

The back end is the part of the compiler which generates code for a certain machine. This
code generation process consists of three main subproblems. These problems are:

• instruction selection: the mapping of the intermediate representation onto the instruc-
tions and addressing modes of the target machine

• register allocation: the mapping of the intermediate values and variables occuring in
the intermediate representation onto the registers (and memory locations) of the target
machine

• instruction scheduling: the ordering of the target machine instructions

We are looking for a compiler which gives us machine code optimized on some variable aspect.
The question arises how we can get optimal results. Looking at the subproblems separately, we
can see optimality is interdependent. One might find an optimal solution for the instruction
selection, but it might be that the restricted number of available registers introduces spilling1,
in the end yielding a not optimal total solution. For a truly optimal solution for the code
generation problem it is necessary to solve all problems together. This however will make
writing fast compilers difficult or maybe even impossible. Therefore we will not search for
optimal solutions, but solutions which are considered close enough to optimal. When we
speak of optimal, we do not mean we have found the optimal solution for the whole problem.
Nevertheless we will speak of optimality quite often, and by doing so, we just state we have
found a solution which is optimal for one of the subproblems. In practice we see that by
finding an optimal solution for one of the subproblems, we often get a pretty good solution
for the whole problem. This is to be expected, if we look at the fact that for instance the
Intel x86 processor has a large set of instructions and lots of registers available. If we solve
instruction selection well for this machine, we get a good complete solution. A common
approach for solving the complete problem is to first do the instruction selection assuming
we have an infinite number of registers. After this we use an algorithm called graph coloring
to handle the register allocation. This might introduce some overhead because we do not
have enough registers available. But on machines having a reasonable number of registers
this approach yields good overall results[3].

1.4 Instruction selection

There are many ways to solve the instruction selection problem. We are searching for an ap-
proach expressed using attribute grammars. One of the common methods for the instruction
selection problem is based on tree matching. If we are going to use attribute grammars a
method using trees is an obvious choice. The tree matching (or tree covering) approach for
the instruction selection problem has been studied thoroughly. A couple of articles about
treematching worth studying are written by Emmelman et. al. [7], by Fraser, Hanson and
Proebstring [6] and by Aho, Ganapathi and Tjiang [1]. We will use the examples and ideas

1to obtain an empty register some register is temporarily stored in memory and later (when needed) read
from memory back into the register
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Figure 1.2: Example intermediate-code tree.
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presented in the article by Aho, Ganapathi and Tjiang [1] to clearify the process of treematch-
ing.

As mentioned instruction selection is the process of mapping a program in the intermediate
representation onto the intructions and addressing modes of the target machine. The inter-
mediate program is a tree. Let us look at an example of how we can represent a program in
an intermediate tree. The program consists of an assignment statement a[i] := b. Both a
and i are local variables stored on the stack. There runtime addresses are given as offsets,
consta and consti, from a stack pointer stored in register SP. Figure 1.2 shows the tree for
this assignment.

The address of the first element of the array a is found by adding the value consta to the
contents of register SP; the value of i is in the location obtained by adding the value consti
to the contents of register SP. In the tree, the ind operator makes its argument a memory
address.

For code generation, the target machine instructions can be represented by tree-rewriting
rules. A rule consists of a replacement node, a tree template, a const and an action. The
target code can be found by repeatedly finding subtrees in the intermediate tree that match
templates and rewriting the matched subtrees by the corresponding replacement nodes. This
results in a sequence of subtrees. This is called a cover of the intermediate tree. The target
code is emitted by the actions associated with the rules used in this cover. The total cost is
the sum of the costs of the covering rules.

The templates we match the intermediate tree on are a set of tree-rewriting rules. All these
rules combined describe a complete machines instruction set. We refer to this set as the
machine description. A machine descriptions is a set of tree-rewriting rules. A single tree-
writing rule is of the form: replacement← templatecost = instruction where

1. replacement is a single node,

2. template is a tree,

3. cost is the cost representation for this rewriting rule,

7



Figure 1.3: Example machine description
replacement template cost instruction

(1) regi constc 2 MOV #c, Ri
(2) regi mema 2 MOV a, Ri
(3) statmt ASGN(mema,regi) 2 + cost.regi MOV Ri, a
(4) statmt ASGN(IND(regi),globalb) 2 + cost.regi MOV b, * Ri
(5) regi IND(ADD(constc,regj)) 2 + cost.regj MOV c(Rj), Ri
(6) regi ADD(regi,IND(ADD(constc,regj))) 2 + cost.regi + cost.regj ADD c(Rj), Ri
(7) regi ADD(regi,regj) 1 + cost.regi + cost.regj ADD Rj, Ri
(8) regi

4. instruction is a code fragment in machine dependent instructions.

Some of these rules may be only applicable when a certain condition is satisfied. For example, a
constant may be required to fall in a certain range. Figure 1.3 presents a machine descriptions
for some target machine. The last rewrite-rule can only be applied when the constant has
value 1.

The actual instruction selection is done by treematching subtrees from the input program on
templates from the machine description. In a depth first traversal we search for a replacement
tree at every node. The best match for every match is determined by comparing costs. When
we apply a replacement we must add the associated instruction to our solution. In one
bottom up traversal we find a solution for the instruction selection problem for a certain
input program. If at some point there is another larger match possible at a higher level we
delay the decision until we reach that higher level. When we arrive at that level we can again
use the costs to decide which rule must be applied.

To illustrate, let us apply the above procedure using the machine description from figure 1.3
applied to the intermediate-tree from figure 1.2. The template of the first rule matches the
leftmost leaf of the IR tree with i = 0 and c = a. Applying this rule changes the left-most
leaf from consta to reg0. The associated instruction for this rewriting step is MOV #a, R0.
We can now apply the template of the seventh rule with i = 0 and j = SP. We rewrite the
leftmost subtree with root labeled ADD into reg0, the associated instruction for this step is
ADD SP, R0. After these steps, the resulting intermediate tree looks like:

b

add

add

asgn

ind global

const reg SPi

indreg 0
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Now we have arrived at a point where it is possible to apply more then one rule. Examining
the lowest subtree IND(PLUS(consti,regSP )) we immediately notice we can apply rule (5) to
reduce the subtree. But there is another rule which can possible be applied at a higher level,
being rule (6). Whether this is possible is not clear at this time, so we decide not to rewrite
anything yet and move up one level. Here we find rule (6) is indeed applicable. By doing so
we can reduce the following subtree:

add

add

const reg SPi

indreg 0

We can reduce it to a single node reg0 with the associated instruction ADD i (SP), R0. We
decide to apply the larger match. The resulting complete tree becomes: ASGN(IND(reg0),globalb).
We can reduce this to a single node with rule(4). The associated instruction is MOV b, * R0.
Since we have derived a single node the treematching process is finished. Combining all the
instructions associated with the combined rules we get the result of the instruction selection:

MOV #a, R0
ADD SP, R0
ADD i (SP), R0
MOV b, * R0

This is the basic idea behind instruction selection using tree matching. In the following
chapter we will look at how this looks in practice, using attribute grammars.
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Chapter 2

A simple tree matcher using
attribute grammars

2.1 Overview

In this chapter we describe how to implement a tree matcher as described in the previous
chapter. We will describe the tree matcher using attribute grammars1 and the Haskell lan-
guage. Our goal in this chapter is not to produce an efficient tree matcher. We just want to
illustrate the working of a tree matcher. In later chapters we demonstrate faster approaches.
To understand the ideas exploited there a good understanding of the techniques explained in
this chapter is important.

2.2 The needed data

As described in section 1.4, we are going to match some machine instructions on an interme-
diate representation of a program. We want to be able to describe this process in some way.
Therefore we immediately need some way of representing the machines instuctions and the
intermediate program. Some decisions may seem awkward at this point. They will become
clear in later chapters.

2.2.1 The intermediate representation

We will use attribute grammars to describe our tree matcher. Therefore our intermediate
program must be a tree. Type inferencing is machine independent, we assume this is handled
by the front end. If this is the case our intermediate program will be typed correctly and all
necessary additional program statements needed for the program being typed correctly are
already part of the intermediate tree. For the time being we will assume the intermediate tree
only contains nullary, unary and binary operators. Most operators follow this assumption.
If we encounter operators having more than two arguments, it is always possible to rewrite
them to a binary form. We will show this later.

1we use Utrecht University’s AG system, see [2]
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Now consider a very simple example of a ’program’:

reg_1 = x + 3

If x is located at memory location 8, the intermediate representation looks something like
this:

ASGNI4 (REG 1) (ADDI4 (MEM 8) (CONST 3))

Basically, we just have a nonterminal containing an operator, possibly some arguments and
possibly a value. Described using an attribute grammer this may look like:

DATA Tree | Nil
| Nullary op : Operator

value : Value
| Unary op : Operator

left : Tree
value : Value

| Binary op : Operator
left : Tree
right : Tree
value : Value

The operator is just a datatype having a constructor for every operator and no other argu-
ments. The value needs to be able to hold all possible values. We can have an alternative for
integers and an alternative for strings. Quit often there is no value at all. Since we do not
want to get lost in needless details, we assume the value is always an integer. To handle the
cases where there is no value at all, we make it type Maybe Int.

We now have a way to denote programs in intermediate form without having to worry to
much about details. The solution may seem a bit simple and incomplete but it is a solution
capable of representing everything needed. We do simplify a lot; for instance, function calls
are completely left out of the intermediate representation. This is for a reason. We are
investigating instruction selection inside procedures, not on a global level. Therefore all
details which are of no concern here are left out, since they will make things unnecessarily
complicated. Needless to say all techniques described can be implemented using a complete
intermediate representation. This would draw attention to details which are not interesting
for the way the instruction selection works.

2.2.2 Representing machine instructions

We can represent machine instructions in any way which suits us. A machine description
is no more than a list of instructions. For each instruction we need to specify the result it
yields and the arguments it needs. Since we are looking for some form of optimality, we must
be able to assign a cost to an instruction. We will refer to the result of an instruction as
a ’storage class’. This might not be the best term for it. But it is a term which excludes
confusion about what we mean. Now consider a very simple (purely illustrative) machine.
It is called ’Simple’. The complete instruction set for the Simple machine is shown in figure
2.2.2 It is made out of a few components. Every line represents an available instruction. It
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Figure 2.1: Machine description for the Simple machine

statmt: ASGN(dst,plus1) 2
statmt: ASGN(dst,plus2) 6
statmt: ASGN(dst,plus3) 2
regx : MEM(addr) 3
regx : CONST 6
regx : CONST 2
dst : addr
src : regx
src : MEM(addr)
addr : regx
addr : CONST 2
regx : REG
plus2 : PLUS(src,con1)
plus3 : PLUS(src,con2)
con1 : CONST
con2 : CONST
plus1 : PLUS(src,regx)

starts with a storage class which is the result of applying the instruction. Then its operator
(if any) is given, followed by its arguments. At the end of the line the cost of the instruction
is specified. Instructions which have no costs assigned are considered to have zero cost.

For our tree matcher this machine is represented as a list of rules. Each instruction (or rule)
specifies its result and its right hand side. We add a function with returns the associated costs
for each rule. The right hand side of a rule is made out of an operator and its arguments.
We introduce a special operator called ’Noop’ which will be used for instructions having no
operators. Unlike the other operators we do not refer to it in uppercase. This is to distinguish
it from the others. The ’Noop’ operator is not supposed to be part of intermediate programs.
We introduce a special storage class for operators having no arguments, called ’Nil’. A
machine description for the Simple machine is given in figure 2.2. The example is based on
an example found in [4]. We now have gathered all the material needed to express a simple
tree matcher. But first we will provide some more details about the above.

Chainrules

In the Simple machine descriptions there are some instructions which have no operators at
all. The collection of all the rules having no operators will be called ’the chainrules’. Most
machines have a couple of chainrules. These are just some basic operations. We can for
instance read a value out of a register and temporarily store it in memory. This is quite a
common operation. The chainrules are those rules which have the ’Noop’ operator. Earlier we
mentioned that an intermediate program will not use this operator. The rules corresponding
to this operator will therefore never be selected. But the instructions for this rules may be
used at all times so we must pay special attention to the chainrules since chainrules can
provide us with better results for the instruction selection problem.
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Figure 2.2: Simple machine description in Haskell

type Rulenr = Int
type Rule = (Rulenr, Storage, Rhs)
type Rules = [Rule]
data Rhs = Rhs Operator Storage Storage

data Operator = Noop | ASGN | CONST | MEM | PLUS | REG deriving (Eq)

data Storage = Nil | Addr | Con1 | Con2 | Dst
| Plus1 | Plus2 | Plus3
| Regx | Src | Statmt deriving (Eq)

rules :: Rules
rules = [(1, Statmt, (Rhs ASGN Dst Plus1)),

(2, Statmt, (Rhs ASGN Dst Plus2)),
(3, Statmt, (Rhs ASGN Dst Plus3)),
(4, Regx, (Rhs MEM Addr Nil)),
(5, Regx, (Rhs CONST Nil Nil)),
(6, Regx, (Rhs CONST Nil Nil)),
(7, Dst, (Rhs Noop Addr Nil)),
(8, Src, (Rhs Noop Regx Nil)),
(9, Src, (Rhs MEM Addr Nil)),
(10, Addr, (Rhs Noop Regx Nil)),
(11, Addr, (Rhs CONST Nil Nil)),
(12, Regx, (Rhs REG Nil Nil)),
(13, Plus2, (Rhs PLUS Src Con1)),
(14, Plus3, (Rhs PLUS Src Con2)),
(15, Con1, (Rhs CONST Nil Nil)),
(16, Con2, (Rhs CONST Nil Nil)),
(17, Plus1, (Rhs PLUS Src Regx))]

rulecost :: Rulenr -> Int
rulecost 1 = 2
rulecost 2 = 6
rulecost 3 = 2
rulecost 4 = 3
rulecost 5 = 6
rulecost 6 = 2
rulecost 11 = 2
rulecost _ = 0
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Transforming rules

So far we have introduced machine description with two important restrictions. Every rule
contains at most one operator and every operator is at most binary. This limitation may
easily be worked around. If we want to use an operator having three children, it can easily
be rewritten to a binary form using tree translations. Imagine we have an operator TripleOp
hich takes three arguments. It can be rewritten to a binary operator TripleOp with as first
argument the first argument of the original operator. The second argument must be a special
storage class Sttripleop. We add an extra rule which takes the second and third arguments of
the original operator and results in the new storage class. Assume the definition for TripleOp
was regx : TRIPLEOP(dst,plus1,regx). This will give us the following rules:

rules = [...,
(88, Regx, (Rhs TRIPLEOP Dst Sttripleop)),
(89, Sttripleop, (Rhs Noop Plus1 Regx)),
...]

It is easy to rewrite any intermediate program to this form.
This still leaves us with the limitation of one operator per rule. When we introduced the
ideas behind treematching we had an example (1.3) which gained a lot by applying a rule
with more than one operator. An example of such a rule is regx : PLUS (regx,MEM(addr)).
This rule states that if we add something to a register and the second argument is put in
memory from an address, there is a special instruction which can probably do the addition
without first reading the memory value into a register for the second argument. We can again
use tree-rewriting to handle these kind of instructions. For the above instruction we simple
add two rules:

rules = [...,
(103, Regx, (Rhs PLUS Regx En1)),
(104, En1, (Rhs MEM Addr Nil)),
...]

This can easily be done automatically. By doing so we can now handle rules with more than
two arguments and more than one operator. It introduces some overhead but we now can use
the fact that for the tree matching we only need to consider rules with at most one operator
which is at most binary. This will be used in later chapters.

Machine code

When looking at a complete back-end it is important to have the machine code belonging to
each instruction. Without it is impossible to generate any code at all. This code is part of
the above machine descriptions. For instance, a part of the machine description for Intel’s
x86 family of processors will look like this:

stmt: ASGNI1(addr,rc) "mov byte ptr \%0,\%1\n" 1
stmt: ASGNI2(addr,rc) "mov word ptr \%0,\%1\n" 1
stmt: ASGNI4(addr,rc) "mov dword ptr \%0,\%1\n" 1

The part between the double quotes represents the x86 machine code. The part %0 must be
replaced by the generated code associated with the first child (addr in this example). The
part %1 must be replaced with the next childs code.

14



In the rest of this thesis the code is ignored, because it is of no concern to us. Register
allocation is not considered, so it is impossible to produce meaningfull code. The actual code
for the selected instructions is generateded after register allocation has been done. For the
techniques of instruction selection the actual machine code is not important and will only
distract us from what we are trying to achieve: selecting the right instructions. In the next
section we will use the machine descriptions and the intermediate program to model a simple
tree matcher. Normally we will transform the intermediate tree in some other tree (which
is labeled with machine instructions at every node). For this thesis we are only interested
in the instructions, so a list of instructions will suffice. The tree matcher will be a semantic
function on the intermediate tree having a list of selected instructions as its result.

2.3 The basics

It is time to look at the basics of the tree matcher. We will use the machine description
as described in 2.2.2 and 2.2. To get a feeling about how to model a tree matcher, we
first make a strange assumption. For now, we assume the instructions a machine offers are
mutually exclusive. Chainrules are out of the picture too. By these assumption the machine
description has become an ambiguous grammar. This is not realistic and these assumptions
will be dropped soon. But for the time being they suit our needs in expressing the basic idea
of a tree matcher.
Having a mutually exclusive instruction set, we know we can only apply one rule in every node.
Which rule will depend on the nodes operator and the results of its children. Since nullary
operators do not have any children, we can do nothing there but apply the rule corresponding
to the operator in the node (the mutual exclusiveness implies there is only one rule satisfying
the operator). Combining this with our intermediate tree described in 2.2.1 we get a very
simplystic tree matcher. In one bottom up traversal all instructions are selected. We start
with the nullary operators, which are the easiest:2

{
rule_cop :: Operator -> Rule -> Bool
rule_cop op1 (_, _, Rhs op2 _ _) = (op1 == op2)

rule_opget :: Operator -> Rules
rule_opget op = filter (rule_cop op) rules
}

ATTR Tree [ | | deriv : {[Rulenr]} stor : Storage ]
SEM Tree

| Nullary loc.rule = head (rule_opget @op)
lhs.deriv = list (fst3 @loc.rule)
lhs.(_,stor,_) = @loc.rule

For the unary operators it is a little bit more complicated. Every unary operator can have
multiple rules, mutual exclusivity only implies there is only one rule to be applied for ev-
ery possible childs storage class. The derivation becomes the selected rule, followed by the
deriviation of its child. Rule selection remains quite simple:

2 The functions fst3 and snd3 will be used everywhere. They work like the normal fst and snd functions,
but the integer states on what kind of tuples they operate. For example, the function foth6 will take the
fourth element of a six-tuple.
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SEM Tree
| Unary loc.rule = head $ filter (\(_,_,(Rhs _ st _)) -> st == @left.stor) (rule_opget @op)

loc.deriv = list (fst3 @loc.rule)
lhs.deriv = @loc.deriv ++ @left.deriv
lhs.(_,stor,_) = @loc.rule

For the binary operators the approach is similar but now we match on both childrens non-
terminals:

SEM Tree
| Binary loc.rule = head $ filter (\(_,_,(Rhs _ stl str)) -> stl == @left.stor &&

str == @right.stor) (rule_opget @op)
loc.deriv = list (fst3 @loc.rule)
lhs.deriv = @loc.deriv ++ @left.deriv ++ @right.deriv
lhs.(_,stor,_) = @loc.rule

Allthough not very realistic nor useful, we now possess a basic tree matcher. At the root of
our tree the attribute deriv holds the set of rules for expressing the intermediate tree for a
given instruction set. This is used as a framework which will be expanded to make it more
and more realistic. The mutual exlusivity assumption must be removed as soon as possible.
But what will be the result of this? To start with, since we stated only one rule can be
selected, we know every node can yield only one storage class. By dropping the exclusivity
this no longer holds. Every node can yield different storage classes, each having its own rule.
We have to pass a list containing pairs of storage classes and rules. By doing so, it is no
longer possible to build a deriviation in one single run. All possible storage classes at every
node can be calculated in one bottom up traversal. After that, by selecting a storage class
at the root, it is possible to select the correct rule for each node in one top down traversal of
the tree. So we derive a tree matcher having:

• a synthesized attribute holding a list of storage classes and associated rules

• an inherited attribute specifying which storage class a parent node wants

Combining these two gives us the deriviation.

Dropping the mutual exclusiveness means more than this. Not only can different rules give
us different storage classes, it is also possible that we have different rules yielding the same
storage class. Which rule should we apply? We can just randomly select one that suits
our needs. But we are looking for an optimal selection of the instruction selection problem.
Optimality means that we have chosen the cheapest rule in parts of the tree where multiple
solutions are possible. So this is the part where we start looking at the costs. It is a little more
complicated than simply selecting the cheapest rule. This is because the cost of a derivation
is made out of two components. The cost of selecting a certain rule in a certain node and
the cost of deriving its corresponding storage class for the childs nodes. We can for example
have a unary operator with two matching rules both resulting in a certain storage class s1.
The first rule has cost 1 and the second rule has cost 4. But the first rule wants its child to
present its result in storage class s2, while the second rule takes storage class s3. It is easy
to see that when we can get a value in s2 at the child for cost 5 and in s3 for free, the second
rule is the rule to apply.
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To make these selections possible it is necessary to pass the cost parameter combined with
every storage class and rule. Our synthesized storage attribute becomes a list of storage
classes with associated rules and costs. Allthough the chainrules have not yet been examined,
the tree matcher is starting to get quite realistic. All the above expansions have made the
matching process a bit more complicated, but it still is quite straightforward.

Types

Besides the types already introduced in 2.2 the following types are needed for passing data:

type Deriv = [Rulenr]
type Derivs = [Deriv]
type LabelValues = [LabelValue]
data LabelValue = Lv Storage Rulenr Int

Rule functions

To make life a bit easier, we introduce a set of functions for retrieval and comparison on rules:

{
rhs_op :: Rhs -> Operator
rhs_op (Rhs op _ _) = op
rhs_lstor :: Rhs -> Storage
rhs_lstor (Rhs _ l _) = l
rhs_rstor :: Rhs -> Storage
rhs_rstor (Rhs _ _ r) = r

rule_rhs :: Rule -> Rhs
rule_rhs = thd3

rule_nr :: Rule -> Rulenr
rule_nr = fst3
rule_stor :: Rule -> Storage
rule_stor = snd3
rule_op :: Rule -> Operator
rule_op = rhs_op . rule_rhs

rule_lstor :: Rule -> Storage
rule_lstor = rhs_lstor . rule_rhs

rule_rstor :: Rule -> Storage
rule_rstor = rhs_rstor . rule_rhs

rule_cop :: Operator -> Rule -> Bool
rule_cop op rule = op == (rule_op rule)
rule_cnr :: Rulenr -> Rule -> Bool
rule_cnr rnr rule = rnr == (rule_nr rule)

rule_opget :: Operator -> Rules
rule_opget op = filter (rule_cop op) rules
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rule_get :: Rulenr -> Rule
rule_get nr = head $ filter (rule_cnr nr) rules

deriv_get :: Storage -> LabelValues -> Deriv
deriv_get st [] = [0]
deriv_get st1 ((Lv st2 rls _):xs) | st1 == st2 = rls

| otherwise = deriv_get st1 xs
}

These functions will be used everywhere when addressing to rule information. If the structure
of the machine description changes, it is not necessary to adapt the whole tree matcher.
Adjusting the above functions to suit the changes will suffice.

Operator application

As stated above, the application of the operators has become a little bit more complicated.
Instead of a storage class per child, we have a list of storage classes per child. Second we have
to take costs into account. We introduce a Haskell function lv build which given an operator
and the labelvalues of a nodes children returns the new labelvalue for the current node:

{
lv_build :: Operator -> LabelValues -> LabelValues -> LabelValues
lv_build op ll lr = nub $ sort $ (lv_applyop op ll lr)

lv_applyop :: Operator -> LabelValues -> LabelValues -> LabelValues
lv_applyop op left right =

[ (Lv xst [xnr] ((rulecost xnr) + (lv_cost left xlstor) + (lv_cost right xrstor)))
| (xnr, xnt, (Rhs xopt xlstor xrstor)) <- (rule_opget op)
]

lv_cost :: LabelValues -> Storage -> Int
lv_cost [] ri = infCost
lv_cost ((Lv nt fri sri):xs) n

| nt==n = sri
| otherwise = lv_cost xs n

infCost :: Int
infCost = 99999999 --some number representing ’infinite’ cost
}

There still is nothing to complicated going on. Every rule which can possibly be applied is
applied. This results in a list of — labelvalue elements—. Because we want the cheapest way
to derive every storageclass, the list is first sorted and then —nubbed— to remove any double
derivation per storage class. This requires an instance of equality and ordering on labelvalues.
It must be in such a way that a labelvalue’s equality is only determined by its storageclass.
For the ordering we examine the costs, so the labelvalues get ordered by ascending costs. We
get:

instance Eq LabelValue where (==) = eqlv
eqlv :: LabelValue -> LabelValue -> Bool
eqlv (Lv nt1 _ _) (Lv nt2 _ _) = (nt1==nt2)
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instance Ord LabelValue where compare = complv
complv :: LabelValue -> LabelValue -> Ordering
complv (Lv nt1 rls1 cst1) (Lv nt2 rls2 cst2)

| nt1 < nt2 = LT
| nt1 > nt2 = GT
| cst1 < cst2 = LT
| cst1 > cst2 = GT
| length rls1 < length rls2 = LT
| length rls1 > length rls2 = GT
| otherwise = EQ

To complete things one more thing is added. Currently underivable storage classes are rep-
resented using infinite costs. Since we now look at absolute costs, the cost integer will soon
overflow. If we have a tree ten levels deep and a certain storage class has infinite costs in
all nodes, the addition of these costs will result in an error. But the absolute cost are not
really interesting. All we need to know is which storage class is the cheapest, and what the
difference is between that class and the others. If a certain node is inspected and its left child
has three storage classes: st1, st2 and st3 derivable at costs 10, 14, 17, not all that information
is needed to decide what to do in the current node. All we need to know is that st1 is the
cheapest, st2 is 4 more expensive and st3 is again 3 more expensive. So we can normalize the
costs, giving us costs 0, 4, 7. This is all the information needed. By normalizing everywhere,
we limit the cost at a certain level, eliminating the risk of cost integer overflow. We add a
function norm lv and apply it to the result of lv build.

Tree matching

We now have all the groundwork to model the actual treematching. Extending the tree
matcher constructed for mutual exclusive instruction sets with the new operator application
results in a very basic tree matcher, see figure 2.3. All future tree matchers are derived from
this basic form. The tree matching process must be clear at this point. Despite the fact
that we have not arrived at a complete tree matcher for actual machines, we do have the
basic framework to produce those. In fact, we only need two minor supplements to derive a
working tree matcher for for example the Intel x86 family of processors3. These two additions
are the use of chainrules and taking conditional instructions into account. We will look into
these now, but they do not require any changes to our treematching framework. We can
simply modify some of the functions described above, without changing the used grammar or
approach. For now the tree matcher as described in figure 2.3 needs the following functions
to work:

lv_build :: Operator -> LabelValues -> LabelValues -> LabelValues
lv_build op ll lr = lv_norm $ nub $ sort $ (lv_applyop op ll lr)

lv_norm :: LabelValues -> LabelValues
lv_norm lval = map (lv_min . minimum $ map (\(Lv _ _ c) -> c) lval) lval

lv_min :: Int -> LabelValue -> LabelValue
lv_min min (Lv nt rl cst) = Lv nt rl (cst-min)

3As a basis for the x86 machines description we use a machine description used by LCC described in [5]
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Figure 2.3: A basic tree matcher

ATTR Tree [ | | labval : LabelValues ]
SEM Tree

| Nullary loc.labval = lv_build @op [] [] @var
| Unary loc.labval = lv_build @op @left.labval [] @var
| Binary loc.labval = lv_build @op @left.labval @right.labval @var

ATTR Tree [ derivstor : Storage | | ]
SEM Tree

| Unary left.derivstor = rule_lstor (rule_get $ last @deriv)
| Binary left.derivstor = rule_lstor (rule_get $ last @deriv)

right.derivstor = rule_rstor (rule_get $ last @deriv)

ATTR Tree [ | | deriv : Deriv ]
SEM Tree

| Nullary loc.deriv = deriv_get @lhs.derivstor @labval
| Unary loc.deriv = deriv_get @lhs.derivstor @labval

lhs.deriv = @deriv ++ @left.deriv
| Binary loc.deriv = deriv_get @lhs.derivstor @labval

lhs.deriv = @deriv ++ @left.deriv ++ @right.deriv

2.4 Chainrules

As mentioned in the beginning of this chapter, there is a set of special instructions which
have no operator and can therefore always be applied. We called these rules the chainrules.
Although playing a small part in the concept of treematching, the chainrules do play a big
role in the result of the tree matcher. Chainrules can often be used to move values from one
storage class to some other. Let us look at an example. The following is a subset of some
machine description:

rules :: Rules
rules = [(1, s1, (Rhs OP1 s2 Nil)),

(2, s1, (Rhs OP1 s3 Nil)),
(3, s2, (Rhs Noop s3 Nil))]

rulecost :: Rulenr -> Int
rulecost 1 = 0
rulecost 2 = 3
rulecost 3 = 1

If in a certain unary node having operator OP1 and a child giving a labelvalue containing
only the storage class s3 then we can only apply rule number 2. It is easy to see that there is
a cheaper way of deriving storage class s1. We can first use rule 3. By doing so, we can apply
rule 1 to derive s1. But by doing so we have a total cost rulecost(3) + rulecost(1) which
is 1. So we have derived the same result with smaller costs. Needless to say we want our
tree matcher to be able to apply these chainrules. We can decide to apply chainrules before
investigating labelvalues (apply chainrules on synthesized labelvalues) or after the application
of an operator. The result is exactly the same. We choose to apply chainrules after application
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of an operator. Therefore we can always assume we can not improve a synthesized labelvalue
by applying chainrules, since all possible chainrules have been applied.

We need a function which given a certain labelvalue applies all possible chainrules and delivers
the resulting possibly improved labelvalue. When applying a chainrule, we must keep in
mind that by introducing a new storage class, it can become possible to apply a chainrule
investigated in an earlier stage. Therefore we must start the chainrule application all over
when a chainrule yields an improvement. We must iterate until no further improvements can
be established. Since we have decided to apply chainrules after operator application, adding
the chainrule function and changing the operation a slight bit will suffice. Besides that we
need to change the type LabelV alue since an operator no longer applies just one rule, but
possibly a list of rules.

{
data LabelValue = Lv Storage [Rulenr] Int

rule_chain :: Rules
rule_chain = rule_opget Noop

lv_build :: Operator -> LabelValues -> LabelValues -> LabelValues
lv_build op ll lr = lv_norm $ nub $ sort $ lv_chain rule_chain (lv_applyop op ll lr,[])

lv_chain :: [Rule] -> (LabelValues,LabelValues) -> LabelValues
lv_chain rls ([],lv) = lv
lv_chain rls ((i:lv), vlv) = lv_chain rls (lv_chainwalk rls i (lv,vlv))

lv_chainwalk :: [Rule] -> LabelValue -> (LabelValues, LabelValues) -> (LabelValues, LabelValues)
lv_chainwalk [] i (lv,vlv) = (lv,(i:vlv))
lv_chainwalk (r:rl) i@(Lv ir _ _) (lv,vlv)

| rule_lstor r == ir = lv_chainwalk rl i (lv_exitchain (lv_applychain r i) lv (vlv) [])
| otherwise = lv_chainwalk rl i (lv,vlv)

lv_exitchain :: LabelValue -> LabelValues -> LabelValues -> LabelValues -> (LabelValues, LabelValues)
lv_exitchain lv lvl [] tmp = (lv:lvl, tmp)
lv_exitchain lv@(Lv st1 _ c1) lvl (l@(Lv st2 _ c2):lvr) tmp

| not (st1 == st2) = lv_exitchain lv lvl lvr (l:tmp)
| c1 < c2 = (lv:lvl, lvr++tmp)
| otherwise = (lvl, (l:lvr)++tmp)

lv_applychain :: Rule -> LabelValue -> LabelValue
lv_applychain (rnr, rst, (Rhs op stl _)) (Lv st rls rc)

| not (op == Noop && stl == st) = error "illegal operation in lv_applychain"
| otherwise = (Lv rst (rnr:rls) (rc + rulecost rnr))

}

2.5 Conditional treematching

The only thing left to add before the tree matcher can be used for actual instruction sets is
the ability to handle conditional instructions. Until now we assumed every instruction can
always be applied. In reality this is not the case. Most machines have instructions which can
only be used when a certain condition holds. An obvious example of such an instruction is
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a special instruction for adding values. If we add a value to a register, and this value is the
constant 1 we can use a special instruction which simply raises the value of the register by
one. The instruction for this special case is probably cheaper then the instruction which is
able to add any integer from a large range to a register.

The tree matching techniques introduced so far can easily be adapted to handle conditions.
We expand a machine description with some extra information, a function which given a rule
number and a tree, returns a boolean stating whether the tree holds the condition associated
with the given rule. Assume we have two types of condition functions. They are called ’range’
and ’memop’. We will look to the functions themselves later, but for now their types will
suffice:

range :: Tree -> Int -> Int -> Bool
memop :: Tree -> Bool

With these functions, the conditions simply be assigned to rules using one pattern matched
condition function:

condition :: Rulenr -> Tree -> Bool
condition 2 tree = memop tree
condition 5 tree = range tree 0 31
condition 6 tree = range tree 1 1
condition _ _ = True

This way we can assign many sorts of conditions to different rules. Unconditional rules always
evaluate to True. To let our tree matcher use conditions, we only need one slight addition to
the operator application function. The function was:

lv_applyop :: Operator -> LabelValues -> LabelValues -> LabelValues
lv_applyop op left right =

[ (Lv xst [xnr] ((rulecost xnr) + (lv_cost left xlstor) + (lv_cost right xrstor)))
| (xnr, xnt, (Rhs xopt xlstor xrstor)) <- (rule_opget op)
]

To add condition evaluation it is changed into:

lv_applyop :: Operator -> Tree -> LabelValues -> LabelValues -> LabelValues
lv_applyop op tr left right =

[ (Lv xst [xnr] ((rulecost xnr) + (lv_cost left xlstor) + (lv_cost right xrstor)))
| (xnr, xnt, (Rhs xopt xlstor xrstor)) <- (rule_opget op),
condition xnr tr
]

Since its type has changed, the function call changes too. It wants the intermediate tree for
the current node as its parameter. The attribute grammar for tree matching becomes:

ATTR Tree [ | | labval : LabelValues tree : Tree ]
SEM Tree

| Nullary loc.tree = Tree_Nullary @op @value
loc.labval = lv_build @op @loc.tree [] []

| Unary loc.tree = Tree_Unary @op @left.tree @value
loc.labval = lv_build @op @loc.tree @left.labval []
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| Binary loc.tree = Tree_Binary @op @left.tree @right.tree @value
loc.labval = lv_build @op @loc.tree @left.labval @right.labval

ATTR Tree [ derivstor : Storage | | ]
SEM Root

| Root tr.derivstor = @stor
SEM Tree

| Unary left.derivstor = rule_lstor (rule_get $ last @loc.deriv)
| Binary left.derivstor = rule_lstor (rule_get $ last @loc.deriv)

right.derivstor = rule_rstor (rule_get $ last @loc.deriv)

ATTR Root Tree [ | | deriv : Deriv ]
SEM Root

| Root lhs.deriv = @tr.deriv
SEM Tree

| Nullary loc.deriv = deriv_get @lhs.derivstor @labval
| Unary loc.deriv = deriv_get @lhs.derivstor @labval

lhs.deriv = @deriv ++ @left.deriv
| Binary loc.deriv = deriv_get @lhs.derivstor @labval

lhs.deriv = @deriv ++ @left.deriv ++ @right.deriv

We already gave the types of two condition functions, range and memop. In fact, these two
functions are the only two condition types found in the x86 instruction set. Therefore we will
now give the code for these two functions. By doing so, distributed through this chapter we
have provided all necessary components of a complete tree matcher for the Intel x86 family
of processors. The implementation of memop also demonstrates why we want the condition
function to have a tree as an argument instead of only the value associated with a certain
node.

{
range :: Value -> Int -> Int -> Bool
range Nothing _ _ = False
range (Just v) l u = (l <= v && v <= u)

memop :: Tree -> Tree -> Bool
memop tree1 tree2 = let left2 = treeLeft tree2

in (hasindirop left2) && sameTree tree1 (treeLeft left2)

treeLeft :: Tree -> Tree
treeLeft Tree_Nil = Tree_Nil
treeLeft (Tree_Nullary _ _) = Tree_Nil
treeLeft (Tree_Unary _ l _) = l
treeLeft (Tree_Binary _ l _ _) = l
sameTree :: Tree -> Tree -> Bool
sameTree Tree_Nil Tree_Nil

= True
sameTree (Tree_Nullary op1 v1) (Tree_Nullary op2 v2)

= op1 == op2 && v1 == v2
sameTree (Tree_Unary op1 l1 v1) (Tree_Unary op2 l2 v2)

= op1 == op2 && v1 == v2 && sameTree l1 l2
sameTree (Tree_Binary op1 l1 r1 v1) (Tree_Binary op2 l2 r2 v2)

= op1 == op2 && v1 == v2 && sameTree l1 l2 && sameTree r1 r2
sameTree _ _ = False
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hasindirop :: Tree -> Bool
hasindirop (Tree_Nullary op _) = (take 5 (show op)) == "INDIR"
hasindirop (Tree_Unary op _ _) = (take 5 (show op)) == "INDIR"
hasindirop (Tree_Binary op _ _ _) = (take 5 (show op)) == "INDIR"
hasindirop _ = False
}
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Chapter 3

A more efficient approach to
treematching

3.1 Overview

The previous chapter layed the groundwork to solve the instruction selection problem. It is
still an inefficient approach. A lot of calculations are done at every node. The number of nodes
in a program will likely be quite large. The calculations depend on the operators and storage
classes. If it is possible to exploit the fact that the number of operators and storage classes
is fixed, the calculation at every node can be done a lot faster. In this chapter the amount
of work done at each node is reduced. In other words, the operator application function will
be simplified. Because that is the most time consuming function used at every node. The
techniques to reduce the amount of work will be introduced step by step throughout this
chapter.

We will use the fact that the number of operators and storage classes are fixed; in some way
this is evaluating a machine description. It must be easy to retarget the compiler so all used
optimizations must be performed automatically on a machine description. Optimizations
done by hand are of no interest to us. This chapter concerns the ideas behind possible
optimizations, it is not our goal to give exact code specifications.
The machine description can be evaluated at the time we transform it from the readible form
to the Haskell form used by the tree matcher. So, like in the previous chapter, the inpus is a
machine description of the following form:

stmt: ASGNI1(addr,rc) "mov byte ptr \%0,\%1\n" 1
stmt: ASGNI2(addr,rc) "mov word ptr \%0,\%1\n" 1
stmt: ASGNI4(addr,rc) "mov dword ptr \%0,\%1\n" 1

This time, instead of simply parsing it and delivering the set of rules needed for the tree
matcher, we analyze it after parsing. How it is analyzed and how the results of the analysis
are used is what this chapter is about. We will start with the most obvious analyses, and
step by step get into less obvious onces. Slowly moving further away from the tree matcher
given in the previous chapter, towards a more efficient solution.
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Figure 3.1: Simple machine description

statmt: ASGN(dst,plus1) 2
statmt: ASGN(dst,plus2) 6
statmt: ASGN(dst,plus3) 2
regx : MEM(addr) 3
regx : CONST 6
regx : CONST 2
dst : addr
src : regx
src : MEM(addr)
addr : regx
addr : CONST 2
regx : REG
plus2 : PLUS(src,con1)
plus3 : PLUS(src,con2)
con1 : CONST
con2 : CONST
plus1 : PLUS(src,regx)

3.2 Selecting rules per operator

One of the most obvious improvements is the selection of rules per operator. In every node
we inspect, we require the set of rules available for the operator of this node. We get these
rules by filtering all the rules. We have a limited set of operators and we know these after
parsing a machine description. Therefore we can in advance apply this filter once for every
operator. We remove the function rule opget and replace it by a pattern matched instance
of op get. The result of this function is just a list of rules. Remember the simple machine
description as given in figure 3.2. Ofcourse we will deliver the rules as stated in the previous
chapter. But we add some extra information, found by analyzing the rules. It is easy to see
we can find this without any extra information. Everything can be done automatically. We
get:

rules :: Rules
rules = [(1, Statmt, (Rhs ASGN Dst Plus1)),

(2, Statmt, (Rhs ASGN Dst Plus2)),
(3, Statmt, (Rhs ASGN Dst Plus3)),
(4, Regx, (Rhs MEM Addr Nil)),
(5, Regx, (Rhs CONST Nil Nil)),
(6, Regx, (Rhs CONST Nil Nil)),
(7, Dst, (Rhs Noop Addr Nil)),
(8, Src, (Rhs Noop Regx Nil)),
(9, Src, (Rhs MEM Addr Nil)),
(10, Addr, (Rhs Noop Regx Nil)),
(11, Addr, (Rhs CONST Nil Nil)),
(12, Regx, (Rhs REG Nil Nil)),
(13, Plus2, (Rhs PLUS Src Con1)),
(14, Plus3, (Rhs PLUS Src Con2)),
(15, Con1, (Rhs CONST Nil Nil)),
(16, Con2, (Rhs CONST Nil Nil)),
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(17, Plus1, (Rhs PLUS Src Regx))]

rule_opget ASGN = [(1, Statmt, (Rhs ASGN Dst Plus1)),
(2, Statmt, (Rhs ASGN Dst Plus2)),
(3, Statmt, (Rhs ASGN Dst Plus3))]

rule_opget MEM = [(4, Regx, (Rhs MEM Addr Nil)),
(9, Src, (Rhs MEM Addr Nil))]

rule_opget CONST = [(5, Regx, (Rhs CONST Nil Nil)),
(6, Regx, (Rhs CONST Nil Nil)),
(11, Addr, (Rhs CONST Nil Nil)),
(15, Con1, (Rhs CONST Nil Nil)),
(16, Con2, (Rhs CONST Nil Nil))]

rule_opget REG = [(12, Regx, (Rhs REG Nil Nil))]
rule_opget PLUS = [(13, Plus2, (Rhs PLUS Src Con1)),

(14, Plus3, (Rhs PLUS Src Con2)),
(17, Plus1, (Rhs PLUS Src Regx))]

rule_opget Noop = [(7, Dst, (Rhs Noop Addr Nil)),
(8, Src, (Rhs Noop Regx Nil)),
(10, Addr, (Rhs Noop Regx Nil))]

3.3 Inspecting the chainrules

When looking at the operator application at each node we notice the application of the
operator itself now takes a fixed number of steps (the length of the associated rule list for
each operator). The chainrule application however is a recursive function. With every new
derivable storage class rises the necessity to inspect all the chainrules from the start. This
is a time consuming process. It will help a lot if we can change this into a fixed amount
of work. This is possible, but the solution is not as straightforward as the one applied for
the operators above. When looking at the chainrules, we investigate every derivable storage
class. Newly introduced ones will later be inspected too. But when applying chainrules to
a labelvalue holding different storage classes, the storage classes do not interfere which each
other. Assume we have a function nubs which sorts a labelvalue and removes all double
occuring storage classes. We assume the nub part of the function behaves in such a way that
every first occurence of a value is kept, the rest is removed. Therefore we are for sure that if
we first sort the list and then nub it, the remaining list holds all the cheapest solutions.

Furthermore we have a function chain which given a labelvalue calculates the derivable la-
belvalue when using chainrules. If we have a labelvalue containing two elements, s1 and s2,
the following holds:

nubs(chain([s1, s2])) = nubs((chain [s1]) + +(chain [s2])) (3.1)

This makes it possible to build a new chained labelvalue separately from each element of the
original labelvalue. We can calculate the chain value for a single element in advance. When
we investigate a machine description we know all available storage classes and also the set of
chainrules. We simply call the original chainrule function for every storage class, with cost
parameter zero. This gives us for every storage class a list of all possible derivable storage
classes for a certain cost. Remember we stated the cost to start with is zero. Therefore, if a
certain storage class occurs while treematching, for cost 3, we can simply use the precalculated
list and add the cost 3 to every element. When treematching we are not looking at one storage
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class but at a labelvalue holding many. So we first look at the chaining for every element of
this labelvalue and then use (3.1) to combine the results. For the simple machine description
used in the previous section this gives us1:

lv_chain :: LabelValues -> LabelValues
lv_chain lv = nub $ sort $ concat $ map lab_val lv

lab_val :: LabelValue -> LabelValues
lab_val (Lv nt rls cst) = map (lab_apply rls cst) (lab_list nt)

where lab_apply r1 c1 (Lv n r2 c2) = Lv n (r2++r1) (c1+c2)

lab_list Dst = [(Lv Dst [] 0)]
lab_list Plus1 = [(Lv Plus1 [] 0)]
lab_list Statmt = [(Lv Statmt [] 0)]
lab_list Plus2 = [(Lv Plus2 [] 0)]
lab_list Plus3 = [(Lv Plus3 [] 0)]
lab_list Addr = [(Lv Dst [7] 0), (Lv Addr [] 0)]
lab_list Regx = [(Lv Src [8] 0), (Lv Dst [7,10] 0), (Lv Addr [10] 0), (Lv Regx [] 0)]
lab_list Src = [(Lv Src [] 0)]
lab_list Con1 = [(Lv Con1 [] 0)]
lab_list Con2 = [(Lv Con2 [] 0)]

Needless to say, we have derived much faster chainrule application, since all recursion has
been removed. Combined with the faster operator rule selection we have derived a much
faster tree matcher than we had in the previous chapter. No strange things were done, in
fact, we have just been partially evaluating a machine description. Allthough the new tree
matcher is a lot faster, there still is lots of needless work done at every node while matching.

3.4 Even further: exploiting Haskell’s lazyness

There is still a lot of calculation overhead going on. In every node we inspect, we calculate
all possible derivable storage classes. But in most cases the parent of a certain node will
only expect a small subset of all possible storage classes. If we know this subset at the node
itself, we will have to do less work. An obvious choice is to simply add an inherited attribute
containting the list of accepted storage classes at the parent. We then use this list to calculate
only the needed storage classes. But in practice, calculating this storage list and passing it
through introduces so much overhead that we do not win by this approach. But why do we
want to pass this list? Is Haskell’s lazy evaluation not supposed to take care of this, when a
parent never requests a certain storage class it must never be calculated. But unfortunately
it does not work that way. This is because we pass a list of storage classes. This is a list
build up using chainrule application. This chainrule application requires the whole list to
be calculated. So though we will never use certain elements of this list, the whole list will
always be calculated. We somehow want to get rid of this list. This must be possible, since
the maximum length of the list is the number of available storage classes (which is ofcourse
available while evaluating a machine description). Instead of passing a list, we can just add a
single synthesized attribute for every storage class. With the simple machine description this
will lead to:

1since all chain rules have cost zero in the simple machine description all chaining is free, hence the zero in
each labelvalues element. In reality it is more likely that every storage class can only be derived at a certain
cost more than zero.
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ATTR Tree [ | | dst : LabelValue
plus1 : LabelValue
plus2 : LabelValue
plus3 : LabelValue
stamt : LabelValue
addr : LabelValue
regx : LabelValue
src : LabelValue
con1 : LabelValue
con2 : LabelValue ]

But what do we win by this? If we only replace the list attribute for a list of seperate
attributes we gain nothing. Part of our tree matcher will look something like this:

SEM Tree
| Unary loc.labval = lv_build @op @loc.tree [@left.dst,...,@left.con2] []

lhs.dst = fromLabval Dst @loc.labval

Here fromLabval has type Storage → LabelV alues → LabelV alue. This is just a more
complicated way of doing things without gaining anything. It demonstrates a lot of extra
work that must be done. We want to state in the attribute grammar which storage classes
are required from our children. Which storage classes we need depends on the operator of
a node. To be able to model the requirements we therefore evaluate the operator into the
treegrammar. Given a machine description and the following grammar, we can model a
specialized version of the grammar. The grammar was:

DATA Tree | Nil
| Nullary op : Operator

value : Value
| Unary op : Operator

left : Tree
value : Value

| Binary op : Operator
left : Tree
right : Tree
value : Value

Since the amount of operators is fixed and their type (nullary, unary or binary) is known
at evaluation time, we can push the operator into the grammar. For the simple machine
description from figure 3.2 we derive the specialized grammar:

DATA STree | Nil
| CONST value : Value
| REG value : Value
| MEM left : Tree

value : Value
| PLUS left : Tree

right : Tree
value : Value

| ASGN left : Tree
right : Tree
value : Value
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Needless to say, this transformation can easily be done automatically. Programs in the original
intermediate tree form can easily be transformed into this new tree shape in one bottom
up traversal of the tree. What do we gain by this transformation? If we only apply this
transformation, again, nothing. But the new grammar has a major advantage, operators are
hard coded into the grammar. We already knew which rules belong to each operator. Now we
are going to ’fold’ the operator application function into the grammar. First, we forget about
the chainrules and conditions for a while. Then with the rule information for each operator
we can quite easily generate for for instance the operator PLUS:

{
lv_cost :: LabelValue -> Int
lv_cost (Lv _ _ cst) = cst

lv_rules :: LabelValue -> Int
lv_rules :: (Lv _ rls _) = rls
}
SEM STree

| PLUS loc.plus1 = [(Lv Plus1 [17] (lv_cost @left.src) (lv_cost @right.regx))]
loc.plus2 = [(Lv Plus2 [13] (lv_cost @left.src) (lv_cost @right.con1))]
loc.plus3 = [(Lv Plus3 [14] (lv_cost @left.src) (lv_cost @right.con2))]

| ...

The list construction may seem odd, but we can have multiple rules for one storage class.
The list is necessary. Condition evaluation can easily be applied now. We can just evaluate
the conditions in the way we used to, but now we want a function which result in the empty
list when the condition fails, or in the element when the condition holds. So we get:

{
condCheck :: Rulenr -> Tree -> LabelValue
condCheck rn tr lv | condition rn tr = [lv]

| otherwise = []
}
SEM Tree

| PLUS loc.plus1 = condCheck 17 @loc.tree
(Lv Plus1 [17] (lv_cost @left.src) (lv_cost @right.regx))

loc.plus2 = condCheck 13 @loc.tree
(Lv Plus2 [13] (lv_cost @left.src) (lv_cost @right.con1))

loc.plus3 = condCheck 14 @loc.tree
(Lv Plus3 [14] (lv_cost @left.src) (lv_cost @right.con2))

| ...

Functionally, we are almost back to the original tree matcher. We still need to add the
chainrules. Remember, we already evaluated the chainrules to:

lab_list Dst = [(Lv Dst [] 0)]
lab_list Plus1 = [(Lv Plus1 [] 0)]
lab_list Statmt = [(Lv Statmt [] 0)]
lab_list Plus2 = [(Lv Plus2 [] 0)]
lab_list Plus3 = [(Lv Plus3 [] 0)]
lab_list Addr = [(Lv Dst [7] 0), (Lv Addr [] 0)]
lab_list Regx = [(Lv Src [8] 0), (Lv Dst [7,10] 0), (Lv Addr [10] 0), (Lv Regx [] 0)]
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lab_list Src = [(Lv Src [] 0)]
lab_list Con1 = [(Lv Con1 [] 0)]
lab_list Con2 = [(Lv Con2 [] 0)]

We can use this information, to evaluate the reverse of this. Now, we give a storage class
and the result is a list of derivable storage classes. This collection of lists can be used to
automatically construct a function which given a storage class returns from which storage
class it can be derived instead of which storage classes are derivable from it. This is a quite
simple process. Say we are looking at the storage class Dst. We simple call lab list for each
storage class. If the result of this contains Dst then we can conclude that Dst is derivable from
the the current storage class. When can automatically evaluate this new function from the
old chainrule function. The new function can be added directly into the attribute grammar.
Chainrules must be applied before passing the results to parents, so we get:

{
chain_app :: [Rulenr] -> Int -> LabelValues -> LabelValues
chain_app nt1 rls1 cst1 lvs = map (\(Lv nt2 rls2 cst2) -> (Lv nt1 rls1++rls2 cst1+cst2)) lvs
}
SEM Tree

| PLUS loc.plus1 = condCheck 17 @loc.tree
(Lv Plus1 [17] (lv_cost @left.src) (lv_cost @right.regx))

loc.plus2 = condCheck 13 @loc.tree
(Lv Plus2 [13] (lv_cost @left.src) (lv_cost @right.con1))

loc.plus3 = condCheck 14 @loc.tree
(Lv Plus3 [14] (lv_cost @left.src) (lv_cost @right.con2))

loc. .... = []
lhs.dst = @loc.dst ++

(chain_app Dst [7] 0 @loc.addr) ++
(chain_app Dst [7, 10] 0 @loc.regx)

lhs. .... = @loc. .... ++ chain_app ....
| ...

We have derived a tree matcher with all the functionality from the basic tree matcher. In this
version however, the dependency between storage classes has been made implicit. Therefor
lazy evaluation will now do its job and make sure a lot of values will no longer be calcu-
lated. However, these values do still use some space and introduce some calculation overhead.
Allthough they are no longer calculated they are allocated. This are a lot of values for every
node. And since a program holds a lot of nodes, we still have lots of unnecessary storage use.
In the next chapter we will look into that. But for now we will first expand the above a bit
more. We will derive a more elegant solution and give the complete solution for the simple
machine description.

3.4.1 Putting it all together

Before giving the complete code for a tree matcher, there are a few things that must be
noted. First of all, normalization has been removed. Not because we do not like the effect of
it anymore, but because it is no longer possible. If we normalize over the costs of all derivable
storage classes, lazy evaluation will no longer do its job. Since each cost depends on all costs
of the other storage classes, we always need to calculate everything. We started this more
complicated way of treematching because we wanted to exploit Haskell’s laziness, so we have
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to forget about normalization. Since only costs for derivable storage classes are used the cost
sum will remain quite small. To make sure it does not grow too large in very large programs
we substract 1 from the cost at every node. So we apply some sort of normalization, but now
by a constant factor.

We will give the complete tree matcher for the simple machine description. All changes to
the tree matcher can be seen as an instance of partial evaluation on the original tree matcher
given in the previous chapter. Since all semantic functions for the operators look like each
other and they are quite long, only one operator function is given.
The original and new datatype, and the function for converting the original datatype to the
specialized form:

DATA Tree | Nil
| Nullary op : Operator

value : Value
| Unary op : Operator

left : Tree
value : Value

| Binary op : Operator
left : Tree
right : Tree
value : Value

DATA STree | Nil
| CONST value : Value
| REG value : Value
| MEM left : STree

value : Value
| PLUS left : STree

right : STree
value : Value

| ASGN left : STree
right : STree
value : Value

ATTR Tree [ | | stree : STree ]
SEM Tree

| Nil lhs.stree = STree_Nil
| Nullary lhs.stree = bn_stree @op @value
| Unary lhs.stree = bu_stree @op @left.stree @value
| Binary lhs.stree = bb_stree @op @left.stree @right.stree @value

{
bn_stree CONST val = STree_CONST val
bn_stree REG val = STree_REG val
bu_stree MEM tl val = STree_MEM tl val
bb_stree PLUS tl tr val = STree_PLUS tl tr val
bb_stree ASGN tl tr val = STree_ASGN tl tr val
}

All of the above can be generated starting from the original datatype and the list of storage
types and operators.
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The condition evaluation can remain unchanged. We use the synthesized attribuut ’tree’ in
the same way we used it in previous versions of the tree matcher. This tree is built in a
slightly different way:

SEM STree
| Nil loc.tree = Tree_Nil
| CONST loc.tree = Tree_Nullary CONST @value
| REG loc.tree = Tree_Nullary REG @value
| MEM loc.tree = Tree_Unary MEM @left.tree @value
| PLUS loc.tree = Tree_Binary PLUS @left.tree @right.tree @value
| ASGN loc.tree = Tree_Binary ASGN @left.tree @right.tree @value

Now we need the attributes for every storage class. Using these attributes of the children,
we build the local rule information. The list of rules contained in ruleinf is not the local list
of rules, but the complete list of rules. We can easily calculate this complete list because we
have the seperate attributes and the lazy evalution. By doing so, we get the derivation at the
root of the tree. We no longer need a topdown traversal to generate this.

{
type RuleInf = Maybe ([Int],Int)
}
ATTR STree [ | | nil : RuleInf dst : RuleInf plus1 : RuleInf

plus2 : RuleInf plus3 : RuleInf statmt : RuleInf
addr : RuleInf regx : RuleInf src : RuleInf
con1 : RuleInf con2 : RuleInf tree : Tree ]

SEM STree | ASGN
--apply rules
loc.rdst = Nothing
loc.rplus1 = Nothing
loc.rstatmt = ckCost $ minRI $ condCheck @loc.tree

[(applyBRule 1 @left.dst @right.plus1),
(applyBRule 2 @left.dst @right.plus2),
(applyBRule 3 @left.dst @right.plus3)]

loc.rplus2 = Nothing
loc.rplus3 = Nothing
loc.raddr = Nothing
loc.rregx = Nothing
loc.rsrc = Nothing
loc.rcon1 = Nothing
loc.rcon2 = Nothing

There are a couple of functions used to generate the local rule information per storage class.
First of all, the list of applicable rules is filtered by condition. The function condCheck takes
care of this. For every storage class one rule will suffice. With the function minRI we select
the cheapest rule that satisfies its condition. Since we do not want to use storage classes
having infinite costs (meaning they are not derivable) we apply the function ckCost to this
element. This will set the rule information to Nothing for every nonderivable storage class.

{
condCheck :: Tree -> [RuleInf] -> [RuleInf]
condCheck tr (ri@(Just ((rnr:rls),cst)):xs) | condition rnr tr = ri : (condCheck tr xs)

| otherwise = condCheck tr xs

33



condCheck _ _ = []

ckCost :: RuleInf -> RuleInf
ckCost Nothing = Nothing
ckCost ri@(Just (rls,cst)) | cst < infCost = ri

| otherwise = Nothing

applyNRule :: Rulenr -> RuleInf
applyNRule rnr = Just ([rnr],rulecost rnr)
applyURule :: Rulenr -> RuleInf -> RuleInf
applyURule _ Nothing = Nothing
applyURule rnr (Just (r1,c1)) = Just ((rnr:(r1)),(rulecost rnr + c1 - 1))
applyBRule :: Rulenr -> RuleInf -> RuleInf -> RuleInf
applyBRule _ Nothing _ = Nothing
applyBRule _ _ Nothing = Nothing
applyBRule rnr (Just (r1,c1)) (Just (r2,c2)) =

Just ((rnr:(r1++r2)),(rulecost rnr + c1 + c2 - 1))

minRI :: [RuleInf] -> RuleInf
minRI [] = Nothing
minRI ris = foldl1 fminRI ris

fminRI :: RuleInf -> RuleInf -> RuleInf
fminRI Nothing Nothing = Nothing
fminRI Nothing (Just a) = Just a
fminRI (Just a) Nothing = Just a
fminRI a1@(Just (_,c1)) a2@(Just (_,c2)) | c1 <= c2 = a1

| otherwise = a2
}

Now all we need to do is apply the chainrules. This is quite straightforward:

SEM STree | ASGN
--apply chainrules
lhs.nil = Nothing
lhs.dst = ckCost $ minRI [@loc.rdst,(applyLab @loc.rregx [7,10] 0),(applyLab @loc.addr [7] 0)]
lhs.plus1 = ckCost $ minRI [@loc.rplus1]
lhs.statmt = ckCost $ minRI [@loc.rstatmt]
lhs.plus2 = ckCost $ minRI [@loc.rplus2]
lhs.plus3 = ckCost $ minRI [@loc.rplus3]
lhs.addr = ckCost $ minRI [@loc.raddr,(applyLab @loc.rregx [10] 0)]
lhs.regx = ckCost $ minRI [@loc.rregx]
lhs.src = ckCost $ minRI [@loc.rsrc, (applyLab @loc.rregx [8] 0)]
lhs.con1 = ckCost $ minRI [@loc.rcon1]
lhs.con2 = ckCost $ minRI [@loc.rcon2]

{
applyLab :: RuleInf -> [Rulenr] -> Int -> RuleInf
applyLab Nothing _ _ = Nothing
applyLab (Just (rls,cst)) crl cstn = Just (crl++rls,cst+cstn)
}

By partially evaluating on a machine description we have derived a far more efficient tree
matcher. The only problem is that the tree matcher is rather large. The Haskell HUGS
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interpreter can handle the tree matcher for the small machine description. The tree matcher
derived from the x86 machine description is too large and it exceeds HUGS program storage
space. Allthough the Glaskow Haskell Compiler is able to deal with larger files, compiling
also failes. This is for a different reason. The synthesized attributes are combined in one
large tuple by the AG system. When using the x86 machine description this tuple becomes
a 50+ tuple. Compilation failes because the tuple exceeds the maximum tuple size GHC
allows. This is a serious problem. But as we mentioned earlier we will try to remove all
unused attributes completely in the next chapter. This will save us a lot of allocation space
and will hopefully also solve the problem with the large tuples.

3.5 Evaluating machine descriptions

In the previous sections we explained some techniques which all investigate machine descrip-
tions in some way. Since most analyses are straightforward, we do not intend to discuss them
in detail. In this section we will look into some of the issues of the analysis.

3.5.1 Parsing machine descriptions

From the beginning we have been referring to machine descriptions as if they were written in
the following form:

stmt: ASGNI1(addr,rc) "mov byte ptr \%0,\%1\n" 1
stmt: ASGNI2(addr,rc) "mov word ptr \%0,\%1\n" 1
stmt: ASGNI4(addr,rc) "mov dword ptr \%0,\%1\n" 1

But why have we chosen this form? We can just write them in some Haskell data structure,
giving us the ability to analyse directly. In fact, there is no good reason for not doing
so, besides the fact that we are lazy. We simply do not want to write our own machine
descriptions. A lot of work has been done in this field. The machine descriptions described
above are the machine descriptions as they are used by Lcc ([5]). They provide us with all
the information we needed. LCC is a cross compiler. By supporting this form of machine
descriptions, we are immediately able to compile to all machines LCC compiles to. We
will give the EBNF for the machine descriptions. Generating a parser from the EBNF is
straightforward.

root = rules+
rule = nont ruledef rulecode rulecost?

ruledef = nont
| operator
| operator nont
| operator operator
| operator operator nont
| operator nont ruledef
| operator ruledef

rulecode = ’"’ anychar* ’"’

rulecost = digit+
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| "memop(a)"
| "move(a)"
| "hasargs(a)"
| "imm(a)"
| "!imm(a)"
| "range(a," digit+ "," digit+ ")"

nont = lletter+
operator = uletter+ type?
type = uletter size?
size = digit

There are some additional possibilities for rulecost. They are left out since they can be
transformed to one of the above and giving them will make things needlessly complicated.

After parsing we immediately transform the resulting structure to one which suits our needs.
This is the structure we used throughout this thesis. It is written in such a way that the
needed analyses (of which some where discussed above) can be done easily. Therefore we will
only give this structure and assume any analyses are obvious. When we feel a certain analysis
is not straightforward, we will explain it at the time it is first mentioned.
We start with the main datatype MdDes. It holds a complete machine description. It contains
information about the different operators, the evaluated chainrules and a list holding all
possible storage classes.

DATA MdDes
| MdDes nullOps : NullOps

unOps : UnOps
binOps : BinOps
chainrules : ChainRules
storage : Nonterminals

Per operator type we have a list with for every operator its name and its definitions.

TYPE NullOps = [NullOp]
TYPE UnOps = [UnOp]
TYPE BinOps = [BinOp]

DATA NullOp
| NullOp op : OpName

defs : NullDefs
DATA UnOp

| UnOp op : OpName
defs : UnDefs

DATA BinOp
| BinOp op : OpName

defs : BinDefs

Per operator we have the definition list. It contains all needed rule information.

TYPE NullDefs = [NullDef]
TYPE UnDefs = [UnDef]
TYPE BinDefs = [BinDef]

36



DATA NullDef
| NullDef rulenr : RuleNr

deriv : Nonterminal
cost : Int
cond : Condition

DATA UnDef
| UnDef rulenr : RuleNr

deriv : Nonterminal
left : Nonterminal
cost : Int
cond : Condition

DATA BinDef
| BinDef rulenr : RuleNr

deriv : Nonterminal
left : Nonterminal
right : Nonterminal
cost : Int
cond : Condition

Furthermore we need the chainrules. We can evaluate them at parse time. This results
in evaluated chainrules in the datatype. We get a list with a labelvalue for every storage
class. This is the derivable labelvalue, not the reversed chainrule as discussed above. So
the labelvalue specifies everything derivable from the storage class for the nonterminal nt.
Furthermore we need the conditions.

TYPE ChainRules = [ChainRule]

DATA ChainRule
| ChainRule nt : Nonterminal

lv : LabelValue

DATA Condition
| C_Nothing
| C_Range lb : String ub : String
| C_Memop
| ...

When needed we can easily write attribute grammars for every needed analysis on the above
machine description.
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Chapter 4

Analyzing Attribute Grammars

4.1 Overview

If we follow the approach of the previous chapter, we may end up with attribute grammars in
which many attributes actually correspond to dead code. For a certain nonterminal we have
a large set of attributes. The set of attributes we are interested in depends on the parent
node for that nonterminal in an input tree. It seems the set of attributes is input dependent.
But although it depends on the input, it is possible to precompute which sets of attributes
might be needed at some point. Maybe we can remodel the grammar in such a way that we
can make use of such a precalculated version of the grammar. In this chapter we will describe
a way to do this. Not only the instruction selection problem benefits from such an analysis.
We will work on a solution wich works for any attribute grammar. After doing so we will
review the effect of it on the tree matcher described in the previous chapter.

4.2 A small example

We are looking for a way of disposing unneeded attributes. But what do we mean by this?
We will work from an example and expand it until we derive a useful analysis for the tree
matcher. Let us take a look at a simple attribute grammar:

DATA X | X left : Y right : Y
DATA Y | Y

ATTR X [ | | result : Int ]
ATTR Y [ | | a1 : Int a2 : Int ]

SEM X | X lhs.result = @left.a1 + @right.a2
SEM Y | Y lhs.a1 = 2 * 10

lhs.a2 = 3 * 4

The program for this grammar will always compute both attributes for Y (or when only
considering Haskell as a target language, it will always allocate storage space for them). It is
easy to see that we do not always need both attributes. At an occurrence of a nonterminal
Y in the right hand side of a rule we know in which attributes we are interested. This
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leads to a simple observation. If we introduce specialized variants of Y for every set of
synthesized attributes we are interested in, we save time or at least storage space. Since the
analysis becomes interesting at code generation time, we need not transform the attribute
grammar. Just generating different code will suffice. If we look at the above example, the
straightforwardly generated resulting Haskell source will look like this:

data X = X (Y) (Y)
sem_X (_left) (_right) =

let ( _left_a1,_left_a2) =
(_left )

( _right_a1,_right_a2) =
(_right )

in (_left_a1 + _right_a2)

data Y = Y
sem_Y =

let
in (2 * 10,3 * 4)

We can make specialized versions of the semantic functions for Y. There are a few cases we
are interested in:

• no attributes at all

• in one of the two elements

• both the elements

Since the result of the functions changes, the function for sem X X will change too, we get:

data X = X (Y) (Y)
sem_X (_left) (_right) =

let ( _left_a1 ) =
(_left )

( _right_a2) =
(_right )

in (_left_a1 + _right_a2)

data Y = Y
sem_Y__ =

let
in ()

sem_Y_a1 =
let
in (2 * 10)

sem_Y_a2 =
let
in (3 * 4)

sem_Y_a1a2 =
let
in (2 * 10,3 * 4)
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Since the semantic functions change, it is necessary to adapt the part of the program which
calls these functions. This part may not be available at the time we are analyzing the attribute
grammar. This can for instance be a parser, which has not yet been written. The calls to the
semantic functions must be done by hand. When for instance working with a parser one must
create a specialized version of the parser. That is possible when it is clear which attributes
are needed in which situation (like in the above example) but what if we are working with
a large complicated attribute grammar? Changing the semantic function calls by hand is a
complicated task. There is another disadvantage. Imagine writing a front end to a compiler
using an attribute grammar. The front end calculates two things (attributes): the result of
type checking and an intermediate tree. If we only want to know whether our program is
typed correct, we only need one attribute. But it seems a bit odd to write three versions
of the parser for the front end (one for the first attribute, one for the second and one for
both the attributes). We do not want to introduce an overhead like that. What we need
is the possibility to use one common parser and specify at top level which attributes we are
interested in. The solution is quite simple. We will exploit the catamorphisms. If we generate
the catamorphisms for the basic attribute grammar we started with, we get:

data X = X_X (Y) (Y)
-- cata
sem_X ((X_X (_left) (_right))) =

(sem_X_X ((sem_Y (_left))) ((sem_Y (_right))))
sem_X_X (_left) (_right) =

let ( _left_a1,_left_a2) =
(_left )

( _right_a1,_right_a2) =
(_right )

in (_left_a1 + _right_a2)

data Y = Y_Y
-- cata
sem_Y ((Y_Y )) =

(sem_Y_Y )
sem_Y_Y =

let
in (2 * 10,3 * 4)

Since we can analyse in which attributes we are interested in for every child of X, the cata-
functions can be changed into:

sem_X ((X_X (_left) (_right))) =
(sem_X_X ((sem_Y_a1 (_left))) ((sem_Y_a2 (_right))))

sem_Y_a1 ((Y_Y )) =
(sem_Y_a1_Y )

sem_Y_a2 ((Y_Y)) =
(sem_Y_a2_Y )

We are analysing the complete grammar. It is not known which element is the root element of
the tree. Therefore the analysis and the transformations are applied to all of the nonterminals.
The resulting file is:

data X = X_X (Y) (Y)
sem_X__ ((X_X (_left) (_right))) =

(sem_X_X__ (_left) (_right))
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sem_X_result ((X_X (_left) (_right))) =
(sem_X_X_result ((sem_Y_a1 (_left))) ((sem_Y_a2 (_right))))

sem_X_X__ (_left) (_right) =
let
in ()

sem_X_X_result (_left) (_right) =
let ( _left_a1 ) =

(_left )
( _right_a2) =

(_right )
in (_left_a1 + _right_a2)

data Y = Y_Y

sem_Y__ ((Y_Y )) = (sem_Y_Y__ )
sem_Y_a1 ((Y_Y )) = (sem_Y_Y_a1 )
sem_Y_a2 ((Y_Y )) = (sem_Y_Y_a2 )
sem_Y_a1a2 ((Y_Y )) = (sem_Y_Y_a1a2 )

sem_Y_Y__ =
let
in ()

sem_Y_Y_a1 =
let
in (2 * 10)

sem_Y_Y_a2 =
let
in (3 * 4)

sem_Y_Y_a1a2 =
let
in (2 * 10,3 * 4)

This version needs only one parser that constructs the abstract syntax tree. The tree is
subequently passed to a semantic function. Which function this is depends on the root
attributes we are interested in. We no longer need to specify which attributes are needed at
every position if we do not want to. We only need to state which attribute we want delivered
at root level. It looks like we have found an interesting new way of writing the semantic
functions. There still is a small problem. In the above example we simply create the powerset
of all attributes. The analysis must be useful for many purposes. One of them is the compiler
from the previous chapter. The main problem there was the huge set of attributes for a single
node. The powerset of such a huge set of attributes will be enormous. The resulting file
will become so large it will probably be useless. We somehow want to be able to only build
those functions which are needed. This will hopefully be a very small subset of the mentioned
powerset. Well, can we not simply analyse which attributes are needed for every nonterminal?
We are doing this locally to build the catamorphic functions. Can this be taken up to a global
level?

When trying to analyse which nonterminals depend on which other nonterminals and which
attributes they need, there is one simple problem. There is no starting point. In an attribute
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grammar by itself there is no explicit statement stating ’we are interested in this attribute of
this nonterminal’. To be able to do the analysis it therefore is necessary for the user to provide
us with some extra information. The user must specify a list of nonterminals and attributes
we are interested in. This is no problem for the user, because this list corresponds to the
semantic function call at the root of the tree. When these starting nonterminals and attributes
are given we can simply trace their dependencies recursively until no further functions not
already marked as required are found. The file can now safely be generated. If we reconsider
the example used above and assume the user stated being interested in the attribute result
of the nonterminal X this will result in the following, which is no more than a subset of the
above example:

data X = X_X (Y) (Y)
sem_X_result ((X_X (_left) (_right))) =

(sem_X_X_result ((sem_Y_a1 (_left))) ((sem_Y_a2 (_right))))

sem_X_X_result (_left) (_right) =
let ( _left_a1 ) =

(_left )
( _right_a2) =

(_right )
in (_left_a1 + _right_a2)

data Y = Y_Y
sem_Y_a1 ((Y_Y )) = (sem_Y_Y_a1 )
sem_Y_a2 ((Y_Y )) = (sem_Y_Y_a2 )
sem_Y_Y_a1 =

let
in (2 * 10)

sem_Y_Y_a2 =
let
in (3 * 4)

4.3 Things to keep in mind

In the previous section we introduced a very simple example. In reality analysis will be done
on more complicated attribute grammars and therefore there are some extra things to keep
in mind. For starters there is the syntactic sugar and the attribute grammar chainrules. But
luckily they are of no concern to us. Since we do not need to do the analysis before it is time
to generate code, that has all been taken care of automatically. Currently the abstract syntax
tree used for code generation is in a form where all syntactic sugar has been removed and all
attribute grammar chainrules have been applied. That gives us a great advantage, because
it takes a lot of complexity out of the attribute grammar we are analyzing. But there still is
one important thing, the declaration of local functions. Consider a slightly altered version of
the example given in the previous section:

DATA X | X left : Y right : Y
DATA Y | Y

ATTR X [ | | result : Int ]
ATTR Y [ | | a1 : Int a2 : Int ]
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SEM X | X loc.something = @loc.some2 + @left.a1
loc.some2 = @right.a2
loc.result = @left.a1 + @loc.something

SEM Y | Y lhs.a1 = 2 * 10
loc.a2 = 3
lhs.a2 = @loc.a2 + 3

The local functions introduce some extra work. It does no longer suffice to examine each
rule for the attributes needed. In addition we need to explore all local functions a rule uses.
This process must be done because in the given example we need to make sure we have the
attribute @right.a2 available for the result rule. We also need to make sure we only keep
those local functions which are actually used. If in the above example loc.some2 is not needed,
we do not have the attribute @right.a2 available. Delivering a function which does contain
a reference to that attribute results in an incorrect program. The fact that the attribute is
never needed does not matter. If the attribute @right.a2 is removed and some local function
uses it, the resulting program simply is syntactically wrong. Keeping the above in mind we
are now set to model our analysis.

4.4 Details of the analysis

It is time for some details of the actual analysis. We will concentrate on the information
gathering part of the analysis. By doing so we hope to create greater understanding of the
way the analysis work. If we want to give details about the code generation we first have
to explain the entire code generation process of the ag-system. This obviously is beyond
the scope of this thesis. The code generation for the analysed attribute grammars is almost
exactly the same as normal code generation, provided we gather the right information during
analysis. As stated before we will analyse on the abstract syntax tree where all chainrules
have been applied and desugaring has been done. The syntax tree is:

DATA Grammar | Grammar typeSyns : {TypeSyns}
useMap : {UseMap}
prods : Productions

TYPE Productions = [Production]
TYPE Alternatives = [Alternative]
TYPE Children = [Child]
TYPE Rules = [Rule]
TYPE LocRules = [LocRule]

DATA Production | Production nt : {String}
inh : {Attributes}
syn : {Attributes}
alts : Alternatives

DATA Alternative | Alternative con : {String}
children : Children
rules : Rules
locrules : LocRules
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DATA Child | Child name : {String}
tp : {String}
inh : {Attributes}
syn : {Attributes}
rules : Rules

DATA Rule | Rule attr : {Name}
rhs : Expression

DATA LocRule | LocRule pat : Pattern
rhs : Expression
owrt : {Bool}

As mentioned in the previous section, one of the things needed is the local dependency
information. This information can be gathered without any problems. For every nonterminal
LocRule we need to find out which attributes and which locals it depends on. Then those
locals must be traced and any attributes they depend on added. Consider the following
example (for some arbitrary nonterminal):

loc.a1 = @loc.a2 + @loc.a3
loc.a2 = @left.a1 + @loc.a3
loc.a3 = @left.a2

Dependency information is stored in a map from local attribute to a list of attributes per
child. To store the local dependencies we use the name loc instead of a child name. So for
the above example, the complete dependency information is:

type AttrMap = Map String (Strings)
type RuleMap = Map String AttrMap

exampleAttrMap :: RuleMap
exampleAttrMap = list2map [("a1",[("loc",["a1","a2","a3"]),("left",["a1","a2"])]),

("a2",[("loc",["a2","a3"]),("left",["a1","a2"])]),
("a3",[("loc",["a3"]),("left",["a2"])])]

To build this complete map, where all dependencies have been traced, we first build the
untraced locals list:

ATTR LocRules [ | | simplemaplist : {[(String, AttrMap)]} ]
SEM LocRules

| Cons lhs.simplemaplist = @hd.simplemapelem : @tl.simplemaplist
| Nil lhs.simplemaplist = []

ATTR LocRule [ | | simplemapelem : {(String,AttrMap)} ]
SEM LocRule

| LocRule lhs.simplemapelem = ((@pat.name),list2map (("loc",(@rhs.usedLocals)) :
(trans @rhs.usedAttrs)))

{
trans :: Ord a => [(a, b)] -> [(a,[b])]
}
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For the given example, this list will be:

[("a1",[("loc",["a2","a3"])]),
("a2",[("loc",["a3"]),("left",["a1"])]),
("a3",[("left",["a2"])])]

The above list can easily be converted to the exhaustively examined list mentioned above.
We simply start a worklist algorithm with all the local attributes. The final resulting map
is given as a parameter. When exploring a certain local attribute and finding it depends on
two other attributes, we look in to the result map whether we know its dependencies. If it
is already known we use the information provided. If it has not yet been explored, we start
exploring the new attribute. The resulting information can be added to the local attribute
we started with. Assume the argument for the worklist algorithm is the ordered list of a1,
a2 and a3. We first examine a1 and find we need the dependency information of a2 and a3.
We start by examining a2 and again find we need the dependency information for a3. We
recurse into examining a3. This gives us an attribute list. The result map has been updated
and the dependency of a3 is known. We arrive back at the examination of a2. Since we
have all information needed for its dependency we combine the attribute list for a3 with the
local one and again update the result map. The map now holds information for both a2
and a3. We arrive back at our starting point, analyzing the dependency of a1. We find the
information for a2 and a3 is known and simply add any local attribute dependencies (none
in the above example). We have finished exploring a1. The worklist algorithm must now
explore the next attribute in the list, being a2. It looks up a2 in the current result map and
finds dependency information has already been computed (since it was needed for calculating
a1’s dependencies). We can consider a2 as analyzed and proceed with the next attribute in
the worklist. We again find it already has been explored, and since the worklist is empty, we
return the result map.

A quite straightforward algorithm, but there is one risk. It does not necessarily terminate.
For the following example it will never terminate:

[("a1",[("loc",["a2"])]),
("a2",[("loc",["a1"])])]

This may seem like a strange example, but the attribute grammar system does not exclude
the above example. It of course results in a never ending program, if the attribute a1 or a2 is
ever used. But if both attributes are never used, the program will work. Of course we can say
the example does not make any sense, but nevertheless we do not want the attribute grammar
system to fail because of the above example. This can easily be avoided. When exploring
local variables, before recursing into some other local variable we first add the current local
variable as being dependent of nothing. This way loops are avoided. The code for the above
algorithm is:

ATTR LocRules LocRule [ simplemap : RuleMap | | ]
SEM Alternative

| Alternative locrules.simplemap = list2map @locrules.simplemaplist
locrules.locinfomap = emptyMap
loc.locinfomap = @locrules.locinfomap

ATTR LocRules LocRule [ | locinfomap : RuleMap | ]
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SEM LocRules
| Cons hd.locinfomap = @lhs.locinfomap

tl.locinfomap = @hd.locinfomap
| Nil lhs.locinfomap = @lhs.locinfomap

SEM LocRule
| LocRule lhs.locinfomap = snd (recurseMap (@pat.name) @lhs.simplemap @lhs.locinfomap)

{
recurseMap :: String -> RuleMap -> RuleMap -> (AttrMap,RuleMap)
recurseMap x simplemap result = let hasinf = locateMap x result

needrec (Just a) = (a, result)
needrec Nothing = (frommap dorec, dorec)
frommap dr = fromMaybe emptyMap (locateMap x dr)
dorec = doRecurse x simplemap result

in needrec hasinf

doRecurse :: String -> RuleMap -> RuleMap -> RuleMap
doRecurse x simplemap result =

let newmap :: RuleMap
newmap = insert x (list2map [("loc",[x])]) result
locatt :: AttrMap
locatt = fromMaybe emptyMap (locateMap x simplemap)
loclst :: [String]
loclst = fromMaybe [] (locateMap "loc" locatt)
cklocs :: [String] -> (AttrMap, RuleMap)
cklocs [] = (locatt, insertComb addattrmap x locatt newmap)
cklocs xs = foldl foldf (locatt, newmap) xs
foldf :: (AttrMap, RuleMap) -> String -> (AttrMap, RuleMap)
foldf (at,nm) loc = foldadd (at,nm) (recurseMap loc simplemap nm)
foldadd :: (AttrMap, RuleMap) -> (AttrMap, RuleMap) -> (AttrMap, RuleMap)
foldadd (at1, _) (at2, nm) = (addattrmap at1 at2, nm)
(na,newm) = cklocs loclst

in insertComb addattrmap x na newm

addattrmap :: AttrMap -> AttrMap -> AttrMap
addattrmap a1 a2 = addmap a1 a2 (\am (x,y) -> insertComb uniadd x y am)

addmap m1 m2 f = foldl f m1 (map2list m2)

uniadd a1 a2 = sort (nub (a1 ++ a2))
}

Now we have gathered all the information mentioned at the beginning of this section. The
local attribute locinfomap at nonterminal Alternative contains all the information for the local
dependencies. For code generation we are not interested in the local dependencies. We want
to know which local functions and childrens attributes each rule depends on. This information
can easily be gathered from the local information map.

ATTR Rules Rule [ locinfomap : RuleMap | | ]
SEM Alternative

| Alternative rules.locinfomap = @loc.locinfomap
rules.rulemap = emptyMap
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loc.rulemap = @rules.rulemap

ATTR Rules Rule [ | rulemap : RuleMap | ]
SEM Rules

| Cons hd.rulemap = @lhs.rulemap
tl.rulemap = @hd.rulemap

| Nil lhs.rulemap = @lhs.rulemap
SEM Rule

| Rule lhs.rulemap = let fromMap Nothing = []
fromMap (Just a) = map2list a
foldrule lst loc = lst ++ (fromMap (locateMap loc @lhs.locinfomap))
locattmap = list2map (foldl foldrule (trans @rhs.usedAttrs)

(@attr : @rhs.usedLocals))
in insert @attr locattmap @lhs.rulemap

There is only one thing left to analyze, i.e. which semantic functions do we eventually need.
This depends on the list of nonterminals with attributes given by the user when starting the
analysis. We can again use the information already gathered. There is one thing to keep in
mind, the local rulemap contains information addressed by the names of the children. For the
global analysis we are interested in the types of the children. But we can easily lookup the
type of a child by its name. So we can simply start another worklist algorithm which traces
the dependencies of the given attributes. Any not yet found dependencies are added to the
worklist and at the time the worklist is empty we possess the list of all needed nonterminals
and the attribute combinations needed for each nonterminal. All these analyses combined give
us all the information we need to generate the code for the analyzed version of the attribute
grammar.

SEM Grammar | Grammar loc.typemap = list2map @prods.typelist
prods.depmap = builddepmap @loc.typemap @loc.startel emptyMap

ATTR Productions [ | | typelist USE {++} {[]} : {[(ProdPair, [ProdPair])]} ]
ATTR Production [ | | typelist : {[(ProdPair, [ProdPair])]} ]
SEM Production | Production alts.typemap = emptyMap

lhs.typelist = map2list @alts.typemap

ATTR Alternatives [ | typemap : TypeMap | ]
SEM Alternative [ | typemap : TypeMap | ]

| Alternative lhs.typemap = let attrlst = map (\x -> (x, attrmap x @loc.rulemap)) @loc.rulealt
insmap mp (ra,x) = insertComb (++) (@lhs.nt,ra)

(toType (map2list x) @children.fields) mp
in foldl insmap @lhs.typemap attrlst

{
type DepMap = Map String [Strings]
type WorkList = [ProdPair]

type ProdPair = (String,Strings)
type TypeMap = Map ProdPair [ProdPair]

builddepmap :: TypeMap -> WorkList -> DepMap -> DepMap
builddepmap _ [] dp = dp
builddepmap tm ((nt,attrs):wl) dp = let currlst = fromMaybe [] $ locateMap nt dp

chkseen [] = False
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chkseen (x:xs) = (x == attrs) || chkseen xs
newwl = newwlm (locateMap (nt,attrs) tm)
newwlm Nothing = wl
newwlm (Just a) = wl ++ a
newdp = insertComb (++) nt [attrs] dp

in if chkseen currlst then builddepmap tm wl dp
else builddepmap tm newwl newdp

toType :: [(String,Strings)] -> [(String,String)] -> [ProdPair]
toType [] _ = []
toType ((x,y):xs) lc | x == "loc" = toType xs lc

| otherwise = (getType x lc, y):(toType xs lc)

getType :: String -> [(String,String)] -> String
getType _ [] = []
getType nm1 ((nm2,tp):xs) | nm1 == nm2 = tp

| otherwise = getType nm1 xs
}

4.5 Applying the analysis to the tree matcher

We started the analysis to improve the working of the tree matcher. However the treematcher
created by the analysis does not work with the x86 instruction set. For the Simple machine it
works fine. We get a tree matcher which needs about 60 percent of the storage space required
for the unanalysed version of the same tree matcher.

When we apply the analysis to the tree matcher for the x86 from the previous chapter the
resulting Haskell file becomes enormous. The file is about 150 megabytes in size. It contains
around six million lines of code. It is obviously not useful for tree matching. The code
generation may be improved, making it possible to generate smaller files. But still, the
enormous file shows us we have a lot of different combinations of attributes we are interested
in. It is worth studying how to improve the analysis in the future. But since the resulting
file will still be very large it is probably not the best way to get an efficient tree matcher.
Since the last is our goal we will concentrate on different methods of deriving an efficient
tree matcher in the next chapter. The analysis is quite interesting, but since the chance of
getting an effienct tree matcher with it is quite small (because of the large set of different
dependencies) we feel examining it further is beyond the scope of this thesis. We will look
into another way of improving the instruction selection in the next chapter hoping to find an
efficient and useful approach for the tree matching problem.
One thing must be noted about the analysis. As described in this chapter it is designed to
work with any attribute grammar. It needs some work to be complete. At this time for
instance we are unable to handle pairs of attributes, for example:

ATTR X [ | | a1 : Int a2 : Int ]
SEM X | X loc(a1,a2) = (1,2)

Also we have not added all functionality of the original attribute grammar system. Our version
is for instance unable to produce correct typing information when working with the analysis.
The above described analysis form the basis of a complete analysis. All extra functionality
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like the typing information can be added without any extra problems, it will just require a
lot of extra work.

The analysis on the smaller machine description shows good results. The x86 machine de-
scription has a lot of different dependencies. It is a large subset of the powerset over the
attributes. Quite often analysis will give us small subsets. The grammars where the depen-
dencies are like that can benefit from the analysis. Despite the fact that we have not yet
found a solution for efficient instruction selection we find the analysis to be a useful addition
to the attribute grammar system.
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Chapter 5

Automaton based treematching

5.1 Overview

By combining the techniques described in the previous two chapters we theoratically have
derived a far more efficient tree matcher than the one we started with. But in practice it
is not useful for for instance the x86. Besides that there are still a lot of almost identical
calculations done. At every node, a new label value is calculated, purely based on the costs
of storage classes at the childrens. We have dropped the normalization for the analysis to
work. For this chapter the normalization is reintroduced. We are still working with the tree
grammar where operators have been pushed into the grammar, but we drop the seperate
attribute per storage class. Figure 5.1 shows a possible way to implement part of the core
of the tree matcher. This may not be the most straightforward way to implement things,
but it is purely for illustration. This implementation clearly shows that at every node a
new labelvalue depends of two things. The rules we applicable (available in advance) and
the costs of every derivable storage class at the children. Since normalization is used, these
costs are no longer dynamic ([4]). The interesting part of the labelvalue now consists of a
limited amount of storage classes with each a cost factor which is also bounded. A technique
exploiting this is called automaton based treematching, which was first introduced by E.A.
Proebsting in [6]. This technique has one major disadvantage: it does not hold when used
with conditional instruction sets. As mentioned before, to implement a tree matcher for a
real machine we can not do without conditions. Therefore automaton based treematching
might seem useless at first. In the article [4] the author introduces a method to make the
automaton based treematching useful for treematching with conditions. We will first explain
the ideas of unconditional automaton based tree matching and the techniques to implement
it in combination with attribute grammars. In the next chapter we will introduce a technique
for handling conditional instruction sets. We have come up with a different approach than
the one introduced in ([4]). The ideas described in that article inspired us in developing our
approach.
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{
fromLabVal :: Storage -> LabelValues -> Int
fromLabVal _ [] = infCost
fromLabVal st1 ((Lv st2 _ cst):xs) | st1 == st2 = cst

| otherwise = fromLabVal st1 xs

lv_norm :: LabelValues -> LabelValues
lv_norm lval = map (lv_min . minimum $ map (\(Lv _ _ c) -> c) lval) lval

lv_min :: Int -> LabelValue -> LabelValue
lv_min min (Lv nt rl cst) = Lv nt rl (cst-min)

fromMaybeList :: [Maybe a] -> [a]
fromMaybeList [] = []
fromMaybeList ((Just x):xs) = x : (fromMaybeList xs)
fromMaybeList (Nothing :xs) = fromMaybeList xs
}

SEM STree | PLUS
loc.rplus1 = ckCost $ minRI $ condCheck @loc.tree

[(applyBRule 17 (fromLabVal Src @left.labval)
(fromLabVal Regx @right.labval))]

loc.rplus2 = ckCost $ minRI $ condCheck @loc.tree [(applyBRule 13 @left.src @right.con1)]
loc.rplus3 = ckCost $ minRI $ condCheck @loc.tree [(applyBRule 14 @left.src @right.con2)]
loc.... = Nothing
lhs.labval = (lv_norm . fromMaybeList)

[(Dst, (ckCost $ minRI [@loc.rdst,(applyLab @loc.rregx [7,10] 0),
(applyLab @loc.raddr [7] 0)]),

(Addr, (ckCost $ minRI [@loc.raddr,(applyLab @loc.rregx [10] 0)])),
(Src, (ckCost $ minRI [@loc.rsrc,(applyLab @loc.rregx [8] 0)])]

51



5.2 Unconditional automaton

As mentioned in the previous chapter the number of storage classes and number of costs
are limited. Since a labelvalue is nothing but a list with a cost for every storage class (and
every storage class occuring no more than once) the number of possible labelvalues must
be limited and fixed for a given instruction set. This means it is possible to precalculate
all possible labelvalues in advance. Assuming this has been done, we can also precalculate
which labelvalue an operator delivers given its childrens labelvalues. We can construct an
automaton holding all possible labelvalues and for every operator the resulting labelvalue
given its childrens (if any) labelvalues. By constructing such an automaton in advance, the
actual tree matching becomes no more than table lookup. None of the calculations from the
previous chapters need to be done at compilation time, they have all been done in advance.
Needless to say this results in a very fast, but probably very large, tree matcher.

5.2.1 Implementing such an automaton

The actual creation of the automaton is a quite straightforward process which must be easy
to understand. The term state will be used to represent a labelvalue. The automaton thus
consists of a mapping from state to labelvalue and a mapping from an operator and childrens
states to a new state. The number of states is fixed for a certain machine. Provided a starting
state is available all states it introduces can be calculated. With all those states the same can
be done again. When a new state is found, we check if we have already seen it before, or if it
is a new state. If it is a new state we can investigate whether the state introduces other new
states. What we have just described is just a simple iterative worklist algorithm1. The only
thing needed is a starting state. In practice we can easily find a collection of ’starting states’
since we have a set of nullary operators. As we mentioned new states are found by combining
an operator with all found states as children. Since nullary states have no children, initial
states can be found by looking at the nullary operators.

We now have all the means necessary to generate an automaton. We get a new state from the
first nullary operator. With this state the unary and the binary operators are investigated.
For the unary operators each operator is combined with the new state. For the binary
operators we must combine each previously found state with this new state, and investigate
the situation with the new state as a left child and as a right child for all this earlier states.
Ofcourse we must also investigate the situation where an operator has the new state at its
left child and at its right child. For the unary and the binary operators we look at every
resulting state. If it is a new one, we add it to the worklist. Every found combination is
stored (operator → childstates → newstate) as part of our automaton. When every unary
and binary operator has been investigated the worklist is examined. If it is not empty we
take the first element of the worklist and repeat the above procedure. If it is empty the list of
nullary operators is examined. If there is an operator left which introduces a new state it is
added to the worklist and the above procedure is repeated. If no new states can be introduced
by applying nullary operators and the worklist is empty all states have been found and the
automaton is ready.

1An iterative worklist algorithm is an algorithm which iterates until a given worklist is empty. If at a
certain iteration step we encounter something resulting in extra work to be done, we add it to the worklist.
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There are numbers of ways to implement this algorithm. The automaton can for instance
directly be generated when parsing machine descriptions. But at the time we are parsing an
instruction set (and no files have yet been generated) the operators and storage classes are still
strings. Every state found in the above algorithm needs to be compared with all previously
found states. It is important to be able to compare states as fast as possible. When a state
holds strings representing the storage classes, a couple of string comparisons are needed for
every single state comparison. This results in a very slow algorithm. Instead we generate
a Haskell file when parsing machine descriptions. This file contains all the means necessary
to generate the actual automaton. This has the advantage that automaton generation will
be faster, but it also gives us a readable and understandable algorithm for generating the
automaton. Since one can easily understand the working of the automaton generation, it will
be an easier task to improve this algorithm in the future.
For the algorithm, first the following types are needed:

type LabelValue = [LElem]
data LElem = LE Storage [RuleNr] Int deriving Show

Then some machine dependent information is needed, which can be easily generated by the
machine description parser. We feel the types of these functions will suffice:

nullary_ops :: [Operator]
unary_ops :: [Operator]
binary_ops :: [Operator]

app_lab_n :: Operator -> LabelValue
app_lab_u :: Operator -> LabelValue -> LabelValue
app_lab_b :: Operator -> LabelValue -> LabelValue -> LabelValue

The functions app lab n, app lab u and app lab b are the operator application functions. In
fact, if we recall the attribute grammar from figure 5.1, we could simply import the program
this attribute grammar creates and call the resulting semantic functions. For the operator
PLUS for example, this is no more than:

import OldTreeMatcher

app_lab_b PLUS lv1 lv2 = sem_Tree_PLUS lv1 lv2

But this old tree matcher was generated by the same machine description parser as the one
generating the automaton builder. So we have chosen to generate the functions directly, but
the above illustrates that all used data to generate the automaton builder was already present
in the machine description parser.

With the above types and the operator application functions we have all the data needed to
write the algorithm. The rest of the algorithm is machine independent. It can be written
once and then by combining it with the above we get the complete automaton generator.
First, we need some way of storing all the found states. We can simply use a list but every
time we find a state, we want to check whether it has been found before, and if so, which
number it has. To make this lookup fast a Map from labelvalue to an integer (being the state)
is used. Under the hood the Map uses a binary search tree, so lookup will be fast. When we
find a new state it gets assigned the number of highest state plus one. We do not want to
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investigate what the highest state was every time. We simple combine the last added state
number with the state map:

type AllState = (Map LabelValue Int, Int)

getState :: AllState -> LabelValue -> (Int, AllState, Bool)
getState allstate [] = (0, allstate, False)
getState (lvmap, count) lv =

let elm = locateMap lv lvmap
reslt Nothing = (count + 1, (insert lv (count + 1) lvmap, count + 1), True)
reslt (Just i) = (i, (lvmap, count), False)

in reslt elm

The function getState returns the state belonging to its parameters labelvalue, the resulting
state collection and a boolean stating whether the state has been added as a new state or it
was already known. Since we have a map from labelvalue to int, some way of comparing and
ordering labelvalues is needed:

eqlv :: LElem -> LElem -> Bool
eqlv (LE nt1 rl1 cst1) (LE nt2 rl2 cst2) = (nt1==nt2) && (rl1==rl2) && (cst1==cst2)
complv :: LElem -> LElem -> Ordering
complv (LE nt1 rls1 cst1) (LE nt2 rls2 cst2)

| nt1 < nt2 = LT
| nt1 > nt2 = GT
| cst1 < cst2 = LT
| cst1 > cst2 = GT
| length rls1 < length rls2 = LT
| length rls1 > length rls2 = GT
| otherwise = EQ

instance Eq LElem where (==) = eqlv
instance Ord LElem where compare = complv

The worklist algorithm as described above looks like:

type State = Int
type StateList = [(Int,LabelValue)]

type TNull = [(Int, Operator)]
type TUnary = [(Int, Operator, Int)]
type TBinary = [(Int, Operator, Int, Int)]

worklist :: [Operator] -> [Operator] -> [Operator] -> StateList -> StateList
-> (TNull, TUnary, TBinary, AllState)
-> (TNull, TUnary, TBinary, AllState)

worklist [] _ _ _ [] result = result
worklist (x:xs) unops binops explst [] (tnull, tunary, tbinary, statelst)

= let newlabval = (app_lab_n x)
(sn, sl, sb) = getState statelst newlabval
newtn = (sn,x):tnull
newwl = if sb && sn > 0 then [(sn, newlabval)] else []

in worklist xs unops binops explst newwl (newtn, tunary, tbinary, sl)
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worklist xs unops binops explst (w:ws) (tnull, tunary, tbinary, statelst)
= let (newtun, newsl, newwl) = procUnary w unops tunary statelst ws

(newtbi, newslbi, newwlbi) = procBinary w binops tbinary newsl newwl explst
in worklist xs unops binops (w:explst) newwlbi (tnull, newtun, newtbi, newslbi)

procUnary :: (Int, LabelValue) -> [Operator] -> TUnary -> AllState -> StateList
-> (TUnary, AllState, StateList)

procBinary :: (Int, LabelValue) -> [Operator] -> TBinary -> AllState -> StateList
-> StateList -> (TBinary, AllState, StateList)

The nullary application is part of the worklist algorithm. The unary application simple takes
the state being investigated and checks which states it yields. If any new states are found
they are added to the worklist.

procUnary _ [] tu cl wl = (tu,cl,wl)
procUnary (inn,lv) (op:unops) tu cl wl =

let newlabval = (app_lab_u op lv)
(sn, sl, sb) = getState cl newlabval
newtu = if sn > 0 then (sn, op, inn):tu else tu
newcl = sl
newwl = if sb then (sn,newlabval):wl else wl

in procUnary (inn,lv) unops newtu newcl newwl

The binary application is quite similar except that we need to combine the state we are
investigating with each previously found state:

procBinary _ _ tb cl wl [] = (tb,cl,wl)
procBinary (inn, lv) binops tb cl wl (s:sl) =

let (newtb, newcl, newwl) = procBinaryOne (inn,lv) binops tb cl wl s
in procBinary (inn, lv) binops newtb newcl newwl sl

procBinaryOne :: (Int, LabelValue) -> [Operator] -> TBinary -> AllState -> StateList
-> (Int,LabelValue) -> (TBinary, AllState, StateList)

procBinaryOne _ [] tb cl wl _ = (tb,cl,wl)
procBinaryOne (inn, lv) (op:binops) tb cl wl (inn_s,lv_s) =

let newlabval1 = (app_lab_b op lv lv_s)
(sn1, sl1, sb1) = getState cl newlabval1
newtb1 = if sn1 > 0 then (sn1, op, inn, inn_s):tb else tb
newwl1 = if sb1 then (sn1,newlabval1):wl else wl

in if (lv == lv_s)
then

procBinaryOne (inn,lv) binops newtb1 sl1 newwl1 (inn_s,lv_s)
else

let newlabval2 = (app_lab_b op lv_s lv)
(sn2, sl2, sb2) = getState sl1 newlabval2
newtb2 = if sn2 > 0 then (sn2, op, inn_s, inn):newtb1 else newtb1
newwl2 = if sb2 then (sn2, newlabval2):newwl1 else newwl1

in procBinaryOne (inn,lv) binops newtb2 sl2 newwl2 (inn_s,lv_s)

These are al the components needed for automaton generation. The result of the worklist
algorithm was of type (TNull, TUnary, TBinary,AllState). We can simply translate this to
a set of pattern matched functions. For the Simple machine description a part of the resulting
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automaton looks something like this (we have removed some states to make things readible,
therefore this is not a functionally correct automaton):

app_Nul CONST = 1
app_Un MEM 1 = 2
app_Un MEM 2 = 2
app_Bin PLUS 1 2 = 4
app_Bin ASGN 1 3 = 6
app_Bin PLUS 2 1 = 3
app_Bin ASGN 2 3 = 6

getstate 1 = [LE Con2 [16] 0,LE Con1 [15] 0,LE Dst [7,11] 2,LE Addr [11] 2,
LE Src [8,6] 2,LE Dst [7,10,6] 2,LE Addr [10,6] 2,LE Regx [6] 2,
LE Src [8,5] 6,LE Dst [7,10,5] 6,LE Addr [10,5] 6,LE Regx [5] 6]

getstate 2 = [LE Src [9] 0,LE Src [8,4] 3,LE Dst [7,10,4] 3,
LE Addr [10,4] 3,LE Regx [4] 3]

getstate 3 = [LE Plus1 [17] 2,LE Plus3 [14] 0,LE Plus2 [13] 0]
getstate 4 = [LE Plus1 [17] 0]
getstate 6 = [LE Statmt [3] 0,LE Statmt [2] 4,LE Statmt [1] 2]

5.2.2 Treematching with the automaton

With the described automaton, the actual tree matching becomes an easy process (and this
is all that needs to be done at compile time, the automaton is generated at compile-compile
time). For every node, we simply call the function app Nul, app Un or app Bin. This results
in an integer which is the only thing needed to pass to our parents. In this way the entire tree
can be labeled in one bottom up traversal. This process goes very fast since at every node
only a single lookup is needed. To build the actual deriviation we still need one top down
traversal followed by one bottom up traversal. The top down traversal passes the wanted
storage classes, by these storage classes we can select the rule to apply at every node. For
the top down traversal we need to know which storage classes a rule wants at its children.
Therefore we still need the old machine description as generated in the previous chapters.
We will no longer do any calculations so we can leave out all chainrule functions but we do
need the main list of rules. The complete machine description for the Simple machine thus
becomes:

type RuleNr = Int
type Deriv = [RuleNr]
data LElem = LE Storage [RuleNr] Int
type Rule = (RuleNr, Storage, Rhs)
data Rhs = Rhs Operator Storage Storage
type Value = Maybe Int

data Operator = Noop | CONST__r_1_1 | CONST | REG | MEM
| ASGN | PLUS deriving (Eq, Ord, Show)

data Storage = S_Nil | Dst | Plus1 | Statmt | Plus2
| Plus3 | Addr | Regx | Src | Con1
| Con2 deriving (Eq, Ord, Show)

rule :: RuleNr -> Rule
rule 1 = (1,Statmt,(Rhs ASGN Dst Plus1))
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rule 2 = (2,Statmt,(Rhs ASGN Dst Plus2))
rule 3 = (3,Statmt,(Rhs ASGN Dst Plus3))
rule 4 = (4,Regx,(Rhs MEM Addr S_Nil))
rule 5 = (5,Regx,(Rhs CONST__r_1_1 S_Nil S_Nil))
rule 6 = (6,Regx,(Rhs CONST__r_1_1 S_Nil S_Nil))
rule 9 = (9,Src,(Rhs MEM Addr S_Nil))
rule 11 = (11,Addr,(Rhs CONST__r_1_1 S_Nil S_Nil))
rule 12 = (12,Regx,(Rhs REG S_Nil S_Nil))
rule 13 = (13,Plus2,(Rhs PLUS Src Con1))
rule 14 = (14,Plus3,(Rhs PLUS Src Con2))
rule 15 = (15,Con1,(Rhs CONST__r_1_1 S_Nil S_Nil))
rule 16 = (16,Con2,(Rhs CONST__r_1_1 S_Nil S_Nil))
rule 17 = (17,Plus1,(Rhs PLUS Src Regx))
rule _ = (0, S_Nil, (Rhs Noop S_Nil S_Nil))

We feel we can now give the tree matcher without any further explanation:

ATTR Tree [ | | labval : Int ]
SEM Tree

| Nullary loc.labval = app_Nul @op
| Unary loc.labval = app_Un @op @left.labval
| Binary loc.labval = app_Bin @op @left.labval @right.labval

ATTR Tree [ derivstor : Storage | | ]
SEM Tree

| Unary left.derivstor = rule_lstor (rule_get $ last @loc.deriv)
| Binary left.derivstor = rule_lstor (rule_get $ last @loc.deriv)

right.derivstor = rule_rstor (rule_get $ last @loc.deriv)

ATTR Tree [ | | deriv : Deriv ]
SEM Tree

| Nullary loc.deriv = deriv_get @lhs.derivstor (getstate @labval)
| Unary loc.deriv = deriv_get @lhs.derivstor (getstate @labval)

lhs.deriv = @deriv ++ @left.deriv
| Binary loc.deriv = deriv_get @lhs.derivstor (getstate @labval)

lhs.deriv = @deriv ++ @left.deriv ++ @right.deriv

We have derived a fast tree matcher. In practice the solution is not useful yet. As mentioned
we can not handle conditional instruction sets. This is reason enough to make it useless.
But there is another disadvantage. In practice the automaton generated as described above
becomes very large when using large machine descriptions. When we generate an automaton
for an unconditional version of the Intel x86 instruction set, we get an automaton so large
it can not be interpreted by Hugs. The Glashow Haskell Compiler also fails to compile
such a large automaton. In the next chapter we will try to improve the automaton and the
automaton generation process in such a way that it can be used in practice.
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Chapter 6

Improving the automaton

6.1 Overview

The automaton must be useful in practice. It currently does not work for instructional
condition sets. To make it useful in practice the first thing to do is to change the automaton
in such a way that it handles conditions. By doing so we show how one writes an efficient tree
matcher using attribute grammars, allthough the files generated are to large to be used with
Haskell. We can translate the attribute grammar to another language than Haskell to get a
useful tree matcher. After adding the conditions we will introduce some techniques to create
a smaller and faster automaton. By doing so we hope we will eventually get an automaton
which can be used when translating the attribute grammars to the Haskell language.

6.2 Using conditions

Using an instruction set having conditions for a number of rules, it is no longer possible
to precalculate the resulting state at a certain node given its childrens states. Which state
this will be depends on which conditions hold for the given node. The latter is something
which can only be verified at runtime. We propose a workaround which requires an extra
bottom-up traversal of our input tree. In one bottom up traversal the tree is transformed into
a specialized input tree where all conditions have already been evaluated. This specialized
tree has some extra operators, but no longer needs to mind conditions. For this expanded
set of operators the automaton generation and the tree matching can be done in the way
described in the previous chapter. The key to this solution is the set of extra operators. At
compile-compile time we already know which set of rules can be applied at a certain operator.
We know which rules hold which conditions and how they can be verified. These two can
be combined, folding the conditions in the operator. The following example will clearify the
idea. Assume we have the following instruction set for a certain machine:

statmt: ASGN(statmt,statmt) 2
statmt: ASGN(statmt,statmt) memop
statmt: MEM(statmt) 2

Here memop represents a certain condition. There are two operators, ASGN and MEM .
All rules for the operator MEM are unconditional, this operator requires no attention. The
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other operator does have a conditional rule. The condition is memop. In advance we have
no idea whether this condition will hold or fail; this is purely input dependent. We do know
that the condition will either hold or fail. We can introduce one specialized version of the
operator. This operator gets the name ASGN memop. This operator can be added to the set
of operators. The ASGN memop contains all those rules which are unconditional and those
rules which require the condition memop to succeed. The original operator ASGN still exists,
but it only can apply those rules which have no conditions. It is obvious that if we have an
input tree using these specialized operators, we can again generate an automaton, because
the operator already states whether conditions hold or fail. This specialized tree can easily
be generated in one bottom up traversal of a certain given input tree. The attribute grammar
handling this conversion can easily be generated from the above machine description. For
this example, the transforming attribute grammar will look like this:

ATTR Tree [ | | tr : Tree ]
SEM Tree

| Nil lhs.tr = Tree_Nil
| Nullary lhs.tr = Tree_Nullary (applyCond @op Tree_Nil Tree_Nil @value) @value
| Unary lhs.tr = Tree_Unary (applyCond @op @left Tree_Nil @value) @left @value
| Binary lhs.tr = Tree_Binary (applyCond @op @left @right @value) @left @right @value

{
memop :: Tree -> Tree -> Bool

applyCond ASGN left right v | (memop left right) = ASGN_memop
| otherwise = ASGN

applyCond op _ _ _ = op
}

The resulting tree can be fed to the tree matcher as described in the previous chapter. The
automaton used must ofcourse be generated using the set of operators with the specialized
versions added.
The question arises how many extra operators this will introduce. If this introduces too many
new operators the resulting automaton can get far too big. The maximum set of possible
operator combinations is the powerset. If we have three completely different conditions for a
certain operator, this gives us a large set of new operators. But we can do with a subset of the
powerset in most cases. It is likely that conditions for a certain operator will at sometimes
imply or exclude each other. Let us look at an example, for an operator called OP , we have
found the conditions memop, range(0, 0), range(1, 1) and range(0, 31). If we simply take the
powerset we get the following set of new operators:

1. OP
2. OP_range(0,31)
3. OP_range(1,1)
4. OP_range(1,1)range(0,31)
5. OP_range(0,0)
6. OP_range(0,0)range(0,31)
7. OP_range(0,0)range(1,1)
8. OP_range(0,0)range(1,1)range(0,31)
9. OP_memop
10. OP_memoprange(0,31)
11. OP_memoprange(1,1)
12. OP_memoprange(1,1)range(0,31)
13. OP_memoprange(0,0)
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14. OP_memoprange(0,0)range(0,31)
15. OP_memoprange(0,0)range(1,1)
16. OP_memoprange(0,0)range(1,1)range(0,31)

This is a large set. But since we know which types of conditions can occur and we know
something about them, we might as well use our knowledge. First of all, range might exclude
one and another. It is impossible to have a variable in the range (0,0) which also is in
the range (1,1). Taking this into account, we can drop the conditions 7, 8, 15 and 16.
Furthermore the fact that a certain value satisfies the range (0,0) implies that it satisfies the
range (0,31). Condition 4 can for instance be rewritten to OP range(1, 1). When generating
the rule application functions for OP range(1, 1) we must keep in mind the fact that we
have removed those implications. When collecting rules for the operator we do not only
take those rules with identical conditions, but also the ones which are implied by the current
condition. If we apply the change to condition 4 it will become the same as condition 3. By
investigating all possible implecations and afterwards removing any double occurences in the
list of conditions, we derive the following set of required conditions:

1. OP
2. OP_range(0,31)
3. OP_range(1,1)
5. OP_range(0,0)
9. OP_memop
10. OP_memoprange(0,31)
11. OP_memoprange(1,1)
13. OP_memoprange(0,0)

We still need seven new operators for this single operator. This can still introduce a large
collection of new operators for the entire set of instructions of a certain machine. Nevertheless
in practice this is not the case. If we apply the above to the Intel x86 instruction set, we only
need ten extra operators. Other instruction sets needed even less. It is possible to design
some new machine having so many conditions that the above will introduce a gigantic amount
of operators. But for instance all instruction sets the Lcc compiler ([5]) compiles to, the above
introduces a maximum of fifteen additional needed operators. This is in the worst case, the
average amount of operators is much less.

The above approach depends the assumption that we have no conditons which partially
overlap. Either a condition is completely implied by another condition or a condition excludes
another. The combination of the conditions range(0,31) and 0,-31 is not allowed. The
above technique will not work for such a condition. This assumption holds for all of the
machine descriptions provided with LCC[5]. If we encounter a machine description which
does not satisfy this assumption we can translate it into a machine description for which the
assumption does hold. For the above this means we introduce extra rules for the overlapping
parts of the conditions. When we have the conditions range(0,31) and 0,-31 this means
we have to introduce a copy of both of the rules, now having condition range(0,0). When
the situation occurs that both conditions would hold, we now have the new condition which
implies both of the others.

6.3 Speeding up the lookup in the automaton

In the previous chapter part of our generated automaton looked like this:
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app_Bin PLUS 1 2 = 4
app_Bin ASGN 1 3 = 6
app_Bin PLUS 2 1 = 3
app_Bin ASGN 2 3 = 6

When we have a large set of operators this lookup can get quite slow, since in worst case
the numbers of needed comparisons is (#Operators * #States * #States). Therefore we
change the functions slightly to make sure this worst case becomes (#Operators + #States
+ #States). Note that we are talking about the worst case here. If we assume the above
automaton is compiled with a good compiler this can be done in constant time. But because
we do not want to be completely dependent of the quality of our compiler, we rewrite it a
little bit ourselfs. We simply rewrite it into:

app_Bin :: Operator -> State -> State -> State
app_Bin PLUS stl str = app_Bin_PLUS stl str
app_Bin ASGN stl str = app_Bin_ASGN stl str

app_Bin_PLUS :: State -> State -> State
app_Bin_PLUS x y = case x of

1 -> case y of
2 -> 4
_ -> 0

2 -> case y of
1 -> 3
_ -> 0

_ -> 0
app_Bin_ASGN :: State -> State -> State
app_Bin_ASGN x y = case x of

1 -> case y of
3 -> 6
_ -> 6

2 -> case y of
3 -> 6
_ -> 0

_ -> 0

This way the lookup at every node is limited at (#Operators + #States + #States).

6.4 Decreasing the size of the automaton

Treematching by the means of an automaton goes very fast. But there is a big problem. The
automaton gets very large. In fact, it gets so large that neither Hugs or GHC can handle it,
when we generate an automaton for the x86. The question arises whether there is some way to
decrease the automaton’s size. The most of the size of the automaton is used for representing
the binary lookup. Most of the operators are binary. Assuming all of them are binary we
have an automaton of size (#Operators * #States * #States). Obviously it is a pity that
we need to introduce extra operators to be able to handle conditions. This has increased the
size even more. It is however obvious that the number of states is of greater importance for
the size of the final automaton. If we can somehow reduce the number of states we will gain
a lot. Let us have a look at the way states are currently represented:

type State = Int
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type StateList = [(Int,LabelValue)]

type AllState = (Map LabelValue Int, Int)
type LabelValue = [LElem]
data LElem = LE Storage [RuleNr] Int deriving Show

A state represents a labelvalue. A labelvalue is no more than a list having for each derivable
storage class a set of rules to derive it with and the cost at which it is derived. We need
both these rules and costs. We need the set of rules to be able to build the deriviation after
treematching has been done. The costs are needed to pass to parents states. The rules and
costs are never needed at the same time. The rules need to be known locally. The parent
state only cares about the cost for each storage class.

This fact can be exploited by introducing two types of labelvalues. One type holding a set of
rules for each storage class and one type holding a cost belonging to each storage class. Since
we are only interested in the rules for a storage class locally, new states can be introduced
there without any concequences. Only if a new cost state is found it is necessary to investigate
if the new state itself introduces any further states. The states needed for the lookup at every
node are the cost states. They determine the size of the automaton. Since states having
different rules but the same costs for every nonterminal are considered being identical cost
states, the number of cost states will likely be smaller than the original number of states. The
size of rule states is not that much of an issue, because it is of small importance in the size
of the automaton.

The actual cost states are removed from the final automaton. They are not important when
tree matching. They have been used to generate the automaton and the integers representing
them will be passed throught the tree. But we never care which costs they represented at
generation time of the automaton. With the automaton using one state for the cost and
the rules we find 257 states for the x86 machine. With our new approach we find only 56
cost states. We still find around 250 rule states, but since they do not contribute that much
to the size of the automaton we have gained a lot. Remember, the size of the automaton
was (#Operators * #States * #States). With the original approach this would be (66049 *
#Operators). Our new approach reduces this to (3136 * #Operators).

The new automaton is still quite large. But it is small enough to be used with Haskell. We
can compile the generated automaton, giving us a fast usable tree matcher for for instance the
x86. The automaton is still quite large, the compiled tree matcher is around 40 megabytes in
size. This is when compiling with GHC. Other compilers may improve this size. But despite
its size the tree matcher loads and runs fast. It only needs constant time at every node of an
input tree (the time to lookup a value in the automaton).
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Chapter 7

Conclusion and future work

7.1 Conclusion

We have shown how one would construct a simple tree matcher using attribute grammars.
The most straightforward way of doing this, without any optimizations, gives us a good
understanding of the process of tree matching. The attribute clearly expresses what work
is done to construct a derivation for a given input program. This fact that the attribute
grammar gives us such a clear view has two major advantages. The first is that attribute
grammars can be used very well to explain the ideas behind compiler generation. The second
and most important advantage is that because it is so obvious how everything works, it
becomes an easy task to think of optimizations on the tree matcher.

The attribute analysis in its current form is not useful for compiler generation. But since it
is designed to work with any attribute grammar it can be a useful addition to the attribute
grammar system. When working with large sets of attributes, we gain a lot by completely
leaving out some attributes instead of exploiting Haskell’s lazyness. This will also be very
useful when we want to translate an attribute grammar to another target language besides
Haskell.

The automaton based tree matcher gives us an efficient tree matcher. Since we are able to
handle conditional instruction sets it can be used in practice. We have based our work on
LCC’s machine descriptions and the techniques hold for all of these machine descriptions.
This gives us already a couple of target machines we can use our tree matcher with. Looking
at the step which took us from the normal attribute grammar tree matcher to the automaton
based version, we can conclude we are in fact partially evaluating the attribute grammar.

In [8] Alexey R. Yakushev describes a front-end for a compiler for the C-language using
attribute grammars. By describing instruction selection we have handled a large part of the
back end. It must be possible to express the remaining parts of the back end using attribute
grammars. Therefore we think it is possible to write a complete C-compiler using attribute
grammars.
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7.2 Future work

7.2.1 The compiler

As mentioned we have not yet derived a complete back end. We do not take function calls into
account. Register allocation and the actual code generation are also not discussed. Allthough
not much of a challenge it is interesting to see what these parts will look like using attribute
grammars. XXX describes a way to handle the register allocation using graph coloring. It is
an algorithm which can be used after instruction selection has been done assuming we have
infinite registers available. This method fits our instruction selection solution.

All the time we have been working with a tree matcher. A well known optimization while
compiling is common subexpression elimination. When common subexpression elimination
is used we no longer have a tree shaped intermediate program but the program becomes a
directed acyclic graph. Maybe the techniques used for tree matching can be adjusted in a
way they can handle those directed acyclic graphs.

7.2.2 The analysis

As mentioned in the chapter describing the analysis, it is far from complete. The analysis is
a useful addition to the attribute grammar system, it is interesting to complete the analysis.
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