

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Hybrid approaches to software clustering: from the human in the loop to combining multiple sources of information

Jurriaan Hage >>= Amir M. Saeidi

Utrecht University, Mendix

April 12, 2016

1. Machine Learning for Clustering

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Applications of ML in Software Engineering

- Many software development and maintenance tasks can be formulated as learning problems
- Applications of ML in software engineering include
 - prediction and estimation
 - property and model discovery
 - transformation
 - generation and synthesis
 - reuse
 - requirement acquisition
 - management of development knowledge
- We adapted ML algorithms to combine different sources of information and/or allow for human intervention.
- Today we look at clustering of software systems

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

・ロト・日本・日本・日本・日本・日本

(Semi-)supervised Clustering

 Software clustering is the task of organizing software units into modules

- The notion of "module" is flexible
- Applications of clustering in the context of source code analysis:
 - 1. Obtain a high-level overview of a software system consisting of software clusters
 - 2. Determine how much the architecture of the system has drifted
 - 3. High-level overview is necessary to enable further, more detailed tasks
 - 4. Often a first step in a software comprehension setting

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

・ロト・日本・日本・日本・日本・日本

Types of Clustering

▶ There are three major approaches to clustering:

- 1. structural file organization or call graph
- 2. lexical (or semantic) vocabulary used in the source code
- evolutionary information obtained from the revision history (eg. changes simultaneously submitted to the version archive by the same developer, or developer team or file ownership information)
- The structural and lexical-based clustering have shown to outperform the evolutionary approaches.

Universiteit Utrecht

Structure-based Clustering

- A fundamental assumption underlying this approach is that well-designed software systems are organized into cohesive clusters (high-cohesion) that are loosely interconnected (low-coupling).
- Objective: minimize inter-connectivity (i.e., connections between the components of two distinct clusters) while maximizing intra-connectivity
- Modularization Quality (MQ) is defined as a trade-off between inter-connectivity and intra-connectivity
- Local search algorithms such as hill climbing or genetic algorithms to find 'good' solutions

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミト * ミト ・ ミー ・ の へ ()

Semantic Clustering

- The informal semantics of the source code is concealed within comments, identifier names and/or literals
- Semantic clustering uses information retrieval techniques to:
 - 1. partition the system into clusters based on the use of similar vocabulary
 - 2. derive a set of common linguistic topics within each cluster
- Semantic clustering has been shown in various studies to capture important domain and application concepts of a software system

Universiteit Utrecht

2. Hybrid Approaches to Clustering

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Multi-View Data

- Different views of objects, each have specific statistical and geometrical properties
- Example: a document available in Spanish, Finnish and Dutch, each language is a "view"
- Combine views to construct a new translation to resolve issues of synonymy (multiple words with same meaning) and polysemy (same word with multiple meanings).
- E.g., a word in Finnish may have only one meaning, but its translation into Dutch may have more. For other words, the situation may be reversed.

ξ2

Combining different sources of information

§2

Multi-View Clustering

 Principles used for successful clustering of multi-view data: Consensus : maximize the agreement on multiple distinct views.
 Complementary : each view of the data may contain some knowledge that other views do not have; therefore, multiple views can be employed to

comprehensively and accurately describe the data.

Universiteit Utrecht

Results

Empirical evaluation of 10 open source Java projects [Saeidi et al.]

- Structural dependencies and semantic similarity are more reliable sources of information than evolutionary information.
- As systems grow in size, the (single-view) heuristics used for remodularization are not the driving factors

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

・ロット (雪)・ (ヨ)・ (ヨ)・

Results - cont'd

- Multi-view clustering yields decompositions that are at least as authoritative as the least informative view
 - Nothing is lost by using multi-view approaches.
- In most cases, multi-view clustering outperforms single-view setting
- Multi-objective encoding of multi-view clustering can be used to obtain a pool of solutions (Alternative Cluster Analysis)
 - An expert may choose the one which aligns with his/her expectation of what the modularity of the system should be like.

Universiteit Utrecht

3. Interactive Topic Modeling for Software Understanding

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Topic Modeling

- A topic model is a type of statistical model for discovering the abstract "topics" that occur in a collection of documents
- Used for analysis and discovery of meta-data of the documents in a wide range of domains: web pages, images, sounds and video, genetics, social networks
- ► Goals:
 - discover the themes that exist within the documents
 - how those themes are connected to each other
 - how they change over time
- Topic models' picture of the outside world is based on "bag-of-words"

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Bag-of-Words

- Segmentation of all composite terms, for instance delimited by '-'
- Elimination of common terms that occur in a natural language such as "de", "het" and "een" in the case of Dutch
- Removal of programming language-specific reserved words such as PROCEDURE, DIVISION for Cobol
- Normalization of all lexical term by a natural language-specific stemmer to emit a common radix
- A weighing mechanism is applied to punish words that appear in many documents
- The resulting set of terms with its number of occurrences is stored as a "bag-of-words"

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミト * ミト ・ ミー ・ の へ ()

How does it work?

§3

- Assume some k number of "topics" exists for the whole document
- Inference: assign words to each topic with a probability [Faculty of Science]
 Universited Utrecht
 - ¹David Blei, Introduction to Probabilistic Topic (Models + + = + =)

Source Code Naming

- Success of topic modeling to derive the vocabulary heavily depends on source code naming, and presence of comments
- Can deal with some level of noise/arbitrarity
- Coded format such as the abbreviated form does not affect performance

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

イロト 不得 トイヨト イヨト 二日

Interactive Topic Modeling

- Incorporates human knowledge to improve the topic models
- Allows users (architect, developers) to iteratively refine the topics discovered by topic modeling techniques
- Soft constraints: Must-link (words should share a topic) and Cannot-link (shouldn't)

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

・ロット (雪)・ (ヨ)・ (ヨ)・

Identifying Topics

- Associate domain and application concepts with terms, by consulting the system architect as well as developers
- Not all correspondences need to be established: a few might suffice to uncover the meaning of a given topic (= set of words grouped together)

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

イロト 不得 トイヨト イヨト・ヨー

4. ITMViz

Universiteit Utrecht

ITMViz Architecture

Public Acess

- LDAVis: https://github.com/cpsievert/LDAvis
- Interactive LDA (ITM) package: https://github.com/amirms/ITM
- ITMViz application source code: https://github.com/amirms/ITMViz
- ITMViz running example: https://gelato.shinyapps.io/ITMViz

Universiteit Utrecht

5. Questions

Universiteit Utrecht