
[Faculty of Science
Information and Computing Sciences]

Balancing Cost and Precision of
Approximate Type Inference in Python

Levin Fritz and Jurriaan Hage

Department of Information and Computing Sciences, Universiteit Utrecht
J.Hage@@uu.nl

January 17, 2017

[Faculty of Science
Information and Computing Sciences]

2

Introduction

I Static typing: variables have types, checked at
compile-time

I C, Java, Haskell, . . .

I Dynamic typing: values have types, checked at runtime
I Scheme, Python, PHP, . . .

I Type inference for statically typed languages:
I determine the type of each variable

I Type inference for dynamically typed languages:
I for each variable: which types can it refer to at runtime?
I detecting errors
I optimization
I supporting tools

[Faculty of Science
Information and Computing Sciences]

3

In this paper

I Method for approximate type inference of Python 3.2
programs

I based on monotone frameworks
I for interactive tools, eg, code completion in an editor

I Proof-of-concept implementation
I Experimental evaluation, balance of cost and precision

I Focus on suitability for code completion

[Faculty of Science
Information and Computing Sciences]

4

Python

Python:

I general-purpose, high-level
programming language

I imperative, object-oriented

I features from functional
and scripting languages

I uses dynamic typing

[Faculty of Science
Information and Computing Sciences]

5

Python Syntax

def factorial(x):

if x == 0:

return 1

return x * factorial(x - 1)

numbers = [10, 20, 30]

for n in numbers:

print(n, factorial(n))

Indentation implies structure

[Faculty of Science
Information and Computing Sciences]

6

Some language elements

I Mutable variables (both value and type)

I The usual (imperative) control structures

I Functions first class, anonymous functions

I Assignments, functions and class can introduce new
variables

I Scope limited to enclosing block (module, function body,
...)

I Can be overridden

I List, set and dictionary comprehensions

[Faculty of Science
Information and Computing Sciences]

7

Object-oriented Programming

Example:

class C:

x = 1

def m(self, y):

self.x = y

o = C()

o.m(10)

print(C.x, o.x)

Output:

1 10

Multiple inheritance, methods are attributes that are functions,

[Faculty of Science
Information and Computing Sciences]

8

All is dynamic

I types of variables

I create classes at run-time

I add and delete attributes at run-time

[Faculty of Science
Information and Computing Sciences]

9

Control flow graph (intraproc)

Analysis implemented on top of a program’s control-flow graph:

[a = 42]1

[b = 70]2

while [b != 0]3:

if [a > b]4:

[a -= b]5

else:

[b -= a]6

[gcd = a]7

1

2

3 4

5

6

7

[Faculty of Science
Information and Computing Sciences]

10

Montone Framework: Overview

I Basic idea: propagate values through control flow graph.
I Two values for each program point l:

I A◦(l): context value
I A•(l): effect value

I Values are elements of a complete lattice L
I join operator t, bottom elt. ⊥ and top elt. >

I A•(l) = fl(A◦(l)) where fl is the transfer function for l
I A◦(l) is the join of effect values of l’s direct predecessors

I l′ is a direct predecessor of l is there is an edge (l′, l)

[Faculty of Science
Information and Computing Sciences]

11

Solving Monotone Frameworks

I Fixpoint iteration
I Basic/naive algorithm:

I Initialization:
I A◦(l) = ι for program entry point
I A◦(l) = ⊥(= ∅) for others

I Iteration:
I compute all A•(l) using transfer functions
I compute all A◦(l) by propagating over CFG edges
I repeat until there are no more changes
I guaranteed to happen if paths from ⊥ to > (= all types)

all finite (Ascending Chain Condition)

[Faculty of Science
Information and Computing Sciences]

12

Interprocedural Data Flow Analysis

I Intraprocedural analysis: within procedures (functions)

I Interprocedural analysis:
adds support for procedure definitions and calls

I Procedure definition:
I entry and exit nodes ln and lx
I Example:

[def]ld [f(x)]lnlx:

...

I Procedure call:
I call and return nodes lc and lr
I Example:

[f(1)]lclr
I Add edges (lc, ln), (lx, lr).

[Faculty of Science
Information and Computing Sciences]

13

Late Binding

I Late binding: which function a method call refers to is
determined at runtime.

I With first-class functions and late binding, it’s not obvious
which function a call refers to.

I Type inference tracks functions.

I Edges for calls are added when solving the monotone
framework.

[Faculty of Science
Information and Computing Sciences]

14

Tracking Functions

I Each function is assigned a unique id.
I included in type inferred for function

I Extend monotone framework with function table Λ:
Λ[f] = (ln, lx)

[Faculty of Science
Information and Computing Sciences]

15

Call Transfer Functions

I Two kinds of transfer function:
I Simple transfer function: as before.
I Call transfer function:

I for lc nodes
I returns a set of function ids

I When solving the monotone framework,
for call transfer functions:

I look up each function id in Λ,
I add edges for function calls to the CFG.
I intuitively: edges in the CFG are part of the lattice,

growing along with the sets of types

[Faculty of Science
Information and Computing Sciences]

16

Late Binding: Example

[def]1 [f(x)]23:

[return x + 1]4

[f(1)]56
[f(2)]78

Function table:
ln lx

1 2 3

1

5

6

7

8

4

2

3

[Faculty of Science
Information and Computing Sciences]

16

Late Binding: Example

[def]1 [f(x)]23:

[return x + 1]4

[f(1)]56
[f(2)]78

Function table:
ln lx

1 2 3

1

5

6

7

8

4

2

3

[Faculty of Science
Information and Computing Sciences]

16

Late Binding: Example

[def]1 [f(x)]23:

[return x + 1]4

[f(1)]56
[f(2)]78

Function table:
ln lx

1 2 3

1

5

6

7

8

4

2

3

[Faculty of Science
Information and Computing Sciences]

16

Late Binding: Example

[def]1 [f(x)]23:

[return x + 1]4

[f(1)]56
[f(2)]78

Function table:
ln lx

1 2 3

1

5

6

7

8

4

2

3

[Faculty of Science
Information and Computing Sciences]

16

Late Binding: Example

[def]1 [f(x)]23:

[return x + 1]4

[f(1)]56
[f(2)]78

Function table:
ln lx

1 2 3

1

5

6

7

8

4

2

3

[Faculty of Science
Information and Computing Sciences]

17

Inferring Types: Overview

Source Code

Abstract Syntax Tree

Control Flow Graph

Monotone Framework

Results

Parsing

Fixpoint iteration

[Faculty of Science
Information and Computing Sciences]

18

Type Lattice for Python

Types for variables in Python programs:

u ∈ UTy union types u ::= {v} | >

v ∈ ValTy value types v ::= b | f | c | i
b ∈ BuiltinTy built-in type b ::= int | bool | list | . . .
f ∈ FunTy function types f ::= fl
c ∈ ClsTy class types c ::= class〈l, [c], {n 7→ u}〉
i ∈ InstTy instance types i ::= inst〈c, {n 7→ u}〉
l ∈ N label
n ∈ String name

[Faculty of Science
Information and Computing Sciences]

18

Type Lattice for Python

Types for variables in Python programs:

u ∈ UTy union types u ::= {v} | >
v ∈ ValTy value types v ::= b | f | c | i

b ∈ BuiltinTy built-in type b ::= int | bool | list | . . .
f ∈ FunTy function types f ::= fl
c ∈ ClsTy class types c ::= class〈l, [c], {n 7→ u}〉
i ∈ InstTy instance types i ::= inst〈c, {n 7→ u}〉
l ∈ N label
n ∈ String name

[Faculty of Science
Information and Computing Sciences]

18

Type Lattice for Python

Types for variables in Python programs:

u ∈ UTy union types u ::= {v} | >
v ∈ ValTy value types v ::= b | f | c | i
b ∈ BuiltinTy built-in type b ::= int | bool | list | . . .
f ∈ FunTy function types f ::= fl
c ∈ ClsTy class types c ::= class〈l, [c], {n 7→ u}〉
i ∈ InstTy instance types i ::= inst〈c, {n 7→ u}〉
l ∈ N label
n ∈ String name

[Faculty of Science
Information and Computing Sciences]

19

Type Lattice for Python

Turning UTy into a lattice:

I ⊥ = ∅
I a t b where neither is > is a ∪ b, except

I class types with the same class id are merged.
I instance types with the same class id are merged.

[Faculty of Science
Information and Computing Sciences]

20

Map Lattice

I Goal of the analysis: infer a type for each variable.

I Lattice used in monotone framework:
mapping from variables to union types.

I Example:

x = 1

y = "a" {x 7→ {int}, y 7→ {str}}

[Faculty of Science
Information and Computing Sciences]

21

Analysis variants under evaluation

I Parameterized datatypes

I Context-sensitive analysis

I Flow-insensitive analysis

[Faculty of Science
Information and Computing Sciences]

22

Parameterized Datatypes

I Example code:

list = [1, 2, 3]

sum = 0

for x in list:

sum += x

I Basic analysis infers > for sum.

I To improve precision:
Track types of contents of built-in collection types.

I Example: list〈int〉 for list containing values of type int

I Extended type lattice:

b ::= · · · | list〈u〉 | set〈u〉 | dict〈u;u〉 | tuple〈[u]〉

[Faculty of Science
Information and Computing Sciences]

22

Parameterized Datatypes

I Example code:

list = [1, 2, 3]

sum = 0

for x in list:

sum += x

I Basic analysis infers > for sum.

I To improve precision:
Track types of contents of built-in collection types.

I Example: list〈int〉 for list containing values of type int

I Extended type lattice:

b ::= · · · | list〈u〉 | set〈u〉 | dict〈u;u〉 | tuple〈[u]〉

[Faculty of Science
Information and Computing Sciences]

23

Context-sensitive Analysis

[def]1 [id(x)]23:

[return x]4

[a = [id("abc")]56]
7

[b = [id(1)]89]
10

1

5

6

7

8

9

10

4

2

3

[Faculty of Science
Information and Computing Sciences]

23

Context-sensitive Analysis

[def]1 [id(x)]23:

[return x]4

[a = [id("abc")]56]
7

[b = [id(1)]89]
10

1

5

6

7

8

9

10

4

2

3

[Faculty of Science
Information and Computing Sciences]

24

Context-sensitive Analysis

I Problem: results of different calls are combined.

I Context-sensitive analysis: we separate different elements
of the map lattice inside functions apart based on “what
calls we did to get there” = call site sensitivity.

I Call-string context (up to a fixed depth)

[Faculty of Science
Information and Computing Sciences]

25

Flow-insensitive Analysis

I Data flow analysis is flow-sensitive:
different result (lattice value) for each program point.

I Flow-insensitive analysis:
one global result.

I Optionally use flow-insensitive analysis for certain values:
I types of module-scope variables
I class types
I instance types

[Faculty of Science
Information and Computing Sciences]

26

Manually Specified Types

I Sometimes we have to resort to >:
I modules implemented in C
I standard library modules
I other libraries

I But types for a module can be specified in a text file.

I Example:

math.pi : {float}

math.sqrt : {lambda {bool, int, float} -> {float}}

I Polymorphic function types:

def id(x):

return x

id : {lambda !a -> !a}

[Faculty of Science
Information and Computing Sciences]

26

Manually Specified Types

I Sometimes we have to resort to >:
I modules implemented in C
I standard library modules
I other libraries

I But types for a module can be specified in a text file.

I Example:

math.pi : {float}

math.sqrt : {lambda {bool, int, float} -> {float}}

I Polymorphic function types:

def id(x):

return x

id : {lambda !a -> !a}

[Faculty of Science
Information and Computing Sciences]

27

Experimental Evaluation

I Experiments: apply implementation to 5 Python projects
I measure runtime
I measure precision:

percentage of results that are not > or ⊥

[Faculty of Science
Information and Computing Sciences]

28

Experimental Evaluation: Results

euler adventure bitstring feedparser twitter

precision 0.45 0.75 0.91 0.53 0.75
time in ms 14 981 2,531 22,929 3,114
size (loc) 110 2,211 4,299 4,454 1,868

The value 0.45 is the percentage of variables for which a non-⊥
and non-> type could be inferred. The higher, the better.

[Faculty of Science
Information and Computing Sciences]

29

Experimental Evaluation: Results

The best results were for flow-insensitive analysis for
module-scope variables.

euler adventure bitstring feedparser twitter

precision 0.45 0.75 0.91 0.53 0.75
time in ms 14 981 2,531 22,929 3,114
size (loc) 110 2,211 4,299 4,454 1,868

with manually specified types:
precision 0.72 0.81
time in ms 18 1,075

[Faculty of Science
Information and Computing Sciences]

30

Experimental Evaluation: Results

With respect to everything off:
Precision Runtime

Parameterized datatypes +2.51 % +5.80 %
Context-sensitive analysis +0.69 % +153.95 %
Flow-insensitive analysis

for module-scope variables +25.13 % −19.98 %
for class types +15.37 % +264.88 %
for instance types 0.00 % −0.79 %

Manually specified types +54.59 % +4.31 %

Some conclusions (for these examples)

I Having specified types helps much, costs little

I Context-sensitivity costs a lot, helps only little
I Flow-insensitive costs less and is more precise!!!

I How is that possible?

[Faculty of Science
Information and Computing Sciences]

31

Conclusions

I Method for approximate type inference for Python
programs

I based on data flow analysis
I supporting Python’s dynamic features
I basic method + six variants

I Implementation

I Experimental evaluation

[Faculty of Science
Information and Computing Sciences]

32

Future work

I exceptions, generators, and the with statement

I bigger programs

I a better approximation of quality

[Faculty of Science
Information and Computing Sciences]

33

Thank you for your attention.

