
Structural Aspects of Switching Classes

Structural Aspects of Switching Classes

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus Dr. D.D. Breimer,
hoogleraar in de faculteit der Wiskunde en

Natuurwetenschappen en die der Geneeskunde,
volgens besluit van het College voor Promoties
te verdedigen op woensdag 26 september 2001

te klokke 14.15 uur

Jurriaan Hage

geboren te Alphen aan den Rijn
in 1969

Promotiecommissie
Promotor: Prof. dr. G. Rozenberg
Co-promotor: Dr. T. Harju (Turun Yliopisto, Finland)
Referent: Prof. dr. H.-J. Kreowski (Universität Bremen, Duitsland)
Overige leden: Prof. dr. H. Ehrig (Technische Universität Berlin, Duitsland)

Prof. dr. E. Welzl (ETH Zürich, Zwitserland)
Dr. J. Engelfriet
Prof. dr. J. Kok
Prof. dr. H.A.G. Wijshoff

The work in this thesis was carried within the context of the IPA graduate school.

And then there was light...

Contents

1 Introduction 11

2 Preliminaries 15
2.1 Sets, functions and relations . 15
2.2 Basic group theory . 16
2.3 Basic graph theory . 22

I Switching Classes of Graphs 27

3 Switching Classes 29
3.1 Definitions . 29
3.2 Basic properties of switching classes 32
3.3 Two-graphs . 37
3.4 Some complexity considerations . 37

3.4.1 Easy problems for switching classes 38
3.4.2 Hard problems for switching classes 40
3.4.3 The embedding problem . 43

4 Cyclicity Considerations 47
4.1 Pancyclicity in switching classes . 47
4.2 Counting acyclic graphs in switching classes 49

4.2.1 Preparation . 50
4.2.2 Trees . 51
4.2.3 Trees into disconnected acyclic graphs 52
4.2.4 Disconnected acyclic graphs 54

4.3 Characterizing acyclic switching classes 57
4.3.1 The special graphs . 59
4.3.2 Isolated vertices . 64
4.3.3 The cases . 68
4.3.4 The case (1s) . 69
4.3.5 The other cases . 70
4.3.6 The cases (2s)-(4s) . 71
4.3.7 The cases (5s)-(8s) . 71
4.3.8 Concluding remarks . 72

7

8

II Switching Classes of Graphs with Skew Gains 75

5 Gain Graphs 77

5.1 Definitions . 77

5.2 Anti-involutions . 82

5.3 Anti-involutions of cyclic groups . 85

5.4 Spanning acyclic skew gain subgraphs 87

6 The Sizes of Switching Classes 91

6.1 Complete graphs with skew gains . 91

6.2 Improvements in some special cases 96

6.3 The general case . 98

7 The Membership Problem 103

7.1 The general problem of membership 103

7.2 Algorithms . 106

7.3 Improvements in the abelian case . 108

7.3.1 Improvements when gT has abelian gains 108

7.3.2 The set of skewed squares . 109

7.3.3 Unrefinable switching classes 111

7.4 Undecidability for arbitrary groups 113

8 Future Directions 115

8.1 Problems for switching classes of graphs 115

8.2 Problems for switching classes of skew gain graphs 116

A Algorithms and Programming Techniques 119

A.1 Enumerating submultisets . 119

A.2 An example: the case m = 2 . 123

A.3 The computation of the switches of a graph 127

A.4 Switching skew gain graphs . 129

B Researching Switching Classes With Programs 135

B.1 The Scheme programs . 136

B.2 The C programs . 137

B.3 A Java-applet . 138

Preface

This thesis studies the subject of switching classes of undirected graphs and switching
classes of skew gain graphs. The field of research lies in graph theory with a group
theoretical flavour.

A switching class is an equivalence class of graphs under the switching operation,
that leaves the set of vertices unharmed, but may destroy or create new edges. In
the field of switching classes of skew gain graphs the edges have a label from a group.

The subjects that are studied here are often of a combinatorial nature and in-
vestigate diverse properties of switching classes. There is a rather strong focus on
algorithms, which are based on the theory presented here. The thesis also contains
a number of complexity results.

The initial motivation for the subject came, in our case, from a model of net-
works of processors of a specific kind: processors that by an action influence all the
connections they might have to other processors. Results in this field are part of
the second part of the thesis. The results focus on the study of the evolutionary
behaviours of such networks of processors and algorithms to make certain problems
decidable and, once decidable, feasible.

During the research we found that the model we used was already defined in a
simpler form in mathematics. It turned out however that many of our results were
new which shows the diversity in motivation between those fields.

The first part of the thesis is of a more graph theoretic nature and concerns itself
with the occurence of special kinds of graphs such as acyclic graphs, hamiltonian
graphs and the like in switching classes.

Another motivation for our research has to do with problems that are difficult for
graphs, e.g., NP-complete problems. In our research we found that the hamiltonian
cycle problem is rather simple for switching classes, while we know it is hard for
graphs. Instead of answering a difficult question for a specific graph, we might first
approximate the answer by answering the question for the switching class in which
that graph resides.

Of a more theoretical nature are the results that link graph theory with the
theory of switching classes. For instance, it is proved in this thesis that switching
classes contain at most one tree up to isomorphism. In such a way we also learn
more about the nature of these types of graphs.

Much of the material in this thesis comes from articles that appeared in various
places. Examples have been added to clarify the material from the papers. In some
cases generalizations replace the results of the paper and new results have been
added as well; in all cases we indicate where such is the case.

For completeness we give a general overview of what ended up where: the results
about complexity by Ehrenfeucht, Hage, Harju and Rozenberg [12] can be found

9

10

in Section 3.4. A related result about pancyclic graphs in switching classes is by
Ehrenfeucht, Hage, Harju and Rozenberg [13] and appears in Section 4.1. The two
papers [24] and [25] by Hage and Harju about trees and acyclic graphs in switching
classes can be found in the same chapter, Sections 4.2 and 4.3.

For the skew gain graphs, Chapter 6 is based on [26] by Hage and Harju and
Chapter 7 contains the material of Hage [21].

The results of Appendix A can be of interest to people programming switching
classes.

Many people at LIACS helped me during my work, or indulged in my desire to
propound my newest results and latest optimizations.

In between writing papers and program, I have greatly enjoyed the long discus-
sions with Frans Birrer, Joost Engelfriet, Jano van Hemert, Hendrik Jan Hooge-
boom, but also the shorter ones with Walter Kosters, Marloes van der Nat, Rudy
van Vliet, Pier Frisco and Henk Goeman.

I owe a great debt to Maurice ter Beek, Sebastian Maneth and most of all to
Tjalling Gelsema for carrying the burden of sharing a room with me.

Financially the work was supported (in part) by Arto Salomaa, Ralph Back (and
all at TUCS) and the GETGRATS project. I am grateful to LIACS for the extra
time granted me in finishing the thesis and also gaining some experience in lecturing.

I am grateful to Piet van Oostrum and Tycho Strijk for help with LATEX and
CorelDraw.

On the personal front I thank my parents and my brother Arjan for their en-
couragement. I am grateful to Roberto Lambooy for his driving support.

This is also a good place to mention Jaap van der Sar, Joop Minderman, Frits
Feddes, Jan van de Sant, Piet van Tienhoven and Leo van de Heuvel from the energy
company (G.E.B./E.W.R./Nuon) in Alphen aan den Rijn for, as they still constantly
remind me, ”teaching me everything I know”.

Finally, I want to thank Nikè, for her constant encouragement, inspiration and
doing the household chores during the busy periods. I hope to return the favour in
the near future.

Jurriaan Hage
Alphen aan den Rijn, May 2001.

Chapter 1

Introduction

This thesis covers a number of problems in the area of switching classes of undirected
graphs and that of switching classes of directed graphs with skew gains. It is a self
contained excursion into these areas. An understanding of group theory, graph
theory and the theory of algorithmic complexity is presumed, but in the first two
cases, we do establish terminology and notation. Knowledge of group theory is only
necessary for the second part of the thesis which treats switching classes of graphs
with skew gains.

We introduce the switching classes of graphs of the first part of the thesis: for
a finite undirected graph G = (V,E) and a subset σ ⊆ V (called a selector), the
vertex-switching of G by σ is defined as the graph Gσ = (V,E′), which is obtained
from G by removing all edges between σ and its complement V − σ and adding as
edges all nonedges between σ and V − σ. The switching class [G] determined by G
consists of all switchings Gσ for subsets σ ⊆ V . An example of switching can be
found in Figure 1.1(a) and (b). Here σ is the set of black vertices. For clarity we
have redrawn Figure 1.1(b) as Figure 1.1(c).

The initiators of the theory of switching classes (and equivalently two-graphs)
were Van Lint and Seidel [37]. Somewhat earlier, signed graphs, a variant of the
model described above, were used in psychology by Abelson and Rosenberg [1]. For
a survey of switching classes, and especially its many connections to other parts
of mathematics, we refer to Seidel [43], Seidel and Taylor [44], and Cameron [7].
Because of the importance of Seidel in this field, switching in the form of the first
part of the thesis is often called Seidel-switching.

The results in the first part of the thesis build on earlier results in the theory
of switching classes. First, we have some complexity results for problems on graphs
when lifted to switching classes. For instance, we show in Section 4.1 that we can

(a) (b) (c)

Figure 1.1: A graph and one of its switches

11

12 CHAPTER 1. INTRODUCTION

determine efficiently whether a switching class contains a hamiltonian graph.
In Chapter 3 we generalize to switching classes a general result in complexity

theory by Yannakakis [47] and use it to prove that the embedding problem for
switching classes is NP-complete.

In Section 4.2 and Section 4.3 we consider a number of problems of combinatorial
nature that concern cycles in graphs. We prove that every switching class contains
at most one tree up to isomorphism. A similar result holds for acyclic graphs, but
then the bound is three. We close the chapter by giving a characterization of the
switching classes that contain an acyclic graph. We do this by means of a set of
forbidden subgraphs.

The model in the second part of the thesis is that of the switching classes of
graphs with skew gains, a generalization of the model in the first part.

The vertices of a directed graph can be interpreted as processors in a network
and the edges can be interpreted as the channels/connections between them. One
can extend the model of the first part of the thesis by labelling each edge by an
element of some (structured) set, call it ∆. The dynamics of such a network lies
in the ability to change the labellings of the graph which is done by operations
performed by the processors. A major aspect of the model here presented is that
if a processor performs an action, it influences the labellings of all incoming edges
in the same way; the same holds for the outgoing edges. In other words, we have
no separate control over each edge, only over each processor. On the other hand,
actions done by different processors should not interfere with each other, making
this model an asynchronous one.

Ehrenfeucht and Rozenberg set forth in [16] (see also [15]) a number of axioms
they thought should hold for such a network of processors. Each processor i was
to have a set of output actions Ωi and a set of input actions Σi. If a processor i
executes one of its output actions, this entails the modification of the labels on the
edges going out from i, and similarly for the input actions.

The following properties were assumed to hold for a network of processors:

A1 Any two input (output) actions can be combined into one single input (output)
action.

A2 For any pair of elements a, b ∈ ∆, there is an input action that changes a into
b; the same holds for output actions.

A3 For any channel (i, j), the order of applying an input action to i and an output
action to j is irrevelant.

A fourth axiom stated that every network/graph should have at least three pro-
cessors. This was to make sure that no exceptions arose when deriving the most
general model that upholds the axioms above; in the paper of Ehrenfeucht and
Rozenberg it turned out that the model of a network of two processors is more flexi-
ble than that of more than two processors. We do not state the axiom, but shall use
the model derived for more than two processors also for networks of two processors.

In the book by Ehrenfeucht, Harju and Rozenberg [14] a condition was added:
each vertex can choose to stay inactive. In other words, there is a trivial action.
There is however no real need for that additional axiom, because it follows from the
others.

In [16] (see also [14]) it was derived that under these axioms the input (output)
actions of every vertex are the same and form a group. Also, the sets of input and

13

output actions coincide, but an action will act differently on incoming and outgoing
edges, as evidenced by the asymmetry in (5.2) in Chapter 5. The difference is made
explicit by an anti-involution δ, which is an anti-automorphism of order at most
two on the group of actions. The notion of anti-involution generalizes that of group
inversion. The result of this will be that if a channel between processors i and j
is labelled with a, then the channel from j to i will be labelled with δ(a). This
generalizes the gain graphs of [50] and the voltage graphs of [20].

Note that Axiom A1 refers to the fact that groups are closed under the group
operation, Axiom A2 refers to the fact that a−1b and ba−1 are elements of the group
(and can hence be chosen as the actions in a processor), and Axiom A3 corresponds
to the associativity of the group operator.

As we shall see later the graphs labelled with elements from a fixed group ∆
(and under some fixed anti-involution of that group), called skew gain graphs in
the following, are partitioned into equivalence classes. These equivalence classes
capture the possible outcomes of performing actions in the vertices and as such
capture the potential behaviours and resulting states of the system from a certain
initial state. The actions generalize the selectors of the first part of the thesis and
shall be modelled by selecting a value from the group ∆ in each vertex; we can
always select the identity of the group in a vertex for the trivial action. Although
the equivalence classes themselves are usually considered static objects, it is not
hard to see that there is also a notion of change or dynamics: applying a selector to
a skew gain graph yields a new skew gain graph on the same underlying network of
processors, but possibly with different labels. For this reason the equivalence classes
were called dynamic labelled 2-structures in [16].

When we are given a graph and two different labellings of this graph with ele-
ments of a group, a question that arises is: is there a selector, i.e., a sequence of
actions, mapping the first into the second? This problem, called the membership
or equivalence problem is treated in Chapter 7. The inspiration for this chapter
came from an investigation of the sizes of the equivalence classes, here treated in
Chapter 6. The results of the membership problem can also be used more generally:
suppose we have been given a skew gain graph, where a gain, say a, on the edge
from i to j has some interpretation, such as “processor j is waiting for processor
i”. Then it is possible to determine whether there is a possible state of the system,
i.e., a skew gain graph, that contains some interesting or forbidden configuration of
labels. For instance, we might detect that one of the possible states of the system
includes a directed cycle between processors with all the channels labelled with a;
the system is deadlocked. Sometimes these questions can even be answered when
the number of labels is infinite, in which case the switching classes have infinite size.
An illustration is given in Figure 1.2. Here we are interested to know whether from
the configuration of the left network, we can arrive by some sequence of actions in
the deadlocked configuration on the right.

We close the thesis with an overview of directions for future research in both
areas.

Many of the results in the thesis were obtained by first examining the problem
area by means of a computer program. For instance in the case of characterizing
the acyclic switching classes by forbidden subgraphs (Section 4.3) we used software
written in C and Scheme extensively. Because of the combinatorial explosion we were
forced to spend some time on optimizing our algorithms. The resulting techniques
and reflections on experiences in this respect are decribed in Appendix A and B
respectively.

14 CHAPTER 1. INTRODUCTION

a

..

..

.. ..
..

....

b

c

a

..

.. ..

....

=⇒=⇒ . . . =⇒
a

a..

..
.. ..

.. ..

Figure 1.2: A part of a network and a possible behaviour

The references at the end of the thesis are a good starting point for articles
and books related to the material treated in this thesis. For a significantly larger
annotated bibliography we refer to the dynamic survey of Zaslavsky from 1999 [51]
that includes also a number of related areas of interest.

Chapter 2

Preliminaries

We assume that the reader is familiar with the elements of group theory and graph
theory, but parts of these elements are formulated here in order to establish our
notation. Also to fix notation, we start with a short section on sets, functions and
(binary) relations.

2.1 Sets, functions and relations

For a finite set V , |V | denotes its cardinality or size. Recall that a set of one element
is a singleton, one of two elements a doubleton and so forth.

We denote the union, intersection and difference of two sets V and W by V ∪W ,
V ∩ W and V − W respectively. The cartesian product of V and W is the set
V ×W = {(v, w) | v ∈ V,w ∈W}.

A set of nonempty subsets of V is a partition of V if these subsets are pairwise
disjoint and their union equals V .

We shall often identify a set V ′ ⊆ V with its characteristic function V ′ : V → {0, 1},
where we use the convention that for v ∈ V , V ′(v) = 1 if and only if v ∈ V ′. The
symmetric difference of two sets V and W , denoted by V ªW , is defined to be equal
to (V −W) ∪ (W − V). It can also be formulated by its characteristic function:

(V ªW)(v) = V (v) +W (v), for all v ∈ V ∪W (2.1)

where + is addition modulo 2.
Some special sets are N, Z, R and R+ which denote the sets of positive integers,

integers, reals and positive reals, respectively. If we want to add zero explicitly to N
or R+ we write N0 or R+

0 respectively.
As usual, a function f , from its domain V to its range W , is denoted by

f : V →W . In this thesis all functions are total, i.e., a value f(v) ∈ W exists
for all v ∈ V . The composition of two functions f : V →W and g : U → V is f · g
and is such that (f · g)(u) = f(g(u)) for all u ∈ U . Sometimes we may omit the
function composition operator · writing fg for f · g.

The identity function on a set V is denoted by idV or simply id. The set of fixed
points of a function f is

Fix(f) = {v | f(v) = v} .
For a function f : V →W and element w ∈ W , we define f−1(w) = {v | f(v) =

w} ⊆ V . A function is injective if for all w ∈ W , |f−1(w)| ≤ 1 and it is surjective
if for all w ∈ W , |f−1(w)| ≥ 1. A function is bijective if it is both injective and
surjective, i.e., all the sets f−1(w) are singletons. In the literature injective is often

15

16 CHAPTER 2. PRELIMINARIES

referred to as one-to-one, surjective as onto and bijective as one-on-one. A function
f : V → V is a permutation on V if it is a bijection.

The restriction of a function f : V →W to a set V ′ ⊆ V is the function denoted
by f |V ′ : V ′ →W such that f |V ′(v) = f(v) for all v ∈ V ′.

For a set X, π = (x1, . . . , xn) with xi ∈ X for i = 1, . . . , n is a sequence over X.
The length of π is n; the sequence of length 0 is denoted by λ. The sequence π is
called closed if x1 = xn. We use a :π to denote the sequence (a, x1, . . . , xn).

A set of pairs R ⊆ V × V is a (binary) relation on V , which is the underlying
set of R. The relation R is reflexive if (v, v) ∈ R for all v ∈ V . It is symmetric if
for each (v, w) ∈ R also (w, v) ∈ R and it is transitive if (v, w), (w, z) ∈ R imply
(v, z) ∈ R. A relation is anti-symmetric if (v, w), (w, v) ∈ R imply v = w.

A relation that is reflexive, symmetric and transitive is called an equivalence
relation. An equivalence relation R partitions the underlying set into equivalence
classes where such a class is defined as follows: [v]R = {w | (v, w) ∈ R}. An
elementary result is that if w ∈ [v]R, then [v]R = [w]R. Hence it does not matter
which of the elements of an equivalence class is used as a representative for that
class. Sometimes, v and w are called equivalent up to R.

Given a possibly infinite number of mutually disjoint subsets Vi of V , a transver-
sal T of the Vi is a set that satisfies |T ∩Vi| = 1 for all i. Because the Vi are disjoint,
there is a bijection between the Vi and the elements of T . Each of the elements of
the transversal should be interpreted as uniquely representing one of the sets in the
partition. In the literature the demand of the disjointness of the Vi is not standard.
However, it is the only circumstance in which we need it.

For two equivalence relations R1 and R2 on V , R1 is a refinement of R2, if
R1 ⊆ R2. The concept of refinement is illustrated in Figure 2.1. Here, the classes
of R2 are given by the solid lines, and the classes of R1 are defined by the solid
and dashed lines combined. For instance, [v]R1 equals [v]R2 . It is also true that
[w1]R2 = [w2]R2 , but [w1]R1 6= [w2]R1 . By refining we may split up equivalence
classes into smaller ones.

V

v

w1

w2

Figure 2.1: A refinement

2.2 Basic group theory

This section contains an introduction into group theory that should suffice to un-
derstand all group theory used in this thesis. Much of the contents of this section
comes from the highly readable and precise book of Rotman [41].

A group is a pair Γ = (C, ◦), where the set C is the carrier of Γ and

2.2. BASIC GROUP THEORY 17

• ◦ is a binary associative operation on C, i.e., it is a total binary function
◦ : C × C → C such that (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ C,

• there exists a unique identity element 1Γ ∈ C such that for all a ∈ C, a ◦ 1Γ =
1Γ ◦ a = a,

• for each element a ∈ C, there exists a unique element a−1, the inverse of a,
such that a ◦ a−1 = a−1 ◦ a = 1Γ.

The trivial group containing only the identity element will be denoted by {1}. A
group is finite if the carrier is finite. The order of a finite group equals the cardinality
of the carrier. The function −1 mapping each element of a group Γ to its inverse is
called the group inversion.

We want to be able to tell when two groups are “the same”. Let Γ1 = (C1, ◦)
and Γ2 = (C,2) be groups. A function h : C1 → C2 is a homomorphism from Γ1 to
Γ2 if

h(a ◦ b) = h(a)2h(b), for all a, b ∈ C1 .

The groups Γ1 and Γ2 are called isomorphic, denoted by Γ1
∼= Γ2, if there exists

a bijective homomorphism h : Γ1 → Γ2. An isomorphism from a group to itself
is called an automorphism. The set of automorphisms on a group is denoted by
AUT(Γ).

Following the usage in group theory, we will in the future often omit the operation
from expressions, e.g., writing ab instead of a◦ b. Also we will identify Γ with C and
will thus write simply a ∈ Γ instead of a ∈ C for a group Γ = (C, ◦). The other way
around we sometimes give a set and treat it as a group; it shall be obvious from the
context what the operation should be.

A group Γ is called abelian if for all a, b ∈ Γ, ab = ba. In words: all pairs
of elements a, b ∈ Γ commute. The operation of a group is usually referred to
as multiplication; in the context of abelian groups we sometimes use “+” for the
operation and use the name addition.

r1

s2

2

3

1

Figure 2.2: The group S3 schematically

Example 2.1
(1) (Z,+) is the group of integers under addition. The inverse of a ∈ Z is −a and 0
is the identity.
(2) (R+, ∗) is the group of positive reals under multiplication, where 1 is the identity
and the inverse of a is its reciprocal 1/a.
(3) Zn = ({0, . . . , n−1},+) is the group of integers modulo n. As with Z the identity
is 0, but the inverse of a ∈ {0, . . . , n− 1} is n− a mod n .

18 CHAPTER 2. PRELIMINARIES

(4) The symmetric group Sn is the group of permutations on {1, . . . , n}; the order of
this group is n!. The symmetric group S3 consists of all the rotations and reflections
of the equilateral triangle as illustrated in Figure 2.2. The three rotations are denoted
by r0, r1 and r2 (ri stands for rotation by angle i∗120◦ anticlockwise). For i = 0, 1, 2,
the reflection si is a reflection about the axis going through the vertex i + 1. The
operation of this group is the composition of functions: s2r1 means first rotating by
120 degrees and then reflecting about the s2 axis. This transformation maps 1, 2
and 3 to 1, 3 and 2, respectively and thus is equal to s0. Figure 2.3 contains a table
of values ab for a, b ∈ S3. ¦

b r0 r1 r2 s0 s1 s2

a ab
r0 r0 r1 r2 s0 s1 s2

r1 r1 r2 r0 s2 s0 s1

r2 r2 r0 r1 s1 s2 s0

s0 s0 s1 s2 r0 r1 r2

s1 s1 s2 s0 r2 r0 r1

s2 s2 s0 s1 r1 r2 r0

Figure 2.3: The multiplication table of S3

In Example 2.1 all groups are abelian except the group S3: as can be seen from
the table s0s1 = r1 6= r2 = s1s0. The group S3 is especially interesting, because
it is the smallest nonabelian group. This makes it a useful group for illustrating
nonabelian aspects of our theory.

We continue now with the definition of a subgroup. A nonempty subset ∆ of Γ
is a subgroup of Γ if it is a group under the operation of Γ. The fact that ∆ is a
group means that it contains the identity element of Γ, is closed under the operation
of Γ and for every a ∈ ∆, also a−1 ∈ ∆.

To verify whether a subset of a group is a subgroup the following result can be
used, Theorem 2.2 in Rotman [41].

Lemma 2.2
A nonempty subset ∆ of a group Γ is a subgroup of Γ if and only if for all a, b ∈ ∆
also ab−1 ∈ ∆.

An important subgroup is the centre of a group Γ. It is

Z(Γ) = {x ∈ Γ | xy = yx for all y ∈ Γ} .

The centre of a group contains exactly those elements in the group that commute
with all elements.

We can generalize the definition of centre into that of the centralizer of a set
A ⊆ Γ:

C(A) = {x ∈ Γ | ax = xa for all a ∈ A} .

Obviously Z(Γ) equals C(Γ) and C({1Γ}) = Γ.

Example 2.3
(1) The centre of an abelian group is, of course, the group itself and all centralizers

2.2. BASIC GROUP THEORY 19

coincide.
(2) The centre of S3 is {r0} ∼= {1}. Furthermore,, C({r0}) = S3, C({r1}) =
C({r2}) = {r0, r1, r2} and C({s0}) = {r0, s0}, but C({r1, s0} = C({r1})∩C({s0}) ∼=
{1}. All these identities can be read from the previous multiplication table for S3.¦

For n > 0, the nth power of a ∈ Γ is an =
n︷ ︸︸ ︷

aa . . . a. We define a0 = 1Γ. For
any element a of a group Γ, we can construct the cyclic subgroup generated by a,
denoted by 〈a〉, that contains all powers a0 = 1Γ, a, a

2, . . . of a. The element a is
called a generator of 〈a〉. We define the order of a, denoted by #a, to be the order
of the cyclic group 〈a〉 (if it is finite); in other words it is the smallest number k > 0
such that ak = 1Γ. If a group Γ equals 〈a〉 for some a ∈ Γ it is called cyclic. Note
that two cyclic groups are isomorphic if and only if they are of the same order or
both are infinite.

More generally, for any X ⊆ Γ there exists always the subgroup 〈X〉 of Γ gen-
erated by X; it consists of all finite products of elements of X and their inverses.
Again if 〈X〉 = Γ, then X is said to generate Γ. If there exists a finite set X which
generates Γ, then Γ is said to be finitely generated.

Example 2.4
(1) For the cyclic group Zn, 〈2〉 = Zn if n > 2 is odd, but 〈2〉 ∼= Zn/2 if n > 2 is
even.
(2) For the group S3, 〈r1〉 = {r0, r1, r2} and 〈s0〉 = {r0, s0}. For X = {r1, r2} the
subgroup of S3 generated by X equals 〈r1〉. On the other hand, taking X = {r1, s0},
〈X〉 = S3. One can check that no set of less than two elements will generate S3, so
this set of generators is minimal, but note that it is not unique.
(3) There is no finite set X such that 〈X〉 equals the group (R+, ∗), because 〈X〉 is
countable. ¦

We introduce some notation for the product of two subsets ∆1 and ∆2 of Γ:

∆1∆2 = {xy | x ∈ ∆1, y ∈ ∆2} .

If ∆2 = {x}, then we write ∆1x, and analogously if ∆1 is a singleton.
A subset S of Γ is a right coset of a subgroup ∆ of Γ if S = ∆x = {yx | y ∈ ∆}

for some x ∈ Γ. If x ∈ ∆ then obviously ∆x equals ∆, since ∆ is closed under the
operation of Γ. Analogously, a left coset of a subgroup ∆ of Γ is a subset S = x∆
for some x ∈ Γ.

The following result, Lemma 2.5 in Rotman [41], can be used to verify whether
two cosets are the same.

Lemma 2.5
Let ∆ be a subgroup of Γ. It holds that ∆x = ∆y (respectively x∆ = y∆) if and
only if xy−1 ∈ ∆ (respectively x−1y ∈ ∆).

If Γ is nonabelian it is possible that the left and right cosets of a subgroup of Γ
are not the same, although one can prove that there are equally many of them, as
the following example taken from Rotman [41] illustrates.

Example 2.6
In a previous example we found that S = 〈s0〉 = {r0, s0}. The left cosets are
S = r0S = s0S, r1S = s2S = {r1, s2} and r2S = s1S = {r2, s1}. The right cosets
however are S = Sr0 = Ss0, Sr1 = Ss1 = {r1, s1}, and finally Sr2 = Ss2 = {r2, s2}.

20 CHAPTER 2. PRELIMINARIES

From Lemma 2.5 it follows rather easily that the left (right) cosets of a subgroup
are either disjoint or exactly the same. Consequently, given a subgroup ∆ of Γ, and
by computing the left (right) cosets of ∆ we get a partition of Γ. This is a very
useful fact, since it will enable us to define the quotient of a group with respect to
a subgroup: the quotient has cosets as its elements, and the subset product as its
operator. It turns out however that the notion of quotient is only well-defined as a
group for the subset product of normal subgroups, which we turn to next.

The conjugate of x ∈ Γ by a ∈ Γ is the element axa−1 (in the literature, the
latter is usually denoted by xa). Now, a subgroup ∆ of Γ is a normal subgroup of Γ
if it is closed under conjugation with every element of Γ. Clearly all subgroups of
an abelian group are normal.

It can be proved that for normal subgroups the left and right cosets coincide.
In fact, this characterizes a normal subgroup. Hence, in the context of normal
subgroups we can omit the qualifications “left” and “right” for cosets.

Let ∆ be a normal subgroup of Γ. The set of cosets of ∆ forms a group under
the operation of subset product. It is the quotient group and shall be denoted by
Γ/∆.

Example 2.7
(1) Let n be any integer, then Zn is the set of (positive and negative) multiples of
n. Adding two multiples of n yields another multiple of n, so it is not surprising
that Zn is a subgroup of Z and since Z is abelian, it is a normal subgroup. The n
cosets of this subgroup are {in+ j | i = 0,±1,±2, . . .} for j = {0, . . . , n− 1}. Each
of these cosets is an element of the quotient group Z/Zn, which is isomorphic to the
cyclic group of order n, Zn.
(2) The group ∆ = {r0, s0} is a subgroup of S3. This subgroup is not normal, since
r1∆r1

−1 = {r0, s1} 6= ∆.

Now we have shown how to collapse a group into a smaller group in a well-defined
way, we shall take the opposite approach, combining groups into larger ones. The
most obvious way is by means of a construction called the direct product of two
groups, similar to the cartesian product of sets.

For two groups Γ1 and Γ2 the outer direct product is the group Γ = Γ1×Γ2 which
has as elements the ordered pairs (x, y) where x ∈ Γ1 and y ∈ Γ2. The operation
of Γ is defined elementwise: (x1, y1)(x2, y2) = (x1x2, y1y2) for (x1, y1), (x2, y2) ∈ Γ.
Obviously, Γ contains as subgroups Γ1×{1Γ2} and {1Γ1}×Γ2, isomorphic to Γ1 and
Γ2 respectively. It can be easily verified that × is commutative, i.e., Γ1×Γ2

∼= Γ2×Γ1

and associative, i.e., (Γ1 × Γ2)× Γ3
∼= Γ1 × (Γ2 × Γ3).

The inner direct product approaches a group from the other direction: how can
we factor a group? The basic result is that if we have two normal subgroups Γ1 and
Γ2 of Γ such that Γ1 ∩ Γ2 = {1Γ} and Γ1Γ2 = Γ, then Γ ∼= Γ1 × Γ2. The group Γ is
called the inner direct product of Γ1 and Γ2. Note that the difference with the outer
direct product is that in the inner case, Γ1 and Γ2 are themselves subgroups of Γ.
Since both ways yield isomorphic groups we shall not distinguish between them.

Note that in general a group Γ can allow more than one decomposition. It is
possible that Γ = Γ1×Γ2 = Γ1×∆ (inner direct products) where Γ2 6= ∆. Of course,
Γ2 and ∆ are then isomorphic. On the other hand Γ may allow decompositions that
are not even determined up to isomorphism.

An alternative condition for normal subgroups Γ1 and Γ2 of Γ to have Γ1Γ2 = Γ
(by inner direct product) is for each x ∈ Γ to have a unique expression x = y1y2,
where yi ∈ Γi for i = 1, 2.

2.2. BASIC GROUP THEORY 21

Example 2.8
Consider the group Z6. This group is the inner direct product of its normal sub-
groups {0, 3} and {0, 2, 4}. The latter two are isomorphic to Z2 and Z3 respectively.
Obviously, Z6 6= Z2 × Z3, but Z6

∼= Z2 × Z3. ¦

Let Γ = Γ1Γ2 be a direct product, and let α : Γ→ Γ be any function. We define
the projections α(i) : Γ→ Γi for i = 1, 2 by: for each x ∈ Γ let α(x) = α(1)(x)α(2)(x),
where α(1)(x) ∈ Γ1 and α(2)(x) ∈ Γ2. Because every x ∈ Γ can be uniquely written
as x1x2 for xi ∈ Γi, these functions are well defined.

In the context of abelian groups, the direct product is often called the direct sum
and is denoted by ⊕.

In the following we will give the main theorem of finitely generated abelian
groups, which yields a way of decomposing any such group into a direct sum of
groups of a special kind.

A group is a p-group if every element has order a power of a fixed prime q. In
the context of abelian groups a p-group is often called a primary group.

Example 2.9
The group Z6 is not a p-group (3 has order 2 and 2 has order 3), but Z4 is (every
element has either order 1, 2 or 4, all powers of 2). ¦

Now we can formulate the following result.

Theorem 2.10 (Fundamental Theorem On Finitely Generated Abelian Groups)
For every finitely generated abelian group Γ, it holds that

Γ ∼= Zpm1
1
⊕ Zpm2

2
⊕ · · · ⊕ Zpmrr ⊕

mr+1︷ ︸︸ ︷
Z⊕ Z · · · ⊕ Z

where r ≥ 0, mj > 0, mr+1 ≥ 0, pj prime for j = 1, . . . , r and pi ≤ pi+1 for
i = 1, . . . , r − 1.

In other words, every finitely generated abelian group Γ is (isomorphic to) a direct
sum of cyclic p-groups and infinite cyclic groups, and the number of summands of
each kind depends only on Γ. Note that the only source of “infiniteness” arises from
Z.

The importance of this theorem is that it gives us a way to prove something by
induction: if a property holds for all p-groups and for Z, and it is preserved by direct
sum and isomorphisms, then it holds for all finitely generated abelian groups.

Example 2.11
Since the group Z6 is not a p-group (see Example 2.9), we should be able to find
a nontrivial decomposition into p-groups. Indeed Z6 is isomorphic to Z2 ⊕ Z3, and
this expression is unique up to the order of the terms.

In Theorem 2.10, pi < pi+1 is not good enough, because the group Z4 is not
ismorphic to Z2⊕Z2: the former has an element of order four, the second does not.
¦

We shall now give definitions and results that pertain to groups of permutations,
stabilizers and orbits.

22 CHAPTER 2. PRELIMINARIES

The group S3 is an example of a group of permutations. The importance of this
type of groups is that every group is isomorphic to a subgroup of some permuta-
tion group and hence the theory of groups can also be studied by looking only at
permutation groups and their subgroups.

Given a nonempty set X, SX is the symmetric group on X, where the elements
are the permutations on X and the operation is simply function composition. A
subgroup of a symmetric group is called a permutation group. A bijection f : X → Y
can be straightforwardly extended to an isomorphism a→ f ·a ·f−1 between SX and
SY . This implies that restricting ourselves to Sn in the finite case is not a restriction
at all (see Example 2.1).

Let X be a set and let S be a subgroup of SX . We define two elements x, y ∈ X
to be S-equivalent, denoted by x ∼S y, if there is some permutation z ∈ S such that
z(x) = y. The corresponding equivalence classes [x] are called the orbits of S. It is
sometimes said that the group S acts on X.

The notion dual to orbit is that of stabilizer. For an element x ∈ X, the stabilizer
of x is a subgroup of S defined as

Stab(x) = {z ∈ S | z(x) = x} .

There is a strong relation between the cardinality of the orbit [x] and the stabi-
lizer of x. The following holds for any x ∈ X if the set X is finite

|S| = |Stab(x)| · |[x]| . (2.2)

Example 2.12
Let S = S3 and the set X = {1, 2, 3}. In this case there is only one orbit since
each element of X can be mapped to any other. The stabilizer of x is Stab(x) =
{r0, sx−1} for x = 1, 2, 3. Filling in the numbers into Equation (2.2) yields for
x = 1, 6 = |S| = |Stab(1)||[1]| = 2 · 3. If we set S = {r0, s0}, then there are two
orbits {1} and {2, 3}. The corresponding stabilizers are Stab(1) = {r0, s0} = S and
Stab(2) = Stab(3) = {r0}. ¦

2.3 Basic graph theory

The following introduction to graph theory follows the main lines of the book by
Harary [28].

For a set V , E(V) = {{v, w} | v, w ∈ V, v 6= w} denotes the set of all unordered
pairs of distinct elements of V . In the following we will usually write vw (and, in the
first part of this thesis, also wv) for {v, w}. The vertices v and w are the endpoints
of the edge vw ∈ E.

The graphs in this part of the thesis will be undirected, finite and simple, i.e.,
they contain no loops or multiple edges: a graph G is a tuple (V,E), where V is a
finite set of vertices and E ⊆ E(V) is the set of edges. We use V (G) and E(G) to
denote V and E respectively and |V | and |E| are called the order, respectively, the
size of G.

Analogously to sets, a graph G = (V,E) is sometimes identified with the char-
acteristic function G : E(V)→ Z2 of its edges as follows: G(xy) = 1 if xy ∈ E, and
G(xy) = 0 if xy /∈ E. Later we shall use both of these notations for graphs.

For graphs G and H on the same set of vertices, we can define G+H by

(G+H)(e) = G(e) +H(e) for e ∈ E(V) (2.3)

where the operation is that of Z2.

2.3. BASIC GRAPH THEORY 23

(b)(a)

u v

z w

1

1

1 1

(c)

1

0

Figure 2.4: A graph, its characteristic function, and its complement

Lemma 2.13
The graphs with vertex set V form an abelian group under the + operation.
Proof:
The set of graphs on V is obviously closed under +. The identity element of this
group is the graph (V, ∅); the inverse of a graph is the graph itself. 2

We extend the operation + to graphs on sets of vertices V and V ′ respectively,
by first extending them to graphs on V ∪ V ′ and setting all new edges to 0.

The disjoint union of two graphs G and H on the other hand is denoted G∪H.
We use k ·G as shorthand for the disjoint union of k copies of G.

For a graph G = (V,E) and A ⊆ V , let G|A = (A,E∩E(A)) denote the subgraph
of G induced by A. Hence, G|A : E(A)→ Z2. More generally a graph G′ = (V ′, E′)
is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. A spanning subgraph is a subgraph
containing all vertices V ; in other words we obtain a spanning subgraph of a graph
by deleting some edges.

Let G = (V,E) be a graph. If u, v ∈ V , then G + uv (respectively G − uv) is
(V,E ∪ {uv}) (respectively (V,E − {uv})) the graph in which the edge uv is added
to (respectively removed from) G. To add and remove vertices we define G + u
as the graph (V ∪ {u}, E), and G − u as G|V−{u}. More generally we can write
G− I = G|V−I for I ⊆ V

The complement of G is G = (V,E(V)− E).

Example 2.14
LetG = ({u, v, w, z}, {{u, v}, {u,w}, {u, z}, {v, w}, {w, z}}), or, in abbreviated form,
E(G) can be written as {uv, uw, uz, vw,wz}. This graph can be pictorially presented
as in Figure 2.4(a). The corresponding characteristic function is depicted in Fig-
ure 2.4(b) as a complete graph labelled with 0 or 1. The subgraph of G induced
by A = {u, v, z} is G|A = ({u, v, z}, {uv, uz}). The graph G′ = ({u, v, z}, {uv}) is a
subgraph of G, but it is neither induced nor spanning. The complement of G, G, is
given in Figure 2.4(c). ¦

Two graphs G = (V,E) and H = (V ′, E′) are isomorphic, denoted by G ∼= H, if
there is a bijection ψ : V → V ′ such that

ψ(x)ψ(y) ∈ E′ if and only if xy ∈ E .

If we want to make ψ explicit we write G
ψ∼= H. Since ψ, the isomorphism, is a

bijection between V and V ′ the two sets of vertices are necessarily of the same size.
In fact, the only difference between isomorphic graphs lies in the identities of the
vertices. If G and H are the same graph, then ψ is called an automorphism. The
set of automorphisms of G is denoted AUT(G).

24 CHAPTER 2. PRELIMINARIES

86

(a) (b)

4 5

7

2

1

3

a b
c

d

Figure 2.5: Graphs, isomorphisms and embeddings

In graph theory isomorphic graphs are usually identified, hence graphs are con-
sidered up to isomorphism. However, throughout this thesis we generally take the
point of view that identities of vertices do matter and consequently consider graphs
up to equality. If we deviate from this, we shall say so explicitly.

The graph G can be (fully) embedded into H if G is isomorphic to an (induced)
subgraph of H. The corresponding bijection ψ is an injection from V (G) into V (H)

and we denote this by writing G
ψ
↪→ H; if the embedding is full, then this shall be

made explicit in the text.

Example 2.15
Let G and G′ be the graphs of Figure 2.5(a) and (b) respectively. For the bijection

ψ = {(c, 4), (a, 1), (b, 2), (d, 7)}, G′ ψ
↪→ G and this embedding is even full. Note that

ψ is not the only full embedding of G′ into G.
The graph of Figure 2.4(a) cannot be embedded into G. On the other hand, the

graph G′ can be embedded into the graph of Figure 2.4(a), but not fully.
The graph G′ has a nontrivial automorphism, i.e. different from the identity

function; it is {(a, b), (b, a), (c, c), (d, d)}. If G
ψ
↪→ H and φ ∈ AUT(G), then clearly

G
ψ·φ
↪→ H. ¦

Let G = (V,E) be a graph. Two vertices x, y ∈ V are adjacent (in G) if xy ∈ E.
The set of vertices adjacent to x (in G) is denoted by NG(x), the neighbours of x.
The degree of a vertex x ∈ V is dG(x) = |NG(x)|. If G is clear from the context,
then we may omit it as a subscript. A vertex of degree zero is called isolated or a
horizon, and a vertex of degree one is called a leaf. A leaf adjacent to z is called a
leaf at z.

A sequence of vertices π = (v1, . . . , vk), k > 0, is a walk in G if vi is adjacent to
vi+1 for i = 1, . . . , k−1. If a walk traverses only distinct edges, then we call it a trail.
More formally, a trail is a walk such that vivi+1 6= vjvj+1 for all 1 ≤ i < j ≤ k − 1.
Note that for an undirected graph, the edge vw is the same as the edge wv and
hence in a trail we cannot traverse an edge twice, even if it would happen in different
directions. If vi 6= vj for 1 ≤ i < j ≤ k, then the sequence π is called a path. Note
that a path is also a trail, but not necessarily vice versa.

If for a walk π = (v1, . . . , vk) it holds that v1 = vk then it is closed. If π is
a closed walk, then it is a cycle if k ≥ 4 and vi 6= vj for 1 ≤ i < j ≤ k − 1 are
distinct. Appending the first vertex v1 of a path π = (v1, . . . , vk) to π yields a cycle,
(v1, . . . , vk, v1), if and only if the closing edge vkv1 exists and k ≥ 3. The length
of π equals k − 1, the number of edges that occur in it. Abusing our notation we

2.3. BASIC GRAPH THEORY 25

sometimes say (v1, . . . , vk), v1 6= vk, is a cycle, meaning that (v1, . . . , vk, v1) is a
cycle.

The graph G is connected if from every vertex of G there is a path to every other
vertex of G; if this is not the case, then the graph is called disconnected. A maximal
connected (induced) subgraph of a graph is a connected component, or simply a
component. Note that a component is necessarily an induced subgraph.

A set of vertices A ⊆ V (G) is a clique of G if for every v, w ∈ A: if v 6= w, then
vw ∈ E(G). The notion complementary to clique is an independent set, where each
vertex is not adjacent to any other vertex in the set.

We proceed by listing some well known types of graphs. Let KV = (V, ∅) and
KV = (V,E(V)) be the discrete graph and the complete graph on V respectively,
and let KA,V−A = (V,A × (V − A)) denote the complete bipartite graph with the
partition {A, V − A}. In a complete bipartite graph KA,V−A all edges between A
and V − A exist, while A and V − A themselves are independent. If the sets of
vertices themselves are irrelevant we write Kn and Kk,m, where n = |V |, k = |A|,
and m = |V − A|. Note that A or V − A can be empty; hence the discrete graph
is also regarded as a complete bipartite graph. In general, a graph G is bipartite if
the set of vertices V (G) can be partitioned into two sets V1 and V2 such that for
all xy ∈ E(G), x ∈ V1 and y ∈ V2 or vice versa. It is well known that a graph is
bipartite if and only if it has no cycles of odd length if and only if its vertices can
be partitioned into two independent sets.

A graph G = (V,E) is an acyclic graph, or a forest, if it does not have any cycles.
A connected acyclic graph is a tree. A well-known property of acyclic graphs is that
|E| = |V | − C, where C is the number of components of G. Hence in the case of
trees, the number of edges is one less than the number of vertices. Another useful
property of trees is that every pair of vertices has a unique path connecting them.

The trivial tree consists of one vertex. A rooted tree is a tree T with an indicated
vertex u = root(T). Recall that the level of a vertex v in a rooted tree is the number
of vertices on the path from the root to v. Hence the level of the root is 1. The
height of a tree is the level of the lowest leaf in the tree minus one. Hence the height
of the trivial tree is 0.

If a spanning subgraph G′ = (V,E′) of G = (V,E) is acyclic and adding any
edge from E−E′ back to G′ introduces a cycle, then we call G′ a spanning forest of
G. The edges in E − E′ are called chords. A basic property is that G′ has exactly
as many components as does G. If G′ is connected, then it is called a spanning tree.
Because the number of vertices and components are equal for a graph and all of its
spanning forests, and hence all spanning forest have the same amount of edges, it
should be clear that whatever spanning forest G′ is chosen, |E| − |E′| is a constant.
This number is called the cyclomatic number of G and is denoted with ξ(G).

Example 2.16
Recall the graph G from Figure 2.5(a). A possible spanning tree of G is indicated
in Figure 2.6 by the solid edges. The chords are indicated by the dotted lines. Note
that adding any of the chords to the spanning tree introduces a unique cycle. The
cyclomatic number of G is equal to the number of chords, three in this case. ¦

For any n > 0, Pn is a graph on n vertices that is a path of length n − 1. A
graph Cn is a graph on n vertices that is a cycle of length n; a cycle C3 is often
called a triangle for obvious reasons. Another graph that is often encountered is a
star graph on n vertices; it is a tree K1,n−1. Examples of these types can be found
in Figure 2.7.

26 CHAPTER 2. PRELIMINARIES

86

4 5

7

2

1

3

Figure 2.6: A decomposition of the graph of Figure 2.5(a)
.

Figure 2.7: P4, C5 and K1,5 respectively
.

A graph G of order n is hamiltonian if it has a spanning cycle (of length n, which
thus contains all vertices). We call a graph pancyclic if it contains a cycle of length
k for all 3 ≤ k ≤ n, where n ≥ 3. In other words, all Ck’s (3 ≤ k ≤ n) can be
embedded into G. Obviously, every pancyclic graph is also a hamiltonian graph.
Bondy conjectured in [4] that almost all nontrivial general graph properties that
imply hamiltonicity also imply pancyclicity. In Section 4.1 we shall see an example
of this.

Example 2.17
The graphs Cn, for n ≥ 3, are hamiltonian graphs, but only C3 is pancyclic. A less
trivial example of a pancyclic graph is given in Figure 2.5(a).

The graph in Figure 2.8(a) is called the crown graph. One can easily verify that
this graph is not hamiltonian. The graph in Figure 2.8(b), however, does have a
hamiltonian cycle, more than one in fact. ¦

(a) (b)

Figure 2.8: A nonhamiltonian and a hamiltonian graph

Part I

Switching Classes of Graphs

27

Chapter 3

Switching Classes

In this chapter we shall give definitions and some elementary results known from
the theory of switching classes; briefly we shall touch on the subject of history and
describe a few equivalent models. The switching classes defined in this chapter are
an important special case of the switching classes of graphs with skew gains that
are the subject of the second part of this thesis. Except for Section 3.4 the results
in this chapter are mostly well known and usually rather straightforward. In Sec-
tion 3.4 we give a few results on the complexity of certain problems of graphs when
lifted to switching classes. (The results in this section are from Ehrenfeucht, Hage,
Harju and Rozenberg [12] unless otherwise indicated.) For example, we generalize
to switching classes a general complexity result by Yannakakis and we show that
the embedding problem for switching classes, can G be embedded in some graph in
[H], is NP-complete. As an example of the reduction of a problem for graphs to the
corresponding problem for switching classes, we show that determining whether a
switching class contains a 3-colourable graph is NP-complete.

3.1 Definitions

The initiators of the theory of switching classes and two-graphs were Van Lint and
Seidel [37]. Somewhat earlier, signed graphs, a slightly more general variant, were
used in psychology by Abelson and Rosenberg [1].

For a survey of switching classes, and especially its many connections to other
parts of mathematics, we refer to Seidel [43], Seidel and Taylor [44], and Cameron
[7]. Recently a book by Ehrenfeucht, Harju and Rozenberg was published on 2-
structures that has a number of chapters on switching classes [14].

For a graph G = (V,E) and a function σ : V → Z2 (called a selector) the switch
of G by σ is defined as the graph Gσ = (V,E′), where for each uv ∈ E(V) with
exactly one of u and v in σ, we add uv to E if uv /∈ E, and we remove uv from E if
uv ∈ E. For a singleton selector σ = {x} we write Gx instead of G{x}.

Recall from the preliminaries that a selector can be interpreted as a set and we
sometimes do so in this part of the thesis.

Interpreting the graph G as the characteristic function of the set of its edges, as
explained in the preliminaries, we have for all xy ∈ E(V),

Gσ(xy) = σ(x) +G(xy) + σ(y) . (3.1)

Example 3.1
Let G be the graph of Figure 3.1(a) and let σ = {2, 7, 8}, indicated in the picture of

29

30 CHAPTER 3. SWITCHING CLASSES

3 4

1 2

5

8

6

(a) (b)

7

Figure 3.1: A graph and one of its switches

1 8

56

3

4

2

7

Figure 3.2: The switch of Figure 3.1(b) drawn differently

G by the black vertices. The graph Gσ is the graph of Figure 3.1(b). Note that the
dashed edges are just edges of the graph, but they are special in the sense that they
lie within either σ or its complement and hence are not changed. In Figure 3.2 we
have reorganized the positions of the vertices to show that the switch is very similar
to the original graph: up to isomorphism they differ by one edge. ¦

We continue now with some easy, but useful, observations.

Lemma 3.2
For a graph G = (V,E) and σ ⊆ V , it holds that

i. G|σ = Gσ|σ,

ii. G|V−σ = Gσ|V−σ, and

iii. Gσ = GV−σ.

In view of the first two equalities of Lemma 3.2 we call σ constant on all sets X
such that X ⊆ σ or X ⊆ V − σ.

The set
[G] = {Gσ | σ ⊆ V }

is called the switching class of G. The graph G is called a generator of the switching
class in some of the literature. In Figure 3.3 we have listed a complete switching
class of 32 graphs (up to equality). This switching class is also used in Example 3.19.

We first prove that a switching class is an equivalence class of graphs.

3.1. DEFINITIONS 31

1

23

4

5 6

Figure 3.3: A switching class

32 CHAPTER 3. SWITCHING CLASSES

1

4

5

6

2

3

1

4

5

6

2

3

1

4

5

6

2

3

(b) (c)(a)

Figure 3.4: Illustrating transitivity

Lemma 3.3
For a graph G = (V,E) and σ1, σ2 ⊆ V , (Gσ1)σ2 = Gσ where σ = σ1 ª σ2. More
specifically, (Gσ)σ = G, and G∅ = G.
Proof:
For u, v ∈ V , (Gσ1)σ2(uv) = σ2(u) + Gσ1(uv) + σ2(v) = σ2(u) + σ1(u) + G(uv) +
σ1(v) +σ2(v) = σ(u) +G(uv) +σ(v). Clearly, (σ1ªσ2)(u) = σ1(u) +σ2(u) for all u.

The other two equations are trivial. 2

Lemma 3.3 proves that switching is a reflexive, symmetric and transitive oper-
ation. Hence switching classes are equivalence classes of graphs. The underlying
equivalence relation ∼ on graphs is simply this: G ∼ G′ if and only if G′ = Gσ

for some selector σ. As a result, a switching class can be represented by any of its
elements.

A consequence of transitivity is also that every selector can be mimicked by a
suitable number of singleton selectors executed in sequence, one for each vertex in
the selector. We shall put this property to good use in Appendix A.4 where we show
how to generate the graphs in a switching class efficiently.

Example 3.4
Let Gα be the graphs of Figure 3.4(α), for α = a, b, c. Again, the selectors are
indicated by the black vertices. We have σa = {2, 3, 5} and σb = {1, 2, 4}. The
symmetric difference of σa and σb is σ = {1, 3, 4, 5} and one can verify thatGb = Gσaa ,
Gc = Gσbb and indeed Gc = Gσa . ¦

3.2 Basic properties of switching classes

The following lemma is well known, see [43].

Lemma 3.5
The switching class [KV] equals the set of all complete bipartite graphs on V .
Proof:
Given any complete bipartite graph Kσ,V−σ, we can obtain it from KV by switching
with respect to σ. Clearly, every switch Kσ

V is a complete bipartite graph Kσ,V−σ.2

The complete bipartite graphs figure also in another way: the graphs Gσ and G
differ only on edges between σ and V − σ and thus exactly all those edges exist in
Gσ +G. Hence

3.2. BASIC PROPERTIES OF SWITCHING CLASSES 33

Lemma 3.6
It holds that Gσ +G = Kσ,V−σ.

Lemma 3.7
It holds that Gσ1 = Gσ2 if and only if σ1 = σ2 or σ1 = V − σ2.
Proof:
By Lemma 3.3, Gσ1 = Gσ2 if and only if (Gσ1)σ1 = (Gσ2)σ1 , and again by Lemma 3.3,
G = (Gσ2)σ1 . Then σ1ªσ2 must be either empty or equal to V by Lemma 3.2. This
is only possible if σ1 = σ2 or σ1 = V − σ2. 2

Corollary 3.8
A switching class on V has 2|V |−1 graphs.
Proof:
There are exactly 2|V | subsets of V , but σ and V − σ yield the same switch. 2

The most obvious way to list all graphs in [G] is to switch with respect to all
subsets of V (G) − {x} for some x ∈ V (G). There is a more efficient way however:
in Appendix A.4 we show that there is a sequence of 2|V |−1 singleton selectors that,
if applied one after the other, will generate exactly the set of graphs [G].

A very useful result in switching classes is the following, where we show that
within a switching class we can “force” a certain vertex to have a given set of
vertices as its neighbours. This result can be stated in more general terms, but for
our purpose it will suffice. In the second part of this thesis we will formulate this
result in all its generality.

Lemma 3.9
Let G = (V,E) be a graph, u ∈ V and A ⊆ V − {u}. Then there exists a unique
graph H ∈ [G] such that the neighbours of u in H are the vertices in A.
Proof:
The vertex u is isolated in Gu = GN(u), where N(u) is the set of neighbours of u in
G. Switching Gu with respect to A connects u to every vertex in A (and no others)
yielding H.

To show that H is unique: let H ′ be such that NH′(u) = A. Since H and H ′ are
in the same switching class, H+H ′ is a complete bipartite graph by Lemma 3.6, say
KB,V−B. Since u has the same neighbours in both, u is isolated in KB,V−B. Hence,
KB,V−B is the discrete graph and, consequently, H = H ′. 2

By taking the empty set for the set of neighbours, we obtain

Corollary 3.10
For x ∈ V (G), GNG(x) is the unique switch of G in which x is isolated.

and from this

Corollary 3.11
It holds that G ∈ [H] if and only if for any x ∈ V (G), HNH(x) = GNG(x).

Example 3.12
A typical example of neighbourhood forcing can be found in Figure 3.4. The neigh-
bours of 6 are {2, 3, 5} and switching with respect to this set removes all connections
to 6, making it an isolated vertex in Figure 3.4(b). Switching with respect to the set
of vertices 6 should be adjacent to, here {1, 2, 4} is chosen, then yields the wanted
graph of Figure 3.4(c). ¦

34 CHAPTER 3. SWITCHING CLASSES

The most important result concerning switching classes is the following one [43].

Theorem 3.13
Let G = (V,E), H = (V,E′) and x ∈ V . Then G ∈ [H] if and only if for all
tripletons T = {x, y, z} ⊆ V , the parity of the number of edges in G|T equals that
of H|T .
Proof:
Let T = {x, y, z} ⊆ V be a tripleton and let H = Gσ. Now, either σ is constant
on T , in which case no edges are changed and hence the parity stays the same, or
σ selects 1 or 2 vertices from T . In both cases, 1 and 2, exactly two edges change
and again the parity is the same. Hence, switching leaves the parity of edges in T
unchanged.

For the other direction, let G and H be such that they have the same parity
of edges for all tripletons T = {x, y, z}, where x is a fixed vertex. By the first
part of the proof, G′ = GNG(x) has the same parity of edges in T as G. The same
holds for H ′ = HNH(x). If G and H belong to different switching classes, then
G′(vw) 6= H ′(vw) for some edge vw ∈ E(V − {x}) by Corollary 3.11. But then
G′ and H ′ differ on the parity of {x, v, w}, because G′ and H ′ agree on all edges
that have x as an endpoint. Hence G and H differ on the parity of edges of T ; a
contradiction. 2

A repetition-free sequence (v1, . . . , vp) is such that vi 6= vi+1 for i = 1, . . . , p− 1.
The same element may occur in such a sequence more than once, but never will two
of them be adjacent.

Theorem 3.14
Let G = (V,E) be a graph, σ a selector of G, and π = (v1, . . . , vp) be a closed
repetition-free sequence over V . Then the parities of edges along π in G and Gσ are
the same.
Proof:
Let G, π and σ be as stated. The parity of edges along π in G can be defined in
terms of addition modulo two as

G(v1v2) +G(v2v3) + . . .+G(vp−1vp) (3.2)

In Gσ this value becomes

σ(v1) +G(v1v2) + σ(v2) + σ(v2) +G(v2v3) + . . .+ σ(vp−1) +G(vp−1vp) + σ(vp)

which reduces, by the fact that a+ a = 0 under addition modulo two, to

σ(v1) +G(v1v2) +G(v2v3) + . . .+G(vp−1vp) + σ(vp)

and because v1 = vp and addition is commutative, we finally obtain (3.2). 2

We define the complemented switching class of a switching class as follows:

[G] = {H | H ∈ [G]} .

Lemma 3.15 [Ehrenfeucht, Hage, Harju and Rozenberg [11]]
For a graph G = (V,E), [G] = [G]. Furthermore, if |V | ≥ 3 then [G] ∩ [G] = ∅.
Proof:
We show first that for a graphG = (V,E) and σ ⊆ V : Gσ = G

σ. Indeed, let x, y ∈ V .

3.2. BASIC PROPERTIES OF SWITCHING CLASSES 35

Then Gσ(xy) = 1− (σ(x) +G(xy) + σ(y)) = σ(x) + (1−G(xy)) + σ(y) = G
σ(xy),

because (1− a) + (1− b) = a+ b for a, b ∈ Z2.
Let V ′ ⊆ V be any tripleton. Since the parity of edges in V ′ in G is obviously

different from the parity of edges in V ′ in G the additional claim clearly holds by
Theorem 3.13. 2

Let G = (V,E) be a maximum graph in its switching class, i.e., G has the
maximum number of edges among the graphs in its switching class. This graph is
not unique. Note that dG(u) ≥ (n− 1)/2 for all u ∈ V .

Example 3.16
The graphs of Figure 2.8(a) and (b) can be obtained from each other by switching
with respect to the middle vertex of the top three. It turns out that they both have
the maximum number of edges in their switching class.

To see this let G be the graph of Figure 2.8(a) and n = 5 the order of the graph.
We need only consider switches of one or two vertices, because the other switches
are either complements or trivial. Because the degree of each vertex is at least
(n − 1)/2, we cannot increase the number of edges in the graph by switching at a
single vertex. Now, let σ = {x1, x2} be a doubleton selector. Because of symmetry,
there are three possibilities: both are top vertices, both are bottom vertices, or we
have one of each type. We obtain a triangle with two leaves at one of its vertices, an
edge with three isolated vertices, a C4 with a leaf at one of its vertices, respectively.
Hence Figure 2.8(a) and (b) are maximum graphs in their switching class. ¦

A graph G is called an even (odd) graph if all vertices are of even (odd) degree.
A graph is eulerian if there exists a closed walk that traverses each edge exactly
once. A well known result by Euler is that every eulerian graph is a connected even
graph and vice versa.

Seidel [42] proved that if G is of odd order, then the switching class [G] contains
a unique even graph. Such a result is interesting because it tells us that every graph
having an odd number of vertices can be constructed from an even graph using the
rather simple transformation of switching. (See also Mallows and Sloane [39] and
Cameron [7] for the connection of eulerian graphs to switching.)

Theorem 3.17 [Seidel [42]]
Let G be a graph of odd order. Then [G] contains a unique even graph.
Proof:
Let G be a graph of odd order. The even graph can be obtained by switching with
respect to the set σ of vertices in G that have odd degree, because there are an odd
number of vertices of even degree and an even number of vertices of odd degree. For
instance, if a vertex v had odd degree and an even number of its neighbours had
even degree, then v loses an even number of neighbours, but gains an odd number
of neighbours, since the number of vertices of even degree is odd. In sum, v will
have an even number of neighbours in Gσ. The other three cases can be treated in
a similar way. Hence Gσ has only vertices of even degree.

Let H = Gσ be an even graph on vertices V and τ a nontrivial selector. We
can assume without loss of generality that τ has even cardinality. Let v ∈ τ . We
can split V − {v} into four sets of vertices based on the fact whether a vertex is
connected to v or not and the fact whether they are or are not in τ . The vertex
v will be connected to all vertices in A = (V − τ) ∩ (V −NH(v)), i.e., the vertices
outside τ that it was not connected to, and B = τ ∩NH(v), i.e., the neighbours it

36 CHAPTER 3. SWITCHING CLASSES

was connected to. We now show |A ∪B| is odd, which implies that Hτ is not even.
Assume |B| is odd. Then |(V − τ) ∩ NH(v)| is odd, because v was even. Because
|B ∪ {v}| is even and |τ | is even, we find that |τ − (B ∪ {v})| is even. It follows that
|A| is even, because the order of H is odd. Similar reasoning for the case that |B|
is even proves that H can not be switched into an even graph, unless the switch is
trivial, which proves that the switch is unique. 2

For graphs of even order, a switching class [G] can contain only noneulerian
graphs, e.g. take the switching class [P4]. However, it holds that either [G] has no
even and no odd graphs, or exactly half of its graphs are even while the other half
are odd, as first proved in Ehrenfeucht, Hage, Harju and Rozenberg [12] (but see
also Ehrenfeucht, Harju and Rozenberg [14]).

To see this, define u ∼G v, if dG(u) ≡ dG(v) (mod 2), that is, if the degrees of u
and v have the same parity. This relation is an equivalence relation on V (G).

Assume then that the order n of G is even. If we consider singleton selectors
σ only (hence switching with respect to one vertex), then it is easy to see that ∼G
and ∼Gσ coincide for all selectors σ. In other words, if G has even order, then the
relation ∼G is an invariant of the switching class [G]. This means that if [G] contains
an even graph, then all graphs in [G] are either even or odd. Moreover, if G is even,
and σ : V (G)→ Z2 is a singleton selector, then for each v ∈ V (G), dG(v) and dGσ(v)
have different parity.

Theorem 3.18 [new]
Let G be a graph of even order and such that [G] contains an even graph. Then [G]
contains an eulerian graph unless [G] contains a complete graph.
Proof:
We may assume that G itself is even, otherwise switch at an arbitrary vertex. How-
ever, this graph may not be connected and we need to find a connected even switch
of G. This can be done as follows: let u be any vertex of G. Let V = V (G) and let
O = V − ({u} ∪NG(u)), the vertices that are not neighbours of u in G. Note that
the set O has odd cardinality. Switch G with respect to σ = O−{v} for an arbitrary
v ∈ O. The resulting graph Gσ is again even, but it may still not be connected, but
at least Gσ|V−v is. However, if Gσ|V−v is not the complete graph, we can choose
a vertex w ∈ V − {u, v} that is not connected to all vertices in V − v. Switching
with respect to {v, w} now gives us a connected even graph. Note that in fact [Kn]
for even n does have even graphs, but no eulerian graphs, because Kn is the only
connected graph and it is not even, but odd. 2

From the above it follows that the existence of an even graph in a switching class
can be determined in time linear in the size of the graph: in the odd order case, the
answer is always yes, while in the even order case, we need only verify whether G is
an even or odd graph. If either of these is the case, then the answer is yes, otherwise
it is no.

We can extend this algorithm to check for eulerian graphs: for graphs G of
odd order it is simply a question of finding the unique even graph as in the proof
Theorem 3.17 and verifying whether or not it is connected. For the even case we
can use the algorithm implied in the proof of Theorem 3.18.

3.3. TWO-GRAPHS 37

3.3 Two-graphs

In this section we will shortly address a seemingly different way of devising switching
classes, two-graphs. We start with the definition of a two-graph taken from [43].

Let V be a finite set and define

E3(V) = {{u, v, w} | u, v, w ∈ V, u 6= v, u 6= w, v 6= w} .

A two-graph is a pair (V, F), where F ⊆ E3(V) and every subset of V of cardinality
4 contains an even number of tripletons from F .

In [43] a proof can be found that there is a bijection between two-graphs on V
and switching classes on V . We shall illustrate this proof by means of an example.

Example 3.19
Let G be the first graph of Figure 3.3. It is a P4 with two isolated vertices. We
shall now construct the corresponding two-graph. Because a two-graph is a single
structure that should result whichever element of [G] we choose as our starting point,
it is not surprising that we implicitly use the invariant of Theorem 3.13. In fact, we
may choose as tripletons for the two-graphs, exactly those tripletons of vertices that
have an odd number of edges. In this case we obtain the two-graph

G = (V, {{1, 2, 4}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6}}).

E.g., for the set {1, 2, 4, 5} we find that an even number, in fact two, tripletons of G
are contained therein, which is in accordance with the definition of a two-graph.

The other direction is non-deterministic in the sense that different choices will
yield different elements of the switching class. First of all, we arbitrarily choose
an element u ∈ V , say u = 3. Then we must partition the remainder in two sets,
say V1 = {1, 4, 5} and V2 = {2, 6}. The former of these is the set of vertices u
will be adjacent to. From Lemma 3.9 we know that everything is fixed from this
point on and all that remains is to fill in the correct edges. In other words, we first
choose the vertex – the neighbourhood of which we shall fix – and then we choose
the neighbourhood. Note that the non-determinism lies only in the choosing of the
neighbourhood.

To continue, if there is a tripleton T = {u, v1, v2} where v1, v2 ∈ V1 or v1, v2 ∈ V2,
then v1v2 must be an edge of the graph we are constructing, so that the triangle T
has the correct parity. Contrariwise, to connect two vertices v1 ∈ V1 and v2 ∈ V2,
we must have that {u, v1, v2} is not an element of G. For our choice of V1 we obtain
in this way the graph which is in the third column, sixth row of Figure 3.3. ¦

Another way to code a switching class on n vertices is by a graph on n − 1
vertices. There is a bijection between the two: take any graph, add a single new
vertex v, not connected to the other vertices and you have there the unique graph
in the switching class in which v is isolated, see Corollary 3.10. This also establishes
that on n vertices there are 2(n−1)(n−2)/2 switching classes and this corresponds to
the fact that there are 2n(n−1)/2 graphs on n vertices divided into switching classes
of cardinality 2n−1, see Corollary 3.8. Note that it is essential to consider graphs up
to equality here.

3.4 Some complexity considerations

A property P of graphs can be transformed into an existential property of switching
classes as follows:

38 CHAPTER 3. SWITCHING CLASSES

1

4

5

6

2

3

1

4

5

6

2

3

1

4

5

6

2

3

1

4

5

6

2

3

(a) (d)(c)(b)

Figure 3.5: Constructing a hamiltonian path

P∃(G) if and only there is a graph H ∈ [G] such that P(H).

We will also refer to P∃ as “the problem P for switching classes”.
In this section we look at a number of (sometimes generic) instantiations of such

problems, and determine their complexity. As such, we do not give a unified theory,
but just a number of illustrative examples.

We generalize to switching classes a result of Yannakakis [47] on graphs (GT21,
the numbering is according to [18]), which is then used to prove that the indepen-
dence problem (GT20) is NP-complete for switching classes. This problem can be
polynomially reduced to the embedding problem (given two graphs G and H, does
there exist a graph in [G] in which H can be embedded, GT48). As a result the latter
problem is also NP-complete for switching classes. It also turns out that deciding
whether a switching class contains a 3-colourable graph is NP-complete (a special
case of GT4). We include the proof as an illustration of the proof technique.

3.4.1 Easy problems for switching classes

Let G be a graph on n vertices. Corollary 3.8 shows that there are 2n−1 graphs in [G],
and so checking whether there exists a graph H ∈ [G] satisfying a given property
P requires exponential time, if each graph is to be checked separately. However,
although the hamiltonian cycle problem for graphs (GT37) is NP-complete, the
hamiltonian cycle problem for switching classes can be solved in time O(n2), since
all one needs to check is that a given graph is not complete bipartite of odd order
(see Corollary 4.3).

Example 3.20
Let G be the graph of Figure 3.5(a). The objective is to find a graph in [G] that
has a hamiltonian path (GT39), in this case (1, 2, 3, 4, 5, 6). It turns out that this is
always possible, something which we shall now try to make clear. The technique we
use is to change the neighbourhoods of certain vertices using Lemma 3.9 in such a
way that every time it is applied we lengthen the path, without changing the already
constructed path.

Since 2 is not adjacent to 1 in G we apply the selector {2} and obtain the graph
G2 of Figure 3.5(b). After applying the selector {3} to G2 we add both {2, 3} and
{3, 4} to the path and obtain the graph of Figure 3.5(c) with path (1, 2, 3, 4). The
last selector we have to apply is {5} to obtain the graph H of Figure 3.5(d), which
indeed has a hamiltonian path (1, 2, 3, 4, 5, 6). ¦

3.4. SOME COMPLEXITY CONSIDERATIONS 39

Using the same method we can obtain a spanning tree with maximum degree
≤ k (IND1) and a spanning tree with at least k leaves (for 2 ≤ k ≤ n− 1) (IND2).
Note that these existence problems for graphs are all NP-complete, but like the
hamiltonian path problem, easy for switching classes.

Given any property of graphs decidable in polynomial time, we can derive an
algorithm for deciding the property for switching classes.

Theorem 3.21
Let P be a graph property such that P(G), for G of order n, can be decided in
O(nm) steps for an integer m. Let δ(G) ≤ d(n) (for the minimum degree δ(G) of
G) for all graphs G with P(G). Then P∃ is in O(nd(n)+1+max(m,2)).
Proof:
Let G = (V,E) be the graph, P the property, d(n) the polynomial that bounds
the minimum degree of all graphs G for which P(G) holds, and m the constant as
defined in the theorem.

The following algorithm checks P for all graphs such that there is a vertex v of
degree at most d(n). It uses Lemma 3.9.

Algorithm 3.22
P∃-DegreeBounded(G)
begin

for all v ∈ V (G) do
H = GNG(v)

for all subsets σ of V (G)− {v} of cardinality ≤ d(n) do
if P(Hσ) then

return true;
else continue;

od;
od;

end;

The complexity of the algorithm is easily determined. Let n = |V (G)|. The outer
loop is executed n times. The first statement of the inner loop is in O(n2) being the
worst-case complexity for the application of a selector. The inner loop is executed
O(nd(n)) times for each value of v. The condition of the “if” takes max(n2, nm), the
n2 being the complexity of switching with respect to σ, and together these yield the
complexity as given in the theorem. 2

This leads us to the following definition which defines the predicates such that we
need only check a polynomial number of candidate graphs in each switching class.

A predicate on (or property of) graphs P is of bounded minimum degree k if and
only if for all graphs G = (V,E) such that P(G) holds, there exists x ∈ V such that
the degree of x in G is at most k.

Corollary 3.23
If P is a graph property of bounded minimum degree that is decidable in polynomial
time, then P∃ is decidable in polynomial time.

Example 3.24
It is well known that planarity of a graph can be checked in time linear in the
number of vertices, see Hopcroft and Tarjan [32]. Because every planar graph has
a vertex of degree at most 5 (Corollary 11.1(e) in [28]), there are only a polynomial
number of graphs in a switching class that can possibly have the property. Because

40 CHAPTER 3. SWITCHING CLASSES

we can enumerate these efficiently, it can be checked in polynomial time whether
[G] contains a planar graph.

Also, every acyclic graph has a vertex of degree at most 1 and therefore there
is a polynomial algorithm for the acyclicity of switching classes, that is, whether a
switching class contains an acyclic graph.

The discrete graph has only vertices of degree zero, so the constant in this case is
0. By the above we have an algorithm to decide whether a switching class contains
a discrete graph. Note that in this case we can even omit the outer loop. Also
note that this algorithm is equivalent to a check for a complete bipartite graph
(Lemma 3.5) ¦

By complementation an analogous result can be formulated for graphs that al-
ways have a vertex of degree at least d(n).

Corollary 3.25 [Ehrenfeucht, Hage, Harju and Rozenberg [11]]
Let P be a graph property such that P(G), for G of order n can be decided in O(nm)
steps for an integer m. Let ∆(G) ≥ d(n) for the maximum degree ∆(G) of G. Then
P∃ is in O(n(n−d(n))+1+max(m,2)).
If d(n) = n− k for some constant k, then P∃ is decidable in polynomial time.

3.4.2 Hard problems for switching classes

Let P be a property of graphs that is preserved under isomorphisms. We say that
P is

(i) nontrivial, if there exists a graph G such that P(G) does not hold and there
are arbitrarily large graphs G such that P(G) does hold;

(ii) switch-nontrivial, if P is nontrivial and there exists a switching class [G] such
that for all H ∈ [G], P(H) does not hold;

(iii) hereditary, if P(G|A) for all A ⊆ V (G) whenever P(G).

In the following we shall look at nontrivial hereditary properties. The fact that
there is a graph for which P(G) does not hold implies with the fact that P is
hereditary, that there are arbitrarily large graphs for which P does not hold, which
is why this condition was omitted from the definition of nontriviality. The fact that
P is nontrivial directly implies that there are arbitrarily large switching classes for
which P∃ does hold.

Example 3.26
The following are examples of nontrivial hereditary properties of graphs that are
also switch-nontrivial: G is discrete, G is complete, G is bipartite, G is complete
bipartite, G is acyclic, G is planar, G has chromatic number χ(G) ≤ k where k is a
fixed integer, G is chordal, and G is a comparability graph. ¦

Yannakakis proved in [47] the following general result on NP-hardness and NP-
completeness.

Theorem 3.27
Let P be a nontrivial hereditary property of graphs. Then the problem for instances
(G, k) with k ≤ |V (G)| whether G has an induced subgraph G|A such that |A| ≥ k
and P(G|A), is NP-hard. Moreover, if P is in NP, then the corresponding problem
is NP-complete.

3.4. SOME COMPLEXITY CONSIDERATIONS 41

Example 3.28
If we take P to be the discreteness property, then Theorem 3.27 says that given
(G, k) the problem to decide whether G has a discrete induced subgraph of order
at least k is NP-complete. Note that this problem is exactly one of the standard
NP-complete problems: the independence problem (GT20). In this way the result of
Yannakakis proves in one sweep that this problem is NP-complete, without having
to resort to reduction. ¦

We shall establish a corresponding result for switching classes. For this, let P
be a switch-nontrivial hereditary property. The property P∃ is nontrivial, and P∃ is
hereditary, since

(G|A)σ = Gσ|A (3.3)

for all A ⊆ V (G) and σ : V (G)→ Z2.

Theorem 3.29
Let P be a switch-nontrivial hereditary property. Then the following problem for
instances (G, k) with k ≤ |V (G)|, is NP-hard: does the switching class [G] contain
a graph H that has an induced subgraph H|A with |A| ≥ k and P(H|A)? If P ∈
NP then the corresponding problem is NP-complete.
Proof:
Since P∃ is a nontrivial hereditary property, we have by Theorem 3.27 that the
problem for instances (G, k) whether G contains an induced subgraph of order at
least k satisfying P∃, is NP-hard. This problem is equivalent to the problem stated
in the theorem, since by (3.3), for all subsets A ⊆ V (G), P∃(G|A) if and only if there
exists a selector σ such that P((G|A)σ).

If P is in NP, then we can guess a selector σ and check whether P(Gσ) holds in
nondeterministic polynomial time. Hence, P∃ is NP-complete and so the problem is
NP-complete by (the second part of) Theorem 3.27. 2

We shall now investigate the problem of 3-colourability, which we shall show
to be NP-complete for switching classes. It is a nice illustration of proving NP-
completeness of problems for switching classes by reducing the corresponding prob-
lem for graphs to the problem for switching classes.

For a given graph G = (V,E) a function α : V → C for some set C is a (proper)
colouring of G if for all uv ∈ E, α(u) 6= α(v). The chromatic number of G is the
minimum cardinality over the ranges of possible proper colourings of G and it is
denoted by χ(G). The fact that the sets α−1(c), for all c ∈ C, are independent in
G follows directly from the definition. Note that a graph is bipartite if and only if
it has chromatic number less than or equal to 2.

Lemma 3.30 [new, Hage and Harju [22]]
Let G be a graph with χ(G) = k. Then for all switches Gσ of G, k/2 ≤ χ(Gσ) ≤ 2k.
Proof:
To see this, let X1, . . . , Xk be a partition of G for a colouring that uses the minimal
amount of k colours. Then a selector splits each Xi up into at most two sets: Xi∩σ
and Xi − σ. Hence χ(Gσ) ≤ 2χ(G). By symmetry we also have χ(G)/2 ≤ χ(Gσ).2

As a consequence, if a switching class has a graph with chromatic number larger
than 4, then it does not contain a bipartite graph. However, not every 4-colourable
graph generates a switching class with a bipartite graph, the graph K4 ∪K1 being
a counterexample.

42 CHAPTER 3. SWITCHING CLASSES

Theorem 3.31 [new, Hage and Harju [22]]
If m ≤ k ≤M , where m and M are the minimum and maximum chromatic numbers
in [G]. For every m ≤ k ≤M there exists an H ∈ [G] with χ(H) = k.
Proof:
Let χ(G0) = m, and Gi+1 = Gzii for i = 0, 1, . . . , k − 1 with χ(Gk) = M . (Here
G0, G1, . . . , Gk is a sequence obtained by switching with respect to one vertex of
the previous graph). Now, χ(Gi+1) ≤ χ(Gi) + 1 for all i because at most we have
to change the colour for the vertex that is switched. Therefore there exists a sub-
sequence Gi0 , Gi1 , . . . , GiM−m such that χ(Gij) = m + j. Of course, the chromatic
number can sometimes decrease, but that does not matter, because eventually it
grows to M . 2

Example 3.32
Every odd cycle has chromatic number 3. Even cycles have chromatic number 2.

If a graph G has a clique of cardinality k, then χ(G) ≥ k, since k colours are
needed to colour the clique. Hence a lower bound for the chromatic number of a
graph is the size of its biggest clique. However, the odd cycles show that this lower
bound is not always optimal. In fact, there are triangle-free graphs that have an
arbitrarily high chromatic number (Theorem 12.5 of [28]). Because of Lemma 3.30
this also holds for switching classes: there is a switching class with a triangle-free
graph such that the minimum chromatic number over the graphs in the switching
class is arbitrarily high.

The graph K4 has chromatic number 4. Switching with respect to any two
vertices of this graph gives P2 ∪ P2, which is 2-colourable. Hence, the limits of
Lemma 3.30 are obtainable.

On a different note, consider the class [K5]. The graph K5 has chromatic number
5, while the other graphs in the switching class K4∪K1 and K3∪K2 have chromatic
numbers 4 and 3 respectively. This shows that the maximum difference – a factor
two – between chromatic numbers is not always realized. ¦

(c)(a)

x x

(d)(b)

Figure 3.6:

Example 3.33
The graph 3-colourability problem (for a graph G, is χ(G) ≤ 3?) is NP-complete.
We now consider the problem for switching classes: does there exist a 3-colourable
graph in the switching class [G]? Obviously, this problem is in NP: we can guess the
selector σ and the 3-colouring at once and verify that Gσ has the proper colouring.

Let G = (V,E) be any graph, and let G9 = G ∪ 3 · C3 be the graph which is a
disjoint union of G and three disjoint triangles. Let A be the set of the nine vertices
of the added triangles.

3.4. SOME COMPLEXITY CONSIDERATIONS 43

We claim that χ(G) ≤ 3 if and only if [G9] contains a graph H such that χ(H) =
3. Since the transformation G 7→ G9 is in polynomial time, the claim follows.

It is clear that if χ(G) ≤ 3 then χ(G9) = 3.
Suppose then that there exists a selector σ such that χ(Gσ9) = 3, and let the

function α : V ∪A→ {1, 2, 3} be a proper 3-colouring of Gσ9 .
If σ is constant on V , then G is a subgraph of Gσ9 , and, in this case, χ(G) ≤ 3.
Assume that σ is not constant on V . Since Gσ9 does not contain K4 as a subgraph,

it follows that σ is not constant on any of the added triangles, see Figure 3.6(a) and
(b). Further, each of these triangles contains equally many selections of 1 (and of
0, of course), since otherwise the subgraph Gσ9 |A would contain K4 as its subgraph,
see Figure 3.6(c) and (d).

2, 3

(a)

3, 2

2, 3
1

1 1

2, 3 3, 2

3, 2

(b)

Figure 3.7:

We may assume that each of the added triangles contains exactly one vertex v
with σ(v) = 1 (otherwise consider the complement of σ, V (G9)−σ), see Figure 3.7(a).
Let these three vertices constitute the subset A1 ⊂ A.

In the 3-colouring α the vertices of A1 obtain the same colour, say α(v) = 1 for
all v ∈ A1; and in each of the added triangles the other two vertices obtain different
colours, 2 and 3, since they are adjacent to each other and to a vertex of A1 in Gσ9 ,
see Figure 3.7(b).

Each v ∈ V with σ(v) = 1 is connected to all u ∈ A−A1; consequently, α(v) = 1
for these vertices. Therefore the set B1 = σ−1(1) ∩ V is an independent subset of
Gσ9 . Since σ is constant on B1, B1 is also independent in G. The vertices in V −B1

(for which σ(v) = 0) are all adjacent to the vertices in A1 in Gσ9 , and therefore these
vertices are coloured by 2 or 3. The subsets B2 = α−1(2) ∩ V and B3 = α−1(3) ∩ V
are independent in Gσ9 . Again, since σ is constant on both B2 and B3, these are
independent subsets of G. This shows that χ(G) ≤ 3. ¦

3.4.3 The embedding problem

We consider now the embedding problem for switching classes. Recall that a graph
H can be embedded into a graph G, denoted by H ↪→ G, if H is isomorphic to a
subgraph M of G, that is, there exists an injective function ψ : V (H)→ V (G) such
that

{ψ(u)ψ(v) | uv ∈ E(H)} ⊆ E(M)

We write H ↪→ [G], if H ↪→ Gσ for some selector σ. The embedding problem for
graphs is known to be NP-complete, and below we show that it remains NP-complete
for switching classes.

44 CHAPTER 3. SWITCHING CLASSES

For a subset A ⊆ V (G) and a selector σ : V (G)→ Z2 we have by (3.3) that
[G|A] = [G]|A, where

[G]|A = {Gσ|A | σ : V (G)→ Z2}
is called the subclass of G induced by A.

Hence the switching class [G] contains a graph H which has an independent
subset A if and only if the induced subgraph G|A generates the switching class
[KA]. As stated in Lemma 3.5 [KA] equals the set of all complete bipartite graphs
on A.

An instance of the independence problem consists of a graphG and an integer k ≤
|V (G)|, and we ask whether there exists a graph H ∈ [G] containing an independent
set A with k or more vertices. This problem is NP-complete for graphs (that is, the
problem whether a graph G contains an independent subset of cardinality ≥ k) and,
by Theorem 3.29, it remains NP-complete for switching classes.

Theorem 3.34
The independence problem is NP-complete for switching classes. In particular, the
problem whether a switching class [G] has a subclass [Km] with m ≥ k, is NP-
complete.

Recall that a graph G = (V,E) has clique size ≥ k if there is a set A ⊆ V such
that all edges exist between (different) vertices of A and |A| ≥ k. By Lemma 3.15
and Theorem 3.34 the following corollary holds.

Corollary 3.35
For an instance (G, k), where G is a graph and k an integer such that k ≤ |V (G)|,
the problem whether [G] contains a graph with clique size ≥ k, is NP-complete.

From the simple observation that if Kn embeds into a graph G, then it is iso-
morphic to a subgraph of G, we obtain

Corollary 3.36
The embedding problem, H ↪→ [G], for switching classes is NP-complete for the
instances (H,G) of graphs.

Since we can instantiate G with the clique on V and then use it to solve the
clique problem of Corollary 3.35 using the same value for k, we can conclude the
following.

Corollary 3.37
For an instance (G,H, k) for graphs G and H on the same domain V of cardinality
n and k an integer with 3 ≤ k ≤ n − 1, the problem whether there is a set A ⊆ V
with |A| ≥ k such that H|A ∈ [G|A] is NP-complete.

Example 3.38
To illustrate the problem posed in Corollary 3.37, letG = KV , where V = {u, v, w, z}
and let H be the graph of Figure 2.4.

First of all H cannot be embedded into any graph in [G], since the parity of the
edges in each tripleton of G is 1 and the parity of, for instance, {u, v, z} is 0. So if
we take k = 4, then the answer to the problem posed in Corollary 3.37 is “no” for
G and H. For k = 3 however the answer is “yes”, since both graphs contain the
triangle {u, v, w}. Hence the maximum subgraph match between G and H has size
3. ¦

3.4. SOME COMPLEXITY CONSIDERATIONS 45

We write [H] ↪→ [G], if for all H ′ ∈ [H] there exists G′ ∈ [G] such that H ′ ↪→ G′.
By instantiating H with a clique of cardinality k, the property [H] ↪→ [G] becomes
the clique problem of Corollary 3.35. Hence,

Corollary 3.39
For instances (H,G) of graphs the switching class embedding problem [H] ↪→ [G] is
NP-hard.

Note, however, that the problem to decide whether a given graph H is an induced
subgraph of a graph in [G] is easy. In this case the only difficulty lies in checking
whether G can be switched so that H appears within the switch (see Chapter 7). It
occurs as a special case of the embedding problem treated here, the case where the
embedding is the identity function on V (H). Hence the NP-completeness arises from
the number of possible injections. For Corollary 3.37 the problem also does not lie in
the number of injections, because here it is also the identity: the NP-completeness
arises from the number of possible subsets A. In this regard the embedding prob-
lem as treated above and the problem considered in Corollary 3.37 are orthogonal
generalizations of the membership problem of Chapter 7 (when restricted to graphs).

46 CHAPTER 3. SWITCHING CLASSES

Chapter 4

Cyclicity Considerations

Cycles are important in switching classes. One of the basic results in the field of
switching classes is that the parity of edges along any cyclic sequence of vertices
does not change under the application of a selector (Theorem 3.14).

In this chapter we consider a variety of problems that involve cycles. In Sec-
tion 4.1 we characterize the switching classes that contain a pancyclic graph. These
results are originally from Ehrenfeucht, Hage, Harju and Rozenberg [13]. The char-
acterization leads to an efficient algorithm for detecting whether a switching class
contains a pancyclic graph. As a corollary we obtain a similar result for hamiltonian
graphs. Note that both these problems are NP-complete for graphs.

In Section 4.2 we prove that a switching class contains only one tree up to
isomorphism and a strictly limited number of acyclic graphs. The original material
is from Hage and Harju [24]. Following up our investigation into acyclic graphs
we characterize those switching classes that contain an acyclic graph by a set of
forbidden induced subgraphs in Section 4.3. This material is based on Hage and
Harju [25].

4.1 Pancyclicity in switching classes

Let G be a graph of order n. Recall that G is pancyclic if it has a cycle of length k
for all 3 ≤ k ≤ n. As such it generalizes the definition of hamiltonian graph.

We prove, following the main lines of J. Kratochv́ıl, J. Nešetřil, and O. Zýka [35]
as communicated to us by J. Kratochv́ıl [34], that a switching class has a hamiltonian
graph if and only if n is even or the class is different from the switching class [KV]
of all complete bipartite graphs on V . This can be checked in time quadratic in
the number of vertices (see Example 3.24) which should be contrasted with the fact
that checking hamiltonicity for graphs is NP-complete. We actually prove a stronger
result, which states that all switching classes different from [KV] contain a pancyclic
graph. This result is in accordance with Bondy’s metaconjecture in [4] which declares
that almost all nontrivial general graph properties that imply hamiltonicity imply
also pancyclicity. In our result there is only one (trivial) exception: the switching
classes of the complete bipartite graphs of even orders contain hamiltonian graphs
but do not contain any pancyclic graphs. The NP-completeness of pancyclicity was
only recently established by Li, Corneil and Mendelsohn [36].

The closure of a graph G is defined inductively as the graph Gk obtained from a
sequence of graphsG = G0, G1, . . . , Gk, whereGi+1 = Gi+uivi, dGi(ui)+dGi(vi) ≥ n
with uivi /∈ E(Gi), and dGk(u) + dGk(v) < n for all uv /∈ E(Gk), see [5].

47

48 CHAPTER 4. CYCLICITY CONSIDERATIONS

The first case of the following lemma is due to Dirac [10], the second to Bondy [4],
and the third to Bondy and Chvátal [5].

Lemma 4.1
Let G be a graph and let n be the order of G.

i. If dG(v) ≥ n/2 for all v ∈ V (G), then G is hamiltonian.

ii. If G is hamiltonian and |E(G)| ≥ n2/4, then G is pancyclic or G = Kn/2,n/2.

iii. G is hamiltonian if and only if G+uv is hamiltonian, whenever dG(u)+dG(v) ≥
n for uv /∈ E(G). Hence, G is hamiltonian if and only if the closure of G is
hamiltonian.

Theorem 4.2
If n ≥ 3, then [G] contains a pancyclic graph if and only if [G] 6= [KV].
Proof:
Let G = (V,E) be a maximum graph in its switching class. From this we find that
for all σ ⊆ V , there are at least

1
2
|σ|(n− |σ|) (4.1)

edges leaving σ, for, otherwise, switching with respect to σ would yield a graph of
greater size.

If n is even, then G is hamiltonian by Lemma 4.1.i, because by (4.1), dG(v) ≥ n/2
for all v ∈ V . In this case, the graph has at least n2/4 edges and so by Lemma 4.1.ii,
we have that G is either pancyclic or Kn/2,n/2.

Suppose then that n is odd, and let AG = {v | dG(v) = (n − 1)/2}. If AG = ∅,
then as above we conclude that G is pancyclic or it is complete bipartite. Assume
thus that AG 6= ∅.
Claim 1 AG is independent in G.
Indeed, let B ⊆ AG be a clique of G. For each v ∈ B, there are exactly (n− 1)/2−
(|B| − 1) edges that leave B, and hence by (4.1),

|B|(1
2

(n− 1)− (|B| − 1)) ≥ 1
2
|B|(n− |B|)

which is possible if and only if |B| = 1.
Claim 2: Every switching class contains a maximum graph G such that |AG| ≤
(n− 1)/2 or G = K(n−1)/2,(n+1)/2.
Indeed, since for v ∈ AG, dG(v) = (n − 1)/2, it follows that |AG| ≤ (n + 1)/2,
because AG is independent in G. If |AG| = (n + 1)/2, then let v ∈ AG, and switch
with respect to σ = {v}. We get a maximum graph Gσ with |AGσ | ≥ 1, since
dGσ(v) = (n− 1)/2. By the above, we know that |AGσ | ≤ (n+ 1)/2.

We show that if |AGσ | = (n + 1)/2, then G = K(n+1)/2,(n−1)/2. If G|V−AG
contains an edge, then so does Gσ|AGσ , because AG ∩ AGσ = {v} and |V − AGσ | =
|V −AG| = (n−1)/2. Consequently AGσ = {v}∪(V −AG), but, by Claim 1, the latter
is independent. So V −AG is independent in G and hence G = K(n−1)/2,(n+1)/2.

Assume then that G is a maximum graph in its switching class such that |AG| ≤
(n−1)/2, and thus that G is not complete bipartite. We prove that G is hamiltonian.
Because |V −AG| > (n− 1)/2, for each v ∈ AG there exists a u ∈ V −AG such that
vu /∈ E(G), and

dG(v) + dG(u) ≥ (n− 1)/2 + (n+ 1)/2 = n.

4.2. COUNTING ACYCLIC GRAPHS IN SWITCHING CLASSES 49

Now dG+uv(v) equals (n + 1)/2 and by Lemma 4.1.iii, G is hamiltonian since its
closure is the complete graph Kn.

Knowing that G is hamiltonian, we can prove that it is, in fact, pancyclic:

2|E(G)| =
∑
v∈V

dG(v) ≥ |AG|
1
2

(n− 1) + (n− |AG|)
1
2

(n+ 1) =
1
2
n(n+ 1)− |AG|

≥ 1
2
n(n+ 1)− 1

2
(n− 1) =

1
2

(n2 + 1)

and thus |E(G)| ≥ (n2 + 1)/4. By Lemma 4.1.ii, we conclude that G is pancyclic. 2

Note that Claim 2 in the above proof is necessary. The crown of Figure 2.8(a)
is an example of a graph that has maximum size among the graphs in its switching
class, but which is not hamiltonian. One of its switches, the graph of Figure 2.8(b)
does have a hamiltonian cycle and is also a maximum graph in its switching class,
see Example 3.16.

Since for even n, Kn,n is hamiltonian, we have proved

Corollary 4.3
A switching class [G] contains a hamiltonian graph if and only if G is not a complete
bipartite graph of odd order.

Corollary 4.4
Let G be a graph of order n. Then either G is a complete bipartite graph or for
each i = 3, . . . , n, there is a cycle Ci (of KV (G)) on which the parity of edges of G is
the same as the parity of i.
Proof:
Clearly, we may suppose that the order n of G is at least three. Suppose that G is
not complete bipartite, and thus that G /∈ [KV (G)]. By Theorem 4.2, there exists
a pancyclic graph H ∈ [G], and thus H has a subgraph Ci for each 3 ≤ i ≤ n. By
Theorem 3.14, the parity of edges of G and H on Ci is the same, which proves the
claim. 2

When the above corollary is applied to the complement graph of G we obtain

Corollary 4.5
Let G be a graph that is not a disjoint union of two cliques. Then for each i =
3, . . . , |V (G)|, there is a cycle Ci (of KV (G)) such that G has an even number of
edges in Ci.

4.2 Counting acyclic graphs in switching classes

In this section we first prove Theorem 4.7 which says that every switching class
contains at most one tree up to isomorphism. In the process we characterize the
types of trees for which the switching class contains more than one tree up to equality
and give the selectors that map these trees into isomorphic copies.

We then proceed along the same lines with disconnected acyclic graphs, i.e.,
acyclic graphs that have at least two components. A switching class can contain
more than one nonisomorphic disconnected acyclic graphs, but this happens only
for one special type of disconnected acyclic graph as shown in Section 4.2.4.

50 CHAPTER 4. CYCLICITY CONSIDERATIONS

The connection between trees and switching classes has been considered from
another point of view by Cameron [8].

In order to show that each switching class [G] contains at most one tree up to
isomorphism, we only need to show that for each tree T the trees in the switching
class [T] are isomorphic to T .

Clearly, not all switching classes contain trees. For example, if G contains a
complete graph of five vertices as a subgraph then [G] has no trees (in fact, no
triangle-free graphs).

4.2.1 Preparation

We begin with a simple example. For this let us consider the graph G of Fig-
ure 4.1(a). Both of the (isomorphic) paths T1 and T2 in Figure 4.1(b) and (c)
belong to [G]. Here the black vertices indicate the elements of σ1 and σ2 for which
Gσ1 = T1 and Gσ2 = T2, respectively.

(b) (c)

(a)

Figure 4.1: Two trees in a switching class [G]

In this section we use a number of types of graphs:

• Pt(m, k) is the tree that is obtained from the path Pt of t vertices when the
leaves are substituted by K1,m and K1,k, see Figure 4.2(b) for P2(m, k) and
Figure 4.2(d) for P4(m, k).

• K∗1,m denotes the tree, where the leaves of K1,m are substituted by edges P2,
see Figure 4.2(a).

• K1,3(m, k) denotes the tree, where two of the leaves of K1,3 are substituted by
the stars K1,m and K1,k, see Figure 4.2(c).

Note that K1,m = P2(0,m− 1) for all stars K1,m with m ≥ 1.
We begin with a general result on acyclic graphs.

Lemma 4.6
Let F = (V,E) and F σ be acyclic graphs for a selector σ ⊆ V .

i. If C is a connected component of F |σ, then C consists of at most two vertices.
Moreover, if C = {x, y} with x 6= y, then xy ∈ E, and

∀z ∈ V − σ, either zx ∈ E or zy ∈ E but not both . (4.2)

ii. Either F |σ or F |V−σ is discrete.

iii. For any x, y ∈ σ with x 6= y there exists at most one z ∈ V − σ such that
zx, zy ∈ E.

4.2. COUNTING ACYCLIC GRAPHS IN SWITCHING CLASSES 51

(a)

(b)

(c) (d)

Figure 4.2: Types of trees having self isomorphic switches

Proof:
Clearly, F σ|σ and F |σ have the same connected components. Let F |C , C ⊆ σ be
a connected component of F |σ. By acyclicity, for each z ∈ V − σ there can be at
most one edge zx of F and similarly of F σ such that x ∈ C. On the other hand,
each zx with x ∈ C is an edge either in F or in F σ. This shows the first claim. The
second claim follows immediately from this: if xy is an edge in F |σ and wx an edge
in F |V−σ, then by the first claim z is connected to either x or y and the same holds
for w, which gives a cycle.

The third claim is clear, since if z1, z2 ∈ V −σ with zix, ziy ∈ E, then (x, z1, y, z2)
would be a cycle in F . 2

4.2.2 Trees

We continue now with the first main result of this section, proving that a switching
class contains only isomorphic trees. We also list the trees that have an isomorphic
switch in their switching class including the corresponding switches. In addition to
the graphs of Figure 4.2 we also find two exceptional trees on seven vertices, P7 and
T7 of Figure 4.3 respectively.

(a) (b)

Figure 4.3: The only two 3-by-4-bipartite trees on seven vertices yielding a tree

Theorem 4.7
Every switching class contains at most one tree up to isomorphism. If it contains
more than one tree up to equality, then the tree is one of K∗1,m+1, P2(m, k + 1),
K1,3(m, k), P4(m, k) for m, k ≥ 0 (Figure 4.2), or one of the two special trees P7 or
T7 of Figure 4.3.
Proof:
Suppose that T = (V,E) is a tree for which there exists a selector σ ⊆ V such that
T σ is also a tree. We may suppose that σ is not constant on V , since otherwise

52 CHAPTER 4. CYCLICITY CONSIDERATIONS

T σ = T . Furthermore, by Lemma 4.6(ii), we may assume that T |V−σ is discrete,
since T σ = T V−σ.

Let n = |V |, p = |σ| and suppose T |σ contains r edges, xiyi for i = 1, 2, . . . , r
with xi, yi ∈ σ, where {xi, yi} are the nonsingleton connected components of T |σ.
Since T is a tree, it has n−1 edges, and so there are n−1−r edges of T in σ×(V −σ).
Also, T σ has n−1 edges, and there are p(n−p)−(n−1−r) edges of T σ in σ×(V −σ).
Therefore, the number of edges of T σ is n− 1 = p(n− p)− (n− 1− r) + r, that is,

(p− 2)n = (p− 2)(p+ 1) + (p− 2r) . (4.3)

If p = 1, then r = 0, and n = 1, which is a trivial case.
If p = 2, then p = 2r and hence r = 1, and in this case σ = {x1, y1} with

x1y1 ∈ E, and, by (4.2), V − σ = B1 ∪ B2, where B1 = {z ∈ V − σ | zx1 ∈ E} and
B2 = {z ∈ V − σ | zy1 ∈ E} form a partition of V − σ. Therefore T is a P2(m, k)
with m ≥ 0 and k ≥ 1 of Figure 4.2(b), where the black vertices are in σ. Here T σ

is also a P2(m, k), and thus isomorphic to T .
Assume then that p > 2. Now equation (4.3) becomes

n = p+ 1 +
p− 2r
p− 2

. (4.4)

It is immediate that either 2r = p, or r = 1, or r = 0. These cases give us the
following solutions.

If 2r = p, then n = p + 1. Now, T |σ consists of r edges and it has no singleton
connected components, and T |V−σ is a singleton graph. Therefore T is a K∗1,r (with
r ≥ 1) of Figure 4.2(a), where the black vertex is in V −σ. Clearly, also in this case
T σ is isomorphic to T .

If r = 1, then n = p + 2, and thus T |σ has one edge x1y1 and p − 2 isolated
vertices, and T |V−σ is a discrete graph of two vertices, say z1, z2. By (4.2), there
are now two choices: z1 and z2 are connected to the same or different vertices of
{x1, y1}. From these we obtain that T is either K1,3(m, k) or P4(m, k) with m, k ≥ 0
of Figure 4.2(c) and 4.2(d), respectively. Again, as is easy to see, T σ is isomorphic
to T in both of these cases.

If r = 0, then p = 3 or p = 4. In this case n = 7, and there are eleven
nonisomorphic trees on seven vertices, see Harary [28]. Of these trees seven are
3-by-4-bipartite; they are listed in Figure 4.4 and Figure 4.3.

Now, if T and T σ are both trees, then none of the vertices should be connected
to all vertices in the other part of the partition, because such vertices would become
isolated; this excludes Figure 4.4(b), (c), (d) and (e). Also T contains no independent
set with two vertices in σ and two vertices in V − σ, because that would give a C4;
now also (a) is excluded. We are then left with only two trees T of seven vertices,
which are T7 and P7 of Figure 4.3. For both of these trees T σ is isomorphic to T . 2

4.2.3 Trees into disconnected acyclic graphs

Let k,m ≥ 0. For the following theorem we will find the following graphs to be
exceptional cases:

• Sk,m denotes the tree, which is obtained from a star K1,k+m by substituting k
leaves by an edge, see Figure 4.5(a) for the graph and its disconnected acyclic
switch.

4.2. COUNTING ACYCLIC GRAPHS IN SWITCHING CLASSES 53

(a)

(b) (c)

(d) (e)

Figure 4.4: The other 3-by-4-bipartite trees on seven vertices

• P3(k,m) which is a special case of Pt(k,m) defined earlier, see the left graph
of Figure 4.5(b).

• P6, the left graph of Figure 4.5(c), which is simply the path on six vertices.

(c)

k

m

(b)

(a)

k
m

Figure 4.5: Trees and their disconnected switches

We consider now the case where a tree T produces a disconnected acyclic graph
T σ. Again we have indicated the switches to obtain, in this case, a disconnected
acyclic graph by the black vertices.

Theorem 4.8
Let T = (V,E) be a tree such that T σ is a disconnected acyclic graph. Then T is
P3(m, k), Sk,m+1, or P6, for some m, k ≥ 0.

54 CHAPTER 4. CYCLICITY CONSIDERATIONS

Proof:
Suppose that T = (V,E) is a tree such that T σ is a disconnected acyclic graph.
Obviously, σ is a nonconstant switch. As above we may assume that T |V−σ is
discrete. Let again n = |V |, p = |σ| and suppose T |σ contains r edges. Now, T σ has
less than n− 1 edges, and (4.3) is transformed into

(p− 2)n < (p− 2)(p+ 1) + (p− 2r) . (4.5)

If p = 1, then clearly T = K1,n−1 = S0,n−1, and hence T σ is the discrete graph.
If p = 2, say σ = {x, y}, then (4.5) becomes 2(1− r) = p− 2r > 0, and therefore

r = 0. Since T is connected there exists a vertex z ∈ V − σ such that zx, zy ∈ E,
and by Lemma 4.6, the vertex z is unique. Consequently, V −σ = N(x)∪N(y) with
N(x)∩N(y) = {z} for the sets N(x) and N(y) of neighbours of x and y. Hence T is
a P3(m, k), where the middle vertex of the P3 is z, see Figure 4.5(b) and σ consists
of the two black vertices. In this case T σ is a disconnected acyclic graph, where z is
isolated, and the edges are xu and yv for all u ∈ N(y) and v ∈ N(x).

If p > 2, then (4.5) gives

n < p+ 1 +
p− 2r
p− 2

,

which is possible only if r < p/2; if r = p/2 then we would have p ≥ n, which cannot
happen. Assume first that p = n − 1, i.e., |V − σ| = 1. This case holds always if
r > 0. The corresponding tree is T = Sk,m with m > 0, see Figure 4.5(a), where the
black vertex is in V − σ. Note that this also includes the star graph, namely when
k = 0.

If r = 0 we get
n < p+ 1 +

p

p− 2
,

in which case p = 3 yields n < 7 and p = 4 also yields n < 7. Larger values for p
yield n = p+ 1, a case we have already treated.

If r = 0, then T |σ is discrete, so the case p = n+ 2 reduces to the case p = 2.
The only remaining cases are trees with n = 6 and p = 3. These are P6 (see

Figure 4.5(c)), S2,1 and P2(2, 2). If we switch the latter according to the bipartition
we obtain a cyclic graph, because it has an independent set of four vertices, two in
σ and two in V − σ. The other two, P6 and S2,1, switch into a disconnected acyclic
graph.

2

Note that P6 is also a P4(1, 1), but we have two different acyclic switches. Also
S1,m = P3(0,m) for m ≥ 1.

4.2.4 Disconnected acyclic graphs

In this section we prove a result analogous to the result about trees: every switching
class contains at most one disconnected acyclic graph up to isomorphism excepting
one special kind of disconnected acyclic graph.

The counterexample is the disconnected acyclic graph Sk,m,` which is formed by
adding ` isolated vertices to Sk,m of Figure 4.5(a) (see Figure 4.6(a)). Of course, for
Sk,m,` to be a disconnected acyclic graph it is necessary that ` > 0.

If S = Sk,m,` and we take σ to be the one black vertex in the figure, then
Sσ = Sk,`,m is an acyclic graph of the same type (see Figure 4.6(b)), but Sσ is
isomorphic to S if and only if m = `.

4.2. COUNTING ACYCLIC GRAPHS IN SWITCHING CLASSES 55

k
`

m

k
`

m

(a) (b)

Figure 4.6: The graphs Sk,m,` and Sk,`.m

Two other types of graphs are listed in Figure 4.7. These give the disconnected
acyclic graphs that switch into isomorphic graphs.

• K1,k ∪ K1,m is simply the disjoint union of two stars (with k and m rays
respectively) and it is depicted in Figure 4.7(a), and

• P3(k,m) ∪K1 can be obtained by taking the leftmost graph of Figure 4.5(b)
and adding an isolated vertex.

(a) (b)

v

x y

z

Figure 4.7: Two cases of self isomorphism

Theorem 4.9
Every switching class contains at most one disconnected acyclic graph up to isomor-
phism, unless it is a class containing Sk,m,` with m 6= ` and m, ` > 0. If it contains
more than one disconnected acyclic graph up to equality, then they are K1,k ∪K1,m,
P3(k,m) ∪K1 or Sk,m,` with m, ` > 0.
Proof:
Let F = (V,E) be a disconnected acyclic graph, n the order of F , σ ⊆ V and
p = |σ| > 0, and assume that F σ is a disconnected acyclic graph. We can suppose
that p ≤ n/2, since F σ = F V−σ. We prove that F σ is isomorphic to F , unless
F = Sk,m.` with m 6= `.

We prove that p = 1 or p = 2.
By Lemma 4.6, we know that either F |σ or F |V−σ or both are discrete, and that

the connected components of F |σ and F |V−σ are either singletons or single edges.
Because F and F σ both have at least two components and no cycles, together

they contain at most 2(n− 2) edges. Therefore, p(n− p) ≤ 2(n− 2), since there are
p(n− p) edges in Kσ,V−σ and all of these are in either F or F σ (but not both). We
find that n(p − 2) ≤ p2 − 4 = (p − 2)(p + 2). Now, either p = 1 or p = 2, since if
n ≤ p+ 2, then n ≤ 4, because we can assume that p ≤ n/2.

We finish by considering the two cases p = 1 and p = 2.
Consider first the case p = 1, and let σ = {x}. If |V − σ| = 1, then n = 2, and

hence F = S0,0,1 is discrete, and F σ = S0,1,0 is a tree.

56 CHAPTER 4. CYCLICITY CONSIDERATIONS

Assume then that |V − σ| ≥ 2. By Lemma 4.6(i), all components of F |V−σ are
either singletons or edges. In the case of an edge yz, x is connected to exactly one
of y and z (otherwise we have a triangle in either F or F σ). As a consequence,
F = Sk,m,` for some k,m ≥ 0 and ` ≥ 1, and, consequently, F σ = Sk,`,m. Hence,
in this case, F σ is a tree if and only if m = 0, and otherwise F σ is a disconnected
acyclic graph. In the latter case, F σ is isomorphic to F if and only if m = `.

The case that p = 2 can be treated as follows. Let σ = {x, y}.
In this case Kσ,V−σ contains exactly 2(n−2) edges, while F and F σ both contain

at most n−2 edges. This implies that F and F σ contain exactly n−2 edges and all
these edges are between σ and V − σ. Hence F and F σ are disjoint unions of trees.
Note that all edges go between σ and V − σ, and F |V−σ is discrete.

Suppose first that x and y belong to different connected components. Now F
becomes decomposed into two stars, the leaves of which are the neighbours of x and
y, respectively. In this case, F and F σ are both disjoint unions K1,r ∪K1,s where
r + s = n− 2, see Figure 4.7(a).

On the other hand, if x and y belong to the same connected component, then,
by Lemma 4.6, there exists a unique vertex v ∈ V − σ such that vx ∈ E and
vy ∈ E. Since F is disconnected, there is a vertex z ∈ V − σ such that xz, yz /∈ E.
Furthermore, because F σ is acyclic and xz, yz are edges of F σ, this vertex z must,
like v, be unique. This implies that F and F σ are isomorphic, the isomorphism is
the permutation (x, y)(v, z), which leaves all other vertices intact, see Figure 4.7(b).

This completes the proof of the theorem. 2

The class [S1,0,m] for m > 0 contains both S1,m,0 and S0,m,2. The latter because
S1,0,m = S0,2,m. For m ≥ 3, the switching class [S1,0,m] contains three acyclic graphs
up to isomorphism: S1,0,m = S0,2,m, S0,m,2 and S1,m,0.

From the above we obtain also the following corollary.

Corollary 4.10
Every switching class contains

i. at most two disconnected acyclic graphs up to isomorphism and the upper
bound is reached if and only if it contains Sk,m,` with m 6= ` and m, ` > 0.

ii. at most three acyclic graphs up to isomorphism. The upper bound is optimal
and can only be reached if it contains two disconnected acyclic graphs up to
isomorphism.

Proof:
The first claim follows from Theorem 4.9 and the fact that although a graph Sk,m,`
may have more than one switch into a disconnected acyclic graph, either the switches
are isomorphic, or the original graph is isomorphic to one of the switches. Of course,
if m = `, then Sk,m,` is isomorphic to Sk,`,m. For disconnectedness of both Sk,m,`
and Sk,`,m we need that m, ` > 0.

For the second part, the switching class [S1,0,m] is an example that reaches the
upper bound. If we would have four acyclic switches, then either we have at least
two trees up to isomorphism, which is forbidden by Theorem 4.7, or we have three
disconnected acyclic graphs, which contradicts the first claim. 2

4.3. CHARACTERIZING ACYCLIC SWITCHING CLASSES 57

4.3 Characterizing acyclic switching classes

In this section we solve a problem raised by Acharya [2] and by Zaslavsky in his
dynamic survey in 1999 [51], which asks for a characterization of those graphs that
have an acyclic switch.

The graphs that do not have an acyclic switch are called forbidden. Obviously, if
a forbidden graph occurs in another graph, then the latter is also forbidden. For this
reason we are interested in the graphs that are minimal in this respect: they do not
have an acyclic switch, but all their proper induced subgraphs do have an acyclic
switch. We call these graphs and the corresponding switching class critically cyclic.
A switch of a critically cyclic graph is also critically cyclic so the latter notion is
well-defined for switching classes.

Forbidden graphs for perfect graphs in switching classes were treated by Hertz
[30].

We show that apart from the simple cycles Cn for n ≥ 7, there are only finitely
many critically cyclic graphs. In fact, we shall prove that a critically cyclic graph
G /∈ [Cn] has order at most 9. These graphs are partitioned into 24 switching
classes, and altogether there are 905 critically cyclic graphs of order at most 9 (up
to isomorphism and excluding switches of the cycles Cn).3

In order to save the reader from long – and occassionally tedious – technical
constructions for the small graphs, we rely on a computer program (in fact, two
independent ones as explained in Appendix B) for the cases of order at most 9.
Therefore our purpose is to prove that if G is a critically cyclic graph of order
n ≥ 10, then G ∈ [Cn]. The proof of this result uses the characterization from
Section 4.2 of the acyclic graphs G – henceforth called the special graphs – that have
a non-trivial acyclic switch.

After reintroducing the special graphs from Section 4.2 we proceed with our
actual results proving that critically cyclic graphs can have only a limited number
of isolated vertices and as a consequence, a vertex in a critically cyclic graph has
only a limited number of leaves adjacent to it. We prove that each critically cyclic
switching class, except [Cn] for n ≥ 8, contains a (critically cyclic) graph, which is,
except for two vertices, a special graph. By verifying that for each type of special
graph a contradiction results – under the condition that the order of the graph is at
least 10 – we finally prove our result. At the end we consider the question why not
all of the critically cyclic switching classes are used in our proof.

Let G be a critically cyclic graph. By definition, for all x ∈ V , there is a switch
Gσ such that Gσ − x is acyclic. As a consequence, all cycles in Gσ go through x
and there is at least one such cycle. Note that this also holds for (Gσ)x. Note that
it does not hold that in every critically cyclic graph G there is a vertex x so that
G− x is acyclic; the graph K3,3 ∪ 3 ·K1 of Figure 4.11(9-2) is a counterexample.

Example 4.11
Let G be the graph of Figure 4.8(a) (see also Figure 4.13(7-3’)). We want to prove
that it is a critically cyclic graph. For this we must show that it has no acyclic
switches and removing any of the vertices allows for an acyclic switch. For the latter
it is sufficient to observe that the vertices 2, · · · , 6 are all on the only cycle of G, and
G{2,5}−7 and G{3,6}−1 are acyclic, see Figure 4.8(b) and Figure 4.8(c) respectively.

3Contact the author for the ps-file containing all of them or visit the Technical Reports section
of the LIACS website http://www.liacs.nl/.

58 CHAPTER 4. CYCLICITY CONSIDERATIONS

1

2

3

4

5

6

7

(a)

1

2

3

4

5

6

7 1

2

3

4

5

6

7

(b) (c)

Figure 4.8: The graph G and two of its switches

To prove that G has no acyclic switch observe that G has seven edges and an
acyclic graph can have at most six. We shall now prove that applying any selector
will not decrease the number of edges, and thereby we have proved that there is no
acyclic switch.

First of all, the degree of every vertex in G is at most 3 = (n − 1)/2. Hence
applying a singleton selector cannot decrease the number of edges.

For doubleton selectors, σ = {x1, x2}, we can do the same: the number of edges
that changes is |σ|·(7−|σ|) = 10. We must make sure then that every selector makes
at most five edges disappear. The only possible way, knowing that the maximum
degree is three, is to take σ = {2, 6}, but in that case only four edges are removed,
because one edge occurs in G|σ.

For selectors of size 3, finally, twelve edges will change. Hence we must look for
selectors that create less than six edges (or, in other words, make more than six
edges disappear). For this, the selector must contain a vertex of degree three, say
{2}. If we would also have 6 ∈ σ, then the number of edges to be removed is four
and there are no other vertices of degree three. Adding two vertices of degree two
to σ results always in a selector having at most six edges going to its complement,
because always either the two of them are adjacent, or one of them is adjacent to
vertex 2.

Because of the symmetry in the graph, the same holds if we start with 6 ∈ σ. ¦

Note that Cn for n ≤ 6 have an acyclic switch: take an independent set of
cardinality bn/2c. However, as was already proved by Acharya [2]

Lemma 4.12
The cycles Cn for n ≥ 7 are critically cyclic.
Proof:
First of all, removing any vertex gives us an acyclic graph Pn−1 and hence we have
to prove that all switches of Cn, n ≥ 7, have a cycle.

Let {x1, . . . , xn} be the vertices of Cn in order around the cycle. We first treat
the selectors that select the same value, say 1, in two adjacent vertices, say x1 and
x2. We need only consider nonconstant selectors and without loss of generality we
may assume that σ(xn) = 0. Now σ(x3) = 0, because otherwise Gσ has a triangle
{xn, x2, x3}. Then σ(x4) = 1, because otherwise {x1, x2, x4} is a triangle. The same
holds for x5 and now we have a triangle, {xn, x4, x5} in Gσ, since n ≥ 7 implies that
x5 is not a neighbour of xn. This takes care of all Cn, where n ≥ 7 is odd.

4.3. CHARACTERIZING ACYCLIC SWITCHING CLASSES 59

The only case left is the selector σ that selects exactly the odd numbered vertices
of Cn. It is easy to verify that Cσ8 is isomorphic to itself, and if n ≥ 10 and even,
then {x1, x2, x4, x5, x7, x8} induces a C6 in Cσn . 2

We now state the result of our computer search for the critically cyclic graphs
(see Appendix B for information on the programs used).

Theorem 4.13
There are 27 switching classes of critically cyclic graphs of order n ≤ 9. Represen-
tatives of these are given in the Figures 4.9, 4.10 and 4.11.

The main theorem proved in this section is the following.

Theorem 4.14
The switching classes [Cn] are the only critically cyclic switching classes of order
n ≥ 10.

In our proofs we shall refer to the graphs from Figure 4.9, 4.10, 4.11 and 4.13.
The black vertices in the latter figure indicate how these graphs can be switched
into the corresponding unprimed graphs from the former three figures. We shall use
Theorem 4.13 to the extent that they are in fact critically cyclic graphs. The proof
does not rely on the computer result that these are in fact all of them of order at
most 9.

(6-1)(5-1) (7-1) (7-2) (7-3)

(7-5)(7-4)

Figure 4.9: The critically cyclic graphs on five, six and seven vertices

4.3.1 The special graphs

We reintroduce here (many of) the special graphs of Section 4.2 (see Figure 4.12).
We shall use these graphs often in our proofs. Recall that these graphs have in
common that they can be switched into an acyclic graph by a nontrivial selector.

The graph in Figure 4.12(1s) is denoted by Sk,m,`. It is a graph K1,k+m where
k of the k + m leaves are substituted by an edge, and to which ` isolated vertices
have been added. We let, see also Figure 4.12(1s),

(S1) z be the centre of S,

(S2) H = {z, yi, xi | i = 1, 2, . . . , k} be the vertices of the extended star of S
rooted at z,

60 CHAPTER 4. CYCLICITY CONSIDERATIONS

(8-4)

(8-2) (8-3)

(8-7)(8-6)(8-5)

(8-8) (8-9)

(8-1)

(8-10)

(8-12) (8-13) (8-14) (8-15)

(8-11)

Figure 4.10: Critically cyclic graphs on eight vertices

(9-2)

(9-4) (9-5)

(9-1) (9-3)

Figure 4.11: Critically cyclic graphs on nine vertices

4.3. CHARACTERIZING ACYCLIC SWITCHING CLASSES 61

(S3) I = {u1, u2, . . . , u`} be the set of isolated vertices of S, and

(S4) M = {v1, v2, . . . , vm} be the set of leaves adjacent to z in S.

The types (2s)-(8s), see Figure 4.12, of graphs are denoted by S(k,m), where k
and m indicate the number of leaves of the (black) vertices z1 and z2. Because of
the symmetry in k and m in each of these graphs we may assume that k ≥ m.

A graph of type (2s) is simply the disjoint union K1,k∪K1,m. Adding an isolated
vertex to a graph of this type gives a graph of type (3s).

We denote by Pt(m, k) the tree that is obtained from the path Pt of t ver-
tices when the leaves are substituted by K1,m and K1,k, see Figure 4.12(4s) for
P3(k,m) (adding an isolated vertex gives a graph of type (5s)), Figure 4.12(6s) for
P2(k,m) and Figure 4.12(8s) for P4(k,m). Furthermore, K1,3(k,m) denotes the
tree, where two of the leaves of K1,3 are substituted by the stars K1,k and K1,m, see
Figure 4.12(7s).

The acyclic graphs P7, T7, P6 and P4 ∪ P2 are listed in Figure 4.12(9s), (10s),
(11s) and (12s) respectively. Their role is strictly limited, because of their low
order. Notice that P6 equals P4(1, 1) of the type (8s), but we wish to treat this
small instance independently.

We reformulate the results from Section 4.2 that shall be used in this section.

Theorem 4.15

i. Every switching class contains at most one tree up to isomorphism. The trees
that have a nonconstant switch into a tree are fully characterized by (6s)-(10s),
and (1s) for m, ` = 0.

ii. Every switching class contains at most three acyclic graphs up to isomorphism.
The acyclic graphs that have a nonconstant acyclic switch are fully character-
ized by (1s)-(12s) (the switches are indicated by the black vertices).

The graphs of all except a few of the types, switch into an isomorphic copy of
themselves if we apply the selector indicated by the black vertices, the centres of the
special graphs. There are five exceptions: a graph Sk,m,` of type (1s) switches into
Sk,`,m and these are only isomorphic if m = `, and a graph of type (3s) switches into
a graph of type (4s) (and vice versa). Finally, the graphs (11s) and (12s) switch into
each other.

In the following we shall often want to use the fact that a certain special graph
has a unique nontrivial switching into an acylic graph. For instance, the graph S1,2,0

is of type (1s), but also (4s), (6s) and (7s). These give rise to a number of “extra”
selectors that map S1,2,0 into an acyclic graph. In this case the extra selectors are
{x1, z}, {y1, z}, and {y1, v1} respectively.

We want to avoid situations such as these in our proofs and as it will turn out,
it will not bother us. However, to be precise, we shall list conditions on each of the
types, that guarantee that the acyclic switch is unique. Please note also that it is
not simply a question of overlap between two different types, but a graph such as
S1,0,2 overlaps with itself: there are two choices for the vertex z. Hence S1,0,2 is the
same graph as S0,2,2.

Lemma 4.16
A special graph Sk,m,` has a unique nonconstant switch into an acyclic graph if
k ≥ 3, or k = 2 and m+ ` ≥ 2, or k ≤ 1 and m, ` ≥ 3− k.

62 CHAPTER 4. CYCLICITY CONSIDERATIONS

(4s)

(9s)

z

x1

y1

xk
u`

u1

yk

vm
v1

(1s) (2s)

v1

vk u1

um

z1 z2

(10s)

w
w

w2

(8s)

(6s)(5s)
w1

(7s)

(3s)

w2 w2

w1 w1

(12s)(11s)

Figure 4.12: The special graphs (1s)-(12s)

4.3. CHARACTERIZING ACYCLIC SWITCHING CLASSES 63

Proof:
We remark first that the graphs 3 ·P2 and 2 ·P2 ∪ 2 ·K1 have no nonconstant switch
to an acyclic graph. This follows from Theorem 4.15 and the fact that they are not
special.

Let σ be a nonconstant selector containing z. Suppose σ is not the switch {z}.
If k ≥ 2, then we have k = 2 and |I ∪M | ≤ 1 by the previous remark. In these cases
the choice for z is unique: it is the middle vertex of the induced P5’s.

Let k = 1 and m, ` ≥ 2. Now, S = Sk,m,` has three components and hence the
only possibility for overlap is with (1s) and (3s). The fact that k = 1 and m ≥ 2
exclude the possibility that the nontrivial component of Sk,m,` is a star, so (3s) is
now taken care of. If k = 1 and m = 2 the choice for z is unique, it is the only
vertex of degree at least 3.

For k = 0 and m, ` ≥ 3, Sk,m,` is exclusively of type (1s), because no other type
of special graph has more than three components. Also, if m ≥ 3, then the choice
for z in type (1s) is unique. 2

The types (9s) and (10s) are obviously unique. The graph (11s) is also of type
(8s), and hence has two nonconstant acyclic switches. The same holds for the graph
(12s). For the other types (2s)-(8s) we now list the conditions.

Lemma 4.17
Under the following conditions do the special graphs S(k,m), k ≥ m have a unique
nonconstant switch to an acyclic graph.

• (2s)-(4s) need k,m ≥ 2,

• (5s), (7s), (8s) need k ≥ 2,m ≥ 1,

• (6s) needs k,m ≥ 3.

Proof:
Let S = S(k,m) be a special graph and let {z1, z2} ⊆ σ with σ nonconstant. We
prove that σ = {z1, z2} if Sσ is to be an acyclic graph.

First of all, K1,2 ∪ K1,2 has one nonconstant acyclic switch (either select the
leaves, or select the two inner vertices). For all types, except (6s), it now follows
that k,m ≥ 2 implies the existence of a unique nonconstant switch to an acyclic
graph.

For (2s)-(4s) this is all we can do. For (2s), K1,2 ∪K1,1 has two switches: the
choice of z2 in K1,1 is arbitrary. Something similar holds for (3s). Additionally, note
that (4s) for k = 2 and m = 1 is also (8s) with k = 2 and m = 0 and the switches
are different.

In the cases (5s), (7s) and (8s) we do have a unique switch for k ≥ 2,m ≥ 1,
because the vertex z2 can only be chosen in one way: it is the vertex in K1,1 that is
not a leaf in S.

In the case of (6s) we get k,m ≥ 2, because of overlap with (1s). Because (6s)
for k ≥ m,m = 2 overlaps with (7s) we arrive at the condition k,m ≥ 3. 2

Note, that there are cases that do overlap, but in which case the switches happen
to be equivalent: (5s)(k = 0 = m) and (2s)(k = 2,m = 0) are the same graph, but
the corresponding switches are complements.

64 CHAPTER 4. CYCLICITY CONSIDERATIONS

(8-5’)(5-1’) (6-1’)

(7-2’) (7-5’)(7-3’)

(8-8’)

Figure 4.13: Switches of known critically cyclic graphs that are used in the proofs

4.3.2 Isolated vertices

In this section we give constraints for the isolated vertices in critically cyclic graphs.
In particular, we prove our main tool for the final proof: if G is critically cyclic such
that G− x is acyclic for a vertex x, then G− x has no isolated vertices.

Lemma 4.18
Let G be a critically cyclic graph. Then G has at most two isolated vertices or
G = K3,3 ∪ 3 ·K1 ((9-2) in Figure 4.11).
Proof:
Let I = {x1, x2, . . . , xm} be the set of isolated vertices of G, and assume that m ≥ 3.
Now G − x1 is not acyclic, and it has an acyclic switch (G − x1)τ . Hence τ is not
constant on G− I, say τ(v0) = 0 and τ(v1) = 1 for some v0, v1 /∈ I.

If two vertices of I − {x1} have the same value for τ , say τ(x2) = i = τ(x3),
then v1−i is the unique vertex of V − I with τ(v1−i) = 1 − i. Indeed, if it were
τ(v) = 1 − i for another v ∈ V − I, then (x2, v1−i, x3, v) would form a cycle in
(G − x1)τ . Moreover, in this case, there exists a vertex of I, say x4, such that
τ(x4) = 1− i, for, otherwise, extending τ by setting τ(x1) = i would result x1 to be
a leaf of Gτ contradicting the fact that all cycles of Gτ go through x1. However, now
(x2, v1−i, x3, x4) forms a cycle in (G− x1)τ , which is a contradiction. In particular,
m ≤ 3 to avoid triangles with x2 or x3. The switching class of the discrete graph
Kn consists of the complete bipartite graphs of order n by Lemma 3.5 and therefore
m = 3, and τ(x2) 6= τ(x3). Since the graph (G− x1)τ is acyclic and Gτ (x2x3) = 1,
it follows that V − I is independent in (G − x1)τ . Therefore G = Kr,s ∪ 3 ·K1 for
some r, s ≥ 2. Since K3,3 ∪ 3 ·K1 is a critically cyclic graph, and each K2,s ∪ 3 ·K1,
for s ≥ 4, has an acyclic switch (by switching one of the vertices in the part of size
2 of K2,s), the claim follows. 2

Lemma 4.19
Let G be critically cyclic of order n ≥ 10. Then no vertex z ∈ V is adjacent to more
than two leaves of G.
Proof:
If a set L of leaves of G is adjacent to a vertex z, then the vertices of L become
isolated in Gz. The result follows easily from Lemma 4.18. 2

Lemma 4.20
Let G be a critically cyclic graph of order n ≥ 10. Then G has at most one isolated
vertex.

4.3. CHARACTERIZING ACYCLIC SWITCHING CLASSES 65

Proof:
Suppose that G has exactly two isolated vertices, I = {x1, x2}. Let (G − x1)τ be
acyclic, where we assume that τ(x2) = 0 without restriction. The set τ is indepen-
dent in G and in (G−x1)τ , for, otherwise, there would be a triangle (containing x2)
in (G−x1)τ . In fact, τ contains at most one vertex from each connected component
of (G − I)τ . Notice that these connected components are trees, because (G − x1)τ

is acyclic.
Let τ = {z1, . . . , zr}, and set τ(x1) = 0. Then

Gτ = (H + (T1 ∪ T2 ∪ . . . ∪ Tr)) ∪ F,

where H = K2,r has the bipartition ({x1, x2}, {z1, . . . , zr}), and the induced sub-
graphs Ti are disjoint trees with H∩Ti = {zi}; and F is an acyclic induced subgraph
or it is empty. Since Gτ is not acyclic, we must have r ≥ 2.

• By (7-1) and (7-2’), either F is discrete or it is a path P2. In both cases,
|F | ≤ 2, by Lemma 4.18.

• By (8-6), there can be at most two nontrivial trees among T1, . . . , Tr.

• Let Ti be nontrivial a tree. By (7-1) the height of Ti is at most 3 and there
are no vertices of degree more than 2 at a level higher than 2. The graph (7-2)
excludes the possibility that a child of zi has degree larger than two, and by
(7-2’) the tree cannot contain both an induced P4 and an induced P3 in case
they have no edge in common. Hence each nontrivial tree Ti has the form

Ti = Ski,si,0 or P4(si, 0),

where Ski,si,0 (for ki ≥ 0) is one of the special trees with zi as its centre, and
in P4(si, 0), zi is the centre adjacent to the si leaves. By Lemma 4.19, si ≤ 2.

We shall now consider the three cases for zero, one and two nontrivial Ti.
(0) If Gτ has no nontrivial components among T1, . . . , Tr, then Gτ equals either

K2,r, K2,r ∪ K1, K2,r ∪ 2 · K1 or K2,r ∪ P2. All these have an acyclic switch; a
contradiction.

(1) Suppose Gτ has exactly one nontrivial tree among T1, . . . , Tr, say T1.
Let T1 = P4(s1, 0).

• By (7-1), r = 2 (otherwise remove z1).

• By (7-2’), |F | = 0 (otherwise remove the vertices of T1 adjacent to z1).

However, now n ≤ 9 contradicts our assumption on n.
Let T1 = Sk1,s1,0 with k1 > 0, and let r ≥ 3.

• By (7-2’), |F | = 0, s1 = 0 and k1 = 1 (otherwise remove z1).

In this case T1 is a path P3, and Gτ has an acyclic switch for all r ≥ 3 (switch all
zi’s and the other endpoint of T1); a contradiction.

Then the case for r = 2. In this case, by (7-2’), F cannot be a path P2, and so
it is discrete. Now Gτ has an acyclic switch (switch at z1).

Finally, if T1 = S0,s1,0, then |T1| ≤ 3 (by Lemma 4.19), and therefore r ≥ 4, since
|F | ≤ 2.

66 CHAPTER 4. CYCLICITY CONSIDERATIONS

• By (7-2’), F is discrete (otherwise remove z1).

• By (8-5), |F | ≤ 1, and by (8-5’), if |F | = 1, then s1 = 1 (and in this case, T1

is a path P2).

The remaining cases, s1 = 1 and |F | = 1, and s1 = 2 and F = ∅, have acyclic
switches for all r (switch with respect to x1, x2 and a leaf at z1); a contradiction.

(2) Suppose that Gτ has exactly two nontrivial trees in T1, . . . , Tr, say T1 and
T2, and assume without loss of generality that |T1| ≥ |T2|.

• By (8-8’), r ≤ 3.

• By (8-4) and (8-8), |F | ≤ 1.

• By (8-7), if r = 3, then |F | = 0.

Hence r + |F | ≤ 3. Since n ≥ 10, it follows that |T1|+ |T2| ≥ 10− r − |F | ≥ 7.
First we treat the trees of height at most 1. In this case, T1 = S0,s1,0. By

Lemma 4.19 s1 ≤ 2, and hence |T1| ≤ 3. Therefore |T2| ≥ 4, which contradicts the
assumption |T1| ≥ |T2|.

Let t1 be the height of T1 and suppose that t1 ≥ 2. Now by (8-1) and (8-2),
|T2| = 2, that is, T2 is a path P2, and consequently |T1| ≥ 5. If T1 = Sk1,s1,0 (k1 > 0),
then k1 = 1, otherwise we have (8-3) by removing a middle vertex from a P3.

It follows that |T1| = t1 + 1 + s1 ≥ 5. Recall that s1 ≤ 2. However, the case
t1 ≥ 2 and s1 = 2 is excluded by (9-1), and the cases t1 = 3 and 1 ≤ s1 ≤ 2 are
excluded by (8-4) (remove the child of z1 on the path of length t1). 2

As in Lemma 4.19, we have

Lemma 4.21
Let G be a critically cyclic graph of order n ≥ 10. Then no vertex z ∈ V is adjacent
to more than one leaf of G.

Lemma 4.22
Let G be a critically cyclic graph of order n ≥ 10 and let x ∈ G.

i. G − x can have at most two isolated vertices. Moreover, if G − x has two
isolated vertices, then x is adjacent to exactly one of these in G.

ii. If a vertex z 6= x is adjacent to m leaves of G − x, then m ≤ 2. Moreover, if
m = 2, then x is adjacent to exactly one of these.

Proof:
For (i) we only need to observe that if G − x has three isolated vertices, then in
either Gx or G at least two of these are isolated and we can apply Lemma 4.20. The
same holds if the number of isolated vertices is two, but x is not adjacent to exactly
one of them in G.

For (ii), assume that there is a vertex z 6= x adjacent to more than two leaves.
The vertex x is adjacent to at most one of these in either G or Gx and the result
then follows from Lemma 4.21. 2

We say that a vertex y ∈ V is compatible with x, if

• G− x is acyclic,

4.3. CHARACTERIZING ACYCLIC SWITCHING CLASSES 67

• G− y and Gx − y are not acyclic.

Note that if y is compatible with x, then all cycles in G (and Gx) go through x, but
not all of them go through y.

Lemma 4.23
Let G be a critically cyclic graph such that G− x is acyclic.

i. If y is compatible with x, then G− {x, y} is a special graph.

ii. If G is of order n ≥ 8, then there exists a vertex y ∈ V that is compatible with
x unless G ∈ [Cn].

Proof:
Let (G− y)τ be acyclic and set S = G− {x, y}. Because S and Sτ are both acyclic
graphs it follows that either (a) S is special or (b) τ is constant on S.

In the case (b) all cycles go through x and y which contradicts the fact that G−y
is not acyclic. To see this, let there be a cycle that does not go through y. There
are two selectors of G− y constant on S. The first of these is τ = S ∪{x}. But then
(G−y)τ equals G−y which is a contradiction, because the former is acyclic and the
latter is not. If on the other hand τ = S, then (G− y)τ = (Gx − y)S∪{x} = Gx − y
and again we have a contradiction.

For the second part, suppose G /∈ [Cn]. Since G has no acyclic switches, there are
cycles in G and Gx, and they all pass through x, because G−x is acyclic. Moreover,
since Ck is critically cyclic for k ≥ 7 by Lemma 4.12, the induced cycles of G and
Gx have length at most 6.

If G or Gx has an induced cycle C5 or C6, then let y be a vertex that is not on
such a cycle. It is clear that G − y and Gx − y both contain cycles, and therefore
each such y is compatible with x.

If G and Gx have both an induced cycle of length at most 4, then these two
cycles have altogether at most 7 vertices (since they share the vertex x), and, by
n ≥ 8, there exists a vertex y that is not on these cycles. For each such vertex y,
both G− y and Gx − y are not acyclic. This proves the claim. 2

Lemma 4.24
Let G be critically cyclic of order n ≥ 10 such that G − x is acyclic. Then G − x
has no isolated vertices.
Proof:
Assume to the contrary of the claim that u is isolated in G − x. In this case u is
either a leaf adjacent to x (or isolated) in G and isolated (or a leaf adjacent to x) in
Gx. Hence G− u and Gx− u are not acyclic and by Lemma 4.23(i), S = G−{x, u}
is a special graph.

In this case, by Lemma 4.22(ii) and the fact that n ≥ 10, S must be either of
type (1s) or one of (5s), (7s), (8s) with k = 2 = m.

In the latter three cases S has a unique acyclic switch at the two centres τ =
{z1, z2} by Lemma 4.17, and it is easy to see that (G− u)τ is not acyclic, since x is
adjacent to exactly one leaf adjacent to both centres in S and remains to be so in
Sτ .

Consider then the case S = Sk,m,` and adopt the notations (S1)-(S4) for it. The
selector τ is such that (G− u)τ is acyclic. Without restriction we can assume that
τ(z) = 1. Extend τ to the whole domain by setting τ(u) = 0.

68 CHAPTER 4. CYCLICITY CONSIDERATIONS

We have n = (2k + 1) + m + ` + 2 ≥ 10, and thus k ≥ 1
2(7 − (m + `)). By

Lemma 4.22, m ≤ 2 and ` ≤ 1. (Recall that u is an isolated vertex of G − x.) In
particular, k ≥ 2, and if k = 2, then m = 2, ` = 1 and n = 10. In these cases,
by Lemma 4.16 the special acyclic graph S has a unique acyclic switch Sρ, where
ρ = {z}. By the uniqueness of ρ, we have that ρ(v) = τ(v) for all v /∈ {x, u}.

Now, the only vertices in G that can become adjacent to u in Gτ are x and z
and because Gτ is not acyclic, these connections must exist: Gτ (ux) = 1 = Gτ (uz)
and they are the only edges of Gτ incident with u. Moreover, x is adjacent in Gτ to
exactly one vertex v ∈ H ∪ I, since Gτ contains a cycle but Gτ − u does not.

Let v = xi, say v = x1. If ` ≥ 1, then {x, x1, z, u, y1, u1, y2} induces a (7-4) in
Gτ . Therefore ` = 0. If |M | ≥ 1, then {x, x1, z, u, y1, w, v1} induces a (7-4) in Gτ

for w = x2 or w = y2 depending on the value Gτ (xv1). Therefore also m = 0. Now
k ≥ 4, and Gτ contains an induced (7-4) obtained by removing x2.

If v = yi, say v = y1, then Gτ |{x,y1,x1,z,u} is an induced C5, and hence Gτ has an
induced (6-1’) obtained by removing x2.

Let v = ui, say v = u1. To avoid (8-3) as being induced by {x, u1, z, u, x1, y1, y2, vi}
(for any vi ∈ M), we must have Gτ (xvi) = 0 (if m > 0). Now, however, (Gτ)z is
acyclic.

If v = z, then Gτ has an acyclic switch for {z}. This contradiction completes
the proof of the lemma. 2

4.3.3 The cases

In this section, let G be a critically cyclic graph of order n = |V | ≥ 10 and let x ∈ V
be a fixed vertex.

Since G is critically cyclic, there exists an acyclic switch (G−x)σ of the subgraph
G− x. Because the switches of critically cyclic graphs are criticially cyclic, we can
assume that σ is constant on V , and therefore that G− x is acyclic already.

Assume that y is a vertex compatible with x, that is, G− y and Gx− y are both
not acyclic. We know by Lemma 4.23(ii) that vertices such as x and y defined above
exist if the switching class does not contain Cn. In the following we shall consider
every type of special graph in turn and show that each case leads to a contradiction,
thereby proving our main theorem, Theorem 4.14, that besides graphs in [Cn] there
no critically cyclic graphs of order n ≥ 10.

By Lemma 4.23(i), S = G − {x, y} is a special acyclic graph, and (G − y)σ is
acyclic for a nonconstant selector σ. The special graph S cannot be of type (9s),
(10s), (11s) or (12s), because the order of S should be at least 8 to ensure that
n ≥ 10.

Without restriction we can assume that σ(x) = 0. This follows from the sym-
metry in the definition of compatibility, i.e. the fact that both G − y and Gx − y
are not acyclic. We extend σ to the whole domain by setting σ(y) = 0. Note that
(G− y)σ = Gσ − y.

In the following proofs a number of simple properties are often used, and we
note them here: first of all, the vertex y is adjacent to at most one vertex of each
component of S. If not, G− x would not be acyclic. Also, there must be a cycle in
G that does not contain y, because G− y is not acyclic. This also holds for Gx − y.

We shall now formulate a few conditions that hold for the, still remaining, special
graphs (1s)-(8s). For a graph H, let LH(z) be the set of leaves adjacent to z in H,
and let IH denote the set of isolated vertices in H.

4.3. CHARACTERIZING ACYCLIC SWITCHING CLASSES 69

Lemma 4.25
Given the definitions above, we have that

i. IS ⊆ NG(y).

ii. For all z ∈ S, |LS(z)| ≤ 3. Moreover, |LS(z)| = 3 implies |NG(x) ∩LS(z)| ≥ 1
and |NG(y) ∩ LS(z)| = 1.

Proof:
Claim (i) follows from Lemma 4.24.

We have |NG(y) ∩ LS(z)| ≤ 1, since G − x is acyclic. If |LS(z)| ≥ 3, then, by
Lemma 4.22(ii), |LS(z) − NG(y)| ≤ 2, and x is adjacent to at most one vertex of
LS(z) − NG(y). Hence, in this case, we must have |LS(z)| = 3 and in that case x
and y are each adjacent to at least one vertex. In the case of y it is exactly one
vertex. 2

Note how Lemma 4.25 restricts the values of k and m for the types (2s)-(8s) and
m for (1s). On the other hand n ≥ 10 gives a lower bound on these values for most
types.

4.3.4 The case (1s)

We shall now consider first the most difficult case, Sk,m,`. Suppose that S = Sk,m,`,
and adopt the notations of (S1)-(S4) for it. Without restriction we may assume that
σ(z) = 1.

Lemma 4.26
We have

i. k = 2,

ii. 1 ≤ `,m ≤ 2 and m+ ` ≥ 3,

iii. M ⊆ NG(x),

iv. if ` = 2, then |NG(x) ∩ I| = 1,

v. if m = 2, then |NG(y) ∩M | = 1,

vi. |NG(x) ∩ (H ∪ I − {z})| ≤ 1.

Proof:
By Lemma 4.20, |NG(x) ∩ I| ≤ 1 for, otherwise, switching with respect to {x, y}
gives two isolated vertices. By Lemma 4.22(ii) we have both ` ≤ 2 and Claim (iv).

If k = 0, then m + ` ≥ 7, contradicting the bound m ≤ 3 from Lemma 4.25(ii)
and the bound ` ≤ 2.

If k = 1, then m+ ` ≥ 5, since n ≥ 10. In this case, ` = 2 and m = 3. If k = 2,
then m+` ≥ 3. Therefore by Lemma 4.16, in all cases k ≥ 1, Sz is the unique acyclic
switch of S. It follows that σ|S = {z}, and therefore M ⊆ NG(x), for, otherwise
the acyclic graph Gσ − y would have an isolated vertex contradicting Lemma 4.24
(remember that we have σ(x) = 0 = σ(y)). Lemma 4.22(ii) then implies m ≤ 2, and
as a consequence k ≥ 2, because as was shown above, if k = 1, then we must have
m = 3. Claim (v) follows from Lemma 4.22(ii).

Claim (vi) follows from the fact that Gσ|H∪I is connected and Gσ − y is acyclic.

70 CHAPTER 4. CYCLICITY CONSIDERATIONS

Suppose then that k ≥ 3. By Claim (vi) it follows that there are at least two
pairs xiyi such that G(xxi) = 0 = G(xyi), say for i = 1, 2. Let the selectors τi be
such that (G− xi)τi are acyclic, where we may choose τi(z) = 1. The special graph
S − xi, which is Sk−1,m+1,`, has a unique acyclic switch (S − xi)z by Lemma 4.16,
since n ≥ 10 and k ≥ 3 (note that ` = 0 implies m ≥ 4, because n ≥ 10).

It is then clear that τi = σ when we set τi(xi) = 0. By Lemma 4.24, the vertex
yi is not isolated in Gτi − xi, and therefore Gτi(yyi) = G(yyi) = 1 for i=1,2 (since
G(xyi) = 0 = Gτi(xyi)) and we have a cycle in G − x. This contradiction proves
Claim (i) and Claim (ii). 2

Notice that Lemma 4.26 implies that n ≤ 11.
We finish the case S = Sk,m,`.
Assume G(xu1) = 1. Then G(xz) = 1, since otherwise (x, u1, z) would be a

triangle in Gσ−y. Also, G(xxi) = 0 = G(xyi) for i = 1, 2, because Gσ−y is acyclic.
We have G(xy) = 0, for, otherwise (x, y, u1) is a triangle in G, and to avoid (5-1)

with the edges G(xiyi) = 1, we would have to have that y is adjacent to two vertices
in H − {z} giving a cycle to G− x. Note that now all edges involving x are known.

Now (x, z, v1) is a triangle in G, and to avoid (7-5’), necessarily G(yz) = 1 or
G(yv1) = 1, and y is adjacent to no other vertices of H ∪M .

(1) If G(yz) = 1, then |M | = 1, because otherwise y must be adjacent to either
one of the vi (Lemma 4.26(v)), but then (y, z, vi) is a cycle of G−x. Lemma 4.26(ii)
implies |I| = 2 and {x, u1, y, z, y1, x2, u2} induces a (7-4). Remember, we have
G(xu2) = 0 by Lemma 4.26(iv).

(2) If G(yv1) = 1, then {u1, y, x, v1, z, y1, x2} induces a (7-3).
Therefore G(xu1) = 0, and consequently I = {u1} by Lemma 4.26(iv).
By Lemma 4.26(ii), m = 2, and we have G(xv1) = 1 = G(xv2), G(yv1) = 1,

G(yv2) = 0, and G(yu1) = 1, G(xu1) = 0.
In this case G(yw) = 0 for all w ∈ S − {u1, v1}, since G− x is acyclic.
To avoid a cycle in Gσ − y, G(xxi) = 0 = G(xyi) for i = 1 or 2, say i = 1. There

are two cases here.
(1) G(xz) = 0. Now G(xy) = 1, since otherwise {x, v1, v2, z, y, x1, y1, u1} induces

an (8-9) in G.
(2) G(xz) = 1. To avoid {x, z, v1, y1, x1, y, u1} inducing a (7-5’) we must have

G(xy) = 1.
In both cases, G(xy) = 1. But {x, y, v1, x1, y1} induces a (5-1’). This contradic-

tion proves the present case.

4.3.5 The other cases

Let S = S(k,m) where we assume that k ≥ m. Let z1 and z2 be the two centres of
S, and L = {v1, . . . , vk} and M = {u1, . . . , um} be the sets of leaves of S adjacent
to z1 and z2, respectively. Remember in the following that LH(z) is the set of leaves
in H adjacent to z ∈ V (H).

Lemma 4.27

i. If S is of type (3s)-(8s), then |LS(zi)| ≤ 2 for i = 1 or 2.

ii. If Sσ is the unique acyclic switch of S such that S 6= Sσ and z ∈ S has
|LS(z)| = 3, then x and y are each adjacent to exactly one, but different leaf
at z.

4.3. CHARACTERIZING ACYCLIC SWITCHING CLASSES 71

Proof:
For Claim (i), assume both z1 and z2 have three leaves adjacent to them in S. By
Lemma 4.25(ii), y is adjacent to one leaf at z1 and one at z2 giving a cycle in G−x for
the types (4s)-(8s). For (3s) we can apply the same reasoning, but taking y instead
of x: Gσ−y has a cycle. Note that we need that σ is the unique nonconstant selector
mapping S into an acyclic graph. However, we have k = 3 = m and by Lemma 4.17
the result follows.

To avoid a cycle in Gσ − y, x is adjacent to at most one of the leaves. Now,
Claim (ii) follows from Lemma 4.22(ii) and Lemma 4.25(ii). 2

Note that by Lemma 4.25(ii), Lemma 4.26(i) and (ii), and Lemma 4.27(i) it
already follows that there are no critically cyclic graphs of order at least 12 unless
they are in [Cn] for n ≥ 12.

4.3.6 The cases (2s)-(4s)

By the fact that n ≥ 10 and Lemma 4.25(ii), we have k = 3 and 2 ≤ m ≤ 3. In
all these cases the unique nonconstant switch mapping S into an acyclic graph is
σ = {z1, z2} by Lemma 4.17. Recall that we still have σ(x) = 0 = σ(y).

By Lemma 4.27(ii), x is adjacent to one of the vi, say v1, and y is adjacent to
an other vi, say v3. To avoid a cycle in Gσ − y, x must be adjacent to z2, and y is
not adjacent to any of the other vi or z1.

We now go over the cases one by one.
(2s) S = S(k,m) = K1,k ∪K1,m. Because n ≥ 10 and the bounds on k and m,

we know that k = 3 = m. By Lemma 4.27, x is adjacent to a leaf ui, say u1 and y to
a leaf ui different from u1, say u3. Because of the unicity of σ, x must be adjacent
to z1 to ensure that Gσ − y is acyclic.

The only remaining unknown is G(xy). If G(xy) = 0, then we have the graph
(5-1) {x, v1, z, u3, y}, and if G(xy) = 1, then we have (7-4) {u1, x, y, v3, z1, v2, u2}.

(3s) S = S(k,m) = K1,k ∪ K1,m ∪ K1. Because of the uniqueness of σ, S is
mapped into a tree of type (4s). To avoid cycles in Gσ, necessarily G(xz1) = 1,
G(xw) = 0 (for the isolated vertex w of G) and G(xui) = 0 for all ui ∈ M . By the
above, G(xz2) = 1 and G(xv2) = 0 = G(xv3).

By Lemma 4.22(ii), m = 2 and y is adjacent to one of the ui, say u2.
The only unknown is the edge xy. If G(xy) = 0, then we have (7-5’) for the ver-

tices {v1, x, z2, u1, y, v3, z1}, and ifG(xy) = 1, then we have (7-4) {v1, x, y, u2, z2, v2, u1}.
(4s) Now S = S(k,m) = P3(k,m). Because S is connected, y is not adjacent to

any other vertex of S (except v3). Hence, m = 2 and x is adjacent to one of the ui,
say u1 (Lemma 4.22(ii)). To prevent cycles in Gσ − y, x must be adjacent to z1. If
G(xy) = 0, then we have (5-1) {x, u1, z2, v3, y} and if G(xy) = 1, then we have (7-4)
in Gx {v1, z1, v2, v3, x, u1, y}.

4.3.7 The cases (5s)-(8s)

(6s) S(k,m) = P2(k,m). In this case, n ≥ 10 implies k = 3 = m, but then G− x is
not acyclic, because of Lemma 4.27(ii).

In the remaining cases (5s), (7s) and (8s), let w1 be the neighbour of z1 of degree
2 and let w2 be the single unnamed vertex (dS(w2) equals 0, 1 or 2 depending on
the case), see Figure 4.12(5s), (7s) and (8s).

72 CHAPTER 4. CYCLICITY CONSIDERATIONS

By Lemma 4.25(ii) and n ≥ 10, 2 ≤ k ≤ 3, m ≥ 1, and k + m ≥ 4. In all these
cases the unique nonconstant switch mapping S into an acyclic graph is σ = {z1, z2}
by Lemma 4.17.

We can assume that x is adjacent to a vertex in L, say G(xv1) = 1. This follows
from Lemma 4.27(ii) if k = 3. On the other hand, if k = 2, then necessarily m = 2,
since n ≥ 10, and in this case NG(y) ∩ L = ∅ or NG(y) ∩M = ∅ in order to avoid a
cycle in G− x. By Lemma 4.22(ii), NG(x) ∩M 6= ∅ or NG(x) ∩ L 6= ∅, respectively.
Since now k = m (= 2), the assumption is validated.
Claim 1: G(xz1) = 1 = G(xz2), and G(xu) = 0 for all u /∈ {v1, z1, z2, w2, y}.
Moreover, G(xw2) = 0 if dS(w2) 6= 0 (that is, excepting the case (5s)).
Proof:
Recall that σ(x) = 0, and, indeed, σ = {z1, z2}. The claim follows, since Gσ − y is
acyclic.
Claim 2: G(yv) = 1 holds for exactly one vertex v ∈ S−{w2}, and either (i) v ∈ L,
say G(yv3) = 1, in which case k = 3 and m = 1, (ii) v ∈ M , say G(yu2) = 1, in
which case k = 2, m = 2. Moreover, G(yw2) = 1 holds only in the case (5s).
Proof:
The first statement follows from the fact that G − x is acyclic. Now if y is not
adjacent to a vertex of M , then |M | = 1 by Lemma 4.22(ii) and the fact that
G(xu) = 0 for all u ∈ M . It follows that k = 3, and, consequently, y is adjacent to
a vertex of L. On the other hand, if G(yu) = 1 for a u ∈ M , then G(yv) = 0 for
all v ∈ L to avoid a cycle in G − x, and in this case, k = 2 by Lemma 4.22. That
G(yw2) = 1 in the case (5s) follows from Lemma 4.25(i). In the other two cases,
G(yw2) = 1 would result in a cycle in G− x.

These two claims together determine G with the exception of the value for G(xy).
The cases are all excluded:
(5s) x is not adjacent to w1 and neither is y. Hence in Gσ − y the vertex w1 is

isolated contradicting Lemma 4.24.
(7s) In both cases, G(xy) = 1 to avoid (7-4) as being the subgraph induced

by the vertices {x, z1, w1, z2, v2, w2, y}. Now G contains a switch of (7-4) if k = 3
and m = 1 (this is Gz1 − {v1, v3, u2}), and G contains (7-5’) if k = 2 = m (this is
G− {u1, v2, z2}).

(8s) In both cases, G(xy) = 1 to avoid (6-1) as being the subgraph induced by
the vertices {x, z1, w1, w2, z2, y}. Now {x, z1, w1, w2, z2, y, u1} induces (7-3’).

This completes the proof of Theorem 4.14.

4.3.8 Concluding remarks

Finding the critically cyclic graphs was done as follows: a program was written in C
that listed for a number n of vertices a representative of each switching class that did
not contain any acyclic switches. In a later phase, when we were looking for critically
cyclic graphs on n vertices, we only had to make sure that all critically cyclic graphs
of lower order did not occur in these graphs. The program was run in this way for
up to 12 vertices. We used here the files from Spence [45] which list representatives
for the switching classes up to isomorphism and up to complementation for up to
10 vertices.

A computer program in the functional language Scheme verified that the criti-
cally cyclic graphs found were in fact critically cyclic. (For more information on this
see Appendix B.) Also, the authors verified this by hand.

In our proofs, not all of the critically cyclic graphs were used. The graphs that

4.3. CHARACTERIZING ACYCLIC SWITCHING CLASSES 73

were not used are (8-10)-(8-15) and (9-3)-(9-5). Lemma 4.23 excludes the cycles C8

(8-11) and C9 (9-4). For the other graphs, except (8-12), the reason is that if they
are induced subgraphs of any graph G of order at least 10, then G also contains one
of the cyclic graphs from Figure 4.9, 4.10 and 4.11, but without (8-10), (8-13)-(8-15),
(9-3) and (9-5).

As an aside we note that our program found that the graphs (8-9) and (8-12)
have a similar property: adding two vertices to either of these graphs in any way,
always results in a graph that contains a switch of one of the other critically cyclic
graphs.

The graph (8-12) does not occur in our proofs, because it is overruled by Lem-
mas 4.23 and 4.24, that is, if G is a forbidden graph of order 10 that does not have
2 isolated vertices and such that G − x is acyclic and G − {x, y} is special, then G
contains an induced critically acyclic graph that was used in the proofs.

Part II

Switching Classes of Graphs
with Skew Gains

75

Chapter 5

Gain Graphs

In this chapter we generalize the graphs of the first part of the thesis to graphs
with skew gains. Along the same lines we generalize selectors and switching classes.
Analogues of many of the results in Chapter 3 are shown to hold in this chapter.

In Section 5.2 and Section 5.3 we also prove some results about anti-involutions,
which are anti-automorphisms of order at most two. (These results are originally
from Hage and Harju [23], unless otherwise indicated. For the results in Section 5.3
we had help from A. Tijdeman and W. Kosters.) These bijections on the group
generalize the group inversion and constitute an extension of the gain graphs of
Zaslavsky [50] and the voltage graphs of Gross and Tucker [20] to skew gain graphs.

5.1 Definitions

Let Γ be a group. A function δ : Γ→ Γ is an anti-involution, if it is an anti-
automorphism of order at most two, that is, δ is a bijection and for all x, y ∈ Γ,
δ(xy) = δ(y)δ(x) and δ2(x) = x. We write (Γ, δ) for a group Γ with a given anti-
involution δ. The set of anti-involutions on Γ is denoted by INV(Γ). For abelian
groups anti-involutions coincide with involutions, i.e., automorphisms of order at
most two.

Example 5.1
(1) The group inversion of a group is an anti-involution of that group.
(2) Let Γ = S3. This group has the following four anti-involutions:

a r0 r1 r2 s0 s1 s2

i fi(a)
0 r0 r2 r1 s0 s1 s2

1 r0 r1 r2 s1 s0 s2

2 r0 r1 r2 s0 s2 s1

3 r0 r1 r2 s2 s1 s0

Note that f0 is the group inversion. ¦

The graphs in the first part of this thesis were undirected. In this part of the
thesis they will be directed. Define E2(V) = {(u, v) | u, v ∈ V }, the set of nonre-
flexive, directed edges over V . We usually write uv for the edge (u, v) like in the
first part of the thesis, but now uv 6= vu. For an edge e = uv, the reverse of e is
e−1 = vu

77

78 CHAPTER 5. GAIN GRAPHS

r1

s0 s0

r1 s1
r1

s0
z

x

y

(b)

r2

z

x

y

(c)

z

x

y

(a)

Figure 5.1: A “near” gain graph, an element of LP3(S3, f0), and an element of
LP3(S3, f1)

0

0

0

2

0

0

0

2

(a)

1 2

34

1

1 2

34

(b)

3

Figure 5.2: Two elements of LG(Z4, id)

We consider graphs G = (V,E) where the set of edges E ⊆ E2(V) satisfies the
following symmetry condition:

if e ∈ E then also e−1 ∈ E.

Such graphs can be considered as undirected graphs where the edges have been given
a two-way orientation.

Let G = (V,E) be a graph and (Γ, δ) a group with anti-involution. A pair (G, g)
where g is a mapping g : E → (Γ, δ) into the group Γ is called a (Γ, δ)-gain graph
(on G) (or a graph with skew gains or a skew gain graph), if g satisfies the following
reversibility condition

g(e−1) = δ(g(e)) for all e ∈ E . (5.1)

In the future we will refer to a skew gain graph (G, g) simply by g unless confusion
arises. We adopt in a natural way some of the terminology of graph theory for
graphs with skew gains.

The class of (Γ, δ)-gain graphs on G will be denoted by LG(Γ, δ) or simply by
LG . A gain graph is a (Γ,−1)-gain graph; these are also called inversive skew gain
graphs.

The set of gains of g is

A(g) = {g(e) | e ∈ E(G)} ⊆ Γ .

We call g abelian if A(g) ⊆ Z(Γ), where, as you might recall, Z(Γ) is the centre of
Γ.

Example 5.2
(1) In Figure 2.4(a) a graph is depicted. The labelled graph in Figure 2.4(b) is not
just a pictorial representation of this graph, but also a (Z2,

−1)-gain graph where
the underlying graph is complete. Shortly, we will define a notion of switching that

5.1. DEFINITIONS 79

corresponds, for the case of Z2, exactly to the notion of switching in the first part
of this thesis.
(2) In Figure 5.1, three labelled graphs are depicted. The first of these does not
adhere to the symmetry condition, but it should be clear that if the anti-involution
is known we can add the missing reverse edges and determine their labels uniquely.
If we know the anti-involution to be the group inverse, f0 in the table of Exam-
ple 5.1, then the result of adding the missing edges will be the (S3, f0)-gain graph
in Figure 5.1(b). If the anti-involution is f1 from the table of Example 5.1, then the
result will be the (S3, f1)-gain graph in Figure 5.1(c).
(3) In Figure 5.2 we have listed two examples of (Γ, δ)-gain graphs with the group
Γ = Z4 and the anti-involution equal to the identity function. The underlying graph
is the graph of Figure 2.4(a). ¦

A function σ : V → Γ is called a selector. For each selector σ we associate with
g a (Γ, δ)-gain graph gσ on G = (V,E) by letting, for each uv ∈ E,

gσ(uv) = σ(u)g(uv)δ(σ(v)) . (5.2)

We use S(V,Γ) or simply S, to denote the set of the selectors from V to Γ.
Note that the definition of selector is in line with our definition of selector in the

first part of this thesis, since a subset of the set of vertices is equivalent to selecting
in each node an element of Z2 and δ = −1 = id. It is easy to verify that in this
restricted case (5.2) corresponds to (3.1) in the first part of the thesis.

Example 5.3
Let g1 and g2 be the (Z4, id)-gain graphs of Figure 5.2(a) and (b) respectively. The
second of these, g2, can obtained from g1 by applying the selector σ that maps 1
and 3 to 3, and 2 and 4 to 1. For example, the label of the edge (1, 3) is computed
as follows: g2(1, 3) = gσ1 (1, 3) = σ(1)g1(1, 3)δ(σ(3)) = 3 + 1 + δ(3) = 3 + 1 + 3 = 3,
where + is of course addition modulo 4. ¦

We note that gσ satisfies the reversibility condition (5.1), by the following lemma.

Lemma 5.4
For each g ∈ LG(Γ, δ) and selector σ : V → Γ, also gσ ∈ LG(Γ, δ).
Proof:
Indeed,

gσ(uv) = σ(u)g(uv)δ(σ(v)) = σ(u)δ(g(vu))δ(σ(v)) = σ(u)δ(σ(v)g(vu))
= δ(σ(v)g(vu)δ(σ(u))) = δ(gσ(vu)) ,

which shows the claim. 2

The class [g] ⊆ LG(Γ, δ) defined by

[g] = {gσ | σ : V → Γ}

is called the switching class generated by g.
In Figure 5.3 we have included an example of a switching class that will be used

in this and the coming chapters, e.g., Example 5.6, 6.18 and 7.27.
The set S(V,Γ) of selectors can be made into a group in a natural way by defining

for all selectors σ and τ ,
(στ)(u) = σ(u)τ(u)

80 CHAPTER 5. GAIN GRAPHS

1

2

3

4

0

2

0

0

0

3

0

1

0

0

0

2

0

1

0

3

0

2

1

1

0

3

1

2

0

0

1

3

0

1

1

0

0

2

2

2

0

3

2

3

0

0

2

0

0

1

2

1

0

2

3

3

0

3

3

0

0

0

3

1

0

1

3

2

1

2

1

0

1

3

1

1

1

0

1

2

1

1

1

3

1

2

2

1

1

3

2

2

1

0

2

3

1

1

2

0

1

2

3

2

1

3

3

3

1

0

3

0

1

1

3

1

1

2

0

3

1

3

0

0

1

0

0

1

1

1

0

2

2

2

2

0

2

3

2

1

2

0

2

2

2

1

2

3

2

2

3

1

2

3

3

2

2

0

3

3

2

1

3

0

2

2

0

2

2

3

0

3

2

0

0

0

2

1

0

1

2

2

1

3

2

3

1

0

2

0

1

1

2

1

1

2

3

2

3

0

3

3

3

1

3

0

3

2

3

1

3

3

3

2

0

1

3

3

0

2

3

0

0

3

3

1

0

0

3

2

1

2

3

3

1

3

3

0

1

0

3

1

1

1

3

2

2

3

3

3

2

0

3

0

2

1

3

1

2

2

Figure 5.3: A complete switching class

5.1. DEFINITIONS 81

for all u ∈ V .
Closure under composition of selectors is something that we would expect in our

model: it is a consequence of Axiom A1 from the introduction.

Lemma 5.5
For each g ∈ LG(Γ, δ) and selectors σ, τ ∈ S(V,Γ), gστ = (gτ)σ.
Proof:
Let uv ∈ E(G). Then

(gτ)σ(uv) = σ(u)τ(u)g(uv)δ(τ(v))δ(σ(v))
= σ(u)τ(u)g(uv)δ(σ(v)τ(v))
= (στ)(u)g(uv)δ((στ)(v)) = gστ (uv) .

2

Hence S(V,Γ) is a group that acts on the (Γ, δ)-gain graphs (on the left), that
is, S(V,Γ) can be thought of as a permutation group on LG(Γ, δ). It follows then
that each switching class [g] is generated by each of its elements.

In the group S(V,Γ) the trivial selector σ1, for which σ1(u) = 1Γ for all u ∈ V ,
is the group identity of S(V,Γ); and the inverse of a selector σ, denoted by σ−1,
is found by inverting the selected values in the vertices, that is, σ−1(u) = σ(u)−1

for u ∈ V . Hence, the relation g ∼ h, which holds if there exists a selector σ such
that h = gσ, is, as in the first part of this thesis, an equivalence relation on the
(Γ, δ)-gain graphs.

Note that in the terminology of permutation groups, a switching class generated
by g is the orbit of g. The stabilizer of g corresponds to the set of selectors that
leave g unchanged. Naturally, this includes the trivial selector, but in general it may
include others as the following example shows.

Example 5.6
Let g be the first (Z4, id)-gain graph of Figure 5.3. To find the selectors σ so
that gσ = g we first note that if σ(1) = a for some a ∈ Z4, then necessarily
σ(2) = δ(a−1) = a−1. In the same way, σ(3) = σ(2)−1 = σ(1) = a and σ(4) = σ(2).
The selected values guarantee that the labels on the path (1, 2, 3, 4) stay the same.
The only possibility for change lies in the edge (1, 4) (and (4, 1)).

If we want to leave the path (1, 2, 3, 4) unchanged, then the value selected in 1
determines the other selected values, and so there are only 4 selectors left to consider.
If σ(1) = 0, then σ is the identity selector and obviously gσ = σ. However, this is
also the case if σ(1) = i for i = 1, 2, 3 as the reader can easily verify by computing
that always σ(1)g(1, 4)δ(σ(4)) = 2. Defining σi to be a selector of the sort just
described with σ(1) = i, we find that Stab(g) = {σ0, σ1, σ2, σ3}.

Note that g1 of Example 5.3 can be obtained from g if we add an edge {1, 3}
labelled with 1 (see Figure 5.2(a)). In Example 5.3 we saw that σ3 maps g1 to g2 of
Figure 5.2(b) and not to itself. This also holds for σ1, but σ0 and σ2 do map g1 to
itself. Hence Stab(g1) = {σ0, σ2}. As we shall see later this is a consequence of the
fact that the underlying graph is not bipartite anymore. ¦

For a gain graph g, let g−1 ∈ LG be such that g−1(uv) = g(uv)−1 for all uv ∈
E(G), and for g, g′, gg′ is defined edgewise by

(gg′)(uv) = g(uv)g′(uv) for all uv ∈ E(G) .

Note that gg′ does not necessarily satisfy Equation (5.1).

82 CHAPTER 5. GAIN GRAPHS

Lemma 5.7
The labelled graph gg′ satisfies Equation (5.1) for all g, g′ ∈ LG(Γ, δ) if and only if
Γ is abelian.
Proof:
Compute gg′(vu) = δ(gg′(uv)) = δ(g(uv)g′(uv)) = δ(g′(uv))δ(g(uv)) = g′(vu)g(vu),
which is true only if the labels of g and g′ commute. 2

In the general case the set of graphs on G with labels from Γ form a group, and
if Γ is abelian, then LG(Γ, δ) is also a group.

Some remarks about the history are now appropriate, as we can now encompass
many of the notions available in the literature in our framework. The switching
classes of the first part of our thesis, as devised by Van Lint and Seidel [37], is
the most restricted case where the group is Z2, the anti-involution is by necessity
the group inversion, and the underlying graph is a complete graph. The important
references here are the survey papers of Seidel [43] and Seidel and Taylor [44].

The signed graphs of Harary [27], but see also Zaslavsky [48] and [49], are slightly
more general in that the underlying graph is now arbitrary. The name “signed”
comes from the fact that edges are labelled by + and − and switching is done
according to the rules of multiplication, i.e., ’+’ times ’−’ equals ’−’. This is clearly
isomorphic to the operation of addition modulo 2 in Z2.

In topological graph theory (Γ,−1)-gain graphs on arbitrary graphs are called
voltage graphs (see Gross and Tucker [20]). These are equivalent to the gain graphs
of Zaslavsky (see [50], in which also a more general model, that of biased graphs,
can be found). The model of dynamic labelled 2-structure as devised by Ehrenfeucht
and Rozenberg [16] was the first to include an anti-involution, but the underlying
graphs were complete.

5.2 Anti-involutions

Let AUT2(Γ) denote the set of automorphisms of Γ of order at most two.

Lemma 5.8
A function δ is an anti-involution of Γ if and only if α ∈ AUT2(Γ) for α = −1 · δ.
Proof:
Let δ be an anti-involution and define α as above. Now, α(ab) = δ(ab)−1 =
(δ(b)δ(a))−1 = δ(a)−1δ(b)−1 = α(a)α(b).

The other direction is as follows: let α be an automorphism of Γ. Define δ = −1·α.
Then, δ(ab) = α(ab)−1 = (α(a)α(b))−1 = α(b)−1α(b)−1 = δ(b)δ(a), so δ is an anti-
involution. 2

Corollary 5.9
Let a ∈ Γ.

i. δ(1Γ) = 1Γ,

ii. −1 is an anti-involution,

iii. Γ is abelian if and only if the identity function is an anti-involution,

iv. δ(a−1) = δ(a)−1,

v. δ(an)m = δ(a)nm for integers n,m,

5.2. ANTI-INVOLUTIONS 83

vi. #δ(a) = #a,

vii. |AUT2(Γ)| = |INV(Γ)|

The next lemma says that each anti-involution δ, that is not the identity nor
the group inversion, possesses a nontrivial fixed point, δ(a) = a, and a nontrivial
‘inverse point’, δ(b) = b−1.

Lemma 5.10
Let δ be an anti-involution of a finite group Γ.

i. Either there exists an element a 6= 1Γ such that δ(a) = a, or δ is the inversion
of Γ and Γ has odd order.

ii. Either there exists an element a 6= 1Γ such that δ(a) = a−1, or δ is the identity
function and Γ is an abelian group of odd order.

Proof:
For (i), assume that δ has no nontrivial fixed points. We note that for all a ∈ Γ,
δ(aδ(a)) = aδ(a), and hence each aδ(a) is a fixed point of δ. By assumption aδ(a) =
1Γ for all a; hence δ(a) = a−1, and hence δ is the group inversion. In this case,
the order of Γ is odd, because if it were even, then (by Cauchy’s theorem) Γ has an
element x of order 2, x2 = 1Γ, and then δ(x) = x−1 = x.

For (ii), we deduce that if aδ(a) = bδ(b), then δ(a−1b) = δ(b)δ(a−1) = b−1a =
(a−1b)−1. On the other hand, if aδ(a) 6= bδ(b) for all a 6= b, then clearly Γ = {aδ(a) |
a ∈ Γ} and thus for each b ∈ Γ there exists an a such that b = aδ(a), which implies
that for all b, δ(b) = b. Thus δ is the identity function. In this case, Γ is abelian, and
it has odd order, since δ(1Γ) = 1Γ and the other elements come in pairs {a, a−1}. 2

Theorem 5.11
The centre Z(Γ) of Γ is closed under every anti-involution of Γ. Furthermore, for
each anti-involution δ either δ(z) = z for all z ∈ Z(Γ) or there exists an element
x ∈ Z(Γ) such that δ(x) = x−1 with x 6= 1Γ.
Proof:
For all x ∈ Z(Γ) and y ∈ Γ, δ(x)y = δ(δ(y)x) = δ(xδ(y)) = yδ(x), which shows that
also δ(x) ∈ Z(Γ). Hence, if δ is an anti-involution of Γ, then δ is an anti-involution
of Z(Γ). The second claim follows from Lemma 5.10. 2

Now it is shown that computing the direct product of two groups involves taking
the cartesian product of the sets of anti-involutions of both groups.

We write also
δ[i] : Γi → Γi

for the restriction of δ(i) onto the subgroup Γi for i = 1, 2.
The following example shows that an anti-involution of a direct product cannot

necessarily be obtained by projections of its components.

Example 5.12
Let Γ = Γ1 × Γ1 for a group Γ1, and let δ be the reversed inversion on Γ, that is,

δ(a1, a2) = (a−1
2 , a−1

1)

84 CHAPTER 5. GAIN GRAPHS

for all a1, a2 ∈ Γ1. Then δ is an anti-involution of Γ. Indeed, it is clear that δ2 = id,
and, moreover, for all ai, bi ∈ Γ1,

δ(a1, a2) · δ(b1, b2) = (a−1
2 , a−1

1)(b−1
2 , b−1

1) = (a−1
2 b−1

2 , a−1
1 b−1

1)
= ((b2a2)−1, (b1a1)−1) = δ(b1a1, b2a2)
= δ((b1, b2) · (a1, a2)).

However, δ is not of the form δ = (δ1, δ2) for any functions (let alone anti-involutions)
δ1 and δ2 of Γ1, if Γ1 is nontrivial. ¦

However, we have

Theorem 5.13 [new, Hage and Harju [22]]
Let Γ = Γ1Γ2 be the (inner) direct product of the normal subgroups Γ1 and Γ2.

i. If δi ∈ INV(Γi) for i = 1, 2, then the function δ : Γ→ Γ defined by

δ(a) = δ1(a1)δ2(a2) for a = a1a2, ai ∈ Γi

is an anti-involution of Γ.

ii. If δ ∈ INV(Γ), then there are normal subgroups ∆1 and ∆2 of Γ such that Γ =
∆1∆2 is a direct product with |∆1| = |Γ1|, |∆2| = |Γ2| for which δ[i] : ∆i → ∆i

is an anti-involution of ∆i for i = 1, 2.

Proof:
In order to prove (i), let δi be anti-involutions as stated. Let a = a1a2 and b = b1b2
for a1, b1 ∈ Γ1 and a2, b2 ∈ Γ2. Now, for the function δ,

δ(ab) = δ(a1a2b1b2) = δ(a1b1a2b2) = δ1(a1b1)δ2(a2b2)
= δ1(b1)δ1(a1)δ2(b2)δ2(a2) = δ1(b1)δ2(b2)δ1(a1)δ2(a2)
= δ(b1b2)δ(a1a2) = δ(b)δ(a)

and thus δ is an anti-automorphism of Γ. Further, the condition δ2(a) = a is easily
checked.

For (ii) suppose first that δ ∈ INV(Γ), and define

∆1 = {δ(a) | a ∈ Γ1} and ∆2 = {δ(b) | b ∈ Γ2} .

Clearly, a ∈ ∆1 (resp. in ∆2) if and only if δ(a) ∈ Γ1 (resp. δ(a) ∈ Γ2). Since an
anti-involution is a bijection, we have immediately that |∆i| = |Γi| for i = 1, 2.

We show then that ∆1 and ∆2 are normal subgroups of Γ. Indeed, let y = aua−1

for some a ∈ Γ and u ∈ ∆1. Now, δ(y) = δ(a)−1δ(u)δ(a) ∈ Γ1, since δ(u) ∈ Γ1 and
Γ1 is a normal subgroup of Γ. This shows that ∆1 is normal in Γ. The case for ∆2

is symmetric.
Next we observe that ∆1∩∆2 = {1Γ} is the trivial subgroup of Γ. Further, if a ∈

Γ, then a = a2a1 for some ai ∈ Γi, because Γ = Γ2Γ1. Therefore, δ(a) = δ(a1)δ(a2),
where δ(a1) ∈ ∆1 and δ(a2) ∈ ∆2. Since each element b ∈ Γ is an image b = δ(a),
we have shown that Γ = ∆1∆2 is a direct product of Γ.

It is clear, that δ[i] is an anti-involution of ∆i for both i = 1 and i = 2. 2

5.3. ANTI-INVOLUTIONS OF CYCLIC GROUPS 85

In particular, if Γ is an abelian group, then it is a direct product (sum) of cyclic
groups, and thus Theorem 5.13 states that the anti-involutions of an abelian group
can be obtained from the cyclic groups Zpk that are its direct components. However,
counting the number of anti-involutions of Γ is not reduced in this way to the number
of anti-involutions of its direct components, because part (ii) of Theorem 5.13 uses
‘swappings’ of subgroups in the construction of the ∆i, i = 1, 2.

Example 5.14
Let Γ = Z2 × Z2. Then Γ = Γ1Γ2 is an inner direct product of Γ1 = Z2 × {0} and
Γ2 = {0}×Z2. Note that Γ1 and Γ2 are normal subgroups of Γ with Γ1∩Γ2 = {(0, 0)}.
The groups Γ, Γ1 and Γ2 have the identity as their anti-involution (it is equal to the
group inversion), but in the case of the former, it is not the only one. The function
δ is an involution of Γ:

δ((a, b)) = (b, a) for a, b ∈ {0, 1} .

We now proceed along the lines of Theorem 5.13. The swapped subgroups are
∆1 = Γ2 and ∆2 = Γ1, and the reader can verify that δ[1] is an involution of ∆1 = Γ2

as follows: take for instance (1, 0) ∈ ∆1. We have to verify that δ[1]((1, 0)) ∈ ∆1.
Recall from Section 2.2 that δ(x) = δ(1)(x)δ(2)(x) where δ(1)(x) ∈ ∆1 and δ(2)(x) ∈
∆2. In this case δ((0, 1)) = (1, 0) = (1, 0)(0, 0) = δ(1)((0, 1))δ(2)((0, 0)). Hence
δ[1]((0, 1)) = (0, 1). The same holds for (0, 0) and so δ[1] is the identity on ∆1 which
is an involution of that group. Hence the swapping of subgroups compensates for
the swapping done by the involutions. ¦

5.3 Anti-involutions of cyclic groups

This section is devoted to an investigation of the anti-involutions of cyclic groups,
see also Chapter VIII, p. 98 in Hardy and Wright [29].

For the group Zn, suppose δ(1) = k, where 1 is the generator of the group. Now,
δ(i) = ik mod n and so δ(k) = k2 mod n, i.e.,

k2 ≡ 1 mod n. (5.3)

As an example let n = 16. The first anti-involution, the identity, is found by
taking k = 1, which works for any cyclic group. If (5.3) holds for k then it also
holds for n − k, so k = 15 is also possible; this is the group inversion. It is easy to
see that if k > 1 then k ≥

√
n+ 1 and hence k cannot be equal to 2, 3 or 4. From

Corollary 5.9 we know that #1 = #k and hence k generates Zn as well, implying
(n, k) = 1. This means that other possible values for k that have to be examined
are 5 and 7. Of these only 7 works (and thus also 9).

Let ξ : N→ {−1, 0, 1} be such that

ξ(n) =

1 if 8|n
−1 if 2|n and 4 6 |n
0 otherwise

Lemma 5.15
If n = pm for some prime p and m ∈ N then (5.3) has exactly 21+ξ(n) solutions.
Proof:
If (5.3) holds, then pm|(k − 1)(k + 1), which means that pi|(k − 1), pj |(k + 1) with
i+ j = m and i, j ≥ 0 (note that never i = j = 0).

86 CHAPTER 5. GAIN GRAPHS

If j = 0 (or i = 0) then pm|k − 1 (or pm|k + 1) yields

k ≡ ±1 mod pm . (5.4)

We note that if p = 2 and m = 1, then the solutions for +1 and −1 in (5.4) are the
same.

Suppose then that i, j > 0. First let i < j. This implies that pi|k−1 and pi|k+1,
so that pi|(k+1)− (k−1) = 2. Now i > 0 implies i = 1 and p = 2, and consequently
j = m− 1 and substitution gives 2m−1|k+ 1. Applying the same reasoning to j < i
we get

k ≡ ±1 mod 2m−1 . (5.5)

If m = 1 or m = 2, (5.5) yields solutions that are equal to the ones of (5.4).
Summarizing, we get one solution if p = 2 and m = 1, four solutions if p = 2

and m ≥ 3 and two if p 6= 2 or p = 2 and m = 2.
In the above we have only proven half of what we need to prove, namely indicating

possible solutions. The fact that these solutions do indeed always exist can be verified
easily from (5.3).

Hence for every n the number of solutions equals 21+ξ(n). 2

If we have a factor p = 2, then not only do we have solutions k = 1 and k = pm−1,
but also two solutions that are ‘halfway’. In some cases a number of these solutions
collapse together yielding a smaller amount of solutions. For instance the group Z2

has only one anti-involution.

Theorem 5.16
Let n = pm1

1 · . . . · pmrr , r ≥ 1, for prime numbers pj ≥ 2, mj > 0 for 1 ≤ j ≤ r with
pi < pi+1, and for 1 ≤ i ≤ r − 1. Then |INV(Zn)| = 2r+ξ(n).
Proof:
A cyclic group Zn can be written

Zn ∼= Zpm1
1
⊕ Zpm2

2
⊕ · · · ⊕ Zpmrr

where r > 0, pj ≥ 2, mj > 0 for 1 ≤ j ≤ r and pi < pi+1, for 1 ≤ i ≤ r − 1.
Note first of all that we are constructing the involutions for arbitrary cyclic

groups from the involutions of the primary groups Zpmi for primes pi. From Ex-
ample 5.12 we know that we have to be careful, because it may be that not every
involution of Zn can be constructed in this way. For this, note that the order of the
elements in any primary group divides the order of the primary group. Because all
primes in the decomposition are different, we need not fear the swapping of Exam-
ple 5.12, because an involution always maps an element to an element of the same
order. In other words: involutions on Zn are such that they only map an element to
an element of the same primary group. Hence to every pmjj (1 ≤ j ≤ r) Lemma 5.15
can be applied yielding the given number of solutions.

We can then use Theorem 122 of [29] to conclude that the total number of
solutions equals the product of the numbers of solutions to the separate equations
for pmjj for 1 ≤ j ≤ r.

If p1 6= 2 then every prime number gives two solutions yielding a total of 2r

solutions, and indeed in this case ξ(n) = 0. If p1 = 2 then we have three possibilities:
m1 = 1 and hence p1 yields only one solution and we get a total of 2r−1 solutions.
The other two cases, m1 = 2 and m1 > 2, follow similarly. 2

5.4. SPANNING ACYCLIC SKEW GAIN SUBGRAPHS 87

Note that the anti-involutions themselves can be found by solving two sets of
equations using the Chinese Remainder Theorem, see [29].

Example 5.17
Let Γ = Z60. The factoring of 60 into prime powers is 22 · 3 · 5. According to
Theorem 5.16 we should get 23+0 = 8 anti-involutions. The anti-involutions are
determined by the values that the generator 1 is mapped to: these values are
1, 11, 19, 29, 31, 41, 49, 59. This can be verified along the lines of the example at
the beginning of this section.

For the group Z81 we obtain two anti-involutions: the identity and the group
inversion. ¦

5.4 Spanning acyclic skew gain subgraphs

A vertex u ∈ V is called a horizon of a (Γ, δ)-gain graph g on (V,E2(V)), if for all
v ∈ V − {u}, g(uv) = 1Γ. A horizon was called an isolated vertex in the context of
undirected graphs.

As will become clear later, (Γ, δ)-gain graphs that have a horizon are very useful.
First we prove that for a fixed vertex u, every switching class contains an element
in which u is a horizon. Note however that here we do not have uniqueness, that is,
unlike in Lemma 3.9.

Let g be a (Γ, δ)-gain graph on G = (V,E2(V)). For a vertex u ∈ V and an
element a ∈ Γ, define the selector σu,a such that

σu,a(u) = a and σu,a(v) = δ(ag(uv))−1 for v ∈ V − {u} . (5.6)

It is easy to verify that u is a horizon in gσu,a : for v ∈ V − {u},

gσu,a(uv) = ag(uv)δ2(ag(uv))−1 = ag(uv)(ag(uv))−1

= ag(uv)g(uv)−1a−1 = 1Γ.

We shall now generalize this to the largest extent possible starting with the connected
case. Recall that a rooted tree is a tree T with an indicated vertex u = root(T). We
say that a vertex v is odd (even) with respect to u if the path in T between u and
v is of odd (even) length. Vertices that are both even (with respect to u), or that
are both odd (with respect to u) are said to be of the same parity. We shall use
odd(T) and even(T) to refer to the sets of odd and even vertices with respect to
root(T) respectively.

In the following we say that T is a tree in G if T is a subgraph of G that is a
tree, and similarly for rooted trees and forests.

Let g ∈ LG(Γ, δ) and let t ∈ LT where T is a rooted tree of G. Define the selector
σg,t recursively,

σg,t(u) =
{

1Γ if u = root(T), or u /∈ V (T)
δ(g(vu)−1σg,t(v)−1t(vu)) otherwise, where v is the father of u in T

(5.7)
Define then gt to be equal to gσg,t .
The following can be now proved (see, for instance, Zaslavsky [49]).

Lemma 5.18
Let g ∈ LG and let t ∈ LT where T is a (rooted) tree in G. For all e ∈ E(T),

88 CHAPTER 5. GAIN GRAPHS

(a)

3

2

1 7 8

2

r0

1 7 8

s1

3
s0

(b)

s0

r0

4

5

6 4

5

6

9 10109 r1

s1

Figure 5.4: The forest F and f ∈ LF (S3,
−1)

gt(e) = t(e).
Proof:
Let vu ∈ E(T), where v is the father of u. We compute

gt(vu) = gσg,t(vu) = σg,t(v)g(vu)δ(σg,t(u))
= σg,t(v)g(vu)δ(δ(g(vu)−1σg,t(v)−1t(vu)))
= σg,t(v)g(vu)g(vu)−1σg,t(v)−1t(vu)
= σg,t(v)σg,t(v)−1t(vu) = t(vu) .

This completes the proof. 2

If t has 1Γ as its only gain, then we write gT instead of gt. If T is a spanning
tree of G, then we call gT the T -canonical (Γ, δ)-gain graph of g. We sometimes say
that T is 1Γ-labelled in gT . In the following, we will simply write gσT for (gT)σ.

Lemma 5.18 can be generalized to acyclic graphs straightforwardly: simply apply
the above to the rooted trees the forest consists of. Of course, a rooted forest will
have a set of roots: one for each component.

Applying the method to each tree separately will yield a number of independent
selectors that can be combined into one single selector by selector composition. Note
that the selectors do not interfere, because no two of them select a nonidentity in
the same vertex.

Corollary 5.19
Let g ∈ LG and let f ∈ LF where F is an acyclic subgraph of G. There exists a
gf ∈ LF such that gf (e) = f(e) for all e ∈ E(F).

Example 5.20
The rooted forest F of Figure 5.4(a) consists of trees T1, T7 and T8, where for
each Ti, the vertex i is the designated root. Using F as underlying graph, we have
depicted f ∈ LF (S3,

−1) in Figure 5.4(b). To prevent cluttering, we have included
only one edge between any pair of vertices if the labels of the edges between them
differ. Hence, we have not included the edge from 3 to 2, but since we know the
anti-involution we know its label should be r1

−1 = r2. The (S3,
−1)-gain graphs ti

are the components of f corresponding to Ti, where i = 1, 7, 8.
Let G be the graph of Figure 5.5(a) and let g ∈ LG(S3,

−1) be the gain graph of
Figure 5.5(b). Note that F is not a spanning forest ofG since it has more components
than G does.

5.4. SPANNING ACYCLIC SKEW GAIN SUBGRAPHS 89

(a)

3

2

1 7 8

r0 r1

2

s1
1 7
r2

s0

r1

3
s2

s0
s0

(b)

8

r0

r0

r0

s1
s2

5

64

9 10

4

5

6

9 10

Figure 5.5: The graph G and g ∈ LG(S3,
−1)

(a)

s0
s1

r2 s0

r1

r0
2

r1
1
r2

7

r0

3
9

6

5

4

s2
s0

2

r1

5

9 10s1

871

r0

64
s1

s0

3r2

r0s1r0

s2

r1

s0

(b)

r2
s0

Figure 5.6: gt1 and gf respectively

90 CHAPTER 5. GAIN GRAPHS

In Figure 5.6(a) we find gt1 . Note that the parts that are not incident with
t1 have been slightly obscured. The selector σg,t1 selects everywhere r0 with these
exceptions: σg,t1(2) = s0, σg,t1(3) = r1 = σg,t1(5), σg,t1(4) = s2 and σg,t1(6) = r2.

The selector σg,t8 selects 1Γ = r0 in every vertex except 9 where it selects s1.
The selector σg,t7 is simply the identity selector.

In Figure 5.6(b) we present the (Γ, δ)-gain graph gf . Note that it can be found
by applying the selectors σg,t1 , σg,t7 and σg,t8 in any order; that we can do this in
any order follows from the fact that no two selectors select a nonidentity in the same
vertex. ¦

Chapter 6

The Sizes of Switching Classes

This chapter is devoted to an investigation of the sizes of the switching classes of
the graphs with skew gains. The results in this chapter are from Hage and Harju
[26] unless otherwise indicated.

We shall first study this problem for complete graphs G = (V,E2(V)). In the
last section we reduce the general case where G is not bipartite to the complete case
– the bipartite case is solved differently.

If G is complete, it turns out that, when (Γ, δ) is abelian, the cardinalities are
the same for each switching class G with a given domain V , while in the nonabelian
case the cardinality of each G depends (only) on the content number c(G), which is
counted using the set of elements of Γ that appear in an h ∈ G that has a horizon.
Such an h exists by Lemma 5.18, and c(G) turns out be independent of the choice
of h and horizon u. The formula will then read

|G| = kn−1 · k/c(G) ,

where k is the order of the (finite) group Γ and n is the number of elements of the
domain V . Obviously if Γ is infinite then the switching classes have infinite size as
well. In the above, the content number c(G) always divides the order k of the group
Γ.

6.1 Complete graphs with skew gains

It is technically convenient to assume that the domains of our switching classes
contain at least three vertices. We therefore first treat the case in which the order
of the underlying graph is either one or two. The following simple result holds for
all groups.

Lemma 6.1
Let a set V be such that 1 ≤ |V | ≤ 2 and let G be any graph on V . For all groups
Γ, anti-involutions δ on Γ, and g ∈ LG(Γ, δ), we have [g] = LG(Γ, δ).

In the remainder of this chapter assume that |V | ≥ 3 and Γ is finite.

Recall from Chapter 5 that since S = S(V,Γ) acts on LG, then for all g ∈ LG,

|S| = |Stab(g)| · |[g]| , (6.1)

where Stab(g) = {σ ∈ S | gσ = g} is the stabilizer of g ∈ S, and [g] is the orbit
containing g.

91

92 CHAPTER 6. THE SIZES OF SWITCHING CLASSES

If k = |Γ|, (6.1) can be rewritten as

kn = |{σ | g = gσ}| · |[g]| . (6.2)

Note that (6.2) is independent of the chosen representative g of the switching class.
We are interested in determining the size of the stabilizer Stab(g), because this

determines by (6.2) the remaining unknown, the size of the switching class.

Example 6.2
In this example we consider g ∈ LG(S3, f1) of Figure 6.1(b). As in Example 5.6
we consider only selectors that leave the edges on the path (1, 2, 3, 4) intact. This
happens if for vertices i and i+ 1, 1 ≤ i ≤ 3, σ(i) = δ(σ(i+ 1))−1. In other words,
the selector is determined by the value selected in, say 1. As in Example 5.6 we
denote with σa the selectors that select a ∈ Γ in 1 and are of the type just described.

r0r0r0

r0

r0

(a)

3

1 2

4 3

1 2

4

(b)

Figure 6.1: The graph G and g ∈ LG(S3, f1)

The selectors σr0 – the identity selector – and σs2 map g into itself. The theory
in this chapter will help us to determine that these are the only two selectors that
leave g unchanged. In other words Stab(g) = {σr0 , σs2}.

r0r0

r0

r0

r0r0

r0

r0

r1 r2

(b)(a)

3

1 2

4 3

1 2

4

Figure 6.2: The skew gain graphs gσr2 = gσs0 and gσr1 = gσs1

The selectors σr2 and σs0 map g into the skew gain graph of Figure 6.2(a) and
the remaining two σr1 and σs1 transform g into Figure 6.2(b). ¦

For the rest of this and the following section the underlying graph will be com-
plete, meaning that E = E2(V). (In the last section of this chapter we give a
general formula for determining the sizes of the switching classes G of arbitrary
(Γ, δ)-gain graphs.) Let LK = LK(Γ, δ) where K is the complete graph on V .

To determine directly the size of the stabilizer of an arbitrary g seems to be a
rather complicated task. Fortunately we can, by Lemma 5.18, reduce this problem
to determining the size of Stab(g) for a representative g of the switching class that
has a horizon u. The horizons allow us also to reduce the problem further to the

6.1. COMPLETE GRAPHS WITH SKEW GAINS 93

δ-centralizers of A(g − u), and in this way the problem is simply to determine the
order of a certain subgroup of the group Γ of gains.

We adopt first some notations. Let g ∈ LK be such that it has a horizon u.
Recall that by A(g − u) we denote the set of gains that occur in the subgraph of g
that results when the horizon u is removed.

For any given a ∈ Γ, the δ-centralizer of a is defined as the set

Cδa = {x ∈ Γ | δ(x)a = ax−1} .

Define

Cδu(g) = {x ∈ Γ | δ(x)a = ax−1 for all a ∈ A(g − u)} =
⋂

a∈A(g−u)

Cδa .

Lemma 6.3 [Hage and Harju [23]]

i. For a ∈ Γ, Cδa is a subgroup of Γ.

ii. For each a ∈ Γ, Cδa = Cδδ(a) and Cδa−1 = {δ(x) | x ∈ Cδa}.

iii. For all g ∈ LK with a horizon u, Cδu(g) is a subgroup of Γ.

iv. If Γ has a nontrivial centre and δ 6= id, then Cδu(g) is a nontrivial subgroup of
Γ.

Proof:
For (i), let x, y ∈ Cδa. Then δ(xy)a = δ(y)δ(x)a = δ(y)ax−1 = ay−1x−1 = a(xy)−1.
Clearly, 1Γ ∈ Cδa (so it is not empty), and if x ∈ Cδa, then x−1 ∈ Cδa, because

δ(x)a = ax−1 ⇐⇒ (δ(x)a)−1 = (ax−1)−1

⇐⇒ a−1δ(x−1) = xa−1 ⇐⇒ δ(x−1)a = ax .

For (ii), if x ∈ Cδa, then also x−1 ∈ Cδa, and thus δ(x)−1a = ax. Taking anti-
involutions on both sides, we obtain δ(a)x−1 = δ(x)δ(a), which shows that x ∈ Cδδ(a).
By symmetry, we get Cδa = Cδδ(a).

If x ∈ Cδa, then xa−1 = (ax−1)−1 = (δ(x)a)−1 = a−1δ(x)−1, and therefore
δ(x) ∈ Cδa−1 . Again, the claim follows by symmetry. Claim (iii) follows from the
observation that Cδu(g) is the intersection of all Cδa for a ∈ A(g − u).

The last claim follows from Theorem 5.11, since if δ is not the identity on the
elements of Z(Γ), then there exists an element x ∈ Z(Γ) such that δ(x) = x−1 with
x 6= 1Γ, so clearly x ∈ Cδu(g). 2

Lemma 6.4
For a ∈ Γ, Cδa is trivial if and only if Γ is an abelian group of odd order and δ is its
identity function.
Proof:
In order to show the claim, let α : Γ→ Γ be the function defined by

α(x) = δ(x)ax .

If α(x) = α(y) for some x, y ∈ Γ, then δ(x)ax = δ(y)ay and so δ(y)−1δ(x)a =
a(xy−1)−1. It follows that xy−1 ∈ Cδa. Now let x ∈ Cδa, x 6= 1Γ. Then

δ(x)a = ax−1 ⇐⇒ δ(x)ax = a ⇐⇒ α(x) = a ,

94 CHAPTER 6. THE SIZES OF SWITCHING CLASSES

but also α(1Γ) = a so α is not injective.
Therefore Cδa is trivial if and only if α is an injective function, that is, a bijection

on Γ. However,
α(a−1) = δ(a−1) = α(δ(a−1)) ,

and thus, if α is a bijection, then δ(a) = a, which, in turn, implies that for all x ∈ Γ,

δ(α(x)) = δ(δ(x)ax) = δ(x)δ(a)x = δ(x)ax = α(x) .

Therefore, if α is a bijection, then δ(y) = y for all y ∈ Γ, and Γ is abelian and of
odd order by Lemma 5.10. 2

We say that a selector σ : V → Γ is constant below u, if

σ(v) = δ(σ(u))−1 for all v ∈ V − {u} . (6.3)

Note that the selectors σu,a for a ∈ Γ defined in Section 5.4 generalize the selectors
that are constant below u, take g(uv) = 1Γ.

Lemma 6.5
Let g be a (Γ, δ)-gain graph with a horizon u. Then g = gσ if and only if σ is
constant below u and σ(u) ∈ Cδu(g).
Proof:
Assume that gσ = g and let a ∈ A(g − u). Let vw ∈ E2(V − {u}) be such that
g(vw) = a. We have gσ(uv) = σ(u)δ(σ(v)) = 1Γ, hence σ is a constant below u.
Also, g(vw) = gσ(vw), and thus a = σ(v)aδ(σ(w)), yielding, by the first part of the
claim, that a = δ(σ(u))−1aσ(u)−1. The second claim follows from this.

For the converse, let σ be constant below u and σ(u) ∈ Cδu(g). For v ∈
V − u, gσ(uv) = σ(u)g(uv)δ(δ(σ(u))−1) = σ(u)g(uv)σ(u)−1 = σ(u)σ(u)−1 = 1Γ =
g(uv). For v, w ∈ V − u with v 6= w and setting a = g(vw), we have gσ(vw) =
σ(v)aδ(σ(w)) = δ(σ(u))−1aδ(δ(σ(u))−1) = δ(σ(u))−1aσ(u)−1 = a because σ(u) ∈
Cδu(g). 2

We show then that the set Cδu(g) is independent up to conjugacy of the choice
of the horizon u.

Theorem 6.6 [Hage and Harju [23]]
If h = gσ, where g has horizon u and h has horizon v such that u 6= v, then

Cδv(h) = {σ(v)−1δ(x)−1σ(v) | x ∈ Cδu(g)} .

In particular, the automorphism ψ of Γ, defined by ψ(z) = σ(v)−1δ(z)−1σ(v), maps
Cδu(g) onto Cδv(h).
Proof:
For each (Γ, δ)-gain graph g with a horizon u define αg : Stab(g)→ Γ by

αg(τ) = τ(u) for all τ ∈ Stab(g) .

By Lemma 6.5, we have αg(τ) ∈ Cδu(g). By the same lemma, τ ∈ Stab(g) implies
that τ is constant below u, and thus τ is uniquely determined by the value τ(u).
This shows that αg is injective. That αg maps Stab(g) onto Cδu(g) follows again
from Lemma 6.5. We have also αg(τ1τ2) = (τ1τ2)(u) = τ1(u)τ2(u) = αg(τ1)αg(τ2),
and thus αg : Stab(g)→ Cδu(g) is an isomorphism.

6.1. COMPLETE GRAPHS WITH SKEW GAINS 95

Suppose then that h = gσ, and thus also that g = hσ
−1

. By the above, Cδu(g)
and Cδv(h) are isomorphic.

We have
Stab(h) = {σ−1τσ | τ ∈ Stab(g)} ,

since
gτ = g ⇐⇒ hσ

−1τ = hσ
−1 ⇐⇒ hσ

−1τσ = h .

In particular, the mapping Stab(g)→ Stab(h) with τ 7→ σ−1τσ is an isomorphism,
since
it is an (inner) automorphism of the group of selectors.

Let x ∈ Cδu(g), and let τ be a selector which is constant below the horizon u of
g such that τ(u) = x. Because τ(v) = δ(x)−1,

ψ(x) = σ−1(v)τ(v)σ(v) = σ−1τσ(v) ∈ Stab(h) .

Clearly, ψ is an automorphism of Γ, and therefore the claim follows. 2

The above proof uses the assumption u 6= v only in determining the value τ(v) =
δ(x)−1. If here u = v, then, by the assumption, τ(v) = x and we obtain the following
result.

Theorem 6.7 [Hage and Harju [23]]
If h = gσ, where both g and h have the same horizon u, then

Cδu(h) = {σ(u)−1xσ(u) | x ∈ Cδu(g)} .

In particular, the automorphism ψ of Γ, defined by ψ(z) = σ(u)−1zσ(u), maps Cδu(g)
onto Cδu(h).

It follows from these results that if g and h are two complete (Γ, δ)-gain graphs
with horizons u and v respectively, then [g] = [h] implies that Cδu(g) ∼= Cδv(h), since
the stabilizers Stab(g) and Stab(h) are conjugate. Therefore, for a switching class
G, the integer

c(G) = |Cδu(g)| ,

called the content number of G, is independent of the choice of u ∈ V and of g ∈ G
having a horizon u.

We have by (6.2) and Theorem 6.6 that

Theorem 6.8
For each switching class G of (Γ, δ)-gain graphs with |Γ| = k and |V | = n,

|G| = kn/c(G)

and c(G) divides k.

In particular, the size of every switching class is a multiple of the order of the
group.

Also, the content number c(G) is partly independent of G in the sense that it
becomes determined by the set A(g − u) of gains (where g ∈ G has a horizon u).
Moreover, since c(G) is independent of the choice of g and u, we get the following
result.

96 CHAPTER 6. THE SIZES OF SWITCHING CLASSES

Corollary 6.9
Let G and H be switching classes of (Γ, δ)-gain graphs (having possibly domains of
different sizes) and let G = [g] and H = [h], where g and h have horizons u and v,
respectively. If g − u and h − v have the same sets of gains, A(g − u) = A(h − v),
then c(G) = c(H).

We conclude this section with some details of the switching classes. For u ∈ V ,
the u-refinement generated by a (Γ, δ)-gain graph h is

〈h〉u = {hσ | σ(u) = 1Γ} .

Note that the selectors whose value in a fixed vertex u is 1Γ form a subgroup
of S. Hence, they induce a partitioning of the switching classes into u-refinements,
which explains the name refinement. The selectors σu,a, defined in Section 5.4, then
take us from one u-refinement to another as we shall show in the following theorem;
we shall exploit this again in Chapter 7.

Theorem 6.10
Let g ∈ LK have a horizon u and let T be a transversal of the left cosets of Cδu(g).
Then [g] =

⋃
a∈T 〈gσu,a〉u. Moreover, all gσu,a have a horizon u, and the refinements

〈gσu,a〉u for a ∈ T are disjoint.
Proof:
Indeed, by Lemma 6.5 and (5.6), gσu,a = gσu,b if and only if b−1a ∈ Cδu(g), from
which it follows that all gσu,a are different. By (5.6) it is clear that u is a horizon
of each gσu,a . Now, gσu,a is the only element of 〈gσu,a〉u that has u as its horizon:
the only selector that selects 1Γ in u and keeps the edges between u and the other
vertices 1Γ-labelled is the identity selector. Hence the u-refinements 〈gσu,a〉u for
a ∈ T are disjoint.

For h = gτ , let b = τ(u). Now τ = (τσu,b−1)σu,b, where, again by (5.6),
τσu,b

−1(u) = 1Γ. This shows that h ∈ 〈gσu,b〉u. The claim follows, since there
exists an a ∈ T such that gσu,a = gσu,b by the first part of the proof. 2

Recall that g−1 is the (Γ, δ)-gain graph defined by g−1(uv) = g(uv)−1 for all
uv ∈ E2(V). Note that it can be true that [g] 6= [g−1]. However, we show next that
the switching classes generated by g and g−1 are of the same size.

Theorem 6.11
For any (Γ, δ)-gain graph g with a horizon u, Cδu(g) = δ(Cδu(g−1)). Consequently,
|[g]| = |[g−1]|.
Proof:
Because Cδa = δ(Cδa−1), and δ is a bijection, the claim follows from the definition of
Cδu(g) and the facts that g−1 has u as its horizon and Au(g−1) = {a−1 | a ∈ Au(g)}.
2

6.2 Improvements in some special cases

Throughout this section we let Γ be a finite group of order k and [g] a switching
class where g is a (Γ, δ)-gain graph on a complete graph, which has a horizon u and
a domain V of size n.

We observe that, by the definition of Cδu(g), if 1Γ ∈ A(g − u), then necessarily
δ(x) = x−1 and xa = ax for all x ∈ Cδu(g) and a ∈ A(g − u). As the next theorem
states, this generalizes to a wider family of skew gain graphs.

6.2. IMPROVEMENTS IN SOME SPECIAL CASES 97

Recall that the centralizer of a subset A ⊆ Γ is

C(A) = {x ∈ Γ | ax = xa for all a ∈ A} .

Denote also
Iδ(Γ) = {x ∈ Γ | δ(x) = x−1} .

We observe that always

Iδ(Γ) ∩ C(A(g − u)) ⊆ Cδu(g) .

Theorem 6.12

i. If there exist a, b, ab ∈ A(g − u), then Cδu(g) = Iδ(Γ) ∩ C(A(g − u)).

ii. For the (Γ, δ)-gain graph g1 that has only identity gains, kn = |Iδ(Γ)| · |[g1]|.

Proof:
For (i), assume that a, b, ab ∈ A(g − u).

Thus for any x ∈ Cδu(g), δ(x)b = bx−1 and δ(x)ab = abx−1. Therefore δ(x)ab =
aδ(x)b, whence δ(x)a = aδ(x). But also δ(x)a = ax−1, so δ(x) = x−1. The claim
follows.

Since g1 has the identity as its only gain and C({1Γ}) = Γ, Cδu(g1) = Iδ(Γ) and
thus kn = |Iδ(Γ)| · |[g1]| and (ii) has been proven to hold. 2

If a (Γ, δ)-gain graph g with a horizon u has a gain a ∈ A(g − u) such that
a ∈ Z(Γ), then δ(x) = x−1 for all x ∈ Cδu(g); thus

Theorem 6.13
If Z(Γ) ∩A(g − u) 6= ∅, then Cδu(g) = Iδ(Γ) ∩ C(A(g − u)).

In particular, for an abelian group Γ, Cδu(g) = Iδ(Γ) and thus the size of the
switching class does not depend on the gains of g.

For the case when δ is the inversion of Γ, we can be more specific.

Corollary 6.14
If the anti-involution is the group inversion, then kn = |C(A(g − u))| · |[g]|. If,
moreover, A(g − u) ⊆ Z(Γ) then |[g]| = kn−1.

Example 6.15
(1) Suppose first that the anti-involution of S3 is the group inversion.

We can determine that

Cδr0 = S3, Cδr1 = {r0, r1, r2} = Cδr2 ,

Cδs0 = {r0, s0}, Cδs1 = {r0, s1}, Cδs2 = {r0, s2} .

In particular, if the domain V has three elements and g has a horizon u, then

|[g]| =

36, if g has only r0-labels. ,
72, if A(g − u) ⊆ {r1, r2},
108, otherwise .

98 CHAPTER 6. THE SIZES OF SWITCHING CLASSES

(2) Let δ be the anti-involution of f1 from the table of Example 5.1. In particular,
Iδ = {r0, s2}. We can now compute

Cδr0 = {r0, s2}, Cδr1 = {r0, s0}, Cδr2 = {r0, s1},
Cδs0 = {r0, r1, r2} = Cδs1 , Cδs2 = S3 .

Therefore, e.g., if a complete (S3, δ)-gain graph g with a horizon u yields a nontrivial
subgroup Cδu(g), then A(g − u) can contain at most one of the gains r0, r1, r2, s2.
(Note that s0 ∈ A(g − u) if and only if s1 ∈ A(g − u), since δ(s1) = s0.) If Cδu(g) is
the trivial subgroup of S3, then |[g]| = 6n, where n ≥ 3 is the size of the domain.
This can only happen when n ≥ 4. ¦

6.3 The general case

In this section we consider an arbitrary (Γ, δ)-gain graph g on G = (V,E). As before
we denote n = |V |.

If G is disconnected and the connected components of g are g1, . . . , gc, then
clearly

|[g]| = |[g1]| · |[g2]| · · · |[gc]|.

Thus the size of the switching class is reduced to the sizes of switching subclasses
generated by the connected components.

Suppose now that G is connected, and let T be one of its spanning trees. By
Lemma 5.18 there exists a gT ∈ [g] such that gT (e) = 1Γ for all e ∈ T .

A selector is alternating if it is of the form

σT,a(v) =
{
a if v is even with respect to u,
δ(a)−1 if v is odd with respect to u.

(6.4)

The alternating selectors generalize selectors constant below u to arbitrary trees;
in the case of selectors constant below u the trees are restricted to star graphs. We
generalize Lemma 6.5.

Lemma 6.16
Let T be a spanning tree of g. If gσT = gT for a selector σ, then σ = σT,a for some
a ∈ Γ.
Proof:
Let vw ∈ E(T). Clearly, v and w have different parity and we have

gσT (vw) = σ(v)gT (vw)δ(σ(w)) = σ(v)δ(σ(w)) = 1Γ ⇐⇒ σ(v) = δ(σ(w))−1 .

The result now follows, because T is connected. 2

We divide our further considerations into two parts according to whether g is
bipartite or not.

Theorem 6.17
Let g be a (Γ, δ)-gain graph on a connected bipartite graph G = (V,E), and let T
be a spanning tree of G. Then Stab(g) ∼= C(A(gT)). As a consequence,

|[g]| = kn/|C(A(gT))| .

6.3. THE GENERAL CASE 99

Proof:
Let u ∈ V be a fixed vertex. The sets of even vertices and odd vertices with respect
to u form the unique bipartition of G, since G is connected.

Let e = (vw) ∈ E, where v is even and w is odd. For each selector σ of
the form in (6.4), gT (e) = gσT (e) holds if and only if gT (e) = σ(v)gT (e)δ(σ(w)) =
σ(u)gT (e)σ(u)−1. Therefore, gT = gσT if and only if σ(u) ∈ C(A(gT)).

The mapping α : Stab(gT)→ C(A(gT)) defined by α(σ) = σ(u) is easily seen to
be an isomorphism. This proves the claim, since it is always the case that Stab(g) ∼=
Stab(gT). 2

Example 6.18
In Example 5.6 we saw an example of a (Γ, δ)-gain graph g with an underlying graph
that was bipartite. Because the group, Z4, is abelian we should have |[g]| = 4n/4
and indeed the switching class generated by g has 64 elements: they are listed in
Figure 5.3. ¦

For the non-bipartite case we prove the following

Theorem 6.19
Let g be a (Γ, δ)-gain graph on a connected graph G = (V,E) that is not bipartite.
Then there exists a complete (Γ, δ)-gain graph ĝ on domain V such that ĝ|E ∼ g
and Stab(g) ∼= Stab(ĝ); therefore |[g]| = |[ĝ]|.
Proof:
Let T be a spanning tree of G, and u ∈ V . Since G is not bipartite, there is an
edge e0 = u0v0 ∈ E that connects either two odd vertices or two even vertices with
respect to u. We can assume that the former case holds; otherwise we change the
fixed vertex u to one of its neighbours in T . Such a change changes the parity of
the vertices.

Denote a = gT (e0) and let e ∈ E2(V). We define ĝ as follows. If e ∈ E, then
ĝ(e) = gT (e). For e /∈ E, there are three cases: if the endpoints of e are

• of different parity, then put ĝ(e) = 1Γ,

• both odd, then put ĝ(e) = a and ĝ(e−1) = δ(a),

• both even, then put ĝ(e) = a−1 and ĝ(e−1) = δ(a)−1.

(In the last two cases the choice of priority between e and e−1 is arbitrary.)
Since gT is a subgraph of ĝ (that is, G is a subgraph of Ĝ = (V,E2(V)) and

g respects the gains of ĝ), it follows that Stab(ĝ) ⊆ Stab(gT). In words: for the
selectors σ such that ĝσ = ĝ, also gσT = gT .

In the other direction, assume that σ ∈ Stab(gT), and let e = vw ∈ E2(V) be
any edge of ĝ. If e ∈ E then ĝ(e) = gT (e), and therefore also ĝσ(e) = ĝ(e). Suppose
that e /∈ E.

If v and w are of opposite parity (with respect to u), say v is even and w is odd,
then ĝ(e) = 1Γ, and σ(v) = σ(u), σ(w) = δ(σ(u))−1 by Lemma 6.16. Now also

ĝσ(e) = σ(v)ĝ(e)δ(σ(w)) = σ(u)ĝ(e)δ(δ(σ(u)))−1 = σ(u)ĝ(e)σ(u)−1 = 1Γ .

If both v and w are odd, then ĝ(e) = a or ĝ(e) = δ(a). In this case, σ(v) =
σ(u0) = σ(v0) = σ(w). Now, if ĝ(e) = a (= gT (e0)), then

ĝσ(e) = σ(v)ĝ(e)δ(σ(w)) = σ(u0)gT (e0)δ(σ(v0)) = gσT (e0) = gT (e0) = ĝ(e).

100 CHAPTER 6. THE SIZES OF SWITCHING CLASSES

If ĝ(e) = δ(a), then

ĝσ(e) = σ(v)ĝ(e)δ(σ(w)) = σ(v0)ĝ(e)δ(σ(u0))
= δ(σ(u0)gT (e0)δ(σ(v0))) = δ(gσT (e0)) = δ(gT (e0)) = ĝ(e)

as required.
The final case is when both v and w are even, in which case ĝ(e) = a−1 or

ĝ(e) = δ(a)−1. In this case, σ(v) = σ(w) = δ(σ(v0))−1 = δ(σ(u0))−1. As above

ĝσ(e) = σ(v)ĝ(e)δ(σ(w)) = δ(σ(v0))−1ĝ(e)δ(δ(σ(u0))−1)

= δ(σ(v0))−1ĝ(e)σ(u0)−1 = (σ(u0)ĝ(e)−1δ(σ(v0)))
−1

= (σ(u0)gT (e0)δ(σ(v0)))−1 = gσT (e0)−1 = gT (e0)−1 = ĝ(e).

Finally, if ĝ(e) = δ(a)−1, then

ĝσ(e) = σ(v)ĝ(e)δ(σ(w)) = δ(σ(u0))−1ĝ(e)δ(δ(σ(v0))−1) = δ(σ(u0))−1ĝ(e)σ(v0)−1

= (σ(v0)ĝ(e)−1δ(σ(u0)))
−1

= δ(σ(u0)δ(ĝ(e))−1δ(σ(v0)))
−1

= δ(σ(u0)gT (e0)δ(σ(v0)))−1 = δ(gσT (e0))−1 = δ(gT (e0))−1 = ĝ(e).

This shows that σ ∈ Stab(ĝ). Thus, Stab(ĝ) = Stab(gT) ∼= Stab(g), and hence
the proof is completed. 2

We conclude this chapter with an extensive example.

Example 6.20
In this example, Γ = S3 and δ = f1 of Example 5.1. Let g be the (Γ, δ)-gain graph
of Figure 6.1(b) on the graph G of Figure 6.1(a). The spanning tree T is indicated
in G by the bold edges. Note that T is r0-labelled in g. We choose 2 for the root
of T to make sure that the – in this case only – edge between vertices of the same
parity is between odd vertices, 1 and 3, as in the theorem.

The sets Cδa for a ∈ S3 were given in Example 6.15. The (Γ, δ)-gain graph ĝ is
obtained from g by adding the missing edges (2, 4) and (4, 2) and labelling it with
the element that labels the edge between the odd vertices (with respect to 2), 1 and
3. The edge (2, 4) obtains the label r0

−1 = r0 and the edge (4, 2) is labelled with
δ(r0)−1 = r0.

In this way we obtain ĝ of Figure 6.3(a). Obviously A(ĝ) = {r0} and as a
consequence Cδu(ĝ) = Cδr0 = {r0, s2}. By Theorem 6.8, |[ĝ]| = kn/2 = 3 · 63. By
Theorem 6.19, also |[g]| = 3 · 63. Note that this corresponds exactly to Exam-
ple 6.2 where we found that [g] contained three (Γ, δ)-gain graphs in which T was
1Γ-labelled. (They can be found in Figure 6.1(b) and Figure 6.2(a) and (b).)

Another way of looking at it is to say that the alternating selectors σT,r0 and
σT,s2 are the only ones that map g into itself, a fact that was already demonstrated
in Example 6.2.

If we take g′ to be the (Γ, δ)-gain graph of Figure 6.3(b) we again have to add the
edges (2, 4) and (4, 2). Now the label a of Theorem 6.19 is arbitrarily chosen to be
that of (1, 3) (the edge (3, 1) would be the alternative), which is s0. Again arbitrarily,
we choose to label (2, 4) with s0

−1 = s0 (the element δ(s0)−1 = s1 would be the
alternative) and consequently (4, 2) gets the label s1 = δ(s0)−1 as in Figure 6.3(c).
Now A(ĝ′) = {s2, s0, s1} and Cδu(g) = Cδs0 ∩Cδs1 ∩Cδs2 = {r0, r1, r2} and consequently
|[ĝ′]| = 2 · 63 = |[g′]|. ¦

6.3. THE GENERAL CASE 101

r0

r0

r0

r0

r0

r0
r0

r0

r0

s1

s0s2 r0

r0

r0

s2

s1

s0
s0

s1

3

1 2

4

(a)

3

1 2

4

(b)

3

1 2

4

(c)

Figure 6.3:

102 CHAPTER 6. THE SIZES OF SWITCHING CLASSES

Chapter 7

The Membership Problem

This chapter considers the membership problem or equivalence problem for switching
classes of skew gain graphs, i.e., given two skew gain graphs g, h ∈ LG(Γ, δ), decide
whether h ∈ [g]. This problem is very well motivated from the point of view of
dynamic labelled 2-structures (see [16]). From the point of view of the networks
of the introduction the question whether or not a network can end up in a specific
configuration is certainly a central question. The material in this chapter is from
Hage [21] unless otherwise indicated.

We start with a general treatment of the membership problem that reduces its
complexity. Based on this we construct an efficient algorithm of time complexity
O(k|V (G)|2) for finite groups of order k. Note however that this complexity estimate
is not always optimal since if G is acyclic, then Corollary 5.19 implies that the answer
is always yes and the complexity is then, of course, much lower.

We also look at various optimizations that can be made for particular kinds of
groups, anti-involutions and underlying graphs. In this way we get more efficient
algorithms for abelian groups when the anti-involution is the group inversion or
the underlying graph is bipartite. Also, if the switching class contains a skew gain
graph with only gains from the centre of the group, then we can reduce the member-
ship problem to an elegant problem on anti-involutions, which makes this problem
tractable for some infinite groups. This reduction takes O(|E(G)|) time.

Finally, we prove that in general there are groups that yield an undecidable
membership problem already for very simple underlying graphs. In particular, these
groups have an undecidable conjugacy problem.

7.1 The general problem of membership

Let g, h ∈ LG(Γ, δ). If G consists of connected components Gi, for 1 ≤ i ≤ c
(inducing in this way components gi and hi of g and h respectively), then we can
reduce the problem g ∈ [h] to the connected case: g ∈ [h] if and only if gi ∈ [hi] for
1 ≤ i ≤ c. Therefore we may concentrate on connected graphs G.

Let G = (V,E) be connected and let T be a spanning tree of G. By Lemma 5.18
there exists a T -canonical (Γ, δ)-gain graph gT ∈ [g].

We recall some material essential for this chapter from Chapter 5 and 6. For a
tree T we defined in (6.4) the selector σ = σT,a alternating in T : for every edge uv in
the tree, σ(u) = δ(σ(v))−1 and σ(root(T)) = a. The essential property of alternating
selectors is that switching a T -canonical (Γ, δ)-gain graph by an alternating selector
yields a T -canonical (Γ, δ)-gain graph (Lemma 6.16).

103

104 CHAPTER 7. THE MEMBERSHIP PROBLEM

For u ∈ V , a selector σ with σ(u) = 1Γ is a u-selector. Let u ∈ V be fixed.
The u-selectors form a subgroup of the group of selectors and, as a consequence,
they induce a partitioning of the switching classes into (possibly) smaller classes,
see Chapter 6. Note that σg,t, defined by (5.7), is a root(T)-selector.

The u-refinement 〈g〉u generated by g contains exactly one (Γ, δ)-gain graph with
T 1Γ-labelled, which is gT . This follows from the fact that the only selector that is
both alternating and a u-selector is the trivial selector.

A property of a u-refinement is that it contains as many elements as there are
u-selectors, i.e., each u-selector maps to a different (Γ, δ)-gain graph.

Lemma 7.1
For each g ∈ LG and vertex u of G, |〈g〉u| = |{σ | σ is a u-selector}|.
Proof:
Let σ and τ be different u-selectors. Because they differ on at least one vertex, say
z, and they correspond on the value selected in u, there must be an edge vw on
the path between u and z such that they equal on v and differ on w. Consequently
gσ(vw) 6= gτ (vw). 2

Corollary 7.2
If Γ is finite, of order k and G is of order n, then |〈g〉u| = kn−1 for u ∈ V (G).

Summarizing, we have found that every switching class on a connected graph
consists of a number of u-refinements that all have the same size. We also know
that each such equivalence class is generated by a T -canonical (Γ, δ)-gain graph. The
only remaining question is to decide which u-refinements constitute a switching class
or, equivalently, which T -canonical (Γ, δ)-gain graphs belong to the same switching
class.

In the following we will try to formulate an answer to the following question:
given two different T -canonical (Γ, δ)-gain graphs, is there a selector that maps the
one to the other? This question is simpler than the original, because we need not
consider u-selectors. In fact, we need only consider alternating selectors, because of
Lemma 6.16.

We introduce some definitions based on Chapter 6. We denote by

EOT (g) = {a ∈ Γ | g(uv) = a, uv ∈ E(G), u ∈ even(T), v ∈ odd(T), uv /∈ E(T)}

the gains of the edges of g that are not in T and that start in an even and end in
an odd vertex with respect to root(T). In a similar way we define

EET (g) = {a ∈ Γ | g(uv) = a, uv ∈ E(G), u, v ∈ even(T)} and

OOT (g) = {a ∈ Γ | g(uv) = a, uv ∈ E(G), u, v ∈ odd(T)} .
Further, let

CδT (g) = C(EOT (gT)) ∩OOδ
T (gT) ∩ EEδT (gT)

where
OOδ

T (g) = {x ∈ Γ | δ(x)a = ax−1 for all a ∈ OOT (g)}, and

EEδT (g) = {x ∈ Γ | aδ(x) = x−1a for all a ∈ EET (g)} .
Note that OOδ

T (g) and EEδT (g) are subgroups of Γ. Hence, CδT (g) is also a
subgroup of Γ. Note also that if the anti-involution is the group inversion, then the
definitions of all three sets that determine CδT (g) coincide and CδT (g) can be defined

7.1. THE GENERAL PROBLEM OF MEMBERSHIP 105

as C(A(gT −T)); gT −T denotes the (Γ, δ)-gain graph that can be constructed from
gT by omitting the edges in T . The sets also coincide if G is bipartite, because then
EET (g) and OOT (g) are empty, hence OOδ

T (g) = EEδT (g) = Γ. We return to this in
Section 7.3.

The following lemma generalizes Lemma 6.5.

Lemma 7.3
Let g ∈ LG and let T be a spanning tree of G. Then gT = gσT if and only if σ is
alternating in T and σ(root(T)) ∈ CδT (g).
Proof:
Assume that gT = gσT . By Lemma 6.16, σ is alternating.

Let vw ∈ E(gT)−E(T) and let a = gT (vw). We must consider three cases: both
v and w are even, both are odd, or one is even and the other is odd (all with respect
to r = root(T)).

We start with the case that both v and w are even, in which case σ(r) = σ(v) =
σ(w). Because gT (vw) = gσT (vw), a = σ(v)aδ(σ(w)). This together with the fact
that σ is alternating, yields a = σ(r)aδ(σ(r)). Hence, σ(r)−1a = aδ(σ(r)) or equiv-
alently, σ(r) ∈ EEδT (gT). The claim now follows.

For v and w odd, now σ(v) = σ(w) = δ(σ(r))−1, we obtain in a similar fashion
a = δ(σ(r))−1aδ(δ(σ(r)))−1 = δ(σ(r))−1aσ(r)−1 or equivalently, δ(σ(r))a = aσ(r)−1

and indeed σ(r) ∈ OOδ
T (gT).

Finally, for v even and w odd we have σ(r) = σ(v) = δ(σ(w))−1. We obtain
a = σ(r)aδ(δ(σ(r)))−1 = σ(r)aσ(r)−1 or equivalently, aσ(r) = σ(r)a and indeed
σ(r) ∈ C(EOT (gT)).

The converse is proved similarly in all cases. 2

The following result characterizes the u-refinements that constitute a switching
class, straightforwardly generalizing Theorem 6.10 from Chapter 6.

Theorem 7.4
Let T be a spanning tree of G with root r = root(T), and g ∈ LG such that T
is 1Γ-labelled in g. Also, let T be a transversal of the left cosets of CδT (g). Then
[g] =

⋃
a∈T 〈gσT,a〉r. Moreover, all 〈gσT,a〉r are disjoint.

Proof:
Indeed, 〈gσT,a〉r = 〈gσT,b〉r if and only if (gσT,a)σT,b−1 = g if and only if σ(r) =
b−1a ∈ CδT (g), by Lemma 7.3. Then 〈gσT,a〉r (a ∈ T) are different, because T is a
transversal of the left cosets of CδT (g).

For h = gτ , let b = τ(r). Now, τ = (τσT,b−1)σT,b, where τσT,b−1(r) = 1Γ. Hence,
h ∈ 〈gσT,b〉r. The claim follows, because there exists an a ∈ T such that gσT,a = gσT,b

by the first part of the proof. 2

For the membership problem, the following corollary will be useful.

Corollary 7.5
Let g, h ∈ LG and let T be a spanning tree of G. Also, let T be a transversal of the
left cosets of CδT (g). Then g ∈ [h] if and only if hT = g

σT,a
T for some a ∈ T .

Summarizing, given a graph G of order n and g, h ∈ LG we can answer the
question whether or not g ∈ [h]. For a finite group of order k, this question can be
answered by simply applying all kn selectors σ to g and checking whether h = gσ.

106 CHAPTER 7. THE MEMBERSHIP PROBLEM

Applying the theory developed above we need only apply k selectors, which are al-
ternating. It is important to realize here that the number of selectors is independent
of the order n of G. For this to work, we should first compute gT and hT (for some
tree T) from g and h. A further saving can be made by applying only those alter-
nating selectors that select in the root of T an element of a transversal of the left
cosets of CδT (g).

7.2 Algorithms

Now we describe an algorithm for finite groups (and, if necessary, it can be modified
to work for infinite groups as long as the transversal T , see Corollary 7.5, is finite).
We only give the algorithm for connected graphs; for disconnected graphs it should
be applied to each component.

Algorithm 7.6
SameSwitchingClass? (g,h)
(* Here, g, h ∈ LG(Γ, δ). *) begin

T = a spanning tree of G;
Compute gT and hT;
for all a ∈ Γ do

if hT = g
σT,a
T then return true;

od;
return false;

end;

Please note that we do not use the theory to the fullest, in the sense that the
transversal T of Corollary 7.5 is not used. The reason is that constructing this
transversal in a straightforward way takes as much time as the entire loop, so it is
better to just switch by selectors σT,a for all values a ∈ Γ and not just a ∈ T . Note
that if the group is infinite we might find that we must use T if we can find it, since
it might be finite.

Example 7.7
Let h and h′ be given in Figure 7.1(a) and (b) respectively, and let g be the skew gain
graph of Figure 6.1(b). We would like to determine whether h ∈ [g] and whether
h′ ∈ [g]. For the first we observe that if we take the spanning tree T indicated in
Figure 6.1(a) by the bold edges and choose root(T) = 2, then hT is the skew gain
graph of Figure 6.2. Hence the algorithm will find that σT,r2 maps hT into g and
the answer will be true.

r0

r1

s2

s2

s0

s1 r0

r0

r0

r0

r0r0

r0

r0

s2

s2

(a)

3

1 2

4 3

1 2

4

(c)(b)

3

1 2

4

Figure 7.1: Three skew gain graphs

For h′, we find that h′T is the skew gain graph given in Figure 7.1(c). From
Example 6.2 we know then that we can not find an alternating selector mapping h′T

7.2. ALGORITHMS 107

to g, because it is not equal to any of the skew gain graphs in Figure 6.1 or those of
Figure 6.2.

The build-up of a switching class (for a fixed but arbitrary spanning tree T with
r = root(T)) and the way the algorithm works is illustrated in Figure 7.2.

alternating
selectors

...

...

[h]
hT h

gT g

〈hT 〉r

〈gT 〉r

σT,a for a unique a ∈ T

Figure 7.2: The build-up of a switching class and the question g ∈ [h]?

Theorem 7.8
Let Γ be a finite group of order k and G a graph on n vertices. Then the membership
problem for (Γ, δ)-gain graphs on G is in O(max(n2, k ·max(ξ, n))), where ξ is the
cyclomatic number of G.
Proof:
We determine the complexity of the algorithm by counting the number of edge
comparisons. We switch by at most k selectors and must change and compare at
most ξ edges every single time. If ξ > n we get a complexity of O(kξ), but if ξ < n,
then constructing the selectors σT,a dominates and we get a time complexity of
O(kn). So, depending on their respective sizes we express the complexity in either
the number of vertices, or the number of edges outside the chosen spanning tree.

The n2 in the formula is because we always have to compute gT and hT and in
the worst case this takes O(n2) time. 2

The theory in this chapter, most notably the structure of a switching class for
graphs with skew gains as depicted in Figure 7.2, together with the theory of Ap-
pendix A.1 allow for an “efficient” way to enumerate all the switches of a skew
gain graph g without repetitions (comparable to that of graphs as described in Ap-
pendix A.3).

Algorithm 7.9
GenerateSwitchingClass (g)
(* Here, g ∈ LG(Γ, δ) where Γ is a finite group. *) begin

T = a spanning tree of G;
Compute gT ;
for all different g

σT,a
T

list the skew gain graphs in 〈gσT,aT 〉root(T)

od;
end;

The algorithm still contains two omissions: first of all, we should only list a
refinement if we have not listed it yet. There are two possible ways to make sure
this happens: either we have the transversal T of Theorem 7.4, so that we only

108 CHAPTER 7. THE MEMBERSHIP PROBLEM

apply σT,a with a ∈ T , or we simply remember which T -canonical skew gain graphs
we have already encountered. Fortunately there are at most |Γ| of those.

The other “omission” concerns how to list the elements of a root(T)-refinement.
This problem is addressed in detail in Appendix A.4.

In the introduction we mentioned the problem of determining whether a partic-
ular configuration can occur in a network. We now address this problem, which is
in fact equivalent to determining whether a skew gain graph can be embedded into
some skew gain graph in a switching class.

In the embedding problem we are given two (Γ, δ)-gain graphs g and h on, pos-
sibly different, graphs G and H. The question is whether there exists a j ∈ [g]
such that h can be embedded in j, that is, whether there exists an injective function
ψ : V (H)→ V (G) such that

h(uv) = j(ψ(u)ψ(v))

for all edges uv ∈ E(h). This version of embedding is the labelled version of the full
embedding as defined in Chapter 2.

Once we have fixed an injection ψ from h into g, we can restrict g to g′ by
removing edges that are not in h′, where h′ is the image of h under ψ. (Note that if
h′ contains an edge that is not present in g′, then we know that ψ does not embed
h in g.) With the algorithm described in this section we can answer the question
whether h′ ∈ [g′]. If the answer is affirmative, then we have our embedding ψ; if the
answer is negative, then we should try the next embedding. Note that although the
membership check can be efficient, there may be many possible injections. In fact,
the embedding problem is a hard one, even if restricted to Z2 (see Section 3.4).

7.3 Improvements in the abelian case

In this section we first look at (Γ, δ)-gain graphs with gains from the centre of Γ.
Initially, the anti-involution is arbitrary, but later on we give a further optimization
when the anti-involution is the group inversion. The theory in this section differs
from the treatment in the previous section, because here we shall construct the
selector that maps gT to hT if it exists, instead of trying a number of different
selectors. We could have chosen to just improve the algorithm of the previous
section for abelian groups, but the treatment here results in a more widely applicable
algorithm. We shall demonstrate this in Example 7.12. For simplicity we assume
that the underlying graphs are connected.

7.3.1 Improvements when gT has abelian gains

Let G be a connected graph, let T be a spanning tree of G and let g, h ∈ LG.
To improve on our algorithm for checking that h ∈ [g], we assume that at least

one of gT and hT is abelian. We can assume, without loss of generality, that this is
the case for gT .

Let σ be a selector. Define Gσ ∈ LG such that

Gσ(uv) = σ(u)δ(σ(v)), for all uv ∈ E(G) .

It is easy to prove that if j ∈ LG is abelian, jGσ = jσ. In other words: switching
by a selector is in this case equivalent to applying the group operation edgewise.

7.3. IMPROVEMENTS IN THE ABELIAN CASE 109

Now, assume that hT ∈ [gT] and let σ be the alternating selector such that
hT = gσT .

Let vw ∈ E(G) and r = root(T). If v and w are of different parity, say v is
even and w is odd, then Gσ(vw) = σ(v)δ(σ(w)) = σ(r)δ(δ(σ(r)−1)) = 1Γ. If v, w ∈
even(T) then hT (vw) = gσT (vw) = σ(r)δ(σ(r))gT (vw), or equivalently, Gσ(vw) = a,
where a can be written as bδ(b) for some b ∈ Γ. For two odd vertices we obtain
Gσ(vw) = δ(σ(r)−1)δ(δ(σ(r)−1)) = δ(σ(r)−1)σ(r)−1 = (σ(r)δ(σ(r)))−1 = a−1.

Summarizing, for gains of the edges of Gσ = gT
−1hT we have the following

situation for some a ∈ Γ.

parity odd even
odd a−1 1Γ

even 1Γ a

The previous leads to the following definition: the set of skewed squares of (Γ, δ)
is

∆2(Γ, δ) = {aδ(a) | a ∈ Γ}.

In Section 7.3.2 we shall give some properties of this set. First, we shall continue
with the problem at hand.

In light of the fact that the above construction works in two directions the
previous part of this section can be summarized by the following result.

Theorem 7.10
For g such that gT is abelian, h ∈ [g] if and only if the edges between vertices
of different parity in gT

−1hT are labelled with 1Γ and there exists a b ∈ Γ such
that the edges between two even vertices (with respect to root(T)) are labelled with
bδ(b) ∈ ∆2(Γ, δ) and the edges between two odd vertices (again, with respect to
root(T)) are labelled with (bδ(b))−1.

Theorem 7.11
For g, h ∈ LG with gT abelian, h ∈ [g] reduces in time O(|E(G)|) to the characteristic
function of ∆2(Γ, δ).

Example 7.12
If Γ = Z, the anti-involution δ is the identity, and the underlying graph G is not
bipartite, then CδT (g) equals {1Γ}, where g is any element of LG. Consequently, the
transversal T as defined in Theorem 7.4 equals Γ and thus is infinite; hence, the
switching class consists of infinitely many u-refinements. On the other hand, the
switching class is not equal to LG(Z, δ). This means that an algorithm like that in
Section 7.2, even if it uses the information about the transversal, is not able to solve
the membership problem in finite time. On the other hand, the theory developed in
this section can be applied, since we shall see later that ∆2(Z, id) contains exactly
the even numbers. In other words, gT ∈ [hT] if and only if for gT−1hT the value of
a in the previous discussion is an even number. ¦

7.3.2 The set of skewed squares

In this subsection we give some properties of the set of skewed squares. We begin
with an example.

110 CHAPTER 7. THE MEMBERSHIP PROBLEM

Example 7.13
If δ is the group inversion, then clearly ∆2(Γ, δ) = {1Γ}. It is easy to determine
that ∆2(Z, id) is the set of even numbers, ∆2(R, id) where the operation is addition
equals R, and ∆2(R+, id) where the operation is multiplication equals R+. ¦

The kernel of a homomorphism f : Γ→ Γ′ is the set ker(f) = {a | f(a) = 1Γ′}.
The image of f is image(f) = {b ∈ Γ′ | b = f(a), a ∈ Γ}.

Given a fixed group Γ and anti-involution δ we define the function sΓ,δ by

sΓ,δ(a) = aδ(a) for a ∈ Γ .

Note that image(sΓ,δ) = ∆2(Γ, δ). When Γ and δ are obvious from the context we
write s instead of sΓ,δ.

Lemma 7.14
For any group Γ, ∆2(Γ, δ) is closed under the group inversion, and ∆2(Γ, δ) ⊆ Fix(δ).
Proof:
Let s(a) ∈ ∆2(Γ, δ). Then s(a)−1 = δ(a)−1a−1 = s(δ(a)−1) ∈ ∆2(Γ, δ).

For the second part, δ(s(a)) = δ(aδ(a)) = aδ(a) = s(a). 2

Note that our example of (Z, id) under addition tells us that equality of ∆2(Γ, δ)
and Fix(δ) does not hold in general.

We repeat here one of the Isomorphism Theorems (see, for instance, Theo-
rem 2.12 of [41]).

Theorem 7.15 [Isomorphism Theorem]
Let f : Γ→ Γ′ be a homomorphism with kernel ∆. Then ∆ is a normal subgroup of
Γ and Γ/∆ ∼= image(f).

Lemma 7.16 [new]
If Γ is abelian, then s : Γ→ Γ is a homomorphism. Moreover, ker(s) is a normal
subgroup of Γ and ∆2(Γ, δ) ∼= Γ/ ker(s).
Proof:
For the first s(ab) = abδ(ab) = abδ(b)δ(a) = as(b)δ(a) = aδ(a)s(b) = s(a)s(b),
because Γ is abelian.

By the Isomorphism Theorem ker(s) is a normal subgroup of Γ and ∆2(Γ, δ) ∼=
Γ/ ker(s).

Example 7.17
Unfortunately, the previous result does not tell us enough to find ∆2(Γ, δ). If Γ = Z
and δ the identity on Z, then ker(s) = {1Γ}. The set ∆2(Z, id) is the subgroup of
Z of the even numbers and it is isomorphic to Z/{1Γ} ∼= Z (the isomorphism maps
2a ∈ ∆2(Z, id) to a ∈ Z). ¦

Because anti-involutions of a direct product do not always project onto the fac-
tors it is unlikely that we can determine the skewed squares of a group Γ with
anti-involution δ from the skewed squares of the groups in a factorization of Γ, see
Example 5.12. However we do have that involutions δ1 and δ2 of groups Γ1 and Γ2

respectively can be used to construct an involution (δ1, δ2) for Γ1 × Γ2 by applying
them componentwise. For involutions thus constructed the set of skewed squares
can be constructed from the sets of skewed squares of the factors as proved by the
following lemma.

7.3. IMPROVEMENTS IN THE ABELIAN CASE 111

Lemma 7.18 [new]
Let Γ = Γ1 × Γ2 and δi ∈ INV(Γi) for i = 1, 2. Then ∆2(Γ, (δ1, δ2)) = ∆2(Γ1, δ1)×
∆2(Γ2, δ2).
Proof:
It holds that

(a, b)(δ1, δ2)(a, b) = (a, b)(δ1(a), δ2(b)) = (aδ1(a), bδ2(b)).

The result follows from the fact that aδ1(a) ∈ ∆2(Γ1, δ1) and bδ2(b) ∈ ∆2(Γ2, δ2). 2

Example 7.19
In this example the involution δ is the identity function and the groups are the cyclic
groups. Note that in any decomposition δ does project onto the subgroups.

In this case the definition of ∆2(Γ, δ) reduces to

{a ∈ Γ | a = b+ b for some b ∈ Γ}

where, as usual, we use addition to denote the (abelian) operation of Γ.
It is not difficult to see that ∆2(Z2k , id) = {0, 2, 4, 6, . . . , 2k−1}, for k ≥ 1 and

∆2(Zpk , id) = Zpk where p > 2 is prime and k ≥ 1. We already knew that ∆2(Z, id)
is the subgroup of even numbers.

By the fundamental theorem of finitely generated abelian groups, Theorem 2.10
and Lemma 7.18 we can now construct the subgroups ∆2(Γ, δ) based on the decom-
position of Γ into primary groups when δ = id. ¦

7.3.3 Unrefinable switching classes

In the following we will investigate in which cases a switching class consists of only
one u-refinement, hence is itself such a u-refinement. The advantage is that in these
cases we need not try any selectors, because h ∈ [g] if and only if gT = hT .

Theorem 7.20
Let g ∈ LG(Γ, δ). If gT is abelian, and G is bipartite or g is inversive, then
〈g〉root(T) = [g].
Proof:
If g is inversive, then the result holds by the fact that ∆2(Γ,−1) = {1Γ}.

For the case that G is bipartite, Theorem 6.17 states that |[g]| = kn/|C(A(gT))|,
where k is the order of Γ and n = |V (G)|. The result now follows from Corollary 7.2
since obviously |C(A(gT))| = k. 2

Lemma 7.21
Let g ∈ LG(Γ, δ). If gT is abelian and 〈g〉root(T) = [g] then G is bipartite or g is
inversive.
Proof:
Assume that G is not bipartite; we prove that g is inversive.

Let vw be an edge in gT between two vertices of the same parity. Because gT is the
only (Γ, δ)-gain graph in [g] in which T is 1Γ-labelled, it holds for every alternating
selector σ that gT (vw) = gσT (vw) = σ(v)gT (vw)δ(σ(w)) = σ(v)δ(σ(v))gT (vw) and
this holds if and only if σ(v)−1 = δ(σ(v)). 2

Lemma 7.22
Let g ∈ LG(Γ, δ). If 〈g〉root(T) = [g], then h is abelian, where h equals gT , but with

112 CHAPTER 7. THE MEMBERSHIP PROBLEM

all edges between vertices of the same parity deleted.
Proof:
Let vw ∈ E(h), with h defined as above. Because for all alternating selectors
σ, h(vw) = hσ(vw) = σ(v)h(vw)δ(δ(σ(v)−1)) = σ(v)h(vw)σ(v)−1, it follows that
h(vw) commutes with each element of Γ. Hence, h is abelian. 2

Lemma 7.23
Let g ∈ LG(Γ, δ). If 〈g〉root(T) = [g], and g is inversive or G is bipartite then gT is
abelian.
Proof:
If G is bipartite then we apply Lemma 7.22 to find that gT is abelian.

Let g be inversive and G not bipartite. First of all, if g is not abelian, this is
because of an edge between vertices of the same parity, by Lemma 7.22. So let vw be
an edge between vertices of the same parity. Then, because 〈g〉root(T) = [g], for an
alternating selector σ, gT (vw) = gσT (vw) = σ(v)gT (vw)δ(σ(v)) = σ(v)gT (vw)σ(v)−1.
For this to hold, gT (vw) must commute with each σ(v). Hence gT is abelian. 2

Corollary 7.24
Let g ∈ LG(Γ, δ). If 〈g〉root(T) = [g], and g is inversive or G is bipartite, then for all
h ∈ [g] and spanning trees T ′ of G, hT ′ is abelian.
Proof:
Let h ∈ [g]. First of all, the bipartiteness of G and the inversiveness of g is indepen-
dent of the labels of g. Because 〈g〉root(T) = [g] = [h], it holds for all spanning trees
T ′ of G that 〈h〉root(T ′) = [h]. The result now follows from Lemma 7.23. 2

In the above we have considered three predicates: g is inversive or G is bipartite
(P1), 〈g〉root(T) = [g] (P2) and gT is abelian (P3). Through manipulation of the
previous lemmas we get the following result.

Corollary 7.25
Each pair of predicates Pi, Pj is equivalent under the condition that the remaining
predicate, P`, holds, where {i, j, `} = {1, 2, 3}.

Example 7.26
If Γ = Z3, δ = id and G is complete on three vertices, then for any g ∈ LG(Γ, δ),
gT is abelian, but it is possible that 〈g〉root(T) 6= [g]. Hence, if G is not bipartite we
really need that g is inversive.

For the same G, but with group S3 and δ equal to the group inversion, it is
possible that 〈g〉root(T) 6= [g], see Example 6.15(1). Hence we really need that the
(Γ, δ)-gain graphs are abelian. ¦

Example 7.27
In Example 5.6 we saw an example of a bipartite underlying graph and an abelian
group, Z4. We expect that the switching class of Figure 5.3 contains 44/4 = 43

graphs, and this is indeed the case (see also Example 6.18). The reader may verify
that indeed the switching class contains only one (Γ, δ)-gain graph in which the
edges of the tree T , consisting of the edges {1, 2}, {2, 3} and {3, 4}, are labelled with
0. It is the (Γ, δ)-gain graph in the upperleft corner. ¦

7.4. UNDECIDABILITY FOR ARBITRARY GROUPS 113

7.4 Undecidability for arbitrary groups

In the previous sections we omitted the task of specifying the group and the anti-
involution so that it can be passed to an algorithm. We assumed it was given and
that we could compute with it. One of the problems is to represent a, possibly
infinite, group in some way.

Usually a group is specified by means of a presentation

Γ = 〈x1, x2, . . . | w1, w2, . . .〉 ,

where the xi are the generators and the wj (words over γ = {x1, x1
−1, x2, x2

−1, . . .}),
are the relations. The idea is that by the relations we define a number of sequences
of generators that equal the identity of the group (but in general there may be more
sequences that equal the group identity; they follow from the words wi given in the
presentation). We shall use α to denote the, in general non-injective, mapping of
the strings over γ to an element of the group.

Every presentation determines a group, but a group can have a number of pre-
sentations. Because a presentation of a group is used as a parameter to an algorithm,
we assume the number of generators and relations to be finite. We shall restrict our-
selves to groups with a finite presentation, the finitely presented groups. For more
information on this subject consult [41] and [38].

Example 7.28
(1) Let us consider the symmetric group S3. This group has the following presenta-
tion

〈r, s | r3, s2, r−1srs〉 ,
where r is the rotation over 120 degrees and s corresponds to one of the reflections
of the triangle, analogous to Figure 2.2.
(2) Although we shall not prove this, the multiplicative group of reals R does not
have a finite presentation. ¦

The word problem for presentations of groups is the following: given a word w
over γ, does it define the identity of the group? Novikov and Boone have indepen-
dently proven that there are finitely presented groups that have no presentation for
which the word problem is decidable. In fact, if the word problem is undecidable for
a given presentation of a group, it is undecidable for all presentations of that group.

A slightly more general problem is the conjugacy problem. Recall that x, y ∈ Γ
are conjugates if there is an a ∈ Γ such that x = aya−1.

The conjugacy problem is now to decide, given two words w1 and w2 over γ,
whether α(w1) and α(w2) are conjugates. In other words, whether there exists a
word x over γ so that α(w1) = α(x)α(w2)α(x)−1.

Because the conjugacy problem generalizes the word problem, which is the special
case where w2 is the empty word, the following result, by Novikov [40], holds.

Theorem 7.29
There exist groups with a finite presentation having an undecidable conjugacy prob-
lem.

With this background we shall continue now by proving that the conjugacy
problem can be reduced to the membership problem, showing that in general the
membership problem for groups specified by means of a presentation is undecidable.

114 CHAPTER 7. THE MEMBERSHIP PROBLEM

Theorem 7.30 [generalized from Hage [21]]
There exist pairs of groups and anti-involutions for which the membership problem
is undecidable.
Proof:
Let w1 and w2 be the words for which we would like to decide whether the corre-
sponding elements α(w1) and α(w2) are conjugates. Define gw for a word w over γ
to be the (Γ, δ)-gain graph of Figure 7.3, where δ is the group inversion.

1Γ

u

1Γα(w)

z

v

Figure 7.3: The (Γ, δ)-gain graph gw

Let the tree T consist of the edges uv and uz. If we can decide whether gw1 ∈
[gw2], we can solve the conjugacy problem for Γ, because it is solved if we have

α(x)α(w1)α(x)−1 = α(w2)

for some x over γ.
Note that by selecting the same value α(x) in all vertices we guarantee that the

selector is alternating (remember that the anti-involution is the group inversion). 2

Miller III [33] notes that Fridman [17] exhibited a group with a solvable word
problem, but of which the conjugacy problem is unsolvable. In that sense the proof
of Theorem 7.30 is more general than the corresponding theorem in Hage [21].

Chapter 8

Future Directions

In this short chapter we indicate some problems we have run into (and not completely
solved yet) and models we feel are interesting to investigate.

8.1 Problems for switching classes of graphs

The chromatic aspect of switching is studied in Herz [30] in the context of perfect
graphs. For colourings, interesting problems are the following

Problem 8.1
What conditions does a graph possess in order for [G] to have a graph H with
χ(H) = 2χ(G)?

Problem 8.2
Characterize the G with χ(G) ≤ k with a set of forbidden graphs. Especially for
k = 2.

As an aside we mention

Problem 8.3
Characterize the G with H ∈ [G] a planar graph by means of a set of forbidden
graphs.

Because the cycles often figure in our lists of forbidden graphs a nice complexity
problem is the following:

Problem 8.4
Given a graph G and a number k ≤ |V (G)|, can a switch of Ck be embedded into
G (in an induced way).

It is quite likely this problem is NP-complete, but that does not follow from our
generalization of Yannakakis’ result to switching classes.

Something that could help enormously during research is a solution to the fol-
lowing problems:

Problem 8.5
Characterize the maximum (or minimum) size graphs in switching classes.

115

116 CHAPTER 8. FUTURE DIRECTIONS

Problem 8.6
Characterize those switching classes that have a unique maximum (or minimum)
size graph in it.

For complexity theory the central problem is to give a general condition that
relates problems of graphs and switching classes in terms of complexity.

We would also like to get more insight into those problems which are polynomial
for graphs, but become NP-complete for switching classes. As an example, in [35] it is
stated that the problem whether a switching class contains a k-regular graph for some
k is NP-complete. It remains to be determined whether bipartiteness of switching
classes is NP-complete or polynomial. We are also looking for characterizations
of switching classes that contain a bipartite graph, and similarly for triangle-free
graphs.

From the results in Chapter 4 one might conclude that “acyclic” problems (like
hamiltonian path) become easy for switching classes, but it would also be interest-
ing to find some more general statement. For instance hamiltonian circuit is not
“acyclic”, but in Section 4.1 we have proved that determining whether a switching
class has a hamiltonian cycle can be done in polynomial time.

8.2 Problems for switching classes of skew gain graphs

For group theory, it would be interesting to investigate the properties of the skewed
versions of group theoretic concepts such as centralizers, but also subgroups. For
instance, a subgroup of a group need not be closed under anti-involutions of the
group, but the image of a subgroup under an anti-involution is itself a subgroup
(of the same order). In this way we might end up with a notion of skewed normal
subgroup and a corresponding notion of skewed quotient.

There is still a lot not yet done in the area of skew gain graphs itself. The
questions fall into two categories. The first of these is that some of the material just
presented still leaves some questions unanswered, the second that we might look for
more powerful models based on the one treated here. We start with the former.

For instance, what is the nature of the set ∆2(Γ, δ)? Can we prove anything
about the existence of these sets?

Although we know now that the general membership problem is undecidable,
it is clear that by certain restrictions we might find classes of groups and anti-
involutions that have a decidable membership problem. To give but an example,
if we restrict ourselves to the anti-involution being the identity function (and thus
restricting ourselves to abelian groups), we found that the problem was much easier.
We might therefore look at other types of anti-involutions for which good results
can be obtained.

Another problem to investigate is the influence the choice of tree has on the
results obtained in Chapter 7. More specifically, the question is whether we can
easily find T such that gT is abelian (if such a T exists). It seems however, that the
choice of T is irrevelant.

A different and, in our opinion, interesting avenue is opened with an extension
of the model treated in this thesis.

The framework is essentially quite easy: let Γ be a group and let δ be one of its
anti-involutions (maybe sensible to restrict first to inversion). Then we take again
an underlying graph and a mapping of the edges into Γ, as always. The difference

8.2. PROBLEMS FOR SWITCHING CLASSES OF SKEW GAIN GRAPHS 117

is now that we can restrict in a vertex u the possible selected values to Γ(u), which
must be a subgroup of Γ (closed under δ).

The intuition is that in a network of processors, not all processors necessarily
have the same capability for actions. With regards to [16], it does mean that at least
one of the axioms proposed there should be dropped and there turns out to be only
one: if we fix an edge and a value a ∈ Γ, it is now not anymore possible to always
find a selector so that the edge is after application of the selector labelled by a. We
feel this not to be a problem and in fact to be a logical consequence. What we gain is
a more diversified model that may be better suited to model the more diverse nature
of networks in which printer servers, fileservers, webservers and the like may have
different capabilities. Questions that we can put to this model are the same as we
have put to the model of skew gain graphs: how large are the classes (they are still
equivalence classes; restricting to subgroups is a generalization of the u-refinements
in this thesis) and to what extent can we decide the membership problem efficiently?

In the graph case, what becomes of the results on hamiltonian and pancyclic
graphs when these restrictions are possible. Refinements are in general smaller than
switching classes, so it might be interesting to know to what extent we can uphold
the complexity results for polynomial problems for switching classes that are NP-
complete for graphs. These may then be of use in approximation algorithms, or they
may be used to gain an understanding of exactly when a problem becomes hard.

Tyydyttynyt nyt, przysz6 lym.

118 CHAPTER 8. FUTURE DIRECTIONS

Appendix A

Algorithms and Programming
Techniques

In this appendix we shall consider a number of problems that came up during the
investigation of the material written down in both parts of the thesis. These results
are not always directly related to switching classes, but were in their way very useful
during our research.

To pave the way for later sections we first examine the problem of enumerating
the submultisets of a certain multiset. The theory developed here enables us to
develop an algorithm that can efficiently enumerate u-refinements. In Section A.2
we illustrate the general results of Section A.1 by the simplest possible example and
show links to the Game of Hanoi and Gray Codes; these links are well known. For
the background on the Game of Hanoi I acknowledge the help of A.M. Hinz.

We continue then with a method for generating all the graphs in a switching class
in an efficient way. Instead of applying selectors of varying sizes, it is shown how to
obtain all switches of a graph (exactly once) by applying only singleton selectors. In
a following section we repeat this for finite groups with arbitrary anti-involutions.
The split up is both a consequence of the split of the thesis into two parts, and the
fact that the algorithm for the case of undirected graphs is easier to understand. It
can in this way serve as an introduction to the more general algorithm, in which
case some knowledge of group theory is useful.

A.1 Enumerating submultisets

In this section we shall devise a way to sequence all submultisets of a certain multiset.
A multiset S over V is a function S : V → N0. The value S(v) for v ∈ V is

the multiplicity of v in S. A multiset S′ over V is a submultiset of S if for all
v ∈ V , S′(v) ≤ S(v). The cardinality or size of a multiset includes multiplicity:
|S| =

∑
v∈V S(v).

For m > 1, let S(m,n) be the multiset over V = {v0, . . . , vn−1} so that S(v) =
m− 1 for all v ∈ V . If we linearly order the elements of V from vn−1 to v0, then we
can code any submultiset by the multiplicities, S(vn−1) . . . S(v0), in other words, a
number with base m. We can also consider these numbers to be strings of length n
over M = {0, . . . ,m − 1}. Because of the obvious bijections between submultisets,
numbers with base m and these strings, we shall use them interchangeably. We note
that there are exactly mn submultisets of S(m,n).

119

120 APPENDIX A. ALGORITHMS AND PROGRAMMING TECHNIQUES

Example A.1
For m = 3 and n = 4, S = S(m,n) = {v0, v0, v1, v1, v2, v2, v3, v3}. Some examples
of submultisets are {v0, v0, v1, v2, v3, v3}, {v0, v0, v1, v2} and {v1, v1, v2, v3, v3}; the
corresponding numbers with base 3 are 2112, 0112 and 2120 and these can also be
understood as strings over {0, 1, 2}. It is important to remember that our strings
are zero-indexed and position zero is at the extreme right. Hence 0 has position zero
in 2120, and 1 has position two.

Sometimes we shall want to refer to the decimal equivalents of the numbers with
base k. For example, converting the numbers 2112, 0112 and 2120 into the decimal
system we obtain 2 · 27 + 1 · 9 + 1 · 3 + 2 · 1 = 68, 1 · 9 + 1 · 3 + 2 · 1 = 14 and
2 · 27 + 1 · 9 + 2 · 3 = 69. ¦

Given the fact that similar bitstrings yield widely different decimal numbers led
Frank Gray to define and patent the Gray Code [19]: he devised a coding of decimal
numbers into bitstrings (the case m = 2) such that two decimal numbers k and k+1
are coded by bitstrings that differ in exactly one position. This code was used to
reduce the importance of transmission errors. We shall now generalize this method
to strings over M .

First we introduce some notation for rooted edge-labelled trees. The trees we
consider have arity m and are complete. In other words, every internal vertex has
exactly m children and the leaves are all at the same level. The children are ordered
from left to right. We shall refer to them as child i for i ∈ M . The labels we shall
use for the edges are the elements of M and we demand that for each internal vertex,
the edge to every child is labelled with a unique element of M . Hence the labels on
the edges to the children of a certain internal vertex are a permutation of M .

Recall that the level of a vertex v in a tree is the number of vertices on the path
from the root to v. Hence the level of the root is 1. The height of a tree is the level
of the lowest leaf in the tree minus one. Hence the height of the trivial tree is 0.

Let T be a tree of height n and let π = (a1, . . . , an′) be a sequence over M
with n′ ≤ n. Then π determines a vertex C(π, T), as follows: C(λ, T) = root(T),
and C(a : π, T) = C(π, T ′) where T ′ is the subtree rooted at child a. Similarly we
define L(π, T) as follows: L(λ, T) = root(T) and L(a :π, T) = L(π, T ′) where T ′ is
the subtree reachable from root(T) by an edge labelled with a. As a mnemonic, C
stands for Child directed and L for Label directed.

It should be clear that in both cases there is a bijection between sequences
π = a1, . . . , an′ over M for n′ ≤ n and vertices in the tree. Hence we may define
for a vertex v in T , L(v, T) = π if L(π, T) = v and C(v, T) = π if C(π, T) = v.
Remember that we can interpret the value of C(v, T) and L(v, T) as a string, as a
number with base k, and as the corresponding natural number.

The least common ancestor of two different vertices v1, v2 ∈ V (T) is the unique
vertex v = lca(v1, v2), so that the paths from the root to v1 and v2 split up in v.

If v1 and v2 are on the same level of the tree, we say that v2 follows v1 in T if
C(v2, T) = C(v1, T) + 1. This means that v2 is the first vertex to be encountered
starting at v1 and going to the right on the same level. Note that in this case, the
labels to the subtrees of lca(v1, v2) containing v1 and v2 respectively differ at most
one in their labels.

For natural numbers m and k, define ρ(m, k) = maxi(mi|k) where q|k means
that q divides k. In words, ρ(m, k) yields the number of powers of m dividing k. A
basic property of this function is the following:

A.1. ENUMERATING SUBMULTISETS 121

Lemma A.2
For p ≥ 0 and mp < k < mp+1, ρ(m, k) = ρ(m, k −mp).
Proof:
Let j = ρ(m, k), that is, k = mjq, where m - q. Then j ≤ p and k − mp =
mj(q−mp−j). In particular, ρ(m, k−mp) ≥ ρ(m, k). For inequality we should have
m|(q−mp−j), that is, p = j and m|q− 1, because m - q. But now, remember in this
case p = j, m < q contradicts the assumption k < mp+1. 2

Lemma A.3
Let v1 and v2 be leaves so that v2 follows v1. Then the leftmost position in which
c1 = C(v1, T) and c2 = C(v2, T) differ is ρ(m,C(v2, T)).
Proof:
Let v1 and v2 be leaves so that v2 follows v1. Let c1 = C(v1, T) and c2 = C(v2, T)
and let v = lca(v1, v2) and w = C(v, T). Now

c1 = wi

p︷ ︸︸ ︷
(m− 1) . . . (m− 1) and c2 = w(i+ 1)

p︷ ︸︸ ︷
0 . . . 0

for some p and i. This follows because for v2 to follow v1, v2 is the leftmost child in
its subtree (of r) and v1 is the rightmost child in its subtree (of r).

Note that the first position in which c1 and c2 differ is the pth. Because c2 ends
in p zeroes, mp|c2 and, because i+ 1 > 0, also mp+1 - c2. Hence p = ρ(m,C(v2, T)).
2

Let T be a tree of the kind described above. The mirror of T , denoted by
←−
T ,

is the tree where, for each internal vertex, the label of child i is exchanged with the
label of child m − 1 − i, for i = 0, . . . , bm/2c, where bac is the largest integer less
than or equal to a. Note that only the labels are changed and for the rest the tree

stays intact. Also note that
←−←−
T = T .

We shall now define recursively the type of trees we are interested in. The tree
Tm0 is equal to the trivial tree; the tree Tmn is the tree consisting of a vertex, say
v, with m subtrees Tmn−1,

←−−
Tmn−1, T

m
n−1,
←−−
Tmn−1, · · · ordered from left to right. The edge

to child i of v, for i ∈ M , is labelled with i. In Figure A.1 this construction is
pictorially represented, where T = Tmn−1 if m is odd and T =

←−−
Tmn−1 if m is even.

Given a complete m-ary tree of height n there is also a non-recursive way to
obtain the tree Tmn making it easy to recognize whether the tree is correctly con-
structed: between each two levels the edges are labelled from left to right

0, 1, . . . ,m−1,m−1,m−2, . . . , 0, 0, 1, . . .

2 3

Tmn−1 T· · · · · ·

10 m−1

Tmn−1

←−−
Tmn−1

←−−
Tmn−1

Figure A.1: The tree Tmn schematically

122 APPENDIX A. ALGORITHMS AND PROGRAMMING TECHNIQUES

Lemma A.4
Let T = Tmn for natural numbers m,n and let v1, v2 ∈ V (T) be such that v2 follows
v1. Then `1 = L(v1, T) and `2 = L(v2, T) differ only in position p = ρ(m,C(v2, T)).
Moreover, `2(p) = `1(p) + 1 if the number of odd numbers occuring in `1 to the left
of p is even, and `2(p) = `1(p)− 1 otherwise.
Proof:
Let v = lca(v1, v2). From the root to v there are obviously no differences between
L(v1, T) and L(v2, T). Because the path splits up at v and the edges to its children
are labelled with different elements of M , the sequences differ in this position. From
then on the paths are the same: because v2 follows v1 the subtrees of v to which
they belong are mirrors of each other and in these subtrees, v1 and v2 are rightmost
and leftmost vertex of their respective subtrees (see Figure A.2).

The first position at which C(v1, T) and C(v2, T), and L(v1, T) and L(v2, T)
differ obviously coincide and so p = ρ(m,C(v2, T)) follows from Lemma A.3.

The last claim follows from the fact that every odd number on the path to the
least common ancestor implies a mirroring of the subtree. If this number is even,
then an even number of mirror operations yields a tree where the labels to the
children are in the original ascending order; otherwise they are in descending order.
2

i i± 1

v1 v2

v = lca(v1, v2)

S S

root(T)

Figure A.2: Illustrating Lemma A.4

The result of this section can be summed up as follows

Corollary A.5
Let m,n be integers. A list of all submultisets of S(m,n), say S0 = ∅, S1, . . . , Smn−1,
can be constructed so that Si and Si+1 differ only in the multiplicity of vp where
p = ρ(m, i+ 1). Also, Si+1(vp) = Si(vp) + 1 if

∑n−1
k=p+1 Si(k) is even and Si+1(vp) =

Si(vp)− 1 otherwise.

For completeness we give an algorithm that given s = L(v, T) constructs t =
C(v, T). We remember how many “mirrorings” are encountered during the virtual
traversal of the tree Tmn . We keep this in the variable complemented. We negate
this boolean if and only if we would traverse an odd-labelled edge in Tmn . In the
algorithm m > 1 is an integer and s is a string of length n over M .

complemented = false;
for i = n-1 downto 0 do

A.2. AN EXAMPLE: THE CASE M = 2 123

if complemented
t[i] = m-1-s[i];

else
t[i] = s[i];

if;
if odd(s[i])

complemented = not(complemented);
if;

od

A.2 An example: the case m = 2

In this section we illustrate the previous section by the simplest possible example.
The more general application will be treated in Section A.4 and involves the second
part of the thesis up to Chapter 7. We first specialize Corollary A.5 for m = 2.

Corollary A.6
For an integer n, a list of all subsets of {v0, . . . , vn−1}, say S0 = ∅, S1, . . . , S2n−1, can
be constructed so that Si ª Si+1 = {vp} for 0 ≤ i ≤ 2n − 2 where p = ρ(2, i+ 1) =
maxj(2j |(i+ 1)).

We now give an example for n = 4. The corresponding tree T 2
4 is given in

Figure A.3. Note that in this special case there is no need to know whether we have
to increment or decrement as in Corollary A.5: we can simply negate.

0 1 0 1

10 1 0 1010 11 0 1 00 1 0

1 0 1 0

0 1 01

10

Figure A.3: The tree T 2
4

The Gray Code – or equivalently, the list of subsets of {v0, . . . , v3} – can now
easily be reconstructed from the tree. Start at the root. The leftmost edge is
labelled 0, so we shall first construct the bitstrings starting with 0. Then by taking
the leftmost edge every time, we obtain the first bitstring 0000. By proceeding to
the next leaf repeatedly we obtain 0001, 0011, 0010, 0110, 0111, . . . Recall that the
rightmost bit says whether v0 is in the set and the leftmost bit tells us whether v3 is in
the set. The corresponding subsets are ∅, {v0}, {v0, v1}, {v1}, {v1, v2}, {v0, v1, v2},

To see that Corollary A.6 works, we shall show that it correctly determines the
change from 0111 to 0101. The value of i is 5 in this case (numbering starts at zero)
and so the value for p is 1, which is the number of two-divisors of 6 = i + 1. And
in fact the bit for v1 is the second from the right, which is indeed the bit that was
negated.

The connection with Gray Codes and the Game of Hanoi is well known [31], [46]
and [3]. We shall in short repeat the game and its solution: the player is given three
pegs (numbered 0, 1 and 2), on the first of which rests a pile of n discs stacked on
top of each other in order of decreasing size. The goal of the game is to move the

124 APPENDIX A. ALGORITHMS AND PROGRAMMING TECHNIQUES

entire pile of discs to one of the other pegs, say peg 2, but the moves are restricted
by the following rules:

• You may only move a single disc, coming from the top of a pile.

• You may only place a disc on a larger one or on an empty peg.

The optimal solution is most easily specified by recursion: first move the top
n− 1 discs to peg 1, then the largest disc to peg 2 and again by recursion, move the
pile of n− 1 discs, now on peg 1, to peg 2. The base case is the moving of a single
disc.

In our case, the discs are numbered from v0 up to vn−1, in order of increasing
size. The link of Theorem A.6 with Hanoi is that the kth move in the optimal
solution of the Game of Hanoi, involves the moving of the disc ρ(2, k) = maxj(2j |k)
(in this case it is natural to start counting with k = 1). Hence the order of the discs
using four discs should be v0, v1, v0, v2, v0, v1, v0, v3, . . .

The link is established by the following result.

Theorem A.7
In move k of the optimal solution to the Hanoi game, disc j is moved where j =
ρ(2, k).
Proof:
The proof is by induction on the number of discs. For the base case, n = 1, there is
only one move, so we need consider only k = 1. The only disc that can be moved is
v0 and indeed 0 = ρ(2, 1).

Let n > 1 and 1 ≤ k ≤ 2n − 1. The first 2n−1 − 1 of these involve the moving
of the first n − 1 discs to the second peg. By induction the disc to be moved for
k < 2n−1 is indeed the disc vj where j = ρ(2, k).

If k = 2n−1, then ρ(2, k) = n− 1 and, indeed, in this move we should move the
largest disc vn−1.

For 2n−1 < k < 2n, we should obtain the same sequence of moves as for k < 2n−1,
which holds if ρ(2, k) = ρ(2, k − 2n−1). This follows from Lemma A.2. 2

If we want to use the previous algorithm to play the Game of Hanoi it is not
sufficient to know which disc to move: we also need to know where to move it.
This can be determined by examining the non-recursive way of playing the Game of
Hanoi: in the first step we can only move disc v0. The second move should involve
disc v1, because moving disc v0 again yields a less than optimal solution. So we
move disc v1 and there is only one possible destination – the peg having disc v0 on
top and the peg on which v1 itself rested being disqualified. If disc v0 was moved to
the right, to peg 1, then disc v1 has to move to the left (modulo pegs), to peg 2. In
the third move we must move disc v0 again: v1 has just been moved and disc v2 can
not be moved. This holds in general: if we have just moved disc v0, then another
disc must be moved to ensure optimality. If there is only one peg with a disc on
top other than disc v0, then its topmost disc is moved to a, by necessity, empty peg.
If there are two pegs with a disc other than v0 on top, then we can only move the
smallest of the discs on top of these unto to the top of the other. Hence Hanoi seems
to be governed by the following two rules:

• every odd move disc v0 is moved to the right, and

A.2. AN EXAMPLE: THE CASE M = 2 125

• every even move the smallest of the two other discs, i.e., that is not v0 is
moved. Of course, if there is only one “other disc” we move that one. There
is only one possible destination peg.

Note that the algorithm implied here is deterministic except for the initial choice
to move v0 to either the left or the right. This will determine – with the fact whether
n is even or odd – where the stack finally ends up (on the second or the third peg).
One can check that if n is odd, then the stack will be moved to the peg where disc
v0 is placed the first time, and if n is even, then the stack will end up on the other
peg. Without proof we state that all even numbered discs go the same direction as
v0 and the odd ones go the opposite direction.

As an example, consider Figure A.4 where is depicted the first part of the Game
of Hanoi for four discs. For the remaining moves, it suffices to stop at configuration
8 and continue while looking at the page from the other side of the paper (peg 0
and 2 are then interchanged).

Although it has little to do with the Gray Codes of the above, we shall take some
time here to link the number k of the configuration with the configuration itself.

Any configuration of the Game of Hanoi on n discs can be coded as a bitstring of
length n over {0, 1, 2}, where these numbers code the peg numbers. Of course, not
every configuration is used in the optimal game of Hanoi, but which are? Assume
that we are to move the pile from peg 0 to peg 2. First of all, the leftmost bit, bit
n − 1, is either 0 or 2, because moving the largest disc to peg 1 is not necessary
and hence never done. Before it becomes 2, half the game has been played and in
that first half of the game bit n − 2 has only been 0 or 1. This holds in general:
of the three possible values, only two are used. These two are given by the source
and destination peg at that point in the recursive algorithm. If we remember from
which peg to which peg we are moving (the other one is then by definition the “via”
peg), then we know what values to put there: if bit i is set, then disc vi has already
been moved to the destination peg, and otherwise the move has not been made yet
and it is still on the source peg. Based on these two cases we exchange the free peg
with the source respectively destination peg, according to the optimal solution.

The algorithm maps the configuration number k into c, the latter is a string over
{0, 1, 2}. The free peg has number 3− dest− src.

src = 0;
dest = 2; // change to 1 if you want to end up on peg 1
for i = n-1 downto 0 do

if k[i] then
c[i] = dest;
src = 3-dest-src;

else
c[i] = src;
dest = 3-dest-src;

fi;
od;

A variation of this algorithm can also be used to determine from the configuration
the index of this configuration in the Game of Hanoi, in other words, the value k.
The rules are more or less the same, but instead of using k to determine c, we use c
to determine k. For instance, if src = 1 and dest = 0 and c[i] = 1, then k[i] = 0 and

126 APPENDIX A. ALGORITHMS AND PROGRAMMING TECHNIQUES

v0

v1

v2

v3

v3

v0

v3

v0

v3

v3

v2 v0

v1

v2

v2

v0

v1

v1

v1

v2

v0 v1

v0

v3

v2

v3

v2

v1

v0

v1

v2

v3

v0

v1

v2

k

1

2

3

4

5

6

7

8

9

0000

0001

0011

0010

0

1

2

0

0

1

0

3

1100

v3

v3v2v1v0maxj 2j |k

0110

0111

0101

0100

Figure A.4: Part of the Game of Hanoi for 4 discs

A.3. THE COMPUTATION OF THE SWITCHES OF A GRAPH 127

dest becomes the free peg, because src = c[i]. If, on the other hand, dest = c[i],
then we would get k[i] = 1.

A.3 The computation of the switches of a graph

The most obvious way to generate all graphs in the switching class of a graph G
on V = {v0, . . . , vn−1} is to switch with respect to all selectors σ ⊆ V that do
not contain a fixed vertex, say vn−1. The need for omitting vn−1 comes from the
fact that Gσ = GV−σ. We get an improvement if we apply V − σ if |σ| > n/2.
Notwithstanding this improvement, there are still O(n2) edges to be changed in
both the worst and the average case. To generate the entire switching class we need
time O(n22n−1).

The results of the previous sections allow us to apply a singleton selector every
time and still obtain all possible switches of G exactly once. This method is graph-
ically depicted in Figure A.5. The original method of switching is also graphically
present in this picture: take the dotted edges and the leftmost edge from G to G1.

The index of the vertex to be switched can be determined using Corollary A.6
for the set {v0, . . . , vn−2}. Notice that we can in fact return to the original graph
by switching with respect to vn−2 at the end. This implies that we do not need to
make a copy of G before starting to switch. This holds in general if m (in Tmn) is
even: the leftmost and rightmost path in the tree Tmn for any n > 0 differ only in
the edges from the root.

G

. . .

. . .
{v0}

G1 G3G2

{v0}

{v2}{v1} {v0}

{v0, v1}
{v1}

G2n−1

{vn−2}
{vn−2}

Figure A.5: Cumulative switching

Another view on the result is as follows: define a graph where the vertices are
the graphs in a certain switching class, where two graphs have a edge between them
if they can be switched to each other by a singleton selector. The results obtained
so far imply that this graph has a hamiltonian path – if m is even, a hamiltonian
cycle.

The overall effect of the improvement of switching singleton selectors instead of
arbitrary ones is to reduce the number of edges to be changed in each switch to n−1,
yielding an average and worst-case complexity of O(n2n−1) instead of O(n22n−1).
It should be clear that this is optimal: every switch modifies at least n − 1 edges.
However, we still need an efficient way to compute ρ(2, k).

The following pseudo code computes the index p of the vertex vp to be switched,
given the rank number of the subset/selector k > 0 in the list of selectors.

int p (int k)
for i=0 to n do

if k[i] is set then
return i;

128 APPENDIX A. ALGORITHMS AND PROGRAMMING TECHNIQUES

fi;
od;

The program simply finds the first position in k, coming from the right, where
the bit is set.

Clearly, this program works in time O(log(k)) = O(n) in the worst case since
k ≤ 2n−1. Executing this function for 1 ≤ i ≤ 2n−1 results in a first approximation
for the number of loops in the function p of n(2n − 1).

This is not a very good estimate, because half of the parameters to the function
will be odd numbers and in this case the for loop is evaluated only once.

In fact, a more detailed examination finds the following number of loops:

n−1∑
i=0

2i(n− i) . (A.1)

For a given value i, 2i gives the number of integers that take n− i loops. Splitting
up this summation into two we obtain

n−1∑
i=0

n2i −
n−1∑
i=0

i2i .

The first part is simply n(2n − 1). For the second part we define

fn(x) =
n∑
i=0

ixi and Fn(x) =
n∑
i=0

xi =
xn+1 − 1
x− 1

.

The latter equality is standard from calculus. Now note that the derivative F ′n (as
a summation) multiplied by x equals exactly fn. By taking the derivative of the
closed formula we obtain

F ′n(x) =
(n+ 1)xn(x− 1)− (xn+1 − 1)

(x− 1)2
=
nxn+1 − (n+ 1)xn + 1

(x− 1)2

Hence

fn(x) = xF ′n(x) =
nxn+2 − (n+ 1)xn+1 + x

(x− 1)2

Substituting 2 for x and n − 1 for n we obtain (n − 1)2n+1 − n2n + 2 for the
second part of the summation of (A.1). Subtracting it from n(2n−1) yields the final
number of loop condition evaluations which is

2n+1 − n− 2

Some experimental results were obtained running on a computer with an Intel
Pentium I 120Mhz running under Linux. The measurements were obtained using the
program gprof 2.9.1. It excludes the time spent in mcount, which is time spent on
profiling. In the row “simple” we give timings for a switching algorithm that simply
applies half the selectors to a fixed graph in the switching class, while the optimized
version uses the just described algorithm for sequentially generating all switches by
applying singleton selectors consecutively. The timings for the optimized version are
given in the row “cumulative”.

Total running times (in seconds):

A.4. SWITCHING SKEW GAIN GRAPHS 129

n→ 8 9 10 11
simple 0.26 4.79 175.26 22097.78

cumulative 0.14 1.96 64.67 18918.60

Times spent in the actual function that does the switching (in seconds):

n→ 8 9 10 11
simple 0.16 3.54 136.21 9609.93

cumulative 0.05 0.75 24.41 6739.49

A.4 Switching skew gain graphs

Let Γ be a finite group with carrier {x1, . . . , xk} and anti-involution δ. Let V =
{v0, . . . , vq} be a set of vertices, G = (V,E) be a connected graph and T a rooted
spanning tree of G. Let g ∈ LG(Γ, δ) such that T is 1Γ-labelled in g. We assume
root(T) = vq.

In this section we show how to apply the theory of Section A.1 to list all switches
in 〈g〉vq . Originally, the switches were obtained by applying all vq-selectors to g. In
other words, we should apply all selectors that select 1Γ in vq and arbitrary values
in the other vertices v0, . . . , vq−1. There are exactly kq of those. Listing all the
selectors in the same cumulative way as we did in the previous section for ordinary
graphs is not difficult: take m = k and n = q and apply the theory of Section A.1,
which enumerates all submultisets of S(k, q) which is equivalent to listing all the
selectors σ : {v0, . . . , vq−1} → Γ if we allow the multiplicity j of vi to indicate the
value xj+1 selected in vi.

There are differences with the previous section however: there it was obvious
what to do, because a vertex is either selected or it is not. In the case of arbitrary
groups it is not sufficient to know that in a vertex we must select a value a 6= 1Γ:
we must also know what value to select in that vertex.

Instead of giving a formal algorithm we explain the method by an example.

Example A.8
In Figure 6.1 the graph G and g ∈ LG(S3, f1) are shown, where f1 is the anti-
involution of Example 5.1 mapping s0 into s1, s1 into s0 and all other elements to
themselves. The spanning tree T is indicated in G by the bold edges, with vertex
1 as its root. To make our example correspond more closely to the theory we set
v0 = 2, v1 = 3 and v2 = 4; the vertex 1 takes the role of vq.

0

0
.

21

0 0
1 21234

55
4321

0

5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 v0

v2

v1

Figure A.6: Part of T 6
3

Part of the tree T 6
3 is given in Figure A.6. Because the carrier of S3 is the set

{r0, r1, r2, s0, s1, s2} and not M = {0, . . . , 5}, we introduce a bijection ψ : M → S3

that handles the translation between them by enumerating the pairs: {(i, ri), (3 +

130 APPENDIX A. ALGORITHMS AND PROGRAMMING TECHNIQUES

i, si) | i = 0, 1, 2}. The effect of ψ is that it orders S3. Although this linearization is
quite arbitrary, we do demand that 0 maps to the group identity.

Applying the theory of Section A.1 we can list all functions τ : {v0, v1, v2} →M ,
and, by the bijection ψ, all selectors σ = ψ ·τ , ordered so that the difference between
any pair of subsequent selectors in this list is that they select a different value in
exactly one vertex.

Two such subsequent selectors are

τ1 = {(v0, r0), (v1, s1), (v2, r1)} and τ2 = {(v0, r0), (v1, s0), (v2, r1)} .

Coded as bitstrings these are 140 and 130; they are indicated by the bold lines
in Figure A.6. Because 1 = ρ(6, 48) (note that 130 is the 48th leaf in the tree
of Figure A.6), gτ2 can be obtained from gτ1 by applying a selector that maps all
vertices except v1 to 1Γ.

It may not be evident why 140 precedes 130 in the listing. This can be construed
from Corollary A.5 as follows: let us take 140 as the current submultiset and con-
struct the next one using our result. The rule is that if we take the string of values
up to but not including the position of change (this is the string s = 1), then we
can determine whether we are ascending on descending for position 1 (i.e., vertex
v1), by counting the number of odd numbers in s. In this case that number is odd,
and we can conclude with Corollary A.5 that the numbering on the level of v1 is
descending.

It remains to be determined what value to select in v1 = 3. For the selector
σ, it should hold that gτ2 = (gτ1)σ. Equivalently τ2 = στ1 by Lemma 5.5, or,
σ(v) = τ2(v)τ1(v)−1 for all v ∈ {v0, v1, v2}. Because τ1 and τ2 differ only on v1,
it holds that σ(v) = 1Γ for v ∈ {v0, v2} as promised and σ(v1) = τ2(v1)τ1(v1)−1.
Hence σ(v1) = s0s1

−1 = s0s1 = r1. Given the strings 140 and 130 instead of the
selectors themselves, it is simply a question of applying ψ: in v1 we should select
ψ(3)(ψ(4))−1.

The (S3, f1)-gain graphs gτ1 and gτ2 are given in Figure A.7 and the reader may
verify that indeed gτ2 = (gτ1)σ. ¦

s0 s1

s0

s1
s2

r0 r0

r1 r1

(a)

1 2

34

s1 s1

(a)

1 2

34

s0 s0

s0 s1

Figure A.7: The skew gain graphs gτ1 and gτ2

We now summarize our findings. Let 0 ≤ ` < kq and let s be the string over
M = {0, . . . , k− 1} denoting selector number `. We show how to find selector `+ 1.

First, compute the position p in s where the change occurs: p = ρ(k, ` + 1).
Hence s is of the form wiw′ where i is the value at position p. The resulting string
over M is of the form wjw′ where i = j − 1 or i = j + 1. To know which of the
two is the case, we remember for each level whether we are ascending or descending.
Whenever we reach one of the bounds on a certain level, 0 or k− 1, then we reverse
on that level. The correctness of this method follows from the fact that subsequent

A.4. SWITCHING SKEW GAIN GRAPHS 131

subtrees are each others mirror image, and so incrementing and decrementing are
alternated; all levels start with incrementing.

Given i and j it is easy to compute the element of the group to be selected in
vp: σ(vp) = ψ(j)(ψ(i))−1. Note that, as may be expected, the selector σ−1 induces
a change from wjw′ to wiw′.

Example A.9
We continue Example A.8. In Figure A.8 we have listed all 216 elements of 〈g〉1.
Looking up the (S3, f1)-gain graph with number 130 and 140 – 54 and 60 respectively
in decimal, both indicated boldfaced in Figure A.8 – we find the skew gain graphs
of Figure A.7. Note that if the selectors are applied in the order implied by the
algorithm implied above, these switches should be adjacent (in fact, they would be
number 47 and 48 in that sequence). However, the construction used in Figure A.8
is the classical one in which the value selected in 2 changes the fastest and in 4 the
slowest.

Of course (cf. Example 6.20) the entire switching class consist of three of these
refinements, the other two are generated by the (S3, f1)-gain graphs of Figure 6.2.¦

132 APPENDIX A. ALGORITHMS AND PROGRAMMING TECHNIQUES

1

4

3

2
r0

r0
r0

r0

r0

r1

r0
r0

r1

r0

r2

r0
r0

r2

r0

s1

r0
r0

s1

r0

s0

r0
r0

s0

r0

s2

r0
r0

s2

r0

r0

r0
r1

r1

r1

r1

r0
r1

r2

r1

r2

r0
r1

r0

r1

s1

r0
r1

s0

r1

s0

r0
r1

s2

r1

s2

r0
r1

s1

r1

r0

r0
r2

r2

r2

r1

r0
r2

r0

r2

r2

r0
r2

r1

r2

s1

r0
r2

s2

r2

s0

r0
r2

s1

r2

s2

r0
r2

s0

r2

r0

r0
s1

s0

s1

r1

r0
s1

s1

s1

r2

r0
s1

s2

s1

s1

r0
s1

r1

s1

s0

r0
s1

r0

s1

s2

r0
s1

r2

s1

r0

r0
s0

s1

s0

r1

r0
s0

s2

s0

r2

r0
s0

s0

s0

s1

r0
s0

r0

s0

s0

r0
s0

r2

s0

s2

r0
s0

r1

s0

r0

r0
s2

s2

s2

r1

r0
s2

s0

s2

r2

r0
s2

s1

s2

s1

r0
s2

r2

s2

s0

r0
s2

r1

s2

s2

r0
s2

r0

s2

r0

r1
r0

r0

r1

r1

r1
r0

r1

r1

r2

r1
r0

r2

r1

s1

r1
r0

s1

r1

s0

r1
r0

s0

r1

s2

r1
r0

s2

r1

r0

r1
r1

r1

r2

r1

r1
r1

r2

r2

r2

r1
r1

r0

r2

s1

r1
r1

s0

r2

s0

r1
r1

s2

r2

s2

r1
r1

s1

r2

r0

r1
r2

r2

r0

r1

r1
r2

r0

r0

r2

r1
r2

r1

r0

s1

r1
r2

s2

r0

s0

r1
r2

s1

r0

s2

r1
r2

s0

r0

r0

r1
s1

s0

s0

54
r1

r1
s1

s1

s0

r2

r1
s1

s2

s0

s1

r1
s1

r1

s0

s0

r1
s1

r0

s0

s2

r1
s1

r2

s0

r0

r1
s0

s1

s2

60
r1

r1
s0

s2

s2

r2

r1
s0

s0

s2

s1

r1
s0

r0

s2

s0

r1
s0

r2

s2

s2

r1
s0

r1

s2

r0

r1
s2

s2

s1

r1

r1
s2

s0

s1

r2

r1
s2

s1

s1

s1

r1
s2

r2

s1

s0

r1
s2

r1

s1

s2

r1
s2

r0

s1

Figure A.8: The first part of 〈g〉1

A.4. SWITCHING SKEW GAIN GRAPHS 133

1

4

3

2
r0

r2
r0

r0

r2

r1

r2
r0

r1

r2

r2

r2
r0

r2

r2

s1

r2
r0

s1

r2

s0

r2
r0

s0

r2

s2

r2
r0

s2

r2

r0

r2
r1

r1

r0

r1

r2
r1

r2

r0

r2

r2
r1

r0

r0

s1

r2
r1

s0

r0

s0

r2
r1

s2

r0

s2

r2
r1

s1

r0

r0

r2
r2

r2

r1

r1

r2
r2

r0

r1

r2

r2
r2

r1

r1

s1

r2
r2

s2

r1

s0

r2
r2

s1

r1

s2

r2
r2

s0

r1

r0

r2
s1

s0

s2

r1

r2
s1

s1

s2

r2

r2
s1

s2

s2

s1

r2
s1

r1

s2

s0

r2
s1

r0

s2

s2

r2
s1

r2

s2

r0

r2
s0

s1

s1

r1

r2
s0

s2

s1

r2

r2
s0

s0

s1

s1

r2
s0

r0

s1

s0

r2
s0

r2

s1

s2

r2
s0

r1

s1

r0

r2
s2

s2

s0

r1

r2
s2

s0

s0

r2

r2
s2

s1

s0

s1

r2
s2

r2

s0

s0

r2
s2

r1

s0

s2

r2
s2

r0

s0

r0

s1
r0

r0

s0

r1

s1
r0

r1

s0

r2

s1
r0

r2

s0

s1

s1
r0

s1

s0

s0

s1
r0

s0

s0

s2

s1
r0

s2

s0

r0

s1
r1

r1

s1

r1

s1
r1

r2

s1

r2

s1
r1

r0

s1

s1

s1
r1

s0

s1

s0

s1
r1

s2

s1

s2

s1
r1

s1

s1

r0

s1
r2

r2

s2

r1

s1
r2

r0

s2

r2

s1
r2

r1

s2

s1

s1
r2

s2

s2

s0

s1
r2

s1

s2

s2

s1
r2

s0

s2

r0

s1
s1

s0

r1

r1

s1
s1

s1

r1

r2

s1
s1

s2

r1

s1

s1
s1

r1

r1

s0

s1
s1

r0

r1

s2

s1
s1

r2

r1

r0

s1
s0

s1

r0

r1

s1
s0

s2

r0

r2

s1
s0

s0

r0

s1

s1
s0

r0

r0

s0

s1
s0

r2

r0

s2

s1
s0

r1

r0

r0

s1
s2

s2

r2

r1

s1
s2

s0

r2

r2

s1
s2

s1

r2

s1

s1
s2

r2

r2

s0

s1
s2

r1

r2

s2

s1
s2

r0

r2

Figure A.8: (Continued)

134 APPENDIX A. ALGORITHMS AND PROGRAMMING TECHNIQUES

1

4

3

2
r0

s0
r0

r0

s1

r1

s0
r0

r1

s1

r2

s0
r0

r2

s1

s1

s0
r0

s1

s1

s0

s0
r0

s0

s1

s2

s0
r0

s2

s1

r0

s0
r1

r1

s2

r1

s0
r1

r2

s2

r2

s0
r1

r0

s2

s1

s0
r1

s0

s2

s0

s0
r1

s2

s2

s2

s0
r1

s1

s2

r0

s0
r2

r2

s0

r1

s0
r2

r0

s0

r2

s0
r2

r1

s0

s1

s0
r2

s2

s0

s0

s0
r2

s1

s0

s2

s0
r2

s0

s0

r0

s0
s1

s0

r0

r1

s0
s1

s1

r0

r2

s0
s1

s2

r0

s1

s0
s1

r1

r0

s0

s0
s1

r0

r0

s2

s0
s1

r2

r0

r0

s0
s0

s1

r2

r1

s0
s0

s2

r2

r2

s0
s0

s0

r2

s1

s0
s0

r0

r2

s0

s0
s0

r2

r2

s2

s0
s0

r1

r2

r0

s0
s2

s2

r1

r1

s0
s2

s0

r1

r2

s0
s2

s1

r1

s1

s0
s2

r2

r1

s0

s0
s2

r1

r1

s2

s0
s2

r0

r1

r0

s2
r0

r0

s2

r1

s2
r0

r1

s2

r2

s2
r0

r2

s2

s1

s2
r0

s1

s2

s0

s2
r0

s0

s2

s2

s2
r0

s2

s2

r0

s2
r1

r1

s0

r1

s2
r1

r2

s0

r2

s2
r1

r0

s0

s1

s2
r1

s0

s0

s0

s2
r1

s2

s0

s2

s2
r1

s1

s0

r0

s2
r2

r2

s1

r1

s2
r2

r0

s1

r2

s2
r2

r1

s1

s1

s2
r2

s2

s1

s0

s2
r2

s1

s1

s2

s2
r2

s0

s1

r0

s2
s1

s0

r2

r1

s2
s1

s1

r2

r2

s2
s1

s2

r2

s1

s2
s1

r1

r2

s0

s2
s1

r0

r2

s2

s2
s1

r2

r2

r0

s2
s0

s1

r1

r1

s2
s0

s2

r1

r2

s2
s0

s0

r1

s1

s2
s0

r0

r1

s0

s2
s0

r2

r1

s2

s2
s0

r1

r1

r0

s2
s2

s2

r0

r1

s2
s2

s0

r0

r2

s2
s2

s1

r0

s1

s2
s2

r2

r0

s0

s2
s2

r1

r0

s2

s2
s2

r0

r0

Figure A.8: (Continued)

Appendix B

Researching Switching Classes
With Programs

While doing research into switching classes in both the restricted case of undirected
graphs and the more general set-up of the second part of this thesis, programs
written in Scheme, C and Java were used for various purposes. These were

• helping us to form a hypothesis,

• doing computations that were to be used as part of a result,

• empirically verifying a hypothesis, and

• doing basic computations, that are errorprone when done by hand.

An example of the first concerns the results on the sizes of switching classes with
skew gains, where a program helped us to form a hypothesis about them. This was
very much in the beginning of the research when the programs were still limited to
the language Scheme. Another important example is the search we made for critically
cyclic switching classes, this time in the language C. This is also an example of the
second purpose for using a computer program, because one of our theorems uses a
result computed by a program.

After forming a hypothesis we sometimes prefer to put some time into writing
a program to verify it, especially if a proof is either not vital or would be very
cumbersome and detailed. An example in case is the following: in the proof of
Theorem 4.14, we did not use a number of the critically cyclic switching classes
we had discovered. There can be two reasons for this: we have some more general
reasoning that already forbids those switching classes, or we have an omission in our
proof. To make as sure as possible, that the former was the case, we hypothesized
that some switching classes were unnecessary in the proof, because we proved only
that there are no critically cyclic graphs n ≥ 10 vertices (unless they contain a cycle
Cn). It turned out that if we omitted (8-10), (8-13)-(8-15), (9-3), (9-5) from the list
of forbidden graphs, and we would run our program to find switching classes on 10
vertices with zero acyclic graphs, then it would not find any. The conclusion was
that for each of these forbidden graphs, adding one or two vertices in any possible
way always results in a graph that has one of the other forbidden graphs, i.e., the
ones that were not removed from the list of forbidden graphs.

An example of the fourth case is the construction of the anti-involutions of cyclic
groups. It can be done by hand, but it is tedious work and there is room for error.
Another example is computation with nonabelian groups.

135

136APPENDIX B. RESEARCHING SWITCHING CLASSES WITH PROGRAMS

Also, a hypothesis is often based on a number of examples and if the computa-
tion is done by hand, there is a chance that some inadvertent error sneaks in and
therefore we may spend a lot of time on a hypothesis that has almost no chance of
being correct. Of course, errors in programs are also possible, but they tend to be
systematic and therefore easier to spot.

In the following few sections, we shall give some details of the programs, but
usually only about what they can do, not how.

B.1 The Scheme programs

Scheme is a functional language of the Lisp-type. This means that it is untyped
and programs are full of parentheses.
The advantages that made us use Scheme were

• familiarity,

• a large set of basic functions that were programmed in the past,

• it is interpreted and therefore flexible,

• high expressive power, and

• easy to work with infinite groups

The strongest disadvantages are

• a large set of functions makes it difficult to know what has been programmed,

• the programs are often quite abstract and therefore hard to read, and

• slow computation

The features of the functions written in Scheme that were put to good use during
our research were as follows. Programs in Scheme are quickly and easily written,
although they are generally not very efficient. However, this rapid prototyping makes
it possible to easily verify computations done either by hand or by a program written
in, for instance, C. The programs are efficient to write, but not to run and depending
on where the bottleneck was, we decided what to do in C and what to do in Scheme.

Another big advantage of Scheme is that if one has computed something, say
a set of graphs, then one can at that point decide what to do with it. First, for
instance, one can count how many there are by computing the length of the result.
If the number happens to be very large and this is unexpected, then one can inspect
the result and decide on the fly what to do: it often happened that a number of
elements in the list were “superfluous”, e.g., not up to isomorphism. The superfluous
ones could then “easily” be removed by utilizing an often small and quickly written
function. The great advantage is that because research is essentially open ended, it
is good to have programs that are open ended. In fact, if a large number of small
things have to be done, and we do not yet know in which way or in which order,
a compiler is less useful than an interpreter, especially since most serious compilers
take their time compiling.

At some point functions were written that converted graphs (in the chosen
Scheme format) to LATEX, which could then be compiled into a paper or simply
into a .dvi file for inspection. The switching classes in this thesis were made us-
ing these functions. The programs were quite flexible, although they did not try

B.2. THE C PROGRAMS 137

to make any pretty graph layouts, which for switching classes is quite unnecessary.
Another example of the use of this “pretty-printing” is that for the critically cyclic
graphs found by the C program we wanted to have them drawn including all graphs
with a horizon, a minimum size graph and a maximum size graph in their switching
class. This made it easier to discover similarities. Doing it automatically avoided
the simple, but troublesome, errors when drawing the graphs by hand.

In the theory of skew gain graphs we want to work with arbitrary groups, arbi-
trary anti-involutions. In some cases the groups are infinite. We could cope with this
in Scheme quite easily using characteristic functions instead of sets (for the carrier).
In fact, both implementations are possible at this moment and this is almost trans-
parent to the programmer/user. In a functional language it is also easy to construct
the direct product of two groups and more such things. This makes it very useful
in research into skew gain graphs.

B.2 The C programs

When we were searching for the critically cyclic graphs, we decided that the programs
in Scheme were too slow to be of any help. Speeding up the computations by factors
of a few hundreds after we turned to plain C, we were able to do an exhaustive search
for the critically cyclic graphs up to 12 vertices. The results enabled us to pose the
hypothesis, that after 9 vertices only the simple cycles are left.

Hence for our proof we needed only the critically cyclic graphs for n ≤ 9. To
compute the cases for n = 9 is, of course, much less time consuming than for n = 10.
At first we constructed all graphs for a certain number of vertices, but later we found
and used Spence’s files [45] which list representatives for the switching classes up to
isomorphism and up to complementation for up to 10 vertices.1 In this way for 9
vertices this resulted in 2038 switching classes (up to isomorphism). This is a small
number for a computer.

Let S(n) be the number of switching classes on n vertices up to isomorphism.
The table of Mallows and Sloane:

n 1 2 3 4 5 6 7 8 9 10 11 12
S(n) 1 1 2 3 7 16 54 243 2.038 33.120 1.182.004 87.723.296

The table (which extends to n = 21 in Mallows and Sloane [39]) is counted
using Robinson’s formula for even graphs. For more computational information on
switching classes, see Bussemaker, Mathon and Seidel [6].

To be able to use both the LATEX conversion functions of Scheme, the programs
in C had four output options: the upper part of the adjacency-matrix (coded with
+ and −), Scheme graphs in both a format for further computation in Scheme and
the “drawing” format for conversion to LATEX, and a last format which was that
of a graph in C-code. In the latter format, the code constructs the corresponding
graph in C. Because often graphs that were found to be critically cyclic were to be
forbidden in switching classes of higher order, we had to put the graphs we found
into the program itself. It turned out that some errors were made in the process
until we included a function that outputted the C-code itself, which could be put
into the C-program directly. Later a program was made that could convert between
these formats.

1Some care must be taken if you simply complement all the graphs in these files, because there
are a few graphs whose complemented switching class is isomorphic to the one they are in.

138APPENDIX B. RESEARCHING SWITCHING CLASSES WITH PROGRAMS

Using the files of two-graphs we could compute for much higher orders. However,
the files were only for switching classes up to 10 vertices (because of size considera-
tions). For more vertices we were forced to construct all possible extensions of the
graphs on 10 to graphs of n > 10 vertices. This is not so nice, but much better than
constructing all switching classes on n vertices. However, it has to be taken into
account that the results are not anymore up to isomorphism. This is why a separate
program was written to remove isomorphic copies of graphs from a file of graphs.

The datastructure chosen in C for graphs is the simple adjacency matrix with a
maximum on the order of the graph. This turned out not to be a problem: with
switching the number of vertices stays the same, we were generally not interested
in large switching classes, and the number of edges varies considerably. Hence adja-
cency lists are not very useful here. Performing a switch on a matrix, simply entails
the complementation of all rows and columns belonging to elements in the switching
set. With the help of the result of Section A.3 this became a very efficient way of
generating all the graphs in the switching class.

Although we have not seriously started yet, it may very well be possible to write
code for investigating skew gain graphs in C++. Up to this point this has not been
done, because in that field, speed of computation has not yet been very important.

B.3 A Java-applet

Switching is a simple computation, but it is certainly possible to make errors. If
one wants to find out quickly whether a graph switches into an isomorphic copy of
another, it is useful to have some interactive computer support.

For this and other reasons a small Java-program was written that enables the
user to draw and switch graphs interactively. Especially when writing the material
for the critically cyclic graphs it helped us a lot.

A disadvantage is still that it only works for switching classes of undirected
graphs. For arbitrary groups with anti-involutions, it is not just a matter of pro-
gramming it: the problem of easily selecting the correct values in the vertices has
to be addressed as well.

The Java-applet can be seen at work at the following URL:

http://www.cs.uu.nl/people/jur/2s.html

Bibliography

[1] R.P. Abelson and M.J. Rosenberg. Symbolic psycho-logic: A model of attitu-
dinal cognition. Behavioral Sci., 3:1 – 13, 1958.

[2] D. Acharya. On characterizing graphs switching equivalent to acyclic graphs.
Indian J. Pure Appl. Math, 12:1187–1191, 1981.

[3] S.N. Afriat. The Ring of Linked Rings. Duckworth, 1982.

[4] J.A. Bondy. Pancyclic graphs I. J. Combin. Theory, Ser. B, 11:80 – 84, 1971.

[5] J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. North-Holland,
1976.

[6] F.C. Bussemaker, R.A. Mathon, and J.J. Seidel. Tables of two-graphs. In S.B.
Rao, editor, Combinatorics and Graph Theory - Proc. Sympos., Calcutta, 1980),
volume 885 of Lecture Notes in Computer Science, pages 70–112. Springer-
Verlag, 1981.

[7] P.J. Cameron. Cohomological aspects of two-graphs. Math. Z., 157:101 – 119,
1977.

[8] P.J. Cameron. Two-graphs and trees. Discrete Math., 127:63 – 74, 1994.

[9] D.G. Corneil and R.A. Mathon, editors. Geometry and Combinatorics: Selected
Works of J.J. Seidel. Academic Press, Boston, 1991.

[10] G.A. Dirac. Some theorems on abstract graphs. Proc. London Math. Soc., Ser.
3, 2:69 – 81, 1952.

[11] A. Ehrenfeucht, J. Hage, T. Harju, and G. Rozenberg. Complexity problems in
switching classes of graphs. Technical Report 15, Leiden University, Department
of Computer Science, 1997.

[12] A. Ehrenfeucht, J. Hage, T. Harju, and G. Rozenberg. Complexity issues in
switching of graphs. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozen-
berg, editors, Theory And Application Of Graph Transformations - TAGT ’98,
volume 1764 of Lecture Notes in Computer Science, pages 59–70, Berlin, 2000.
Springer-Verlag.

[13] A. Ehrenfeucht, J. Hage, T. Harju, and G. Rozenberg. Pancyclicity in switching
classes. Inf. Proc. Letters, 73(5–6):153 – 156, 2000.

[14] A. Ehrenfeucht, T. Harju, and G. Rozenberg. The Theory of 2-Structures.
World Scientific, 1999.

139

140 BIBLIOGRAPHY

[15] A. Ehrenfeucht and G. Rozenberg. An introduction to dynamic labeled 2-
structures. In A.M. Borzyszkowski and S. Sokolowski, editors, Mathematical
Foundations of Computer Science 1993, volume 711 of Lecture Notes in Com-
puter Science, pages 156–173, Berlin, 1993. Springer-Verlag.

[16] A. Ehrenfeucht and G. Rozenberg. Dynamic labeled 2-structures. Mathematical
Structures in Computer Science, 4:433–455, 1994.

[17] A. A. Fridman. On the relation between the word problem and the conjugacy
problem in finitely defined groups (russian). Trudy Moskov. Mat. Obsc., 9:329–
356, 1960.

[18] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1979.

[19] F. Gray. Pulse code communication, Mar. 17 1953. U.S. patent no. 2,632,058.

[20] J.L. Gross and T.W. Tucker. Topological Graph Theory. Wiley, New York,
1987.

[21] J. Hage. The membership problem for switching classes with skew gains. Fun-
damenta Informaticae, 39(4):375–387, 1999.

[22] J. Hage and T. Harju. Discussions in a cafeteria, 1996 – 2000.

[23] J. Hage and T. Harju. The size of 2-classes in group labeled 2-structures.
Technical Report 17, Leiden University, Department of Computer Science, 1996.
Generalized in [26].

[24] J. Hage and T. Harju. Acyclicity of switching classes. European J. Combin.,
19:321–327, 1998.

[25] J. Hage and T. Harju. A characterization of acyclic switching classes using
forbidden subgraphs. Technical Report 5, Leiden University, Department of
Computer Science, 2000. Submitted to Siam J. Disc. Math.

[26] J. Hage and T. Harju. The size of switching classes with skew gains. Discrete
Math., 215:81 – 92, 2000.

[27] F. Harary. On the notion of balance of a signed graph. Michigan Math. J.,
2:143–146, 1953–1954. Addendum in same journal preceding page 1.

[28] F. Harary. Graph Theory. Addison Wesley, 1972.

[29] G.H Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Oxford
Science Publications, Hong Kong, 5th edition, 1983.

[30] A. Hertz. On perfect switching classes. Discrete Applied Math., 89:263–267,
1998.

[31] A.M. Hinz. The Towers of Hanoi. Enseign. Math., 2:289–321, 1989.

[32] J.E. Hopcroft and R.E. Tarjan. Efficient planarity testing. J. ACM., 21:549 –
568, 1974.

BIBLIOGRAPHY 141

[33] C.F. Miller III. On Group-Theoretic Decision Problems and Their Classifica-
tion. Number 68 in Annals of Mathematics studies. Oxford University Press,
1971.

[34] J. Kratochv́ıl. Private communication.

[35] J. Kratochv́ıl, J. Nešetřil, and O. Zýka. On the computational complexity of
Seidel’s switching, in: Combinatorics, Graphs and Complexity (M.Fiedler and
J.Nešetřil eds.) Proceedings 4th Czechoslovak Symposium on Combinatorics,
Prachatice 1990. Annals of Discrete Math., 51:161 – 166, 1992.

[36] M.-C. Li, D. Corneil, and E. Mendelsohn. Pancyclicity and NP-completeness
in planar graphs. Discrete Applied Math., 98:219 – 225, 2000.

[37] J.H. van Lint and J.J. Seidel. Equilateral points in elliptic geometry. In Proc.
Kon. Nederl. Acad. Wetensch., Ser. A, volume 69, pages 335 – 348, 1966.
Reprinted in [9].

[38] W. Magnus, A. Karras, and D. Solitar. Combinatorial Group Theory. Dover,
New York, 2nd edition, 1976.

[39] C.L. Mallows and N.J.A. Sloane. Two-graphs, switching classes and Euler
graphs are equal in number. SIAM J. Appl. Math, 28:876 – 880, 1975.

[40] P.S. Novikov. Unsolvability of the conjugacy problem in the theory of groups
(russian). Izv. Akad. Nauk SSSR, Ser. Mat., 18, 1954.

[41] J.J. Rotman. The Theory of Groups. Allyn and Bacon, Boston, 2nd edition,
1973.

[42] J.J. Seidel. Graphs and two-graphs. In Proc. 5th Southeastern Conf. on Com-
binatorics, Graph Theory, amd Computing, Winnipeg, Canada, 1974. Utilitas
Mathematica Publishing Inc.

[43] J.J. Seidel. A survey of two-graphs. In Colloquio Internazionale sulle Teorie
Combinatorie (Rome,1973), volume I, pages 481–511, Rome, 1976. Acc. Naz.
Lincei. Reprinted in [9].

[44] J.J. Seidel and D.E. Taylor. Two-graphs, a second survey. In L. Lovasz and
V.T. Sós, editors, Algebraic Methods in Graph Theory (Proc. Internat. Colloq.,
Szeged, 1978), volume II, pages 689–711, Amsterdam, 1981. North-Holland.
Reprinted in [9].

[45] E. Spence. Tables of two-graphs. http://gauss.maths.gla.ac.uk/˜ted/.

[46] D. Wood. The Towers of Brahma and Hanoi revisited. J. Recreational Math.,
14:17–24, 1981-82.

[47] M. Yannakakis. Node- and edge-deletion NP-complete problems. In Proc. 10th
Ann. ACM Symp. on theory of Computing, pages 253 – 264, New York, 1978.
ACM.

[48] T. Zaslavsky. Characterizations of signed graphs. J. Graph Theory, 5:401–406,
1981.

142 BIBLIOGRAPHY

[49] T. Zaslavsky. Signed graphs. Discrete Applied Math., 4:47–74, 1982. Erratum
on p. 248 of volume 5.

[50] T. Zaslavsky. Biased graphs. I. Bias, balance, and gains. J. Combin. Theory,
Ser. B, 47:32–52, 1989.

[51] T. Zaslavsky. A Mathematical Bibliography of Signed and Gain Graphs and
Allied Areas, volume DS8 of Dynamic Surveys in Combinatorics. World Com-
binatorics Exchange, http://www.combinatorics.org, 1999.

Index

(Γ, δ)-gain graph, 78
A(g), 78
Cn, 25
E(G), 22

G
ψ
↪→ H, 24

G+ u, 23
G+ uv, 23
G− I, 23
G− u, 23
G− uv, 23
Gx, 29
Gσ, 108
NG(x), 24
Pn, 25
S-equivalent, 22
SX , 22
Sk,m,`, 55
V (G), 22
AUT(G), 23
AUT(Γ), 17
AUT2(Γ), 82
CδT (g), 104
Cδu(g), 93
EE, 104
EEδT , 104
EO, 104
INV(Γ), 77
OO, 104
OOδ

T , 104
S(V,Γ), 79
KV , 25
[G], 34
Cδa, 93
δ-centralizer, 93
ρ(m, k), 120
KV , 25
E3(V), 37
E2(V), 22
even(T), 87
Fix(f), 15
image, 110
ker, 110

λ, 16
LG, 78
LG(Γ, δ), 78
N, 15
odd(T), 87
⊕, 21
R, 15
R+, 15
σT,a, 98
σg,t, 87
σu,a, 87
S, 79
〈h〉u, 96
∼, 81
∼S , 22
ξ(G), 25
Z, 15
a :π, 16
c(G), 95
gt, 87
sΓ,δ, 110
u-refinement, 96
u-selector, 104
[g], 79

acts, 22
adjacent, 24
anti-involution, 77
anti-symmetric, 16
automorphism, 17

biased graphs, 82
bijective, 15
bounded minimum degree, 39

cardinality, 15
carrier, 16
cartesian product, 15
centralizer, 18
centre, 18
chords, 25
chromatic number, 41
clique, 25

143

144 INDEX

clique size, 44
colouring, 41
commute, 17
component, 25

connected, 25
conjugacy problem, 113
conjugate, 20
constant, 30
constant below u, 94
content number, 95
coset

left, 19
right, 19

cycle, 24
cyclomatic number, 25

degree, 24
direct product

inner, 20
outer, 20

direct sum, 21
domain, 15
doubleton, 15
dynamic labelled 2-structure, 82

edge
reverse, 77

edges, 22
embedding into a

graph, 24
endpoints, 22
equivalent up to, 16

fixed points, 15
forbidden, 57
forest, 25

spanning, 25
full embedding into a

graph, 24
function

characteristic, 15
composition, 15
identity, 15

gain graph, 78
abelian, 78
skew, 78

gain graphs, 82
embedding, 108

gains, 78
generator, 30

graph, 22
acyclic, 25
automorphism, 23
bipartite, 25

complete, 25
closure, 47
complement, 23
complete, 25
connected, 25
critically cyclic, 57
crown, 26
disconnected, 25
discrete, 25
eulerian, 35
even, 35
gain, 78
hamiltonian, 26
isomorphic, 23
odd, 35
pancyclic, 26
star, 25
up to equality, 24
up to isomorphism, 24
with skew gains, 78

group, 16
abelian, 17
cyclic, 19
finite, 17
finitely generated, 19
finitely presented, 113
generator, 19
homomorphism, 17
isomorphic, 17
order, 17
p-, 21
permutation, 22
presentation, 113

generators, 113
relations, 113

primary, 21
quotient, 20
symmetric, 18, 22
trivial, 17

hereditary, 40
homomorphism, 17

image, 110
kernel, 110

horizon, 24

identity element, 17

INDEX 145

image, 110
independent set, 25
injective, 15
input actions, 12
inverse, 17
inversion

group, 17
inversive, 78
isolated, 24

kernel, 110

leaf, 24
leaf at, 24

multiplicity, 119
multiset, 119

cardinality, 119
size, 119

nontrivial, 40

orbits, 22
order, 19, 22
output actions, 12

p-group, 21
parity, 87
partition, 15
path, 24
permutation, 16
projections, 21

range, 15
refinement, 16

u-, 96
reflexive, 16
relation, 16

equivalence, 16
restriction, 16
reversibility condition, 78

selector, 29, 79
u-, 104
alternating, 98
constant below u, 94

sequence, 16
closed, 16
repetition-free, 34

signed graphs, 82
singleton, 15
size, 15, 22

skew gain graph, 78
skewed squares, 109
stabilizer, 22
subgraph, 23

induced, 23
spanning, 23

subgroup, 18
normal, 20
product, 19

submultiset, 119
surjective, 15
switch, 29
switch-nontrivial, 40
switching class, 30, 79

complemented, 34
critically cyclic, 57
maximum graph, 35

symmetric, 16
symmetric difference, 15
symmetry condition, 78

total, 15
trail, 24
transitive, 16
transversal, 16
tree, 25

rooted, 25, 87
spanning, 25
trivial, 25

triangle, 25
two-graph, 37

underlying set, 16

vertex
degree of a, 24
even, 87
odd, 87

vertices, 22
voltage graphs, 82

walk, 24
closed, 24

word problem, 113

Samenvatting

De motivatie voor het onderzoek dat in dit proefschrift aan de orde komt is het mod-
elleren van het gedrag van sommige netwerken van processoren. Kortgezegd is een
netwerk van processoren een verzameling van processoren waartussen verbindingen
kunnen bestaan waarbij de toestand van het netwerk bevat is in de waarden op die
verbindingen (in dit proefschrift hebben die waarden de structuur van een groep,
zoals bekend uit de wiskunde).

In een dergelijk netwerk kan een processor asynchroon besluiten een actie uit
te voeren waarbij hij slechts in staat is de waarden op zijn inkomende en uit-
gaande verbindingen op een zekere vastgelegde wijze te veranderen (deze operatie
heet ”switchen”). Gegegeven een willekeurige begintoestand van het netwerk is de
switching class horende bij dit netwerk, de verzameling van alle toestanden die door
middel van het uitvoeren van deze switch-operaties te verkrijgen zijn.

Het model komt voort uit drie eisen die opgelegd zijn aan deze netwerken:
elke willekeurige verbinding kan door middel van een actie in een processor in een
willekeurige toestand gebracht worden, een tweetal van dergelijke acties kan wor-
den gecombineerd door middel van één enkele, en als twee processoren, verbonden
via een zekere connectie, beide een actie uitvoeren, dan zal de volgorde waarin dit
gebeurt niet de uitkomst van de combinatie bëınvloeden.

Bovenstaand model werd door Ehrenfeucht en Rozenberg uitgewerkt onder de
naam dynamische gelabelde 2-structuren en het onderzoek voor dit proefschrift be-
stond uit het analyseren van deze structuren (zowel algoritmisch, combinatorisch als
algebräısch). De terminologie in dit proefschrift is aangepast aan die, die te vinden
was in de wiskunde sinds eind jaren zestig, toen eenvoudiger versies van het model
gëıntroduceerd werden.

Opvallend was dat de vragen die men toen stelden en die wij in dit proefschrift
aan de orde stellen, door verschil in motivatie sterk uiteen liepen. Het is echter
wel zo dat de behaalde resultaten binnen de context van het toenmalige onderzoek
geplaatst kan worden.

Het onderzoek op het gebied van het algemene model spitste zich toe op vinden
van een efficiënt algoritme dat kon beslissen of vanuit een gegeven toestand van een
netwerk, een gegeven andere bereikt kon worden door middel van een switch. Een
dergelijk algoritme bleek te bestaan en de benodigde theorie bleek belangrijk te zijn
voor het begrip van switching classes.

Voor de simpele versie van switching classes zoals beschreven in het eerste deel
van dit proefschrift is vooral gewerkt aan combinatorische problemen, zoals het
bewijs dat een switching class slechts één boom kan bevatten (modulo isomor-
fisme). Ter verkenning van deze combinatorische problemen, is tijdens het onderzoek
veelvuldig gebruik gemaakt van programma’s geschreven in C of Scheme.

147

Curriculum Vitae

Jurriaan Hage werd geboren op 19 september 1969 te Alphen aan den Rijn. Na de
openbare lagere school deed hij eerst HAVO en vervolgens VWO aan het Albanianae
in diezelfde plaats. Vervolgens begon hij aan een studie Informatica in Leiden die hij
na zes jaar cum laude afrondde. Tijdens zijn studie deed hij vier jaar werkgroepas-
sistentie. Zijn afstudeerwerk deed hij bij prof. dr. A. Ollongren op het gebied van
vertaling en programmeertaalontwerp.

Na zijn afstuderen deed hij van 1995 tot en met 1998 onderzoek als aio in de
groep van prof. dr. G. Rozenberg, alweer aan de Universiteit Leiden (toen nog
Rijksuniversiteit). De begeleider bij het onderzoek was dr. Tero Harju uit Finland.
Het onderwerp van het onderzoek betrof switching classes, een wiskundig model voor
netwerken van processoren; een model dat zoals later bleek ook terug gevonden werd
in de wiskunde van enige decennia eerder.

Sinds 1 november 1999 heeft hij een betrekking als docent/onderzoeker in Utrecht
in de groep Software Technology van prof. dr. Doaitse Swierstra.

149

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Process
Algebra. Faculty of Mathematics and Comput-
ing Science, TUE.1996-1

A.M. Geerling. Transformational Devel-
opment of Data-Parallel Algorithms. Fac-
ulty of Mathematics and Computer Science,
KUN.1996-2

P.M. Achten. Interactive Functional Pro-
grams: Models, Methods, and Implementation.
Faculty of Mathematics and Computer Science,
KUN.1996-3

M.G.A. Verhoeven. Parallel Local Search.
Faculty of Mathematics and Computing Sci-
ence, TUE.1996-4

M.H.G.K. Kesseler. The Implementation
of Functional Languages on Parallel Machines
with Distrib. Memory. Faculty of Mathematics
and Computer Science, KUN.1996-5

D. Alstein. Distributed Algorithms for Hard
Real-Time Systems. Faculty of Mathematics
and Computing Science, TUE.1996-6

J.H. Hoepman. Communication, Synchro-
nization, and Fault-Tolerance. Faculty of Math-
ematics and Computer Science, UvA.1996-7

H. Doornbos. Reductivity Arguments and
Program Construction. Faculty of Mathemat-
ics and Computing Science, TUE.1996-8

D. Turi. Functorial Operational Semantics
and its Denotational Dual. Faculty of Math-
ematics and Computer Science, VUA.1996-9

A.M.G. Peeters. Single-Rail Handshake Cir-
cuits. Faculty of Mathematics and Computing
Science, TUE.1996-10

N.W.A. Arends. A Systems Engineering
Specification Formalism. Faculty of Mechani-
cal Engineering, TUE.1996-11

P. Severi de Santiago. Normalisation in
Lambda Calculus and its Relation to Type Infer-
ence. Faculty of Mathematics and Computing
Science, TUE.1996-12

D.R. Dams. Abstract Interpretation and Par-
tition Refinement for Model Checking. Fac-
ulty of Mathematics and Computing Science,
TUE.1996-13

M.M. Bonsangue. Topological Dualities in
Semantics. Faculty of Mathematics and Com-
puter Science, VUA.1996-14

B.L.E. de Fluiter. Algorithms for Graphs of
Small Treewidth. Faculty of Mathematics and
Computer Science, UU.1997-01

W.T.M. Kars. Process-algebraic Transforma-
tions in Context. Faculty of Computer Science,
UT.1997-02

P.F. Hoogendijk. A Generic Theory of Data
Types. Faculty of Mathematics and Computing
Science, TUE.1997-03

T.D.L. Laan. The Evolution of Type Theory
in Logic and Mathematics. Faculty of Mathe-
matics and Computing Science, TUE.1997-04

C.J. Bloo. Preservation of Termination for
Explicit Substitution. Faculty of Mathematics
and Computing Science, TUE.1997-05

J.J. Vereijken. Discrete-Time Process Alge-
bra. Faculty of Mathematics and Computing
Science, TUE.1997-06

F.A.M. van den Beuken. A Functional Ap-
proach to Syntax and Typing. Faculty of Math-
ematics and Informatics, KUN.1997-07

A.W. Heerink. Ins and Outs in Refusal Test-
ing. Faculty of Computer Science, UT.1998-01

G. Naumoski and W. Alberts. A Discrete-
Event Simulator for Systems Engineering. Fac-
ulty of Mechanical Engineering, TUE.1998-02

J. Verriet. Scheduling with Communication
for Multiprocessor Computation. Faculty of
Mathematics and Computer Science, UU.1998-
03

J.S.H. van Gageldonk. An Asynchronous
Low-Power 80C51 Microcontroller. Fac-
ulty of Mathematics and Computing Science,
TUE.1998-04

A.A. Basten. In Terms of Nets: System De-
sign with Petri Nets and Process Algebra. Fac-
ulty of Mathematics and Computing Science,
TUE.1998-05

E. Voermans. Inductive Datatypes with Laws
and Subtyping – A Relational Model. Fac-
ulty of Mathematics and Computing Science,
TUE.1999-01

H. ter Doest. Towards Probabilistic
Unification-based Parsing. Faculty of Com-
puter Science, UT.1999-02

J.P.L. Segers. Algorithms for the Simulation
of Surface Processes. Faculty of Mathematics
and Computing Science, TUE.1999-03

C.H.M. van Kemenade. Recombinative Evo-
lutionary Search. Faculty of Mathematics and
Natural Sciences, Univ. Leiden.1999-04

E.I. Barakova. Learning Reliability: a Study
on Indecisiveness in Sample Selection. Fac-
ulty of Mathematics and Natural Sciences,
RUG.1999-05

M.P. Bodlaender. Schedulere Optimiza-
tion in Real-Time Distributed Databases. Fac-
ulty of Mathematics and Computing Science,
TUE.1999-06

M.A. Reniers. Message Sequence Chart: Syn-
tax and Semantics. Faculty of Mathematics and
Computing Science, TUE.1999-07

J.P. Warners. Nonlinear approaches to satis-
fiability problems. Faculty of Mathematics and
Computing Science, TUE.1999-08

J.M.T. Romijn. Analysing Industrial Proto-
cols with Formal Methods. Faculty of Computer
Science, UT.1999-09

P.R. D’Argenio. Algebras and Automata for
Timed and Stochastic Systems. Faculty of Com-
puter Science, UT.1999-10

G. Fábián. A Language and Simulator for Hy-
brid Systems. Faculty of Mechanical Engineer-
ing, TUE.1999-11

J. Zwanenburg. Object-Oriented Concepts
and Proof Rules. Faculty of Mathematics and
Computing Science, TUE.1999-12

R.S. Venema. Aspects of an Integrated Neu-
ral Prediction System. Faculty of Mathematics
and Natural Sciences, RUG.1999-13

J. Saraiva. A Purely Functional Implementa-
tion of Attribute Grammars. Faculty of Math-
ematics and Computer Science, UU.1999-14

R. Schiefer. Viper, A Visualisation Tool
for Parallel Progam Construction. Fac-
ulty of Mathematics and Computing Science,
TUE.1999-15

K.M.M. de Leeuw. Cryptology and Statecraft
in the Dutch Republic. Faculty of Mathematics
and Computer Science, UvA.2000-01

T.E.J. Vos. UNITY in Diversity. A stratified
approach to the verification of distributed algo-
rithms. Faculty of Mathematics and Computer
Science, UU.2000-02

W. Mallon. Theories and Tools for the Design
of Delay-Insensitive Communicating Processes.
Faculty of Mathematics and Natural Sciences,
RUG.2000-03

W.O.D. Griffioen. Studies in Computer
Aided Verification of Protocols. Faculty of Sci-
ence, KUN.2000-04

P.H.F.M. Verhoeven. The Design of the
MathSpad Editor. Faculty of Mathematics and
Computing Science, TUE.2000-05

J. Fey. Design of a Fruit Juice Blending and
Packaging Plant. Faculty of Mechanical Engi-
neering, TUE.2000-06

M. Franssen. Cocktail: A Tool for Deriving
Correct Programs. Faculty of Mathematics and
Computing Science, TUE.2000-07

P.A. Olivier. A Framework for Debugging
Heterogeneous Applications. Faculty of Natural
Sciences, Mathematics and Computer Science,
UvA.2000-08

E. Saaman. Another Formal Specification
Language. Faculty of Mathematics and Natural
Sciences, RUG.2000-10

M. Jelasity. The Shape of Evolutionary
Search Discovering and Representing Search
Space Structure. Faculty of Mathematics and
Natural Sciences, UL.2001-01

R. Ahn. Agents, Objects and Events a com-
putational approach to knowledge, observation
and communication. Faculty of Mathematics
and Computing Science, TU/e.2001-02

M. Huisman. Reasoning about Java programs
in higher order logic using PVS and Isabelle.
Faculty of Science, KUN.2001-03

I.M.M.J. Reymen. Improving Design Pro-
cesses through Structured Reflection. Fac-
ulty of Mathematics and Computing Science,
TU/e.2001-04

S.C.C. Blom. Term Graph Rewriting: syn-
tax and semantics. Faculty of Sciences, Di-
vision of Mathematics and Computer Science,
VUA.2001-05

R. van Liere. Studies in Interactive Visualiza-
tion. Faculty of Natural Sciences, Mathematics
and Computer Science, UvA.2001-06

A.G. Engels. Languages for Analysis and
Testing of Event Sequences. Faculty of Mathe-
matics and Computing Science, TU/e.2001-07

J. Hage. Structural Aspects of Switching
Classes. Faculty of Mathematics and Natural
Sciences, UL.2001-08

