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Abstract

Software analysis involves the retrieval of large numbers of relations from the source code of the
program. These include call, inheritance, inclusion, and database access relations. The querying of these
relations for the purpose of obtaining high-level overviews of internal architecture and information flow is
a non-trivial task.

The graph library used by the Software Improvement Group (SIG) for this task has limitations re-
garding its expressiveness, abstraction facilities, and offered functionality. This makes it difficult and
time-consuming to write queries that retrieve the necessary information. The goal of this thesis project
was to find a new solution that removes these limitations.

First, we have compared existing source code query tools. The tools were compared with respect to
ten criteria concerning language and tool features. The language features were compared by implementing
four archetypical source code queries in each of the tools. Although the compared solutions are promising,
we found that only JRelCal offers the combination of good abstraction and extension facilities together
with an API.

JRelCal is a prototype Java library that is based on Tarski’s binary relational calculus. Binary re-
lational calculus allows us to express source code analysis queries in a concise and declarative manner.
JRelCal, however, has significant shortcomings: the performance of some of its operations is poor, it lacks
some essential features, and its implementation contains several bugs. To overcome these shortcomings we
have created a new implementation of JRelCal. The new implementation includes an optimised transitive
closure operation, support for predicates, and an efficient representation for relations. We validated the
new JRelCal in an extensive case study.
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Chapter 1
Introduction

1.1 Description of the company

The Software Improvement Group (SIG) is a consultancy company that provides management consulting
services based on source code analysis. The main goal of the company is giving more insight in the technical
quality of the software systems of its customers. SIG’s services are mainly intended to be used at management
level.

When management has to decide on large investments concerning software systems –like replacement
or renovation of the system, large-scale changes, and in- or outsourcing– it needs objective and thorough
information about the status and technical quality of the software system. Due to the large size and complexity
of today’s software, it is difficult for IT management to obtain such information. They often have to rely on
information provided by the technical staff responsible for the system. This information may be incomplete or
incorrect, often because written documentation is either unavailable or insufficient and the programmers lack
a complete overview of the entire system.

To provide management with the correct information, SIG offers two services: software risk assess-
ments [71] and software monitoring [48, 50]. Below, we will discuss these services in more detail.

A Software risk assessment is a one-time investigation of the technical quality of a system. It is based on
partially automated source code analysis and information collected from documentation and interviews with
system experts. The result is a report on the status and technical quality of the system. The report also includes
recommendations that help management to make the right decisions.

The Software monitor is basically a software risk assessment repeated on a regular interval. These as-
sessments are based on a standardised set of queries. The results are reported to the client in a web-based
dashboard that provides an overview of the measurements. In addition, SIG consultants periodically give
presentations to the management to summarizes the finding. This way, an indication of the technical quality
of the source code is provided without having to look into the source code itself. This gives the management
continuous insight into the quality of the system, which can help maintaining the quality of a system over
time.

Another service offered by SIG is the automatic documentation generator DocGen [25]. This service is
aimed at the software engineer instead of the management. DocGen can generate technical documentation for
a software system based on source code analysis. This is useful because often the technical documentation
is insufficiently detailed or outdated. These documentation deficiencies will increase the risk and the cost of
making changes to the system. Increased risk because software engineers have a less clear picture of what
the effects of their changes will be, increased costs because it takes more time for the software engineers to
comprehend the system before they can make the change.

The core of the software risk assessment and software monitor services is implemented in SIG’s software
analysis toolkit (SAT), which we will describe in more detail in Section 2.5.

1.2 Problem description

SIG’s services are mainly based on information obtained by formulating software analysis queries using the
SIG graph library. The SIG graph library is used to represent information extracted from the source code as
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1.3 Research questions Introduction

a graph. This graph is a directed and typed graph. At the nodes, results of metric computation are stored in a
map. In addition, it offers functionality to perform queries on the information represented by the graph. We
distinguish two use case scenarios for the SIG graph library:

1. The most common case is when it is used for the software monitor: periodically, a standard set of
source code queries is run on the client’s system to provide the information to be shown in the software
monitor:

2. Sometimes, a client has a more specific problem. E.g., it wants SIG to do impact analysis on its code, in
order to learn which code can be changed safely. Such situations require the analyst to investigate the
system by formulating and running custom queries.

Currently, there is a problem with how queries are formulated in the SIG graph library. The library
requires the programmer to specify queries as imperative graph algorithms, using (nested) loops to specify
traversals over the graph structure. This is a complex and inconvenient way of specifying queries, which
requires more effort to learn, and makes it difficult to understand queries. As a result, it is more likely that
mistakes will be made, resulting in the retrieval of incorrect information.

Therefore, it is desirable to hide the implementations details beneath appropriate abstractions. It should
be possible to specify a software analysis query more declaratively, using high level operations. This lets the
analysts focus on specifying the properties of the desired result (the what), instead of specifying the algorithm
to achieve this result (the how). An extra layer of abstraction makes it easier to specify sophisticated analyses.
Additionally, a clear separation between implementation and specification of a query simplifies switching to
other (more efficient) implementations.

1.3 Research questions

Based on the problem description we define the following research question:

Can we find a successor of the SIG graph library that allows the SIG to formulate
source code queries concisely, declaratively and efficiently?

In the following section we describe our approach to answering these research questions.

1.4 Approach

There exist several tools that offer a domain specific language for source code querying. Therefore, we will
first compare these existing tools to see whether one of these tools can serve as a successor of the SIG graph
library. We will compare language and tool features with respect to ten criteria. To compare the languages of
the tools we have selected four language criteria that we compare by implementing a set of four benchmark
queries in each of the tools. The remaining six criteria are related to the features of the tools.

From the comparison we conclude that only one candidate meets the most important requirements of
the SIG: only JRelCal offers the combination of sufficient abstraction facilities, extendability, and an API.
Consequently, we have chosen JRelCal as successor of the SIG graph library.

JRelCal is Java library that implements Tarski’s binary relational calculus. It is a research prototype that
has some limitations: useful language features we have found in other tools are not all present in JRelCal, and
the implementation can be improved upon. To address these shortcomings we have created a new version of
JRelCal. In this version we have fixed bugs, added tests, separated the specification from the implementation,
added predicates, and optimised the transitive closure operation. We have realised the integration of JRelCal
with SIG’s SAT by providing a mapping from SIG graphs to JRelCal relations.

Since there does not exist a benchmark suite for implementations of code query languages, we have
carried out a case study to validate our work. In this case study we re-implement the work of Alves on the
static estimation of test coverage. This is a representative, non-trivial analysis that SIG would like to perform.

2



Introduction 1.5 Outline

1.5 Outline

Chapter 2 gives an overview of the foundations, goals, and different approaches to software analysis and
source code querying. It also discusses formal concepts that are frequently used within the field of source
code querying e.g., Tarski’s binary relational calculus.

Chapter 3 reports on the evaluation of existing code query technologies. We will start with introducing
the technologies we have evaluated. We then discuss the two typical usage scenarios we found and the criteria
we use to compare the language and tools. Every criteria is then discussed in more detail. To compare the
languages of each tool we have collected a set of four benchmark queries. We will show how these queries
are implemented in the different tools. We will conclude with a generic conclusion, and a more specific
conclusion tailored to SIG’s requirements.

In Chapter 4 we will elaborate on the improvements and optimisations made to JRelCal. We start with a
general description of JRelCal. Then, we will report on our implementation of predicates; a functional exten-
sion to JRelCal, followed by a discussion of our optimization of reachability queries. We have validated this
optimization in a performance tests in which we compare the performance of the new JRelCal implementation
to its old implementation.

The validation of this work is described in Chapter 5, where we discuss a case-study in which we use
JRelCal to re-implement work of Alves on the static estimation of code coverage.

Chapter 6 summarises the work we have done. We formulate the answers to our research questions, and
conclude with ideas on how this work can be further improved.
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Chapter 2
Background and Related Work

We start with a general discussion of source code querying and its uses. Then, we explore related work on
source code querying by providing an overview of the history of code querying. This overview is structured
by the formal foundations of the code query languages: Codd’s relational algebra, Tarski’s binary relational
calculus, and logic programming. We consider each of these foundations in detail, followed by a discussion of
the implementation techniques that can be used to implement the query languages. We conclude this chapter
with a discussion of the SIG tooling.

2.1 Source code querying

In general, today’s software systems are very large and complex. The average size of the systems in SIG’s
software benchmark, which currently contains over 100 systems from industry, is about 200.000 lines of code,
and 25% of the code units (e.g., methods or procedures, depending on the language) has a McCabe cyclomatic
complexity [58] value higher than 10. McCabe indicates that when a unit’s complexity value is higher than
10 it can considered to be complex, which makes the unit more difficult to understand and therefore harder
to maintain. As a consequence, software engineers spend a large amount of their time on understanding
the system they are working on. Corbi reports that 50% of a software engineer’s time is spent on gaining
an understanding of the system he is working on [17]. It is necessary to understand the relevant parts of a
software system before one can add functionality, improve the implementation, find and fix defects, etc.

To assist software engineers in gaining an understanding of the software, numerous researchers in the
fields of program comprehension and software reengineering have worked on tools and techniques that support
this task. Over the years, several tools for comprehending software have emerged from these fields of research.
In fact, many modern IDEs already offer tools such as type and call hierarchy views that can help the developer
in understanding the source code. A drawback, however, is that these tools are often limited to a specific task.
They do not have the flexibility to answer questions specific to a particular situation.

Source code querying is a technique that addresses this issue by offering a domain specific language that
allows software engineers to formulate queries about the source code specific to their particular situation.
These languages are called source code query languages. A query language is a specialised language for
asking questions or queries involving data stored in a database, a file, of any other form of data storage. The
data that is queried by source code query languages are typically relations (e.g. call and inheritance relations)
extracted from the source code by parsers or regular expressions.

2.1.1 Goals

Arguably, the most common use of source code query tools is for program comprehension. Nonetheless, this
is certainly not the only use of code query tools. Hajiyev [33] lists several situations where code query tools
can be of interest. We will discuss these situations and indicate how these relate to the goals SIG wants to use
code querying for: software risk assessments and software monitoring.

• Program comprehension: code query tools can help software engineers to understand how software
executes, or how software is structured. This can, for example, be done by performing control or data

5



2.1 Source code querying Background and Related Work

flow analysis, or by creating high-level views of the software system. A better understanding of the
system can help in making changes to or decisions about the system.

Program comprehension plays an important role in software risk assessments. To give valuable and
correct advice to clients, SIG consultants have to attain a thorough understanding of the system they are
assessing.

• Software reengineering and refactoring: users can detect ”bad” software structures such as code dupli-
cation or poor modularisation with the help of code querying tools. The detected ”flaws” can then be
removed. Removing the flaws can either be done manually, or specified as formal transformations that
can be carried out automatically.

Although SIG typically does not refactor or re-engineer software themselves, during a software risk
assessment they may find weak spots in the software system of the client. These weak spots can then
be remedied by the client itself, based on information provided by the SIG.

• Program Metrics: Source code query tools can also be used for calculating software metrics [30] such
as McCabe’s cyclomatic complexity, package instability and average method size.

SIG bases much of its advice and findings on several software metrics as a measure of the technical
quality of a system. Software metrics are also used in the software monitor to continuously monitor the
quality of the software.

• Debugging: Just like software querying tools can be used to find bad software structures, they can also
be used for finding potential bugs, e.g., a wrong sequence of calls to API methods, or a Java class
that implements the compareTo method without implementing the equals method. An advantage of
code query tools over generic bug finding software such as FindBugs1 is that code query tools offer a
language that allows one to write queries that can detect project specific bugs or conventions.

As mentioned at reengineering and refactoring, SIG does not fix bugs in the systems of its clients
themselves. However, if they detect potential bugs these are reported to the client, which enables the
client to take appropriate measures.

Most of the previously mentioned goals can be performed at different levels of detail. Paul and Prakash [64]
distinguish three levels of detail at which queries can be performed:

• Global structural information

• Statement-level structural information

• Flow information such as data-flow and control-flow

To run a query on a certain level, relations of that level of detail need to be extracted from the source code.
The higher the level of detail, the more relations are extracted. The more relations involved in a query, the
more time it takes to evaluate the query.

2.1.2 Extract, abstract, present

At the highest level, the process of source code querying can consists of three different phases: extract, abstract
and present. This is shown in Figure 2.1. Below, we discuss each of the three phases in more detail.

1. Extract: In this phase, information is extracted from the source code. It depends on the tool what
information is extracted and how it is stored. It either produces a file with extracted facts, or results
in immediate population of a facts database. In the latter case, extracted facts are directly available for
querying. In contrast, when producing a file the user might be required to transform it to an interchange
format supported by the code query technology and then manually load it. The extraction phase is
typically implemented using parsers and lexers.

1http://findbugs.sourceforge.net
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Figure 2.1: Extract - Abstract - Present

2. Abstract: In this phase the actual querying and analysis takes place; new information is derived from
the extracted relations. This can be done by (repeatedly) executing queries on the extracted facts. For
example, one might want to know which methods are called directly or indirectly from a given class.
These queries can be specified in a domain specific language supported by a code query technology
either in a IDE (when available) or in a text editor. This phase is where the focus of this thesis lies.

3. Present: In this phase the derived information is presented to the end user. Results can be presented in
a textual, tabular, or graphical (e.g. graph or chart) format.

2.2 Related work

The idea that source code queries can be specified easier, more concisely, and more declaratively in a domain
specific query language has been around for quite a long time. Over the years, a lot of technologies have
emerged. In this section we give an overview of the different proposals that have appeared over time.

The earliest approaches to source code querying did not involve a query language at all. As early as
the 70’s people were using UNIX tools like grep and awk to query source code. These tools were used to
perform regular expression matching on the programming language text. An awk script even made it possible
to pair a regular expression with an action or procedure written in C-like code. When the regular expression
is matched, the procedure is executed. The advantages of this approach are that it does not require parsing of
the source code, it is fast, and it is relatively simple to write queries. The disadvantage is that it is impossible
to express queries like ”assignment to a variable of a certain data type”.

In the 80’s the first code query tools that offered a query language began to emerge. We discuss these tools
categorised by the formal foundations of their query languages. First, we consider languages based on Codd’s
relational algebra (RA). This category contains all languages based on Codd’s work, which are basically all
SQL-like languages. Then, we explore languages that are based on Tarski’s binary relational calculus (BRC).
This is followed by a discussion of the query languages that are based on logic programming languages (LPL)
such as Prolog and Datalog. We conclude with a short discussion of some program comprehension tools that
do not offer a query language. A discussion of the formal foundations can be found in next section.

To put the tools into a historical perspective, we have created a timeline (Figure 2.2) that provides an
overview of when the code query technologies emerged and how they developped over time.

2.2.1 Codd’s relational algebra

The OMEGA system by Linton [52] is the first source querying tool in history. It uses a query language based
on Codd’s relational algebra: SQL. In 1984, Linton proposed to store information extracted from the source
code as relations in a relational database. Once stored in a database, it is natural to use SQL to query this
information. The information stored in OMEGA’s database was very detailed to allow the reconstruction of
te source code from the database. This level of detail significantly increased the size of the database, and as a
result the query evaluation times.
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RScript

SemmleCode
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Figure 2.2: Timeline showing a historical overview of code query technologies, the relationships between
them and the formalisms they are based on. A dashed arrows indicates a relation between a technology and
its successor. A diamond indicates a general purpose programming or query language not specifically aimed
at code querying. The code query technologies in a dashed box are included in the evaluation.
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The C Information Abstraction (CIA) system [14] is another proposal that stores relations from the source
code in a database. A difference with OMEGA is that CIA only stores a limited amount of information from
the source code required to answer the most interesting queries. This way query evaluation times are signif-
icantly reduced. CIA is the first to suggest incremental update of the source code relations in the database.
After a change to the source code, only the module containing the changed parts is parsed again and the new
facts are added to the database. This is notably better than restructing the entire database after a small local
change.

The advantage of using SQL as a source code query language is that it removes the need for designing
and implementing a new query language. Also, it is a language that it is known to a large part of the target
users: programmers. Yet, an important disadvantage of SQL is that it does not allow recursive queries [51],
which are essential for dealing with recursive constructs in software systems. A query such as ”find all the
methods that are directly or indirectly called from the main method” can not be expressed without a way to
express recursion.

This problem is addressed in the Source Code Algebra (SCA) framework proposed by Paul and Prakash [64].
SCA is a formal framework that provides a formal data model and an algebraic query language for source code
querying. The SCA query language combines a high level of abstraction with an expressive power equivalent
to that of relational algebra plus transitive closure. In essence, the transitive closure operation encapsulates a
limited form of recursion, which makes it possible to concisely express recursive queries. In addition to SCA,
Paul and Prakash present ESCAPE, a prototype source code query system based on SCA.

PQL [43] is a more generic proposal for a SQL-like source code query language. Jarzabek focuses on
flexibility and therefore does not make any assumptions about the implementation of the language, what
relations to extract from the source code, and the representation of these facts.

GReQL [44, 20] and its successor GReQL 2 [11], also offer a SQL-like language. Both GReQLs use a
graph representation of the source code. This is reflected in the query language: in GReQL it is possible to
query both the nodes of the graph and the relations relating the nodes, and it offers regular path expressions
which make it possible to search for paths in the graph.

A commercial spin-off of the academic CodeQuest project is SemmleCode [23]. Instead of using the
logic query language Datalog (which we consider in Section 2.3.3), SemmleCode uses .QL, a query language
very similar to SQL with two important extensions: a transitive closure operation, and object orientation. .QL
is compiled to a Datalog variant, optimised, and further translated to SQL.

2.2.2 Tarski’s binary relational calculus

Tarski’s binary relational calculus allows concise, high level expression of binary relational queries. As op-
posed to RA, BRC allows one to think about relations, instead of the individual elements and tuples in a
relation. Originally, a transitive closure operations was not included in BRC. However, it is included in all
code query languages based on BRC to be able to express recursion. A disadvantage of BRC is that it is known
to be less expressive than RA [39]. The basic reason for this is that BRC does not support n-ary relations. A
practical example of this is that in BRC it is impossible to express pattern matching queries that search for
n-ary patterns with n > 2.

The first languages based on BRC were general purpose languages called relational programming lan-
guages. Relational programming is a style of programming in which entire (binary) relations are manipulated
instead of individual data. Relational programming is a generalisation of functional programming in the sense
that anything that can be done with functional programming can be done with relational programming (a func-
tion is a relation with certain properties). Bruce MacLennan was one of the pioneers in the field of relational
programming and published several papers [53, 54, 56, 55] on the subject. MacLennan designed a relational
programming language RPL. To our knowledge, the language has never moved beyond the prototype stage.

RelView [1] is the first code query language that is based on BRC, appearing in 1989. RelView was
mainly developed as a tool for prototyping graph algorithms. However, there are some reports of RelView
being applied to software analysis tasks [31].
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Relation Partition Algebra (RPA) by Feijs et al. [29], is basically BRC extended with a mathematical
notion of partitioning. This makes it possible to elegantly express lifting queries. The disadvantage is that it
does complicate the formalism with a partition concept. RPA is implemented as a set of UNIX command-line
tools. Each tool represents a single RPA operation. Queries can be composed by piping outputs from tool to
tool.

Around the same time, Grok [36] is born. Grok is a calculator for BRC expressions. It was mainly
intended to be used as tool for analysing and manipulating software architecture, but has been applied to
many other problems. JGrok is a Java implementation of Grok. To our knowledge, JGrok has never gotten
beyond the prototype stage.

Rscript [47] is a small scripting language based on BRC. Distinctive features of Rscript are its (limited)
support for n-ary relations, and the support for comprehensions. Van der Storm’s JRelCal2 is a prototype Java
library that implements BRC. It was meant to be an fast implementation of Rscript.

2.2.3 Logic programming languages

Another approach to a code query language is to offer a language inspired by, or written on top of the logic
programming language Prolog. Prolog is a declarative language with some imperative features that supports
general recursion. However, not all features of Prolog are useful in a code querying application: its learning
curve is quite steep, it is unfamiliar to a large group programmers, and large queries are often verbose.

Prolog has been used as fact database and query engine in the GraphLog tool [16]. GraphLog offers a
visual query language for querying source code. ASTLog [19] uses a Prolog-like language for examining
Abstract Syntax Trees. The JQuery query language [42] is a logic (Prolog-like) query language based on
TyRuBa. TyRuBa is a logic programming language implemented in Java. The JQuery query language is
defined as a set of TyRuBa predicates which operate on facts generated from the Eclipse JDT’s abstract syntax
tree.

Crocopat [9] is a relational calculator by Beyer et al. Crocopat’s language RML is based on predicate
logic and is therefore similar to Prolog. An important difference, however, is that RML does not follow the
paradigm of logic programming. Instead of being declarative and inference-based, RML is imperative and
executes the program statement by statement.

Hajiyev combines the advantages of using a Prolog-like language with those of using a RDBMS in his
project CodeQuest [33]. This is done by compiling Datalog into SQL. Datalog [13] is a database query
language that is like Prolog, but without control constructs and data structures. Recursive constructs in Datalog
are not directly transferable to SQL, since SQL lacks a transitive closure operation. Hajiyev solves this
by implementing transitive closure using extensions to standard SQL such as stored procedures and control
structures. These extensions are offered by most modern RDBMS vendors.

2.2.4 Other tools

A different category of program comprehension and reengineering tools focusses on the interactive navigation
through source code using a visual representation of the source code. Instead of querying source code using a
domain specific language, the user can browse source code elements by navigating a visual representation of
the source code. Three of such tools are Rigi [59], Sextant [26] and Moose [60].

Rigi is an interactive, visual tool designed to help better understand and navigate software. It was devel-
oped in 1988 at the University of Victoria. Rigi is capable of identifying subsystems based on certain criteria.
Each identified subsystem is visualised as a separate window, together with an overview window that shows
the subsystems in a hierarchy. Today, Rigi is probably most well-known for its RSF interchange format for
interchanging relations. RSF stands for Rigi Standard Format, which was introduced with the Rigi tool, and
is now used as an interchange format in many code querying tools.

Sextant is an interactive and visual software navigation and comprehension tool that stores source code
facts in an XML database. In Sextant, XQuery queries are executed to query the source code based on the

2http://sisyphus.meta-environment.org
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actions of the user in the user interface. Sextant is integrated with Eclipse which makes it possible to switch
directly to the source code.

Moose is a general framework for program analysis. Moose tools are built around FAMIX [69] a language
independent meta model for source code facts. Facts are saved to a custom file format that conforms to the
FAMIX meta model. Moose offers a language that makes it possible to define new views and visualisations
of the source code, and an imperative source code query language that is based on Smalltalk.

2.3 Formal foundations of source code query languages

As we have learned in the previous section, we can roughly divide the code query languages into three different
categories based on the formalism the languages are based on. First, Codd’s relational algebra, this category
contains all languages based on Codd’s work, which are basically all SQL-like languages. Second, language
that are based on Tarski’s binary relational calculus. And third, the query languages that are based on logic
programming languages such as Prolog or Datalog.

Table 2.1 summarizes the related work discussion of the previous section. In addition, it includes the
implementation of the langauges, which we will consider in Section 2.4.

Language Author Year Language roots Implementation
Omega Linton 1984 RA DBMS

RelView Berghammer et al. 1991 BRC BDD
Grok Holt 1996 BRC Turing
RPA Feijs et al. 1998 BRC C & shell scripts

JGrok Wu 2001 BRC Java
RScript Klint 2002 BRC ASF+SDF

Crocopat Beyer 2002 LPL BDDs in C
JQuery Volder et al. 2002 LPL Java

CodeQuest Hayijev et al. 2005 LPL DBMS
JRelCal Storm 2006 BRC Java

SemmleCode Moor et al. 2006 RA DBMS
GReQL 2 Bildhauer et al. 2007 RA Graphs

Table 2.1: Historical overview of code query technologies. Containing the year of their first publication, the
formalism the language is based on, and how it is implemented.

2.3.1 Codd’s relational calculus and algebra

Two formal query languages that heavily influenced commercial database languages such as SQL are the
relational algebra (RA) and the relational calculus. Both are due to Codd [15]. The relational calculus comes in
two variations: the tuple relational calculus (TRC), and the domain relational calculus (DRC). Both variations
are very similar. The main difference is that in TRC variables take on tuple values, and in DRC variables take
on field values.

In the Database Management Systems book of Ramakrishnan et al. [66] a clear distinction is made be-
tween RA and the two variants of relational calculus, TRC and DRC. The two relational calculi are declarative.
A relational calculus expression only specifies the properties of the results, not how it should be computed. RA
is procedural in that specifying a RA query also involves specifying in what order operations are performed.
This is also reflected in the fact that relational database systems often use relational algebra expression to
represent their query evaluation plans.

All RA queries can be expressed in relational calculus. If we restrict ourselves to safe queries in the
calculus, the converse also holds. Safe queries are queries that return a finite result. An example of an unsafe
query is {S | ¬(S ∈ R)}, it asks for all tuples S such that S is not in the given instance of R. The result set S
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of such tuples is obviously infinite in the context of infinite domains (such as all integers). A query language
that can express all queries that can be expressed in relational algebra is called relationally complete.

We will introduce the two formal query languages by means of a simple example query taken from the
Database Management Systems book:

Find the names of the sailors who have reserved boat 103.

It queries the following relations: a relation Sailors with tuples (sid, sname, rating, age) and a relation
Reserves with tuples (sid, bid, day), and a relation Boat with tuples (bid, bname, color)

Relational algebra is compositional, meaning that every operation in the algebra accepts one or two
relations and returns a relation as result. This makes it easy to compose a complex query. RA operations
include the standard operations from set theory (e.g., union, intersection) complemented with operations such
as:

• Projection (π) and Selection (σ): both operations work on data in a single relation. Projection can be
used to influence the rows of a relation, selection is used to select rows in a relation.

• Various kinds of joins(./): a join is used to combine information from two or more relations by taking
the cross product of the relations followed by a selection based on the join condition. The most common
join is the natural join in which the join condition consists solely of equalities on common fields of both
relations.

πsname((σbid=103Reserves) ./ Sailors)

Tuple relational calculus is essentially a restricted subset of first order logic. It is more declarative than
RA. The most common logical constructs that build a TRC formula are the standard logical connectives and
the logical quantifiers ∃ and ∀.

{P | ∃S ∈ Sailors ∃R ∈ Reserves(R.sid = S.sid∧R.bid = 103∧P.sname = S.sname)}

This query can be read as: ”Retrieve all sailor tuples for which there exists a tuple in Reserves, having the
same value in the sid field, and with bid = 103.” That is, for each sailor tuple, we look for a tuple in Reserves
that shows that this sailors has reserved boat 103. The answer tuple P contains just one field, sname.

Domain relational calculus is very similar to tuple relational calculus with the difference that free vari-
ables can range over field values:

{〈N〉 | ∃I,T,A(〈I,N,T,A〉 ∈ Sailors∧∃〈Ir,Br,D〉 ∈ Reserves(Ir = I∧Br = 103))}

In this DRC expression only the N is a free variable.

2.3.2 Tarski’s binary relational calculus

Although similar in name, Tarski’s binary relational calculus [68] (BRC) is not the same as Codd’s RA,
TRC, and DRC. It is unclear what the precise relation between Codd’s and Tarski’s work is. Feferman and
Bussche both investigated the history and influence of Tarski’s work [28, 24]. Nonetheless, neither of them
has succeeded in obtaining a clear view on the relation between Tarski’s and Codd’s work.

Just like RA, BRC is procedural and compositional. A BRC query specifies the order in which operations
are performed, and every BRC operation can be composed with other BRC operations. Curiously, if we
conform to the naming conventions used in the previous section, ”binary relational calculus” should actually
be called ”binary relational algebra”. Could it be that either Tarski or Codd used a incorrect name for their
calculus or algebra? After a short survey in the literature and on the internet, we found that (as expected) both
are right. There seems to be no consensus on the definition of algebra and calculus. In this thesis we will use
the definition of the previous section: an algebra is procedural, a calculus is more declarative.
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An important difference between RA and BRC is the arity of the relations: Codd’s algebra supports n-
ary relations, where Tarski’s calculus only supports binary relations. The consequence is that BRC is less
expressive than RA, which implies that BRC is not relational complete. An example of this is that in BRC it
is not possible to express queries that search for graph patterns involving more than two nodes. An example
of this can be found in Section 3.3.3 in which we show the implementation of the detection of the degenerate
inheritance pattern (involving three nodes) in different tools.

In BRC, relations are defined as follows: Let X , Y be finite sets. A binary relation between X and Y is a
finite set of pairs where the first element of the pair comes from the set X , and the second from Y . So, a binary
relation R between X and Y is a relation such that R⊆ X ×Y . We write xRy to denote that the pair (x,y) ∈ R.
In the special case that R ⊆ X ×X , i.e., a relation for which domain and range coincide, we call a relation
homogeneous. Homogeneous relations can be viewed as directed graphs. An arbitrary relation R ⊆ X ×Y ,
where X 6= Y , is called heterogeneous.

Tarski’s gives an axiomatic specification of a set of operations for manipulating relations. These opera-
tions are limited to the standard set-theoretic operations (e.g. union, intersection) complemented with rela-
tional (or sequential) composition and inversion. Various researches have used this set as basis for their work.
In many cases these researchers added extra operations. In RPL, the general purpose relational program-
ming language by MacLennan, operations such as restriction, exclusion, and transitive closure are introduced.
Some researchers (e.g., Holt, Klint) have used Tarski’s works as basis for their code query languages. Just
like MacLennan, they include transitive closure operations to be able to express recursive constructs. Below
we list some of the operations, including their definition:

Name Symbol Definition
union ∪ x(R∪S)y⇔ xRy∧ xSy
intersection ∩ x(R∩S)y⇔ xRy∨ xSy
difference \ x(R\S)y⇔ xRy∧¬(xSy)
complement c x(Rc)y⇔¬(xRy)
relational composition ◦ x(R◦S)y⇔∃z.xRz∧ zSy
inverse −1 x(R−1)y⇔ yRx
domain restriction � x(S� R)y⇔ x ∈ S∧ xRy
range restriction � x(R� S)y⇔ y ∈ S∧ xRy
domain dom x ∈ (dom R)⇔∃y.xRy
range rng y ∈ (rng R)⇔∃x.xRy
carrier carrier x ∈ (carrier R)⇔ x ∈ dom R∨ x ∈ rng R
cardinality # #R⇔ primitive to calculus
transitive closure + x(R+)y⇔ xRy∨∃z.xRz∧ zR∗y
reflexive transitive closure ∗ x(R∗)y⇔ x = y∧∃z.xRz∧ zR∗y

Table 2.2: Overview of common relational operations

The above list is by no means complete, there are many more operations that are useful when using
relational calculus in the context of software analysis. For example, the Rscript manual [47] lists over 30
operations and functions applicable to relations.

In [62] coreflexive relations (fragments of the identity relation, that is, R ⊆ id) are used to model predi-
cates or sets. The meaning of a predicate p is the coreflexive relation JpK such that bJpKa ≡ (b = a)∧ (p a).
This is the relation that maps every a which satisfies p onto itself. The meaning of a set S ⊆ A is the mean-
ing of its characteristic predicate Jλa.a ∈ SK, that is, bJSKa ≡ (b = a)∧ a ∈ S. We adopt the notation JpK for
predicates, but with the distinction that here predicates are modelled as sets as opposed to coreflexive relations.

2.3.3 Logic programming

A program written in a logic programming language consists of a set of axioms and a goal statement called
the query. In the logic programming model the programmer is responsible for specifying the basic logical
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relationships and does typically not specify the manner in which the inference rules are applied.
One of the most well-known is Prolog. Prolog implements a subset of second-order logic (that is, it can

deal with sets as well as atomic propositions), and the flexibility of the language permits propositions which
lie well outside the boundaries of any classification of formal logical systems.

The following example is a classical logical programming example, written in Prolog:

1 sibling(X, Y) :- parent_child(Z, X), parent_child(Z, Y).
2
3 parent_child(X, Y) :- father_child(X, Y).
4 parent_child(X, Y) :- mother_child(X, Y).
5
6 mother_child(trude , sally).
7
8 father_child(tom, sally).
9 father_child(tom, erica).

10 father_child(mike , tom).

Based on these axioms the following query is evaluated as true:

1 ?- sibling(sally , erica).
2 Yes

Datalog is a language for querying deductive databases that syntactically is a subset of Prolog. Deduc-
tive databases consist of an extensional and intensional part. The extensional part contains facts, and the
intensional part contains logical rules from which new facts can be deduced by logical inference.

Datalog is relationally complete, and in addition it allows recursive queries which make it a more expres-
sive language than RA. Query evaluation with Datalog can be done in polynomial time. In contrast to Prolog
it disallows complex terms as arguments of predicates, e.g. P(1, 2) is admissible but not P(f1(1), 2), and it
imposes certain restrictions on the use of negation and recursion.

2.4 Implementation of source code query languages

For the implementation of the code query languages there are two main approaches: main memory and disk
based implementations. By disk based implementations we mean all the implementations that use a DMBS to
store and query the relations. Main-memory implementations need to load the complete relation into memory
to perform operations. Table 2.1 on page 11 shows for each of the languages the implementation it uses.

2.4.1 Main-memory implementations

The main memory implementation techniques differ in the data structures and algorithms that are used. Two
examples of this are arrays and binary decision diagrams:

Grok uses arrays to stores the edges in a relation which is a relatively simple data structure. As Holt
explains: ”‘Grok uses three arrays, called rel (relation), src (source), and trg (target). Edge R(A, B) is stored
in some row i as rel(i) = r, src(i) = a, and trg(i) = b, where r, a, and b are 32-bit hashes of R, A, and B
respectively.”‘ Holt states that the simplicity of this data structure simplifies maintenance and enhancement of
Grok.

A more advanced data structure is a Binary Decision Diagram [12] (BDD). A BDD is a data structure
that allows for compact representation and efficient manipulation of large relations. A additional advantage is
that it can represent n-ary relations. It is used in RelView and Crocopat.

An advantage is that main-memory implementations are generally fast and relatively easy to implement.
A disadvantage of main-memory implementations is that it is necessary to load complete relations into main-
memory before operations can be performed on it. Because in source code querying this are often very large
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relations, one runs the risk of running out of main-memory or suffer from low performance because the OS
needs to resort to swapping.

2.4.2 Disk-based implementation

Several tools (e.g. CodeQuest, SemmleCode, OMEGA) are implemented using a DBMS. These tools either
directly use SQL for querying the information in the database, or use a language that is translated to SQL.
The advantage of this approach is that databases have been designed to work with large amounts of data
with limited memory resources available. This makes them ideal for storing and querying the typically large
amounts of data involved in source code querying. An additional advantage of using this approach is that one
directly profits from all the research effort that has gone into performance optimisation of relational databases.

A disadvantage is that SQL does not support recursive queries. Moreover, it has proven to be difficult to
efficiently implement recursive queries in a DBMS. Beyer compared the performance of the transitive closure
operation in Crocopat and several other code querying tools, including SQL[10]. The results show that the
transitive closure operation implemented in SQL performs poorly. However, note that this SQL query was not
optimised.

SemmleCode does perform a substantial amount of advanced (proprietary) optimisations when compiling
.QL to standard SQL. Currently, they are working on an implementation that is based on a hybrid approach
combining DBMS and main-memory implementations. Unfortunately, there is no data available on the per-
formance of SemmleCode. Due to licensing issues we are not allowed to publish any performance results
concerning SemmleCode.

2.5 SIG’s software analysis toolkit

To efficiently assess, monitor, and generate documentation for all kinds of software systems, SIG developed
an in-house software analysis framework called the software analysis toolkit (SAT).

These were the most important requirements for the SAT:

• support multiple programming languages

• deal with incomplete source code

• scale to large systems (> 500.000 LOC)

SIG’s software analysis toolkit conforms to extract-abstract-present paradigm discussed in Section 2.1.2:
For the extraction of relations from the source code SIG relies on several different parsers and lexers.

Since SIG analyses systems implemented in many different programming languages, no single parser and
lexer pair suffices to efficiently parse all the languages SIG encounters. Therefore, SIG currently uses SDF
(Syntax Definition Formalism [34]) in combination with JJForester [49], and ANTLR (ANother Tool for
Language Recognition [63]). The parsers are constructed so that they are able to cope with incomplete source
code. When SIG encounters a programming language it has not analysed before, the SAT can be extended
with parsers for the new language. These parser are implemented using SDF or ANTLR. During the parsing
of the source code, both SDF+JJForester as well as ANTLR build a Java object representation of the abstract
syntax tree (AST). In addition, visitor classes are generated that can be used for analysing the AST. For the
complete system, the obtained information is represented as a graph. In this graph source files are vertices,
and the AST of the files are attributes of the nodes.

When the parsing of the source is finished, we enter the abstract phase. A lot of analyses are performed
on AST level. Examples of analyses are the computation of structural and complexity metrics, or the counting
the number of lines of code in a unit. Results of the analyses are stored as attributes of the graph’s vertices.
Later iterations can use the information in the attributes to calculate new information, which in turn can be
stored in the graph.

The results can be presented in a web-based monitor. This monitor provides textual and visual reports of
the abstracted information as coloured text, tables, and charts.
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2.5.1 The SIG graph library

SIG’s graph library represents typed, directed graphs. That is, edges are directed, and can be of different types.
The graph abstract data type is realised with a concrete data structure similar to the adjacency list data struc-
ture. The representation stores vertices explicitly as objects in a container. A vertex object v holds references
to containers that store references to edges in-coming and out-going on v. An edge e holds references to the
vertex objects associated with e, and contains a string that represents the type of the edge.

SearchableHashSet nodes
Graph

List outEdges
List inEdges

Node String type
Node fromNode
Node toNode

Edge
**

*

1

IGraph

IEdge

INode

Figure 2.3: Simplified UML diagram of the SIG graph representation

The SIG graph library defines methods that implement graph operations like slicing and cycle detection.
In addition, it provides abstract visitor classes that can be extended to conveniently implement new analysis.
Figure 2.3 show a simplified UML diagram of the SIG graph representation.
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Chapter 3
Comparison of code query technologies

Code query technologies can differ in many essential ways: some only provide means for querying code, but
leave extraction and presentation to be provided by other tools, some support the whole paradigm. Some tools
provide a separate language for writing the queries while others provide only a library to be used from a host
programming language. The languages that are provided differ in their expressiveness, abstraction facilities,
declarativeness, and conciseness. In this chapter we compare five alternative solutions for querying source
code: CrocoPat [9], Rscript [46], JRelCal [70], SemmleCode [73], and GReQL 2 [45]. For that purpose, we
compared the tools with respect to ten criteria focussing on language and tool features.

This comparison informs potential users of a code query technology on the pros and cons of the available
alternatives. This assists the potential users in selecting the technology that most closely fits their require-
ments. Furthermore, we hope that our comparison will stimulate changes in the field. Ideally, the results of
this comparison will be used by the developers of the tools to decide on the directions in which to further
improve their tools.

Originally, we started this comparison with a specific goal in mind: find the best code query technology
for use at the SIG as part of their in-house extendible framework for software analysis. Nonetheless, we have
set up this comparison as a generic and objective study. This makes it valuable for people outside the SIG.
To cater for our original goal we have included a separate conclusion in addition to the general conclusion.
This conclusion describes which tool most closely meets the specific requirements of the SIG. To compare the
SIG graph library with the other tools, we have included SIG graph library implementations of the benchmark
queries.

This comparison of query technologies has been presented and published in a position paper [3] at the
workshop ”Query Technologies and Applications for Program Comprehension” (QTAPC) at the International
Conference on Program Comprehension (ICPC 2008). In addition, there is currently work in progress on an
extended version of the QTAPC paper. Note that work that has originally been done for this thesis has been
incorporated in both papers, and vice versa: insights gained during writing the papers are incorporated in this
thesis.

3.1 Code query technologies

In this section we give a detailed introduction of the tools that we have included in the comparison: CrocoPat,
Rscript, JRelCal, SemmleCode, and GReQL 2. We have included specifically these tools because they either
represent one of the latest developments in their approach, or they have a relevant feature that is not present
in other tools. There are several reasons for excluding a tool from this comparison: the tool is not maintained
anymore, there is a newer tool that uses the same approach, it is very similar to a tool that is already included in
the comparison, no working version of the installation is available, or there are problems with the installation.

3.1.1 Crocopat

The implementation of Crocopat started in May 2002 by Dirk Beyer after submitting his PhD thesis. Done as
his first postdoc project while at the University of Cottbus, Germany, Crocopat was meant to replace the SQL
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front-end of the Crocodile reengineering tool developed in the same university. The first ideas of CrocoPat are
described in a technical report from 2003 [7] and the first publication dates from that same year [9].

Crocopat is an interpreter for programs written in the RML language. RML is an imperative relational
programming language, the relational expressions in RML are based on predicate logic. Besides relational
expressions in the form of predicate logic, the language includes control structures, numerical expressions,
and some basic input and output facilities.

The main focus of the Crocopat project was on generality and efficiency. In Crocopat, efficiency (in terms
of memory usage and runtime) is realized by internally representing relations as Binary Decision Diagrams
[12], a data structure that allows for efficient representation and manipulation of large relations. Generality
can be found in the fact that in RML it is possible to work with n-ary relations. According to the authors, the
advantage of n-ary relations is that it allows the user to easily express queries that search for graph patterns of
arbitrary size, e.g., cycles greater than length 4.

3.1.2 Rscript

Rscript is a small scripting language based on the relational calculus. It was developed in 2002 by Paul Klint
at the Centrum voor Wiskunde & Informatica (National Research Institute for Mathematics and Computer
Science), in Amsterdam, The Netherlands. It is developed as part of a framework for language development,
source code analysis and source code transformation, but is currently also available as standalone tool. The
first publication mentioning RScript dates from 2003 [46].

The most distinctive features of Rscript are the support for functions and the support for type variables
in function declarations (parameteric polymorphism). Rscript also supports comprehensions which allow
constructing sets and relations using generators (or enumerators) and boolean-valued expressions. Rscript
uses sets and relations, and allows nested sets and relations. It is based on binary relations only, but has some
syntactic support for n−ary relations. However, it does not support n−ary relations with labeled columns as
in SQL.

Rscript is currently in development; the authors are working on the documentation and improvement of
the performance of the tool.

3.1.3 JRelCal

The JRelCal project was started with the goal to make an efficient Java implementation of RScript datatypes
and its operations. JRelCal was born in 2007 in the context of the PhD thesis of Tijs van der Storm, under
supervision of Paul Klint. As opposed to JGrok which is a re-implementation of Grok in Java, JRelCal is not
meant to be a re-implementation of the Rscript language but an API with the same functionality.

3.1.4 GReQL 2

In the context of Daniel Bildhauer’s PhD, GReQL 2 started off in 2007 as the successor of the GReQL
(Graph Repository Query Language) project. Both GReQL and GReQL 2 were developed at the University
of Koblenz and Landau, Germany, in the research group of Jürgen Ebert. The initial ideas on GReQL were
conceived during the summer of 1994 and the implementation started in 1995. It is based on the graph
constraint language GRAL, developed in the same research group.

The most distinctive feature of GReQL 2 is regular path expressions. A path expression describes a path
in the graph. Path expressions can be used to test if pairs of nodes are connected via the specified path. A path
expression also denotes the set of nodes which can be reached from a starting node via the path.

The first references to GReQL can be found in a pair of technical reports dating from 1996 and 1997
respectively [44, 20] . The first publication on GReQL dates from 1998 [45]. GReQL 2 was first referred to
in 2008 in [11].
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3.1.5 SemmleCode

In contrast to the other compared code query technologies, SemmleCode is not an academic project, but being
developed and commercialized by a company, Semmle Ltd. The development on SemmleCode started in
December 2006, the same date when the company was founded by Oege de Moor. The ideas were presented
for the first time in January 2007 [22]; the first publications referencing SemmleCode are from the same
year [73, 23].

SemmleCode is mainly based on the ideas published in the dissertation of Elnar Hajiyev: CodeQuest -
Source code querying with DataLog[33]. Another difference with the other tools, is that it uses a relational
database to store and query relations. It is provided as an Eclipse plugin that allows you to query the source
code in a Java project using the query language .QL. It is similar to SQL, with the distinction that it adds a
transitive closure operation and object orientation. Queries written in .QL are optimised, compiled into SQL
and can then be executed on any major relational database management system.

3.1.6 Other technologies

In this section we explore some of the code query technologies we have considered for inclusion in our
comparison, but for various reasons decided to exclude from the full comparison. We discuss these tools and
the reasons for their exclusion.

RelView

A first implementation of RelView was made in 1989 by Gunther Schmidt, Hans Ziesrer and Rudolf Bergham-
mer after moving to the University of German Federal Armed Forces, in Munich, Germany. RelView was
based on previous work on relational algebra done by the authors at the University of Munich. The first
reference to RelView appears in a 1989 technical report [1] and the first publication on RelView dates from
1991 [5]. Although RelView was intended to be a tool for the interactive creation and visualization of relations
and the prototyping of graph algorithm, it has been used for a broad range of applications, including software
analysis [31].

RelView is based on the KURE C library1, a library written in C for the manipulation of graphs. KURE-
Java is a port of KURE to the Java platform. It is a wrapper around the KURE library; it utilizes JNI (Java
Native Interface) to call methods from the C library. Currently KURE-Java is only available for Windows.
RelClipse2 is a port of the original RelView program to an Eclipse version. RelClipse uses the KURE-Java
library. Just like Crocopat, RelView uses BDD representations of graphs for efficiency.

We have decided to exclude RelView from the tool comparison for several reasons: it is not actively
maintained, the tool is only available for Linux, and the supported interchange format is poorly documented.

Grok & JGrok

Grok is an interpreter for binary relational operators. It was developed as a research prototype in 1995 by
Holt at the Computer Systems Research Institute, University of Toronto, Canada. Grok was implemented in
the Turing Programming Language [40] also developed by Holt. The first use of Grok was to manipulate
graph models to aid reverse engineering the software architecture implicit in the source code. Grok was first
referenced in a 1996 technical report [37] and the first publication dates from 1998 [38].

Grok does not provide control constructs; it provides the basic operators of binary relational calculus such
as relational composition and transitive closure. It supports reading from and writing to RSF (Rigi Standard
Format3) and TA files. TA is the Tuple-Attribute language, a custom language by Holt. In TA, tuples can be
attributed with graph drawing information. It can also serve as a plain data interchange format.

1http://www.informatik.uni-kiel.de/˜progsys/relview/kure
2http://ls10-www.cs.uni-dortmund.de/index.php?id=137
3http://www.rigi.cs.uvic.ca/downloads/rigi/doc/node52.html
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Based on Grok, JGrok4 started in 2000 in the context of Jingwei Wu’s PhD project, under supervision of
Ric Holt. JGrok supports a richer set of operations while Grok has better performance.

Both Grok and JGrok are research prototypes and are not actively maintained anymore. Therefore, we
have decided to exclude them from the tool comparison.

3.2 Usage scenarios and criteria

We consider a total of ten criteria on which to compare the chosen tools. These criteria are largely derived
from two typical usage scenarios: one in which the tool is used directly for interactive investigation, and one
in which the tool is to be used from other software.

The criteria can be divided into two categories: the language criteria that are related to the query language,
and the tool criteria that are related to the tool as a whole. The language related criteria are paradigm &
characteristics, type system, abstraction facilities, and extendability. We shall compare the languages of the
tools for these criteria based on a total of four benchmark queries. These benchmark queries are examples
of queries that were specially chosen as diverse as possible, but still within the area of source code analysis.
The tool criteria we address are user interface, API support, output formats, interchange formats, extraction
support, and licensing.

3.2.1 Usage scenarios

We identify two usage scenarios: interactive use and tool integration.
In the former, the user interacts directly with the code query technology according to the extract-abstract-

present paradigm. An example of this scenario is the situation where a user tries to comprehend a software
system. In such a situation it is hard to predict beforehand the queries that are going to be needed to gain
sufficient information from the system. That is why interaction is so important.

In the tool integration usage scenario, code query technologies are used in combination with other compo-
nents and tools to develop new tools, e.g., those that deliver high value-added software services. An example
of such a tool is a daily build system for source code monitoring which sends email messages whenever
specific metrics exceed predefined thresholds. This scenario is best supported by providing an API for the
programmers to execute queries and support for the construction of extractors.

Table 3.1 summarizes the criteria and their importance for the usage scenarios.

Table 3.1: The criteria and their importance in the usage scenarios. We use a + when the criterion is important
for the scenario, a o when it is relevant but not important, and a − when it is not important.
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20



Comparison of code query technologies 3.2 Usage scenarios and criteria

3.2.2 Language criteria

In this section we will discuss the criteria on which the language comparison is based: paradigm & character-
istics, type system, abstraction facilities, and extendability. We will also mention the importance of the criteria
with respect to the two usage scenarios we have defined previously.

Paradigm & characteristics

This criterion covers the programming paradigm and other distinctive properties that characterize the query
language.

A programming paradigm affects the way we design, organize, write, and think about programs5. Paradigms
differ in the concepts and abstractions used to represent the elements of a program (such as objects, functions,
variables, etc.) and the steps that compose a computation (assignation, comparison, etc.). Note that many
programming language support multiple paradigms, e.g., Java supports the imperative, object-oriented, and
generic paradigm.

The characteristics we are interested in are the formalism(s) the language is based on, the conciseness
of the expressed queries, and characteristic language constructs that are offered. In addition we would like
to know whether a query language is easy to learn. We will refrain from making hard statements about
this because such statements would require empirical evidence. Other language characteristics such as type
system, abstraction, and extendability are so important that we have decided to make them into separate
criteria. These criteria will be discussed in the following sections.

Which paradigm and characteristics are the best largely depends on personal taste and the context it is
used in.

In both the interactive and tool integration scenario queries are written in the query language of the code
query technology. Since the functionalities of a code query technology are exposed through its language, the
”paradigm & characteristics” criterion is important in both scenarios.

Type system

There are three important advantages of a type system:

1. A type system can help verifying the partial correctness of a program by supplying information against
which it is possible to check the correctness of expressions.

2. It can enhance the readability of a program. Typed language constructs such as parameters, functions,
and variables can be seen as a form of documentation. This facilitates comprehending a program.

3. The efficiency of generated code can be improved by taking advantage of the data properties that be-
comes available through the type system.

For the query programmer only the first two advantages are relevant. The third advantage is a direct
advantage to the compiler builder who wants to implement automatic performance optimisations. In the end,
these optimisations are an advantage to the query programmer.

We would like to know whether the typing of the query language is strong or weak. Furthermore, we
would like to know whether the type system supports primitive types, e.g., string, integer, and boolean, and
other (non-primitive) types such as location types that facilitate navigating back to the original location in the
source code.

In the user scenario the existence of a type system is very important since it will make some of the
discussed advantages available to the query programmer. In the tool integration usage scenario, on the other
hand, this is relevant but not very important. The reason for this is that it is possible to emulate a type system
using the functionalities of the host programming language.

5http://en.wikibooks.org/wiki/C_Programming/Programming_Paradigms
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Abstraction

The main advantage of abstraction is that it facilitates reuse of queries. We identify two types of abstraction:
abstraction by parametrization and abstraction by polymorphism.

Abstraction by parametrization enable us to write queries whose behavior depend on the arguments. An
example of this is a slicing algorithm that can be parametrised with the starting criteria.

Abstraction by polymorphism (or parametric polymorphism) goes even further in terms of possibilities
for reuse. Parametric polymorphism is obtained when a function works uniformly on a range of types. This
allows the user to write queries that can be reused for parameters of different types. E.g., a generic lifting
function that can be used to lift call graphs from method to class level and from class to package level, or a
generic slice function that can slice graphs of any type.

Just like the type system criterion, this criterion is more relevant for the interactive usage scenario than for
the tool integration. For interactive usage, the absence of abstraction facilities will make it impossible to define
functionality in such a way that it can be reused, and vice versa, make it impossible to reuse functionality that
has been defined earlier. For the tool integration scenario, this can, in principle, be compensated for by the
host programming language.

Extendability

In [27] extendability is defined as: The ease with which a system or component can be modified to increase its
storage or functional capacity.

For code query technologies we distinguish two forms of extendability: model extendability and language
extendability.

Users may want to add new operations or constructs to the query language. For this purpose it is desirable
that it is possible (and relatively easy) to extend the language of the code query technology with new func-
tionality. Not only it is important that extending the language is technically possible, it should also be legally
possible, i.e., the license of the software should allow such modifications.

In model extendability, the user can build his own model or extend an existent model such that he can
create abstractions close to his problem domain. Model extendability is only relevant for technologies that
offer a model for the facts extracted from the source code.

The possibility to define functionalities in such a way that they can be reused later can also be considered
to be an extension to the language. However we have already covered this under the header of abstraction.
For the criterion extendability we are only interested in extensions to the language or model.

This criterion is only important to the user usage scenario. In the tool integration scenario, however,
adding new functions can be easily done in the host programming language. However, if it is necessary to
import many functions it could be handy to have available how to import a custom defined module automati-
cally.

Note that there are several reasons that could make it impossible to extend the language or tool: Extending
a language can be a non-trivial task that requires compiler technology knowledge, such knowledge may not
be available in a commercial enterprise. Moreover, not all authors may allow the extension of their tool. And
finally, the source code may not be available, so that extending the language is impossible.

3.2.3 Tool criteria

In this section we define the criteria we have used in our comparison of the tools. Clearly, there are many
criteria we have not included, often because we could not come up with an objective measure for evaluating
them. Still, certain tools have particular properties that we would like to point out. Even though we do not
address such properties for all of the tools, we think mentioning them is in order. We have put these under the
general heading of Other issues, in the tool comparison section.
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Output formats

In the tool integration scenario, the host language can compensate for shortcomings in the way that results are
presented to the user. Not so in the interactive scenario. Therefore, this criterion considers the output formats
provided by the tools, e.g., charts, graphs, plain text (with or without Comma Separated Values), and XML. A
special category for the technologies we consider is whether the tools provide explicit links to locations in the
source code as part of the result of the query. Among the output formats we may also consider the file types
that the tools use for storing their facts and relations, but we have decided to put these under the heading of
Interchange formats below.

User interface

This particular criterion considers the availability and maturity of an interactive interface to the tool and is
therefore very important for the interactive use scenario.

User interfaces come in a number of forms: a tool may be accessed through a command-line interface,
it may provide a complete (graphical) IDE, or both. A graphical IDE makes it possible to offer user friendly
features such as automatic syntax completion, and graphical presentation of results. Note that a graphical IDE
does not have to be a standalone implementation: an alternative would be to provide a plugin for an existing
IDE such as Eclipse.

API support

This criterion considers the effort a programmer needs to make to call the code query technology from other
software, and thus contrasts with the User interface criterion discussed earlier. This criterion is particularly
important for the tool integration usage scenario. We distinguish three different levels of API support:

At worst, there is only an interactive interface (GUI), and communication with other tools then typically
has to be performed manually. If interchange support is also low, this will make the process of combining the
technology with other tools even more problematic.

If a command-line runtime and compiler are provided, then queries can be executed via the command-line
and results can, either directly through pipes or indirectly via files, be communicated to the invoking tool. A
disadvantage of this approach is that queries must be passed as flat strings and results passed back need to
be parsed by the invoking tool. Also, invoking queries by starting a new process can induce quite a bit of
overhead on some operating systems.

The most advanced form of integration is possible when the code query technology is provided in the
form of an API. In this case, there is no overhead for invoking queries. We do have to make a distinction here
between an API that supports only a call-level interface, i.e., queries are passed to the API in unstructured
form, or the case that the API is designed as an EDSL. In the latter case, the programmer can benefit from
the typing facilities and other consistency checks provided by the host language. This enables compile-time
checks on the code queries. However, this is only the case when the API is written in the host language it is
used in.(Actually, this is already imposed by the definition of an EDSL.)

Interchange formats

Like any other field, code querying technologies can benefit from being able to interchange information. We
distinguish two situations:

It may well be that a user wants to analyse the language X with his favourite tool Y . However, Y does not
provide an extractor for X and building extractors is typically a lot of work. Now if it happens that a tool Z
supplies such an extractor, and Y and Z share the same format for storing extracted facts, then the user does
not have to program extractors for X in Y .

This is actually a specific case of a more general phenomenon, in which the user may want to alternate
computations within Y and Z, for example, because Y is optimized for certain computations, Z is optimized
for others, and the user needs to perform both kinds.
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In the field of code querying technologies we have found two standard formats: the Rigi Standard Format
(RSF) and the Graph Exchange Language (GXL) [41]. We note that converters between the two exist. A few
tools provide their own, non-standard, format.

Extraction support

This criterion considers whether the tools comes with its own fact extractors, and if so, for which programming
languages. Extraction support is related to interchange support, in the sense that a tool that does not come
with any extractors often supports an interchange format, and vice versa. With respect to extraction support
in combination with the interchange format criterion we distinguish four situations:

The tool does not come with any extractor. These tools all support an interchange format that makes it
possible to import facts from every extractor that can export files to this format. The majority of the tools
follow this approach. Although this is a flexible approach, we found that in practice there are very few good
extractors publicly available.

The tool comes with its own extractors, but it does not allow third parties to provide their own fact
extractors. The advantage is that this relieves the user from the task of finding a good fact extractor. The
obvious disadvantage is that it limits the user to querying the languages for which fact extractors are available
for the tool.

Another situation is that the tools comes with both extractors and support for an interchange format, in
this comparison we have not encountered this. An impractical situation would be that the tool comes without
extractors and without support for an interchange format.

Licensing

This criterion considers the license the technology is licensed under. Licensing can be an issue when adopting
the technology in industry. Particularly if the user of the technology wants to be able to adapt the technology
to his own needs, or wants to include the technology into proprietary software.

A technology is proprietary if the company has reserved some measure of control over the software.
Otherwise, the technology is free; in the case of software, open source is often used as a synonym. One of
the major implications of propiertary software is that the source code is not made available to its users. In this
case, changing the software is typically not allowed, or even impossible.

Within the open-source community, various licenses exist. A BSD license is a very permissive license
that allows the inclusion of the licensed material into proprietary software. The GNU LGPL (GNU Lesser
General Public License) also allows inclusion into proprietary software, but with rather subtle restrictions.
It is typically used for libraries. The difference with the less permissive GNU GPL (GNU General Public
License), is that software under GNU GPL may not be combined with proprietary software at all.

3.3 Language comparison

While tool feature comparison is in essence checking for the presence or absence of features, language com-
parison is a more subjective and subtle task. In order to prevent this comparison from becoming a subjective
overview we have selected a set of code queries that cover a large spectrum of software analysis queries: lifting
of a call graph [29], detection of the degenerate inheritance pattern [6], computation of the package instability
metric [57], and forward graph slicing [74]. These benchmark queries allow us to objectively compare the
expressiveness, abstraction, style/paradigm, and extendability of the languages.

In the following sections we will for each benchmark query introduce the query supported by a diagram,
and then we will show and discuss the implementation of the query in each of the five tools. In addition, we
also include code fragments that show how the query could be implemented using the SIG graph library.
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3.3.1 Lifting

When analysing large software systems, views on different levels of abstraction are needed. The canonical
example is that of a call graph on method level that is lifted to a higher level. The following diagram depicts
the particular case where the method calls are lifted to the class level.

m1

c1

m2

c2

MC

CO CO

CC

Figure 3.1: Call graph lifting

We take CC, CO, MC to denote the ”class call”, ”class of ”, ”method call” relations respectively. This can
be expressed in pointfree binary relational calculus as follows:

CC = CO◦MC ◦CO−1

In the following sections we show how to express this query in the tools.

Crocopat

1 CC(c1, c2) :=
2 EX(m1, EX(m2, CO(c1, m1) & CO(c2, m2) & MC(m1, m2));

Code Fragment 3.1: Lifting in Crocopat

Crocopat offers first order logic to express queries: EX denotes the existential quantifier and & denotes con-
junction. The variables c1 and c2 are bound on the left hand side of the assignment, m1 and m2 are bound by
their respective existential quantifier.

Rscript

In Rscript we can express a query in either pointfree binary relational calculus (Code Fragment 3.2) or using
comprehensions (Code Fragment 3.3).

1 rel[class , class] lift(rel[method , method] MC, rel[class , method] CO) =
2 CO o MC o inv(CO)

Code Fragment 3.2: Rscript - relational calculus

In Code Fragment 3.2 the binary relational expression for lifting is defined in a function lift that takes two
parameters: the original relation, and the relation that relates the original relation to the type it has to be lifted
to. Both class and method are type synonyms (or alias types) for the string type. In Rscript, a type synonym
can be declared as follows: type class = str. In the method body the relational expression that expresses
the lifting can be found. As can be seen this is a literal translation of the expressions we have shown in
the explanation of the lifting query in the beginning of this section. Here, the o operation denotes relational
composition, and the inv() method inverses a relation.
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1 rel[&T, &T] lift(rel[&S, &S] MC, rel[&T, &S] CO) =
2 {<C1, C2> | <&S M1, &S M2> : MC, <&T C1, &T C2> : CO[M1] x CO[M2]}

Code Fragment 3.3: Rscript - comprehension

Code Fragment 3.3 shows a polymorphic definition of lifting. In the function definition the parameters for
the function are defined using type variables that are denoted as & followed by an identifier. In this way the
functions is defined for arbitrary types. The function body is expressed using the comprehension construct:
CO[M1] is the right image of the CO relation with respect to M1, x denotes cartesian product.

JRelCal

The JRelCal version of lifting defined in the body of the method lift is a direct translation of the binary
relational calculus expression in Rscript, Code Fragment 3.2. The method is defined generically, making it
applicable to relations of arbitrary Java types.

1 public static <T, S> Relation <T,T> lift(Relation <S, S> MC, Relation <T, S> CO) {
2 return CO.compose(MC).compose(CO.inverse());
3 }

Code Fragment 3.4: Lifting in JRelCal

SemmleCode

As can be seen from the code fragment below, .QL is very similar to SQL. The object orientation can be
observed in the query below: Class is the type (or class) of the c1 and c2 objects. getACallable() is a
method invocation, returning an object of the type Callable.

1 from Class c1, Class c2
2 where c1.getACallable().calls(c2.getACallable())
3 select c1, c2

Code Fragment 3.5: Lifting in SemmleCode

GReQL 2

Just like .QL, GReQL 2 uses syntax similar to SQL. The syntax used in the with clause (corresponding to
where in SQL) uses an arrow like syntax. Note that the structure of the arrow expression in the with clause
of this query resembles the diagram in Figure 3.1.

1 from c1, c2 : V{Class}
2 with c1 -->{CO} -->{MC} <--{CO} c2
3 report c1, c2
4 end

Code Fragment 3.6: Lifting in GReQL 2

The above query focusses on the elements (or vertices) of a relation, which can be seen from the V{Class}
(where V denotes vertex) type declaration of the c1 and c2 variables. Since GReQL 2 is a graph query language
it also allows the querying of edges in the graph. This can be done by declaring variables with the E{...}
type.
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SIG Graph library

As explained in the problem definition (Section 1.2), queries in the SIG graph library have to be programmed
as traversals over a graph. This results in verbose queries, which can be observed in a fragment of the code
that is part of the GraphCollapser class that lifts a graph. Notice that the collapse method takes a predicate
as argument which is used to make a selection of the edges. This is necessary because different relations are
now represented in a single graph, where each edge type represents a relation type.

1 private static void collapseNode(INode node , Predicate hierarchyEdges , IGraph graph ,
2 boolean retainLoops) {
3 Collection <? extends IEdge > iEdges = node.getOutEdges(hierarchyEdges);
4 while (!iEdges.isEmpty()) {
5 for (IEdge iEdge : iEdges) {
6 collapseEdge(graph , iEdge , hierarchyEdges , retainLoops);
7 iEdge.getToNode().delete();
8 }
9 iEdges = node.getOutEdges(hierarchyEdges);

10 }
11 }
12
13 private static void collapseEdge(IGraph result , IEdge iEdge , Predicate edgeTypeToSkip ,
14 boolean retainLoops) {
15 INode toNode = iEdge.getToNode();
16 INode fromNode = iEdge.getFromNode();
17 reconnectInEdges(fromNode , toNode.getInEdges(), result , edgeTypeToSkip ,

retainLoops);
18 reconnectOutEdges(fromNode , toNode.getOutEdges(), result , retainLoops);
19 }

Code Fragment 3.7: Part of the GraphCollapser class that implements lifting in the SIG Graph library

3.3.2 Software Design Metric

An essential part of a software risk assesment is the calculation of design metrics which can help to evaluate
the quality and maintainability of the software.

A typical example of an object oriented design metric is the package instability metric6. This metric is a
measure of how hard it is to change a package without impacting other packages within an application. The
higher the value of this metric, the harder it is to make changes.

The metric is defined as ce/(ca + ce) where ca stands for afferent coupling (or incoming dependencies),
which is the number of classes outside the package that use classes inside the package, and ce stands for
efferent coupling (or outgoing dependencies), which is the number of classes inside the package that use
classes outside the package.

In Figure 3.2 the efferent coupling (EC) relation is visualised. Afferent coupling can be visualised anal-
ogously to efferent coupling: the EC and U (the use relation) arrows in the figure will both change direction.

This can be expressed using pointfree binary relational calculus as follows:

EC = Jpackage = pK� (PO◦U ◦PO−1)� Jpackage 6= pK

We make use of predicates (denoted with J. . .K) to restrict the domain (�) of the package of (PO) relation.
Note that the above expression results in a relation between packages which for every use of a class in package
p2 by a class in package p1 (where p2 6= p1) contains only one tuple (p1, p2). However, in this case we want
to obtain the number of classes that use a class outside the package, which. To resolve this, we either have

6http://semmle.com/content/view/200/180/
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Figure 3.2: Efferent coupling

to use a multi-relation that allows multiple identical tuples, or we have to rewrite the expression to return a
relation between classes as result:

EC = PO[Jpackage = pK,−]�U � PO[Jpackage 6= pK,−]

The above expression will result in a relation between classes which removes the need for bags as relations.
Basically the use (U) relation is restricted in its domain by the set of classes that are in package p (obtained
by taking the right image (R[x,−], where x can be a set or a predicate) of the PO relation), and is restricted in
its range (�) by the set of classes that are not in package p.

For the instability metric we are only interested in the cardinalities of the efferent and afferent coupling re-
lations, these can be obtained by applying the cardinality operation #. This allows us to define the computation
of the actual instability metric:

packageinstability =
#EC

(#AC +#EC)

Crocopat

Code Fragment 3.8 is taken from [8].

1 U(x,y) := Call(x,y) | Contain(x,y) | Inherit(x,y);
2 FOR p IN Package(x)
3 {
4 CAClass(x) := !PO(p,x) & EX(y, Use(x,y) & PO(p,y));
5 CA := #(CAClass(x));
6 CeClass(x) := PO(p,x) & EX(y, U(x,y) & !PO(p,y));
7 CE := #(CEClass(x));
8 PRINT p, " ", CE / (CA + CE), ENDL;
9 }

Code Fragment 3.8: Instability metric in Crocopat

A FOR-loop is used to loop over all packages. Existentials and the cardinality operation are used for the
computation of the instability of each package.

Rscript

This time we use another feature of the comprehensions: predicates. P != Pack is a boolean expression that
should hold for all elements of the comprehension result. The results of the comprehensions are sets and the
# operation is used to obtain their cardinality.
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1 int stability(package Pack , rel[package , package] U, rel[package , class] PO) =
2 #CE / (#CE + #CA)
3 where
4 set CE[class] = {C1 | <C1, C2> : U, <Pack , C1> : PO, <P, C2> : PO, P != Pack}
5
6 set CA[class] = {C1 | <C1, C2> : U, <P, C1> : PO, <Pack , C2> : PO, P != Pack}
7 endwhere

Code Fragment 3.9: Instability metric in Rscript using comprehensions

Just like in the previous queries, Rscript also allows this query to be rewritten to a style that comes close to
binary relational calculus. Although Rscript does not support predicates, we can still simulate this particular
problem by restriction and exclusion using sets. In particular because this query uses equality predicates
that apply to one element (the package for which the metric is being computed): domain restriction by the
Jpackage = pK predicate can be expressed as domain restriction (domainR) using a singleton set {Pack}.
Domain restriction by the Jpackage 6= pK predicate can be expressed as domain exclusion with the same
singleton set.

1 int stability(package Pack , rel[package , package] U, rel[package , class] PO) =
2 #CE / (#CE + #CA)
3 where
4 CE = domainR(PO, {Pack}) o U o inv(rangeX(PO, {Pack})
5 CA = domainX(PO, {Pack}) o U o inv(rangeR(PO, {Pack})

Code Fragment 3.10: Instability metric in Rscript using binary relational calculus

Both Rscript queries differ from the implementations in SemmleCode and Crocopat in that the latter
compute the instability metric for every package. The Rscript example is only applicable for a single package.

JRelCal

Using JRelCal we can almost directly translate the relational calculus expression to Java and expose it as a
packageStability method. To compute the instability metric for all packages this method simply has to be
called for all packages.

1 public static <S,T> double packageStability(Relation <S, T> PO, Relation <T, T> U, S
packageName) {

2 Predicate <S> equalP = new EqualPredicate <S>(packageName);
3 Predicate <S> notEqualP = new NotPredicate <S>(new EqualPredicate <S>(packageName

));
4
5 Relation <S, S> EC = PO.domainRestriction(equalP).compose(U).compose(
6 PO.inverse().rangeRestriction(notEqualP));
7
8 Relation <S, S> AC = PO.domainRestriction(notEqualP).compose(U).compose(
9 PO.inverse().rangeRestriction(equalP));

10
11 return EC.cardinality() / (AC.cardinality() + EC.cardinality());
12 }

Code Fragment 3.11: Instability metric in JRelCal

This example also shows the use of predicates to restrict the domain and the range of a relation. One might
argue that the approach as taken in the Rscript relational calculus query (Code Fragment 3.10) is in this case
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more appropriate. However, in this case using predicates is useful for demonstrating the feature, and comes
more closer to the original relational calculus formulation at the beginning of this section.

SemmleCode

In SemmleCode, the package instability metric is included in a library with predefined functions that is shipped
with the product. The code shown below is taken from this library where it is defined as part of the Metric-
Package class. The SemmleCode implementation is more general than the standard definition of the metric:
ca is defined for any reference type (which includes classes, methods, constructors and interfaces) that de-
pends on any reference type inside the package (as opposed to any class). This dependency is defined in the
depends() method, and corresponds to the use relation in the other examples.

1 class MetricPackage extends Package , MetricElement , Commentable {
2 ... // This class contains more methods , but these are left out in this fragment.
3
4 int getAfferentCoupling() {
5 result = count(RefType t | t.getPackage() != this and
6 exists(RefType s | s.getPackage()=this and depends(t,s)))
7 }
8
9 int getEfferentCoupling() {...} // This method is defined analogously to

getAfferentCoupling()
10
11 float getInstability() {
12 exists(int ecoupling , int sumcoupling |
13 ecoupling = this.getEfferentCoupling() and
14 sumcoupling = ecoupling + this.getAfferentCoupling() and
15 sumcoupling > 0 and
16 result = ecoupling / sumcoupling)
17 }
18 }

Code Fragment 3.12: Instability metric in .QL

In the example we see that SemmleCode supports aggregation functions like count (sum, avg, etc.). Further-
more, it shows that .QL has an operation exists for existential quantification.

The above code fragment showed how to compute the metric for a single package. To compute the
instability metric for all the packages in the source, the following query can be used:

1 from MetricPackage p
2 where p.fromSource()
3 select p, p.getInstability()

Code Fragment 3.13: Instability for all packages in the project’s source in .QL

GReQL 2

GReQL 2 also supports aggregation constructs which can be mixed with the arrow syntax that was also shown
in the previous section.

1 from p1:V{package}
2 report p1, EC / (AC+EC) where
3 AC := count({thisVertex <> p1}& -->{Use} <--{PackageOf} p1)
4 EC := count({thisVertex <> p1}& <--{Use} <--{PackageOf} p1}
5 end
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Code Fragment 3.14: Instability metric in GReQL 2

SIG Graph library

In the SIG graph library the instability metric has to be implemented as a subclass of the AbstractObservationVisitor

. This visitor visits all vertices in the graph that are connected via edges specified by EdgePredicate. For
this case, the predicate specifies the dependency edges like call edges, contain/defines, and inherit edges. For
each vertex the fan-in and fan-out can be computed by counting the number of incoming and outgoing edges.
The results of the metric computations are stored at the vertices themselves. Code Fragment 3.15 shows a
fragment of the class that partly implements the metric.

1 public class EfferentAfferentCouplingCalculator extends
AbstractHierarchicalFanInOutVisitor {

2 ...
3 static final List <String > NODES_TO_POPULATE = new ArrayList <String >();
4 static {
5 NODES_TO_POPULATE.add(Nodes.CLASS);
6 NODES_TO_POPULATE.add(Nodes.INTERFACE);
7 NODES_TO_POPULATE.add(Nodes.NAMESPACE);
8 }
9

10 public List <String > getNodesToPopulate() {
11 return NODES_TO_POPULATE;
12 }
13
14 static final List <String > DEPENDENCY_EDGES = new ArrayList <String >();
15 static {
16 DEPENDENCY_EDGES.add(Edges.CALL);
17 DEPENDENCY_EDGES.add(Edges.EXTENDS);
18 }
19 }

Code Fragment 3.15: Instability metric in SIG Graph library

3.3.3 Graph Pattern detection

In [8] Beyer and Noack list several applications of graph pattern detection, these include:

• the detection of implementation patterns, object-oriented design patterns and architectural styles,

• the detection of potential design problems (anti-patterns),

• the identification of code clones.

An example of an anti-pattern is the degenerate inheritance pattern [10]: when a class c inherits from another
class a directly and indirectly via a class b, the direct inheritance is probably redundant or even misleading.
This is illustrated in figure 3.3, where I denotes the inheritance relation. Since Java does not support multiple
inheritance this anti-pattern can not be realised in Java with classes. However, with interfaces it can be realised.
In that case it is still considered to be an anti-pattern.

This can be expressed in pointfree binary relational calculus as follows:

DI = I ◦ I+∩ I

31



3.3 Language comparison Comparison of code query technologies
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Figure 3.3: Degenerate inheritance

This will result in a relation DI containing all pairs (a,c) that participate in a degenerate inheritance pattern
and represent the probably redundant direct inheritance. In the figure this relation is depicted as a dashed
arrow.

The difference between the binary relational calculus expression and the implementations of this query
in the tools is that they support n-ary relations that allow us to return triples that also include b.

The support for n-ary relations can also be useful in other instances of graph pattern detection such as
cycle detection.

Crocopat

1 DI(a,b,c) := I(c,b) & I(c,a) & TC(I(b,a));

Code Fragment 3.16: Detecting degenerate inheritance in RML

TC is the transitive closure operation.The logical connective & corresponds to intersection in set theory. The
ternary result relation DegInh contains tuples that represent all three classes that are involved in the pattern.

Rscript

In Rscript you can implement this pattern matching query using a comprehension and the support for n-ary
relations:

1 {<A, B, C> | <A, B> : I, <C, B> : I, <B, C> : tc(I)}

Code Fragment 3.17: Detecting degenerate inheritance in Rscript using relations

Alternatively, Rscript also allows you to express this pattern in a binary, pointfree style:

1 I o I+ inter I

Code Fragment 3.18: Detecting degenerate inheritance in Rscript using relational calculus

In this expression the resulting relation only contains binary tuples (a,c).

32



Comparison of code query technologies 3.3 Language comparison

JRelCal

For this example we have not defined the JRelCal expression in a method. Again, the JRelCal query is a direct
mapping from the relational calculus expression to a JRelCal method chain.

1 i.compose(transitiveClosure(i)).intersection(i);

Code Fragment 3.19: Detecting degenerate inheritance in JRelCal

SemmleCode

SQL supports n-ary relations, and so does .QL: the select clause allows the user to influence the arity and
type of the result. Transitive closure is expressed with the + operation appended to the method call.

1 from Class a, Class b, Class c
2 where c.hasSupertype(b) and c.hasSupertype(a) and b.hasSupertype+(a)
3 select a, b, c

Code Fragment 3.20: Detecting degenerate inheritance in .QL

GReQL 2

In GReQL 2 we can implement this pattern detection in two ways. Both queries are intended to find all triples
of classes which match to the degenerated inheritance anti-pattern. The first one is similar to the SemmleCode
query, while the second one looks directly at the elements (or edges for a graph) of the inheritance relation
itself. Instead of reporting just triples of classes, it directly reports the inheritance edges that are candidates to
be removed together with the two classes affected by the degenerated inheritance.

1 from a, b, c : V{Class}
2 with c -->{I} a && c -->{I} b -->{I}+ a
3 report a, b, c
4 end

Code Fragment 3.21: Detecting degenerate inheritance in GReQL 2 variant one

1 from e : E{I}
2 with startVertex(e) -->{I} -->{I}+ endVertex(e)
3 report e, startVertex(e), endVertex(e)
4 end

Code Fragment 3.22: Detecting degenerate inheritance in GReQL 2 variant two

SIG Graph library

Currently, there is no implementation of this analysis in the SIG graph library. However, an implementation
in the SIG graph library is likely to take the following approach: for every class vertex in the graph paths to its
superclasses will be traversed, if we detect two paths to the same superclass we can report this as degenerate
inheritance.
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3.3.4 Slicing

With forward slicing we mean the selection of an exact subgraph consisting of the vertices and edges encoun-
tered when traversing a graph starting at a set of starting vertices (slicing criteria). A more specific notion of
slicing is program slicing as defined in [74]. Depending on the direction of the traversal two kinds of slicing
are distinguished: backward slicing which can be used for dependency analysis, and forward slicing (Figure
3.4) which can be used for impact analysis.

Figure 3.4: Forward slicing, starting at vertex 1

G is the source graph, V is the set of vertices in the forward slice, and C are the slicing criteria. In the
following expression the set of vertices V that are part of the slice is computed

V = carrier
(
C� G+)

This expression can be read as follows:

• First we compute the transitive closure (+) of source graph G. All vertices that were directly or indirectly
reachable from the slicing criteria are now directly reachable from the slicing criteria.

• The domain of the resulting graph is restricted with the slicing criteria C, which leaves us with only the
vertices that are (directly or indirectly) reachable from the slicing criteria.

• We obtain the set of vertices V that are part of the slice by computing the carrier of this relation.

Now that we know the vertices that are part of the slice we can compute the actual subgraph by restricting
the domain of the original graph by the vertices that are part of the slice:

V � G

Merging these two expressions into a single expression, results in this:

carrier
(
C� G+)

� G

In almost exact the same way a backward slice can be obtained: merely inverse the innermost source
graph G before computing a forward slice.

34



Comparison of code query technologies 3.3 Language comparison

Crocopat

1 Calls(x,y) := CALL(x,y);
2 CallsTC(x,y) := TC(Calls(x,y));
3 Slice(x,y) := EX(vertex , Criteria(vertex) & CallsTC(vertex , x) & Calls(x,y))

Code Fragment 3.23: Forward slicing in Crocopat

In this Crocopat query the starting criteria are in the set Criteria. The actual slicing is specified by a
existential quantification.

Rscript

Rscript allows us to almost literally translate the relational calculus expression and expose it as a fwdSlice
method:

1 rel[&T, &T] fwdSlice(set[&T} Criteria , rel[&T, &T] Graph) =
2 domainR(Graph , carrier(domainR(Graph , Criteria+)))

Code Fragment 3.24: Forward slicing in Rscript

JRelCal

In Java we can implement this expression using JRelCal, and expose it as a reusable, generic, forward slicing
method as follows:

1 public static <T> Relation <T, T> fwdSlice(Relation <T,T> g, Set<T> slicingCriteria) {
2 Set<T> vertices = carrier(reflexiveTransitiveClosure(g).domainRestriction(

slicingCriteria));
3 return g.domainRestriction(vertices);
4 }

Code Fragment 3.25: Forward slicing in JRelCal

SemmleCode

1 from Method m1, Method m2, Method start
2 where start.getName() = "criteriaName" and start.calls+(m1) and m1.calls(m2)
3 select m1, m2

Code Fragment 3.26: Forward slicing in SemmleCode

The .QL version of the query uses a similar strategy as the binary relational calculus approach that is intro-
duced in the beginning of this section. First, it filters out the method that has a name equal to the name of the
desired starting criterion. Every method that is reachable from that method, is selected together with its direct
callee (which also has to be reachable from the starting vertex).

Note that in SemmleCode it is not possible to implement a single slicing query that supports a set of
slicing criteria. However, one could decide to lists all slicing criteria in the where clause. The disadvantage of
this approach is that for large sets this quickly becomes unmanageable. Also, it is not possible to define the
query generically because SemmleCode does not support parametric polymorphism.
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GReQL 2

1 from start:V{Method}
2 with start.name = "criteriaName"
3 report start -->{Calls}+
4 end

Code Fragment 3.27: Forward slicing in GReQL 2

A distinct feature of GReQL 2 is that it supports regular path expressions this makes it possible to com-
pute more complex slices. This is demonstrated in the following code fragment:

1 from start:V{Method}
2 with start.name = "criteriaName"
3 report nodes(completePathSystem(start , -->{Calls} -->{ClassOf} <--{Inherit}))
4 end

Code Fragment 3.28: Forward slicing using regular path expressions in GReQL 2

This slice returns the subgraph that results from following paths that contain Calls, ClassOf, or Inherit
edges.

SIG Graph library

1 // Slice forward from the seedNode(s) getting all nodes that are linked with edgeType
2 public IGraph sliceForward(IGraph graph , Collection <? extends INode > seedNodes ,

Collection <IEdge > edgeTypes) {
3 IGraph resultGraph = new Graph();
4 for (INode node : seedNodes) {
5 INode graphNode = graph.lookupNode(node.getIdentity(), node.getType());
6 if (graphNode == null)
7 continue;
8 INode n = resultGraph.lookupNode(node.getIdentity(), node.getType());
9 if (n == null) {

10 INode newNode = resultGraph.createNode(node.getIdentity(), node.getType
());

11 newNode.setDataMap(graphNode.getDataMap());
12 sliceForward(graph , graphNode , newNode , resultGraph , edgeTypes);
13 }
14 }
15 return resultGraph;
16 }
17
18 public static IGraph getInducedSubgraph(Collection nodes) {
19 IGraph subgraph = new Graph();
20 for (Iterator iterator = nodes.iterator(); iterator.hasNext();) {
21 INode originalNode = (Node)iterator.next();
22 INode newNode = subgraph.lookupOrCreateNode(originalNode);
23 addOutEdgesToSubGraph(nodes , subgraph , originalNode , newNode);
24 addInEdgesToSubGraph(nodes , subgraph , originalNode , newNode);
25 }
26 return subgraph;
27 }

Code Fragment 3.29: Forward slicing in SIG Graph library
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3.4 Summary of results

In this section we summarise and discuss the results of both the language and the tool comparison.

3.4.1 Language comparison results

Evaluating languages is a non-trivial task that often depends on personal taste. However, the benchmark
queries and criteria do give us means to compare the tools objectively. Due to the subtle differences in
the various constructs and facilities the languages offer, there is no language that is clearly the best. Every
language has its strong and its weak points. Table 3.2 summarizes the results of the language comparison.

Table 3.2: Summary of language comparison results

Paradigm & characteristics Type system Abstraction Extendability
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Rscript
Relational &

x x - x Composite yes no
Comprehensions

JRelCal Relational & API x x x x Java yes yes
SemmleCode SQL-like & OO x x x x Object no no

Crocopat
Imperative &

x x x - - no no
FO logic

GReQL 2
SQL-like &

x x x x Object no no
Path expressions

Per tool, we will discuss in more detail its language and the result of the language comparison.
Crocopat offers an imperative language based on first order logic that required us to specify queries in a

point-wise style using existential quantifiers. Crocopat does not offer abstraction facilities. Its type system is
limited to the primitive types string, integer, and real.

Rscript allows us to specify a query either using point-free binary relational calculus, or in a point-wise
style using comprehensions. The language has scalar types (boolean, string, integer, and location) and com-
posite types (sets and relations). Expressions can be constructed from comprehensions, function invocations
and operators. Both forms of abstraction are available in Rscript. Extending the language is expectedly a
non-trivial task since this would require adapting the compiler.

JRelCal queries are binary relational calculus expressions expressed using Java method call chains. JRel-
Cal offers a lot of functionality that is also available in Rscript, but without any syntactic support. Language
constructs that heavily depend on syntax constructs for their power, e.g., comprehensions, are therefore not
available in JRelCal. Part of JRelCal’s features are provided by its host language Java, e.g., its abstraction
facilities. Parametric polymorphism is realised by using Java Generics. This makes JRelCal queries applica-
ble to relations containing Java objects of any type. Parametrization is possible by defining JRelCal queries
in Java methods. For users with knowledge of Java or a similar programming language extending JRelCal
is relatively easy. Extensions involve adding methods to its API or changing the implementation of existing
methods.

SemmleCode’s .QL language required us to specify a query in a point-wise, SQL-like style. The similarity
to SQL makes .QL familiar and therefore easy to learn language for a wide range of users. A convenient
feature of SemmleCode is its object-orientation. Functionality for relations can be grouped as methods of a
class representing that relation. Combined with the auto-completion in the editor this eases the writing of
queries significantly, because functionality that is available for a class can now easily be found. The only form
of abstraction offered is ad-hoc polymorphism; using the object orientation of .QL it is possible to override
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existing code. Subclasses of existing classes are given a ”replacement method” for methods in the superclass.
Parametrization of queries is not possible. Note that one could argue that methods taking parameters is a form
parametrization. Extending .QL is not possible; SemmleCode is proprietary and closed-source which makes
it impossible to make changes to the language.

On the query level, GReQL 2’s syntax is very similar to SQL. However, on the individual clause level
it differs from SQL considerably. An example is the arrow syntax in the where class: this is an intuitive
way to express graph queries, however, due to some particularities in the syntax, it may be difficult for many
users to use it to its full potential. Another distinctive feature of GReQL 2 is regular path expressions. These
expressions allow you to express advanced path queries conveniently and concisely. Whether RPE’s are useful
in the context of high level software analysis remains a question to be answered. Although the source code
is available, we expect that extending GReQL 2 will be a difficult task involving changes to the GReQL
compiler.

3.4.2 Tool comparison results

The comparison of the tool criteria consisted of checking for the presence or absence of features. The results
of this comparison are summarized in Table 3.3. We will limit the discussion of the tool comparison results to

Table 3.3: Summary of tool comparison results.

User Interface API Interchange Extractor Licensing
RScript CLI & GUI - Rstore - BSD
JRelCal API x RSF - BSD

SemmleCode Eclipse plug-in x - Java & XML Proprietary
Crocopat CLI x RSF - GNU LGPL
GReQL 2 CLI x TGraph - BSD

the most interesting issues:
Although the summary suggests that most solutions offer an API, notice that most of these are call-

level interface API’s. Only JRelCal offers an API in the form of a Java library. Rscript does not offer the
convenience of an API, however, the command-line interface (CLI) allows a (limited) form of interoperability.
SemmleCode is shipped as an Eclipse plugin, offering the most advanced graphical user interface of the
compared tools. It includes a query editor with user friendly features such as syntax highlighting and auto
syntax completion. The results of a query can be presented as a table, graph or chart. SemmleCode can
only be invoked interactively via its user interface; there is no CLI and API available. In combination with
its commercial license, the integration of SemmleCode in an existent tool becomes virtually impossible. It
comes with integrated extractors for Java and XML, but does not allow the use of third party extractors. Since
it comes with its own extractors it does not support interchange formats. It does have a text export function
available in the GUI.

3.5 Conclusions

We have subdivided the conclusion into two conclusion: a generic conclusion and a specialized conclusion.
The former draws some general conclusion, and is useful for every interested reader or potential user. The
latter is the conclusion specific for this thesis, it discusses which tool is the best for use within the SIG.

3.5.1 General conclusion

We have compared five code querying tools with respect to ten criteria. Some of the criteria – paradigm
& characteristics, type system, abstraction facilities, and extendability –, were meant to compare the code
querying language provided by the tools, the others – user interface, API support, output formats, interchange
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formats, extraction support, and licensing – were meant to compare the tools themselves. The criteria were
motivated by two usage scenarios: one in which a user wants to interact directly with the tool, and one in
which the tool needs to be used indirectly from other tools. The comparison of the language oriented criteria
was performed by implementing four queries in detail in each of the languages under consideration.

Based on the findings summarized in the previous section we conclude that although each offers a rich
set of features, none of the tools rate well on all criteria. In particular we found that the combination of
good abstraction facilities and extendability is not available in most languages, and that an API in the form
of a library is rarely provided. We pose the challenge to create a solution that offers extendability as well as
abstraction on the language level, and on the tool level provides an API for optimal integration possibilities.

In addition to the challenge posed above we would like to suggest some other avenues of future work
that can be explored. Currently, code querying technologies are applied to obtain information from a large
body of code. We would be interested to see how code querying can be combined with code transformation.
Another extension is the ability to query not just a static code repository, but to use code querying to compare
different versions of the same system, e.g., by providing capabilities and abstractions to effectively query svn
repositories. A final application for code querying is to automatically support architecture checking: from
a (formal) description of the system architecture, a number of code queries is automatically generated that
verify whether the implementation satisfies the constraints set by the architecture.

3.5.2 Conclusion for the SIG

Recall that in the context of this thesis we are looking for the best code query technology for SIG. Ultimately
to be used as a replacement for the SIG graph library, the tool will need to be fully integrated with SIG’s
SAT. Using a code query technology in this situation corresponds to the tool integration scenario as defined in
Section 3.2.

As we can see in Table 3.1, the most important criteria for the tool integration scenario are: ”paradigm &
characteristics”, API support, abstraction facilities, extendability, and licensing. Below, we discuss why these
criteria are important for the SIG:

• Paradigm & characteristics: For SIG, the query language should offer a more declarative and concise
way to specify queries in comparison to the SIG graph library. During our comparison we have observed
that, in this sense, all tools offer a ”better” language. When we leave ease of use out of consideration, all
compared tools meet SIG’s requirements for this criterion. If we do take ease of use into consideration
then one could argue that SemmleCode’s .QL is the most easy to use language: it offers a SQL-like lan-
guage which is familiar to a lot of users, and the object-orientation in combination with auto completion
in the editor makes it easy to find available functionality.

• API support: For SIG the ideal level of API support would be a tool that offered an API written in the
language of the SAT: Java. In this way full integration with the SAT can be achieved with no effort at
all.

• Abstraction facilities: For SIG it is important that the query language offers good abstraction facilities,
this makes it possible to write a query only once and reuse it as much as possible across different projects
of the SIG. Both Rscript and JRelCal offer parametrization and parametric polymorphism

• Extendability: Extending a language is a complex task requiring knowledge of compiler technology. In
an industrial setting such as the SIG such knowledge is not always at hand. This leaves only the Java
library JRelCal as suitable candidate: Java knowledge is sufficiently available at the SIG.

• Licensing: If SIG wants to integrate the tool into its own tooling and products, this will have to be
allowed by the license. Most tools come with a permissive license that allows integration in SIG’s
products. Only SemmleCode comes with a proprietary license that prohibits inclusion in (commercial)
third party products.
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3.5 Conclusions Comparison of code query technologies

Based on these requirements and the results of the comparison we conclude that only JRelCal sufficiently
meets the requirements of the SIG. Still, there is room for improvement: useful features we have seen in the
other tools are not all present in JRelCal, and some aspects of the implementation can be improved upon.
Therefore we will create a new implementation of JRelCal that removes these limitations. In the next chapter
we introduce JRelCal and discuss most of our improvements.
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Chapter 4
Improving JRelCal: from version 0.1 to 1.0

JRelCal is a prototype Java library that is based on Tarski’s binary relational calculus (BRC). It was developed
by Tijs van der Storm as a side project of his work on his doctoral thesis at the CWI. JRelCal is inspired by
Rscript and was meant to be an efficient implementation of this relational query tool. To move JRelCal past
the prototype stage we have created a new and mature version of JRelCal.

The new JRelCal includes the following improvements: support for predicates, optimisation of reach-
ability queries, efficient representations of relations, a mapping from SIG graphs to JRelCal relations, and
additional unit tests.

Currently, our work on JRelCal is done in a branch of the JRelCal repository hosted at the CWI. On our
request, this branch is merged into the trunk of the JRelCal project. A daily build of this trunk is publicly
available at the build farm of the CWI1.

In this chapter we introduce JRelCal in more detail and discuss the previously mentioned improvements.

4.1 Introduction to JRelCal

JRelCal is based on BRC; all BRC operations are implemented as a method. In addition, JRelCal includes
several other operations that are useful for source code querying that are not part of Tarksi’s BRC (e.g., domain
restriction).

BRC is compositional, which is reflected in JRelCal in the fact that every JRelCal method takes one or
two relations as argument, and returns a relation as result. This makes it possible to compose a complex query
from basic operations. An example of this is the following BRC expression where (A,B⊆ int× int):

(J≥ 2K� A)◦B◦A

which directly translates to the following JRelCal query:

1 Relation <Integer , Integer > A, B;
2 Predicate <Integer > greaterEqualTwo;
3 ... //Instantiation of predicate and relation variables.
4
5 A.domainRestriction(greaterEqualTwo).compose(B).compose(A);

Code Fragment 4.1: Example of a JRelCal query

The original JRelCal included two implementations of relations: an implementation based on an adja-
cency list structure, and a bag-based (as opposed to set-based) implementation that allows duplicate tuples in
a relation. The bag-based implementation can be useful for expressing queries that for their answer rely on
the number of occurrences of a single tuple. An example of such a query is the query for the computation of
the package instability metric, which we discussed in Section 3.3.2.

1http://sisyphus.meta-environment.org
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Relation<S,T>

PairSetRelation<S,T>

AdjacencyListRelation<S,T>

AdjacencyTableRelation<S,T>

MultiRelation<S,T>

Figure 4.1: Design of JRelCal on class level

Next, we will discuss two interesting design decisions found in JRelCal: defining operations on relations
as ”side-effect free” methods, and using Java Generics to type these methods.

4.1.1 Side-effect free methods

JRelCal operations modify neither the relation they are executed upon, nor their argument relations. Instead,
an operation creates a new relation to store and eventually return its results. In that sense, a JRelCal method
can be considered to be side-effect free. Removing side-effects from the equation allows expressions to be
evaluated in any order. Note that if a JRelCal method would modify its arguments, the expression in Code
Fragment 4.1 would be incorrectly evaluated: A would have been modified by the domain restriction, which
influences the result of the composition with A at the end of the expression.

Another advantage of this design decision is that it becomes possible to use method chaining. On his
wiki2 on DSL’s Martin Fowler describes fluent interfaces: an API style primarily designed to be readable and
to flow. The fluent interface style is often used to realise an EDSL in an object oriented language. One way
of achieving ”fluency” is by using method chaining. Martin Fowler describes this as follows: ”Internal DSL’s
are all about providing a flowing API, which often involves a sequence of calls on a single object. Method
chaining is an idiom that achieves this through a sequence of modifier calls where each call returns the host
object for further modification”3. The method chaining found in JRelCal differs from Fowler’s definition in
that JRelCal methods do not modify their host object (a relation). Despite this difference, the advantages of
method chaining, readability and ”flow”, still hold for JRelCal.

4.1.2 Generics

The other design decision we adopt from the original JRelCal is using Java Generics to type a relation and its
operations. This makes it possible to statically check the type correctness of a JRelCal expression. Without
the use of Java Generics the type of the domain and the range of the relation would not have been available at
compile time, making it impossible to check the type correctness of an expression.

Unary operations that require homogeneous relations as argument (e.g., transitive closure and carrier)
form a special case. To consistently make use of the typing imposed by generics, these methods are defined as
static methods that take the subject relation as argument. This allows us to impose that the argument relations
is homogeneous. This would not have been possible if we defined such an operation as an instance method
without parameter.

This is best illustrated by using the transitiveClosure method as an example. The transitive closure
operation is a graph theoretic operation and therefore requires the domain and the range of a relation to be of
the same type.

The method can be defined statically as:

2http://martinfowler.com/dslwip/index.html
3http://martinfowler.com/dslwip/MethodChaining.html
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public static <T> transitiveClosure <T,T>(Relation <T,T> rel) {...}

or as an instance method:

public Relation <T,T> transitiveClosure() {...}

The static definition is used as Relation.transitiveClosure(rel). In this case, the typing of the
method imposes that rel is homogeneous. The definition as instance method is used as rel.transitiveClosure().
Since the Relation class is typed as Relation<S,T> it is not statically imposed that the relation instance rel
is a homogeneous relation. This may lead to type errors at runtime.

One can take full advantage of both design decisions by using an IDE with auto-completion: because of
the method chaining and the typing with Generics the auto-completion function is able to show only the
methods that are applicable in the current context. An example of this is shown in Figure 4.2. The sugges-
tions offered by the auto-completion are based on the fact that relation A is a homogeneous relation of the
type Relation<Integer,Integer>: since the range restriction on A will return a relation of the same type,
composition is only possible with a relation of type Relation<Integer, U>.

Figure 4.2: Auto completion in Eclipse while creating a JRelCal query

4.1.3 The new JRelCal

Since the original implementation of JRelCal was a prototype, it had several shortcomings: it lacked function-
ality, showed poor performance for some operations, and contained several bugs. To remove these shortcom-
ings we have created a new version of JRelCal. Although we have created a completely new implementation
of JRelCal, we do adopt the two previously discussed design decisions from the original JRelCal.

In our new version of JRelCal we have defined the relation abstract data type as an abstract class (Code
Fragement 4.2) that serves as a super class for all relation implementations (Figure 4.1(b)). The result is a sep-
aration of the specification of a relation from its implementation, which eases the addition of new implementa-
tions. In the new JRelCal we have concentrated on removing the shortcomings of the original implementation.
We will discuss these improvements in the remaining sections of this chapter.

1 public abstract class Relation <S, T> implements
2 Iterable <Pair <S, T>>,
3 Comparable <Relation <S, T>> {
4
5 public abstract boolean contains(Pair <S,T> pair);
6 public abstract Set<Pair <S, T>> asPairs();
7
8 public abstract Relation <T, S> inverse();
9 public abstract Set<S> domain();

10 public abstract Set<T> range();
11 public abstract Relation <S, T> union(Relation <S, T> relation);
12 public abstract Relation <S, T> intersection(Relation <S, T> relation);
13 public abstract Relation <S, T> difference(Relation <S, T> relation);
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14 public abstract <U> Relation <S, U> compose(Relation <T, U> relation);
15 public abstract int cardinality();
16
17 // Static definition of transtive closure
18 public static <T> Relation <T, T> transitiveClosure(Relation <T, T> rel){...}
19
20 public abstract Relation <S, T> domainRestriction(Set<S> set);
21 public abstract Relation <S, T> domainExclusion(Set<S> set);
22 public abstract Set<T> rightSection(Set<S> set);
23 public abstract Relation <S, T> rangeRestriction(Set<T> set);
24 public abstract Relation <S, T> rangeExclusion(Set<T> set);
25 public abstract Set<S> leftSection(Set<T> set);
26
27 // Predicate versions
28 public abstract Relation <S, T> domainRestriction(Predicate <S> p);
29 // ...
30
31 public abstract Iterator <Pair <S, T>> iterator();
32 // Default implementations of equals , compareTo , based on iterator
33 public int compareTo(Relation <S, T> relation) {...}
34 public boolean equals(Object o) {...}
35 // ...

Code Fragment 4.2: The abstract class Relation in JRelCal

4.2 Predicates

Restriction and exclusion of relations are common operations that can be used to filter a relation. Domain
restriction using a set S as parameter ’restricts’ a relation to only contain tuples whose first element occur in
S. In the same way, domain exclusion excludes all tuples whose first element occurs in S. Application of
restriction and exclusion is not limited to the domain of a relation and can be applied to any arbitrary set, e.g.
range and carrier sets.

In the original version of JRelCal, restrictions and exclusions of sets was only possible using sets as
parameter. Sets are extensional definitions that sum up every element that falls under its definition. There
are particular situations where extensional definitions are not feasible. For example, using an extensional
definition, restricting the domain to only contain elements that are greater than 1 would require us to sum
up all integers that are greater than 1. In these situations, an intensional definition is more appropriate. An
intensional definition gives the meaning of a term by specifying all the necessary and sufficient conditions
for belonging to the set being defined. To add support for intensional definitions we extended the JRelCal
restriction and exclusion operations with support for predicates. Code Fragment 4.3 shows the implementation
of domain restriction with a set and with a predicate. Note that the predicate-based variant generalises the set-
based variant: the set-based variant can be implemented by calling the predicate-based variant with a predicate
that tests whether an element is in the set parameter of the set-based variant.

1 public Relation <S, T> domainRestriction(Set<S> set) {
2 Relation <S, T> result = new PairSetRelation <S, T>();
3 for (Pair <S, T> pair : this)
4 if (set.contains(pair.getFirst()))
5 result.add(pair);
6 return result;
7 }
8
9 public Relation <S, T> domainRestriction(Predicate <S> p) {

10 Relation <S, T> result = new PairSetRelation <S, T>();
11 for (Pair <S, T> pair : this) {
12 if (p.evaluate(pair.getFirst()))
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13 result.add(pair);
14 }
15 return result;
16 }

Code Fragment 4.3: Implementation of domain restriction using predicate and set in PairSetRelation

For the implementation of predicates we reuse the Apache Commons-Collections4 framework that offers
a predicate interface and implementation. The Apache Commons is a project of the Apache Software Foun-
dation5. The purpose of the Commons project is to provide reusable, open source Java software. Commons-
Collections seeks to build upon the Java Collections Framework by providing new interfaces, implementa-
tions, and utilities.

The Predicate interface offered by Commons-Collections defines an interface for classes that perform a
predicate test on an object. The test has to be defined in the evaluate(...) method. This is a boolean method
that takes the input object as argument. Standard implementations of common predicates are provided by
PredicateUtils. These include true, false, instanceof, and equals. Additionally, there are predicate
offered that implement logical operations like and, or, and not. These predicates can be used to combine
simple predicates to form more complex ones.

A disadvantage is that the Apache Commons-Collections framework does not support Java 5 Generics.
Without the support for Generics it is not possible to take full advantage of the generically defined JRelCal
interface. For example, a version of Commons-Collections that supports Generics would allow us to define
a domain restriction such that it only accepts predicates of the correct type (e.g. public Relation<S, T>

domainRestriction(Predicate<S> p)).
However, there exists an open-source project Commons-Collections with Generics6 that is a Java 5

generics-enabled version of the Commons-Collections project. All appropriate classes from Commons-Collections
3.1 have been refactored to support Java generics.

Code Fragment 4.4 shows an example of the creation of a predicate and its use to restrict the domain (of
type Integer) of a relation to contain only the integers that are greater than 1.

1 Predicate <Integer > greaterThanOne = new Predicate <Integer >() {
2 public boolean evaluate(Integer i) {
3 return i > 1;
4 }
5 };
6
7 Relation <Integer , String > aRelation = new PairSetRelation <Integer , String >();
8 aRelation.domainRestriction(greaterThanOne);

Code Fragment 4.4: Definition and use of a simple predicate using Commons-Collections with Generics

4.3 Optimisation of reachability queries

In this section we describe the work we have done to improve the performance of JRelCal for queries involving
reachability issues. We start with a description of the problem, followed by a discussion of our solution and
its implementation. We conclude with the validation of our work by discussing the results of the performance
tests we have carried out. Note that the definitions of the graph theoretical concepts in this chapter are adapted
from [18].

4http://commons.apache.org/collections/
5http://www.apache.org/
6http://sourceforge.net/projects/collections
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4.3.1 Problem definition

Reachability deals with determining where we can get to in a directed graph, or, in the case of JRelCal, a
homogeneous relation viewed as a digraph. A relation can be viewed as a graph as follows: given a homo-
geneous relation R ⊆ V ×V and v1Rv2, than v1 → v2 can be viewed as a directed edge in a directed graph
(digraph) G(V,R). Queries involving the notion of reachability are common in the context of code querying,
e.g., ”return all classes that are a direct or indirect subtype of a particular superclass”, or ”find all methods that
are directly or indirectly called from a particular class”.

Definition A directed graph G is a pair (V,E) where V is a set of elements called vertices and E ⊆V ×V is a
set of pairs called edges. The cardinality of V and E is denoted by n and e respectively.

To express reachability, all the evaluated code query technologies in Chapter 3 offer a transitive closure
operation. Assuming there are no optimisations performed, these operations compute the full transitive clo-
sure for a homogeneous relation R. In a full transitive closure the full successor list for each vertex v ∈ R
is computed. After the full transitive closure of a relation is constructed, all reachability questions can be
answered in logarithmic time (Assuming the underlying data structure supports logarithmic time lookup of
adjacent vertices). The drawback of full transitive closure, however, is that it can be a very computation-
intensive operation. Implementing an efficient transitive closure operation that scales to large relations (as
found in source code querying) is a non-trivial task.

Definition The full transitive closure of graph G(V,E) is a graph G+(V,E+) such that E+ contains an edge
(v,w) iff G contains a non-null path v +→ w. The successor set of a vertex v is the set Succ(v) = {w | (v,w) ∈
E+}, i.e., the set of all vertices that can be reached from vertex v via non-null paths.

During experimentation we discovered that the transitive closure implementation of the original JRelCal
was incorrect. Therefore, our challenge is to create a new efficient and scalable implementation of transitive
closure. A first naive attempt at a new implementation of transitive closure is the ”least fixed-point union-
compose” algorithm, as shown in Code Fragment 4.5. This is an iterative algorithm that composes the input
relation with itself until it reaches a least fixed point. In essence, the algorithm is the same as the well-known
Warshall [35] algorithm. The running time for this algorithm is O(n3). This time behaviour makes it infeasible
to use this algorithm for the computation of transitive closure in a code query tool, since typically code queries
are run on large systems. In the following sections we discuss our solution to this problem.

1 public static <T> Relation <T, T> transitiveClosure(
2 PairSetRelation <T, T> relation) {
3 Relation <T, T> result = new PairSetRelation <T, T>(relation.asPairs());
4 int prevResultSize = 0;
5 while (!(prevResultSize == result.cardinality())) {
6 prevResultSize = result.cardinality();
7 result = result.union(result.compose(relation));
8 }
9 return result;

10 }

Code Fragment 4.5: JRelCal PairSet implementation of Transitive Closure

4.3.2 Solution

Often, in the context of source code querying, the full transitive closure of a relation is computed while the
result of the query only consists of a small subset of the transitive closure. We argue that in the context of
code querying, computing a full transitive closure is rarely useful. In a query, the transitive closure operation
is generally used to declaratively express a reachability issue. Often, these reachability issues involve a small
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number of source nodes. For example, a software engineer may use a code query technology to support his
refactoring activities. To better understand the impact of changes to a particular method, he may be interested
in the methods that call this method directly or indirectly. To answer this kind of queries, only the successors
of one particular vertex need to be computed instead of the successors of each vertex in the relation.

An example of this is shown in Code Fragment 4.6: to find the methods that are called from a method
foo() the full transitive closure of the CALL relation is computed. The domain restriction performed on the
transitive closure results in a relation between foo() and its successors. This demonstrates that in some cases
many computations of successor lists are performed that are not required for the result.

transitiveClosure(CALL).domainRestriction("foo()");

Code Fragment 4.6: Example of a reachability issue expressed with transitive closure

Based on these observations, we approach the optimisation of reachability queries in the following way:
instead of optimising the computation of the transitive closure we will focus on reducing the amount of work
that is performed for this computation.

In JRelCal, the transitive closure operation is the only operation available to express reachability issues.
Therefore, with the current set of JRelCal operations, there is no way for the query programmer to prevent
the redundant computations from being performed. Our solution to this is to add a ”Reach” operation that
computes a partial transitive closure. A partial transitive closure operation only computes the successor list
for each vertex s in a set S of source nodes. We expect that using a partial transitive closure operation will have
a larger impact on the performance than using an efficient algorithm for full transitive closure. Mainly because,
depending on the number of source vertices, the number of computations can be significantly reduced.

There are two types of partial transitive closure problems: single-source transitive closure and multi-
source transitive closure [61, 21]. In the single-source transitive closure problem (Figure 4.3(a)), we are given
a homogeneous relation R ⊆ V ×V which we view as a digraph G(V,R) , and a single vertex v ∈ V whose
successors we should compute. The successors of a vertex v areThis problem can be solved by a simple graph
search algorithm such as depth-first search (DFS) or breadth-first search (BFS). We start the search at vertex
v and collect each vertex in G that is encountered into the result set Succ(v).

In the multi-source transitive closure problem, we are given the graph G(V,R) and a subset S ⊆ V . We
should compute the successors of the vertices in S. This problem can be further divided into strong multi-
source transitive closure problems (Figure 4.3(b)) and weak multi-source transitive closure problems. In the
strong version, we should compute its own successor set for each vertex of S. In the weak version, we should
compute the union of the successor sets of the vertices in S. Like the single-source problem, the weak multi-
source problem can be solved by a graph search algorithm. Both the strong and the weak multi-source problem
can be solved by first computing the full transitive closure. However, computing the multi-source transitive
closure directly by using a graph search algorithm is likely to be more efficient.

We will make two variants of a partial transitive closure operation available in the JRelCal API. These two
methods can be implemented efficiently using graph traversal algorithms. The operations will return a relation
between the sources and their successors. This means that the actual paths between the sources and their
successors are discarded, e.g., in Figure 4.3(a) we can see that (D, I)∈ result but the actual path {(D,F)(F, I)}
can not be deduced from result. We discuss the implementations of both methods in more detail in the next
section.

4.3.3 Implementation

The single-source transitive closure problem is implemented by the algorithm ”SingleSourceReach”, shown
in Algorithm 1. The algorithm uses DFS to find the successor vertices. The result is accumulated in the result
parameter as a relation between the source vertex and its successors. If the algorithm finds a cycle back to the
source, a self-arc is added to the result.
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Algorithm 1 SingleSourceReach(Relation rel, Vertex v, Vertex source, Relation result)
1: Mark v as visited
2: for (v,w) in rel do
3: if w has not been visited then
4: result← result ∪{(source,w)}
5: Recursively call SingleSourceReach(rel,w,source,result)
6: else if w = source then
7: result← result ∪{(source,source)}
8: end if
9: end for

If ns vertices and es edges are reachable from vertex s, this algorithm taking s as source has a running time
of O(ns +es). This is provided that the relation is represented with a data structure that supports constant-time
vertex and edge methods [32].

The SingleSourceReach algorithm is defined for a single source vertex. However, defining the strong
multi-source variant MultiSourceReach for a set of vertices S in a relation R is trivial, because we can reuse
the definition of Reach:

MultiSourceReach(S,R) =
⋃

(∀s : s ∈ S : Reach(s,R))

The result of the MultiSourceReach operation is a relation Q between the vertices from S and their suc-
cessors in R. Each tuple in Q relates a vertex s ∈ S to one of its successor vertices v ∈ V . The answer to the
weak multi-source problem can be easily be obtained by taking the range of Q.

Implementing TC using Reach

The goal of introducing the reachability operations was to replace the the transitive closure operations in
reachability queries. However, The advantage of this solution is that for the implementation of the full tran-
sitive closure operation we can reuse the implementation of MultiSourceReach. The compositional definition
of Reach allows us to define the transitive closure operation in terms of Reach. In this way we are reusing
functionality, and removing the need for a separate implementation of a transitive closure algorithm. For a
relation viewed as digraph G(V,R) we can define transitive closure as follows:

TransitiveClosure R = MultiSourceReach V

Transitive closure implemented as a repeated DFS has a running time of O(n(n+e)). Nevertheless, when
used for a graph that is dense, that is, if it has close to n2 edges, this approach runs in O(n3) time.When
the graph is sparse, repeated DFS performs better than running the Warshall algorithm once. During our
experiments we found that all relations extracted from source code are sparse. Still, more empirical evidence
is required to support this.

Informally, a dense graph is a graph in which the number of edges is close to the maximal number of
edges. The opposite, a graph with only a few edges, is a sparse graph. The distinction between sparse and
dense graphs is rather vague. One possibility is to choose a number k with 1 < k < 2 and to define sparse
graph to be a graph with e = O(nk) [65].

An optimisation for MultiSourceReach

The MultiSourceReach repeatedly runs the SingleSourceReach operation on the same relation, which can lead
to redundant traversals of the same path. This is an opportunity for optimisation: vertices that have been used
as source for a call of SingleSourceReach can be marked. When, in a subsequent call of SingleSourceReach a
vertex is encountered that already has been marked, the traversal can be stopped and the results of the earlier
call are looked up in the current result to complete the SingleSourceReach algorithm for the current source.
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This optimisation can be implemented for the MultiSourceReach operation, and in this way the optimisation
is propagated to the transitive closure operation.

We can illustrate this optimisation with the help of Figure 4.3(b). When we perform a optimised Multi-
SourceReach on relation R, it may start a SingleSourceReachMark from vertex G and will therefore mark G
as having been used for a SingleSourceReach. When the SingleSourceReachMark for G returns, it may start
a single-source ReachMark from vertex D. When the ReachMark from D arrives at vertex G it will detect that
it has been used as a source for a previous call of ReachMark. To complete the run for D, the successors of G
will be looked up from the current result.

The implementation of this optimisation only requires a small adaption of the original SingleSourceReach
algorithm which we showed in Algorithm 1. Algorithm 2 shows the modified version of SingleSourceReach
called SingleSourceReachMark. The modification (Algorithm 1, line 5-10) consists of an additional check to
see whether the vertex that is being visited has been used as source in a previous call of the algorithm. If so,
the successors of the vertex are retrieved from the current result, added to the successors of the current source,
and marked as visited. Note that the MultiSourceReach operation has to be adapted such that it marks the
vertices that have been used as source for a SingleSourceReachMark.

Algorithm 2 SingleSourceReachMark(Relation rel, Vertex v, Vertex source, Relation result)
1: Mark v as visited
2: for (v,w) in rel do
3: if w has not been visited then
4: result← result ∪{(source,w)}
5: if w has been used as source for SingleSourceReachMark then
6: Mark w as visited
7: for (w,q) in result do
8: result← result ∪{(source,q)}
9: Mark q as visited

10: end for
11: else
12: Recursively call SingleSourceReachMark(rel,w,source,result)
13: end if
14: else if w = source then
15: result← result ∪{(source,source)}
16: end if
17: end for

The effectiveness of the marking optimisation depends on the order in which the sources for the Multi-
SourceReach are used as source for a single call of SingleSourceReachMark. Ideally, the sources are used
in a reverse topological order. This ensures optimal use of the previously computed successor sets, thereby
preventing redundant traversals of paths.

4.3.4 Run-time optimisation of reachability queries

We have presented the Reach operations as cheaper alternatives for computing the full transitive closure, and
added them as methods to the JRelCal API. This means, however, that the programmer is responsible for
identifying optimisation opportunities.

Instead of relying on the programmer for identifying optimisation opportunities we can do this automati-
cally at run-time. We will explain our optimisation technique using an example in which we rewrite JRelCal
expressions involving the composition of a transitive closure relation with another relation (A◦B+ and B+ ◦A)
to equivalent expressions that use MultiSourceReach.

The optimisation is based on the use of a ”wrapper class”: when the transitive closure operation is
called, instead of computing the full transitive closure, it returns a wrapper class TC containing the rela-
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tion the transitive closure was called upon. This can be observed in Figure 4.4 in the code snippet for the
transitiveClosure method.

compose(Relation r2)
union(Relation r2)
getRel()

Relation r
TC

compose(Relation r2)
Set pairs
PairSetRelation

return transitiveClosure(this).union(r2);  

return
multiSourceReach(r.inverse(),r2.domain()).inverse().compose(r2);   

* 1

transitiveClosure(Relation r)
Relation

if (r instanceof TC){
    Relation rel = ((TC)r).getRel();
    return rel.transitiveClosure(rel);
}
else 
    return new TC<T,T>(r); 

if (r2 instanceof TC)
    return this.compose(multiSourceReach(r2, this.range()));
else
    ... // default compose

Figure 4.4: Run-time optimisation of reachability queries

The actual optimisation occurs when the TC is composed with another relation. In the TC wrapper class
the compose method is implemented such that instead of computing the full transitive closure, it will compute
a partial transitive closure using MultiSourceReach. This is shown in the code snippet of the compose method:
the expression at the return statement is obtained by applying the following rules:

A◦B+

≡ {compose-restrict}
A◦ (rng A� B+)
≡ {reach}

A◦MultiSourceReach(B,rng A)

When a ”none-TC” relation is composed with a TC relation (i.e. A ◦B+), the none-TC relation is responsible
for performing the optimisation. An example of this can be found in the code snippet for the compose method
of the PairSetRelation. The compose method of this PairSetRelation checks whether the relation is an
instance of the TC class. If so, an equivalent expression will be evaluated, based on the rules below. This is one
of drawbacks of this optimisation technique: the implementation of the optimisation is not entirely local to the
wrapper class. However, the only consequence of not adding the optimisation to a relation implementation,
is that the optimisation will not work for that particular implementation. Moreover, for any relation that is
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used as argument for the compose of TC, the optimisation will work, even when the relation itself does not
implement the optimisation.

B+ ◦A

≡ {compose-inverse}

(A−1 ◦B+−1)−1

≡ {compose-restrict}

(A−1 ◦ (rng A−1� B+−1))−1

≡ {reach}
(A−1 ◦MultiSourceReach(B−1,rng A−1))−1

≡ {inverse domain range}
(A−1 ◦MultiSourceReach(B−1,dom A))−1

≡ {compose-inverse}
(MultiSourceReach(B−1,dom A))−1 ◦A

For operations for which the Reach optimisation is not applicable (e.g. A+∪B), the full transitive closure will
be computed. This is done by calling the transitive closure method again on the current TC wrapper class,
which can be observed in Figure 4.4 in the code snippet for union method of the TC class. In the code snippet
of the transitiveClosure method we can see that when its called on an instance of TC, it will ”unpack” the
wrapped relation and compute its full transitive closure.

4.3.5 Representation

To efficiently implement relational operations, we have to select a representation for relations that has good
time and space characteristics. Two important operations are the rightSection and leftSection operations that
respectively return the vertices that are adjacent from and to a vertex. DFS, which we use to implement
the SingleSourceReach operations, depends mostly on the rightSection to obtain the neighbours of a vertex.
Therefore, an efficient implementation of the SingleSourceReach operations requires a relation representation
that supports efficient lookup of vertices adjacent from a vertex. Relational composition requires efficient
lookup of vertices adjacent to a vertex.

Two common representations for graphs (and binary relations) are the adjacency matrix and the adjacency
list. The adjacency matrix of a graph G(V,E) with |V |= n and |E|= e is an n×n boolean matrix A such that
A[i, j] is true if and only if G has an edge (vi,v j). Enumerating the vertices adjacent to and from a vertex takes
Θ(n) time, regardless of the in-degree or out-degree of v. The main disadvantage of the adjacency matrix is
that it takes Θ(n2) space, even when the graph is sparse. An example of an adjacency matrix representation of
the graph from Figure 4.3 is shown in Figure 4.5.
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A B C D E F G H I J
A 0 0 0 1 0 0 0 0 0 0
B 0 0 0 1 0 0 0 0 0 0
C 0 0 0 0 1 0 0 0 0 0
D 0 0 0 0 0 1 1 0 0 0
E 0 0 0 0 0 1 0 0 0 0
F 0 0 0 0 0 0 0 0 1 0
G 0 0 0 0 0 0 0 1 0 1
H 0 0 0 0 0 0 0 0 0 1
I 0 0 0 0 0 0 0 0 0 0
J 0 0 0 0 0 0 1 0 0 0

Figure 4.5: Adjacency matrix representation of example graph

An adjacency list is in essence a list of lists: the first list contains lists of vertices and is indexed by each of
the connected vertices in the graph. Each vertex v in this list points another list Ad jFrom(v) that contains the
vertices adjacent from v. An adjacency list takes O(n+e) space, which makes it an economical representation
for sparse graphs. Enumerating the vertices adjacent from a vertex v takes O(Outdeg(v)) time. However,
enumerating the vertices adjacent to a vertex v takes O(n + e) time, since we must check the presence of v
in each Ad jFrom(v) list. If the vertices adjacent to (as opposed to from) a vertex are often needed, one can
consider to add another list Ad jTo(v) for storing these vertices, which will result in a doubling of the space
taken by the adjacency list. However, the time for enumerating the vertices adjacent to v will improve to
O(Indeg(v)). An example of an adjacency matrix representation of the graph from Figure 4.3 is shown in
Figure 4.5.

Ad jFrom(A) = {D}
Ad jFrom(B) = {D}
Ad jFrom(C) = {E}
Ad jFrom(D) = {F,G}
Ad jFrom(E) = {G}
Ad jFrom(F) = {I}
Ad jFrom(G) = {H,J}
Ad jFrom(H) = {J}
Ad jFrom(I) = /0

Ad jFrom(J) = /0

Figure 4.6: Adjacency list representation of example graph

Since the relations involved in source code querying are typically sparse, and obtaining the vertices ad-
jacent to a vertex is an important operation for implementing Reach algorithms, we have chosen to use the
adjacency list data structure to represent relations in JRelCal.

In Java, an adjacency list can be implemented with two collection interfaces from the Java Collections
Framework (JCF): the Map and the Set. A Map is a structure that associates one object with another: it is a
collection of entries, where each entry is a key-value pair. To implement an adjacency list we use a Map to
associate a vertex with a list of its adjacent vertices. Since every tuple in a relations is unique, we use a Set
for storing the adjacent vertices.
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4.3.6 Benchmarks

The aim of the optimisation presented in this section is to improve the performance of JRelCal for queries
involving reachability issues. Naturally, we can expect queries that use the new Reach operations (which
compute a partial transitive closure) to perform better than queries that rely on the transitive closure operation
(which computes a full transitive closure), depending on the number of source nodes. The effect of our mark-
ing optimisation is more difficult to predict. Therefore, we have experimentally compared the performance
aspect time of our new implementation to previous implementations. This allows us to verify the theoretical
performance gain in practice.

As subjects in our performance measurements we use call relations extracted from open-source Java
projects of different sizes, since these represent relations that are typically query subjects in source code
querying. Table 4.1 shows the systems from which we statically extracted a call graph. Most systems were
parsed using SemmleCode, and a .QL query was used to obtain the call relation from the SemmleCode fact
database. To be able to load the relation into JRelCal, it was written to a RSF file. The call relations for JDK
1.4.2 and for Eclipse 2.1.2 were obtained from the Crocopat distribution. This distribution includes the RSF
files of the relations that were used for the performance benchmark in Beyer’s paper [10].

System name Author/Owner LOC # Methods # Calls
JPacMan 3.0.4 Arie van Deursen 2,499 335 757
JHotDraw 7.1 IFA Informatik & Erich Gamma 25,451 5,204 23,277

JDK 1.4.2 Sun Microsystems 784,244 2,785 17,533
JFreeChart 1.0.9 JFree 127,672 8,437 65,252

Eclipse 2.1.2 Free software community 1,440,346 6,066 48,135
Analyses 1.3.9 SIG 267,542 20,171 135,718

Table 4.1: Characterisation of the systems used for performance tests

We defined two queries involving reachability: the computation of the full transitive closure and the
reachability relation between the top and bottom vertices. We implemented these queries as minimal and
optimal as possible in order to get precise timing results.

Note that the shown results depend on the properties of the hardware, the operating system, and installed
software of the machine the experiments were run on. The machine used for the experiments was a Intel Xeon
dual core 2 Ghz with 8 Gb RAM running Linux 2.6.16.

Finally, it is important to stress that this benchmark focusses on the performance of reachability queries. It
gives no indication of the overall performance of the code query tools whatsoever. An evaluation of the overall
performance would require a balanced approach that includes a wider range of queries, each highlighting the
strong points of each evaluated technology.

Reachability from top

Reachability from top is a query that returns a relation that relates each top vertex to its successors. Figure 4.7
shows the input and the produced output of this example. A top vertex is a vertex v such that Ad jTo(v) = /0.

Although this query is not directly useful for software re-engineering and comprehension tasks, it is useful
as a test for measuring the performance of reachability algorithms. Most graphs have a considerable amount
of top vertices that in this benchmark serve as sources for the partial transitive closure algorithms, and from
the definition of a top vertex it follows that it always has vertices that are adjacent to it, unless the source is an
isolated vertex.
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Figure 4.7: Example input and output of the top reachability analysis.

The code fragments below show the implementation of the query in JRelCal and Crocopat. The first
JRelCal query uses the MultiSourceReach operation with the relation CALL an the top vertices as argument.
The second JRelCal query computes the full transitive closure for the CALL relation, and then uses the top
vertices to obtain the final result by restrict the domain of the transitive closure of the CALL relation. As we can
observe from the query, Crocopat, in essence, uses the same strategy of computing the full transitive closure
followed by a domain restriction.

1 Set<String > top = CALL.domain().difference(CALL.range());
2 Relation.reach(CALL , top);

Code Fragment 4.7: Reachability from top in JRelCal using MultiSourceReach

1 Set<String > top = CALL.domain().difference(CALL.range());
2 Relation.transitiveClosure(CALL).domainRestriction(top);

Code Fragment 4.8: Reachability from top in JRelCal using transitive closure

1 Top(x) := !CALL(_,x);
2 Reach(x,y) := TC(CALL(x,y)) & Top(x);

Code Fragment 4.9: Reachability from top in Crocopat

Figure 4.8 shows the results of this performance benchmark.
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Figure 4.8: Runtime reachability from top

From these results we can observe that, as was expected, the queries that use a full transitive closure
operation are generally slower than those that use a partial transitive closure operation. Since the full transitive
closure is based on the Reach operations used for the partial transitive closure, it is clear that the selectivity of
the Reach algorithms is the dominant factor affecting their performance.

Notice that the MultiSourceReach with the marking optimisation shows almost exact the same perfor-
mance results as the one without marking. This can be explained by the fact that top nodes are used as
sources: for every call of Reach for every vertex v ∈ Top, v will be marked as a source vertex used in a call
of Reach. However, because of the definition of a top vertex, it will never be encountered by another call
of Reach. The performance of the Reach algorithms heavily depends on the properties of the graph and the
number of sources that is used. An example of this can be found in the peak for the JFreeChart call relation.

Table 4.2 gives a characterisation of the results of this query, which gives insight into the characteristics
of the resulting relations.

# Top vertices # Result
JPacMan 3.0.4 88 4441
JHotDraw 7.1 686 131871
JDK 1.4.2 603 315621
JFreeChart 1.0.9 2421 1663442
Eclipse 2.1.2 514 810529
Analyses 1.3.9 7035 4881438

Table 4.2: Characterisation of the result relations of the reachability from top query

Transitive closure

In [10] Beyer carried out a performance comparison of the computation of full transitive closure in six different
technologies (RelView, Grok, Quintus Prolog, MySQL, and Crocopat itself). To compare the performance of
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the transitive closure operation, the tools were run on six call graphs extracted from open-source systems of
different sizes. In this experiment Crocopat proved to be the most efficient tool for computing the transitive
closure of large call relations.

Our optimisation approach improves the performance of reachability queries by computing partial tran-
sitive closures instead of full transitive closure. However, our approach to optimising reachability queries
allows us to implement a transitive closure operation without much effort. We carried out an experiment
similar to Beyer’s experiment in order to compare the efficiency of the different JRelCal transitive closure
implementations with Crocopat.

Figure 4.9: Runtime transitive closure

The results of the experiment in Figure 4.9 show that our marking optimisation for multi-source partial
transitive closure is an effective optimisation. We can also observe the poor performance of the naive im-
plementation of the original JRelCal implementation: for the largest inputs it ran out of memory. As was
already shown in Beyer’s experiments, Crocopat proofs to be very efficient in computing transitive closure.
Nevertheless, our optimised MultiSourceReach shows comparable performance characteristics. However, for
the largest input graph we see a sudden increase in runtime. This may be explained by the fact that the effec-
tiveness of the marking optimisation depends on the order in which the sources for the MultiSourceReach are
used as source for a single call of SingleSourceReachMark. Ideally, the sources are used in a reverse topolog-
ical order. This ensures optimal use of the previously computed successor sets, thereby preventing redundant
traversals of paths.

4.3.7 Discussion

As is shown by the benchmarks in this section, using Reach operations for reachability queries improves
the performance compared to using a transitive closure operation to compute the full transitive closure. The
transitive closure operation based on MultiSourceReach in combination with the marking optimisation has
proved to be considerably more efficient than the original transitive closure operation of JRelCal. The two
main reasons for this performance improvement are a better representation for relations and the new algo-
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rithm. Our relatively simple optimisation technique of marking vertices that have been used a start for a single
source Reach, proved to be an effective optimisation technique. Another advantage of our approach is that it
is compositional: the single source Reach operations can be reused to implement multi-source partial transi-
tive closure, and thus to implement a full transitive closure. This reduces the amount of code, which in turn
reduces the effort required to maintain the code. We have shown how the Reach optimisation can be automat-
ically applied at runtime. This relieves the programmer from manually having to identify opportunities for
optimisation. A trade-off is that it adds complexity to the JRelCal project.

4.4 Integration with SAT

Integration of JRelCal with SAT makes the power of JRelCal available in the SAT, and vice versa: the various
source code fact extractors of the SAT become available to use in combination with JRelCal.

Their are two alternatives for integrating JRelCal with the SAT. Either we take a SIG graph and convert
it to a set of JRelCal relations, or we implement JRelCal using the SIG graph library. Since a lot of effort has
gone into the creation of a mature and efficient implementation of JRelCal, it is sensible to choose the former.
An additional advantage of the conversion approach is that it is relatively simple to implement.

We have created a class with facilities to convert a SIG graphs to JRelCal relations. The conversion
method takes a SIG graph and an EdgePredicate as arguments, and converts it to a JRelCal relation. We
use the unique identities of the graph’s vertices as elements of the relation. Code Fragment 4.10 shows the
implementation of the conversion method.

Instead of implementing the converter in a separate utility class, another possibility would be to add a
constructor to the Relation class that takes a SIG graph as an argument. The disadvantage of this approach,
however, is that a distribution of JRelCal would have to include the SIG graph classes.

1 public Relation <String , String > getRelation(EdgeTypePredicate edgeTypePredicate) {
2 Relation <String , String > result = new PairSetRelation <String , String >();
3 for (IEdge e : graph.getEdges(edgeTypePredicate)) {
4 result.add(new Pair <String , String >(e.getFromNode().getIdentity().

toNodeString(),
5 e.getToNode().getIdentity().toNodeString()));
6 }
7 return result;
8 }
9

10 SIGGraph2Relation converter = new SIGGraph2Relation(f);
11 assertEquals(rel, converter.getRelation(new EdgeTypePredicate("_")));

Code Fragment 4.10: Method for converting a SIG graph to a JRelCal relation and its use
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Figure 4.3: Example inputs and outputs of single- and multi-source transitive closure
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Chapter 5
Case study: Static estimation of test coverage

To verify the feasibility of the new JRelCal for use in industry (in particular for use at SIG) we have conducted
a case study in which we re-implement queries used in the research work on the static estimation of test
coverage of Alves et al. [4]. First, we will discuss the work of Alves et al., followed by a explanation of how
we have re-implemented their work using JRelCal. We validate our re-implementation by repeating some of
the original experiments and comparing our results with the results obtained by Alves et al.

5.1 Introduction

Test coverage is a measure for indicating how much of the production code is reached (or covered) by test
code. Test coverage is a good complement to unit testing: unit tests indicate whether a unit of code performs
as expected, and code coverage indicates what remains to be tested.

There are various tools available such as Clover 1 and EMMA 2 that compute code coverage dynamically
by instrumenting the source code with logging functionality to keep track of the executed parts of the software
system. Due to the dynamic nature of these solutions they require the availability of a running installation of
the analysed software.

In the context of standard software development projects, a running installation is inherently available.
However, in the context of third party evaluations of software, such as SIG’s Software Risk Assessments, this
may not be the case for various reasons: the software may require hardware that is not available to the SIG,
proprietary libraries may be required that are under a non-transferable license, the build and deployment pro-
cedure may not be reproducible, or instrumentation may not be feasible, e.g., due to space or time limitations
in case of embedded software.

Alves et al. show that it is possible to estimate test coverage by static analysis of the source code, which
removes the need for having a running installation of the software. The static estimation is implemented both
as relational queries in SemmleCode’s .QL and as a graph algorithm in the SIG Graph library. For validation,
the results are compared with those of the dynamic analysis tool Clover. The experimental results show a high
correlation between static estimation of coverage and true coverage at all levels for a significant number of
projects. However, outliers and high dispersion rates at package and class level lead to the conclusion that
static analysis is a good estimator of test coverage at the system level only.

Static estimation of test coverage is a suitable candidate for our case study since it is a typical example of
an analysis that SIG would like to perform on the source code of its clients. Furthermore, it is a scenario that
entails multiple aspects of the use of a source code query tool.

1http://www.atlassian.com/software/clover
2http://emma.sourceforge.net
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5.2 Approach

We follow the same approach as Alves et al. This approach involves reachability analysis on a graph structure
that is based on relations derived from the source code by static analysis. Although the derived structural
information is exact, the static nature of the derivation process implies that the call information is an approxi-
mation of the actual dynamic execution. This implies that the precision of the resulting estimation depends on
the precision of the call graph extraction. In their paper, Alves et al. discuss various sources of imprecision
including dynamic dispatching and control flow. Please refer to the paper for a more detailed discussion [4].

The approach can roughly be divided into the following steps:

1. Static analysis is performed to extract relations from the source code (both test and production code).
These relations represent structural and call information.

2. The test classes are identified and collected as a set.

3. To determine the production methods covered by the test class methods, a reachability analysis is per-
formed on a graph view of the extracted relations. The reachability analysis is done by performing the
MultiSourceReach operation using the test methods as sources.

4. To take into account call edges originating from class initialisers, the defines method relation is used to
determine the classes that define the covered methods. The class initialisers of these classes are used
as sources for the MultiSourceReach operation to determine the production methods covered by class
initialisers.

5. For each production class, the coverage is computed by taking the ratio of the number of methods it
defines and the number of covered methods.

6. The coverage estimations at package and system level are computed as ratio of the coverage counts at
class level.

In the traditional, dynamic, computation of test coverage three levels of code coverage are commonly
distinguished: statement, branch, and path coverage. Statement coverage indicates which statements in a
method or class have been executed, branch coverage which decision outcomes have been executed, and
path coverage which of the possible execution paths have been executed. Alves et al. compute coverage
by statically determining the methods that have been called by the test code. We call this method coverage.
The statically determined method coverage is less precise than the statement coverage level for dynamic test
coverage, e.g., 100% method coverage does not guarantee 100% statement coverage.

5.3 Implementation

The re-implementation of the static coverage query in JRelCal is guided by the steps listed in the previous
section. For this case study, the three most interesting steps of the approach are 2, 3, and 4: distinguishing
test code from production code, and identifying the covered methods using MultiSourceReach. The JRelCal
implementation of both steps is discussed in more detail below. The extraction of relations from the source
code in the first step is done using SemmleCode. This way, we ensure that we use the same relations as Alves
et al. The last two steps, the computation of the coverage ratios and the counting of the methods, are based
on the information derived at step 2, 3, and 4. The computations in these steps involve basic arithmetical
operations and are therefore, for the purpose of validating a code query technology, not interesting.

5.3.1 Distinguishing test code from production code

Often, production and test code is stored in different file system paths. Using this knowledge, a simple
heuristic for identifying test classes is to check whether a class is stored in a subdirectory of a known test
directory. For systems where this convention does not apply, other heuristics can be used, e.g. checking
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whether the class subclasses the JUnit TestCase class, or checking for a naming convention such as class
names ending with Test .

1 Predicate <String > containsTest = new Predicate <String >() {
2 public boolean evaluate(String s) {
3 return s.contains("/test/");
4 }
5 };
6
7 Set<String > testClasses = LOC.leftSection(containsTest);
8 Set<String > testMethods = DM.rightSection(testClasses);

Code Fragment 5.1: Distinguishing test code from production code in JRelCal

In JRelCal, this heuristic can be expressed as a predicate. Code Fragment 5.1 shows the creation of the
predicate and the identification of the test methods. To improve readability the names of relation variables
are in uppercase. DM is the defines method relation representing that a class or interface defines a method, and
LOC relates classes to the file system path of the file they are contained in. Both relations are extracted by
SemmleCode, written to disk in a RSF file, and read into memory by JRelCal. After creation of the predicate,
we take the left section (or image) of the LOC relation using the predicate containsTest to arrive at the test
classes. We take the right section of the DM relation using the test classes to arrive at the test methods. This
example shows that the extension of JRelCal with support for predicates allows us to elegantly express filtering
of relations.

5.3.2 Identification of covered methods

In order to detect all covered methods we have to perform the MultiSourceReach operation twice: the first
time using the test methods identified in the previous section as sources, the second time using class initialisers
as sources. Figure 5.1 depicts the traversals of both instances of the MultiSourceReach operation.

PC PC

m1 m2 m4 m5 m6

clinitTC

Figure 5.1: MultiSourceReach using both methods defined in test classes (TC) and class initialisers (clinit)
as sources. The grey arrows depict the MultiSourceReach traversals, the solid black arrows depict method
definition edges, and the dashed black arrows depict methods calls. The methods indicated in grey font and
defined in production classes (PC) are identified as covered methods.

As discussed in Section 4.3, we have extended JRelCal with operations that allow us to express reacha-
bility concepts in a query more efficiently. This can be observed in the first line of Code Fragment 5.2: the
multiSourceReach method computes a partial transitive closure and hides the actual traversing of the graph.

To take into account calls originating from class initialisers we identify the classes that are initialised by
using the results from the first call to multiSourceReach to take the left section of the DM relation. This
results in all the classes that define a covered method, and therefore are initialised. From these classes we
collect the class initialisers using the predicate isClInit and use these as sources for the second call to
multiSourceReach (Code Fragment 5.2, line 5) to obtain the methods that are covered indirectly via class
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initialisers. Finally, we merge the results of both calls to multiSourceReach. The result is a set containing
all covered production methods.

1 Set<String > directlyTestedMethods = multiSourceReach(CALL , testMethods);
2
3 Set<String > initializedClasses = DM.leftSection(directlyTestedMethods);
4 Set<String > clInits = DM.rangeRestriction(isClInit).rightSection(initializedClasses);
5 Set<String > indirectlyTestedMethods = multiSourceReach(CALL , clInits);
6
7 Set<String > allTestedMethods = directlyTestedMethods.union(indirectlyTestedMethods);

Code Fragment 5.2: Identification of covered methods using MultiSourceReach

5.4 Discussion

In this section we discuss the validation of our JRelCal implementation and compare the query to the .QL and
SIG graph library variants by Alves. Since we have already compared the query languages in detail in Chapter
3 we will limit the discussions in this section to the most significant parts of the queries: the identification of
test methods, and the identification of covered methods.

5.4.1 Validation

To validate our JRelCal re-implementation we have rerun the query for three of the 12 systems that were used
in the experiment of Alves. These systems are listed in Table 5.1. For all three systems the JRelCal queries
returned the exact same results as the original .QL query, making it safe to conclude that the re-implementation
is correct with respect to the original query.

System name Version Author / Owner Description LOC #Packages #Classes #Methods

JPacMan 3.04 Arie van Deursen Game used for OOP educational purposes 2,499 3 46 335
Utils 1.61 SIG Library of tools for static code analysis 37,738 37 506 4,533

Analysis 1.39 SIG Tools for static code analysis 267,542 284 3,199 22,315

Table 5.1: Characterisation of the systems used in the experiment order by LOC.

5.4.2 JRelCal compared to SIG Graph library

The implementation of the algorithm in the SIG Graph library is less declarative and less concise compared
to the JRelCal implementation. In this section we discuss the most significant differences to the JRelCal
implementation.

Code Fragment 5.3 demonstrates how the identification of test methods is implemented in the SIG graph
library: first, all nodes of the graph that are in the "test" java source context are collected using a predi-
cate. From these nodes the class and interface nodes are selected, again using a predicate. For every class
and interface, the test methods are collected by selecting the out nodes of METHOD_DEFINE edges using a
EdgeTypePredicate. When we compare this implementation to how the JRelCal implementation we observe
that in JRelCal the for-loops for iterating through the nodes is hidden by the leftSection and rightSection
operations, which results in a more concise and declarative query.

1 private Collection <INode > collectTestMethods(FileGraph graph) {
2 Collection <INode > result = new ArrayList <INode >();
3 Collection <INode > sourceNodes = graph.getNodes(new JavaSourceContextPredicate("test"))

;
4 for (INode sourceNode : sourceNodes) {
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5 Collection <INode > testClassesAndInterfaces = sourceNode.getOutNodes(new
SourceNodeDefinedTypesPredicate());

6 for (INode classOrInterface : testClassesAndInterfaces) {
7 Collection <INode > testMethods = classOrInterface.getOutNodes(new EdgeTypePredicate

(Edges.METHOD_DEFINE));
8 result.addAll(testMethods);
9 }

10 }
11 return result;
12 }

Code Fragment 5.3: Identification of test methods using the SIG graph library

The slice method is similar to the multiSourceReach method in that it implements a graph traversal to
collect the successors of a set of source nodes. The main differences can be found in that for a SIG graph we
have to indicate which edge types are used for the traversal (the AllCallsEdgePredicate), and that slice is
defined less generically than its counterpart multiSourceReach, since its definition only considers call edges.
To make it more general the predicate for selecting the edges should be exposed as parameter of the method.

1 private Collection <INode > slice(Collection <INode > criterium , FileGraph graph) {
2 Collection <INode > visited = new ArrayList <INode >();
3 Collection <INode > toVisit = new ArrayList <INode >();
4 toVisit.addAll(criterium);
5 while (!toVisit.isEmpty()) {
6 INode methodNode = toVisit.iterator().next();
7 toVisit.remove(methodNode);
8 visited.add(methodNode);
9 Collection <INode > calledMethods = methodNode.getOutNodes(new AllCallsEdgePredicate()

);
10 calledMethods.addAll(getInitializerCalledMethods(methodNode));
11 for (INode calledMethod : calledMethods) {
12 if ((!visited.contains(calledMethod)) && (!toVisit.contains(calledMethod)))
13 toVisit.add(calledMethod);
14 }
15 }
16 return visited;
17 }

Code Fragment 5.4: Slicing to collect covered methods using the SIG graph library

5.4.3 JRelCal compared to .QL

Code Fragment 5.5 and 5.6 show the two most essential aspects of the .OL implementation of the detection of
production methods that are covered by test methods.

1 predicate invoke(Callable m1, Callable m2) {
2 myPolyCall(m1,m2)
3 or
4 exists(Class c, Callable mi, Callable mj |
5 myPolyCall(m1,mi) and
6 c.contains(mi) and
7 c.contains(mj) and
8 mj.getName() = "<clinit >" and
9 myPolyCall(mj,m2)

10 )
11 }
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Code Fragment 5.5: .QL fragment showing the adapted notion of method invocation to include calls from
class initialisers

Fragment 5.5 shows Alves’ variation on the default invoke definition of SemmleCode. The difference
with the original implementation is that the new implementation takes into account methods that are called
from class initialisers . The predicate expresses that an invocation is either a polyCall from method m1 to
method m2 (defined in the standard .QL library to include virtual calls as well as standard method calls), or a
call of method m1 to a method that is defined in a class whose class initialisers calls method m2.

1 int numberOfTestMethodCallers() {
2 result = count(TestClass tc, Callable tm | tc.contains(tm) and invoke+(tm,this))
3 }

Code Fragment 5.6: .QL fragment showing the use of invoke in the .QL class that represents production code

Code Fragment 5.6 shows how the reachability issue is expressed by appending the + operation to the
invoke method. While in JRelCal we use the multiSourceReach method to express partial transitive closure,
in SemmleCode it depends on the optimisations performed by the query compiler whether the full transitive
closure for the invoke relation will be computed. The numberOfTestMethodCallers method is defined as a
member of a .QL class that represents a production class, this class defines predicates that define a production
class, analoguesly to a class that defines a test class. In this particular implementation production and test
classes are distinguished by their location on disk. An example of such a predicate is shown in Code Fragment
5.7

1 predicate isInTestPath(CompilationUnit cu) {
2 cu.getPath().matches("%/test/%")
3 }

Code Fragment 5.7: .QL fragment showing the predicate used to identify test classes

5.5 Conclusion

In this case-study JRelCal has shown to be a good alternative for the SIG graph library. JRelCal allows us to
express queries in a more concise and declarative way than is possible with the SIG graph library.
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Chapter 6
Conclusion

The main goal of this thesis project was to find a successor for the SIG graph library that allows SIG to
concisely, declaratively, and efficiently formulate queries on relations extracted from the source code by their
SAT.

Our first step was to compare existing source code querying tools. To do this, we have formulated a set of
criteria to compare tool features and suggested four benchmark queries to compare language features. From
the comparison we concluded that none of the tools entirely met the requirements of the SIG. Only JRelCal
offered both abstraction facilities and extendability in combination with an API for easy integration with the
SAT.

Since the original JRelCal was a prototype that had shortcomings in both design and implementation,
we have created a new and mature version that includes new features and a new implementation. First, we
have created an abstract relation class which facilitates adding new implementations. In the new version we
represent relations as adjacency lists which allows efficient implementation of many relational operations.
Furthermore, we have extended JRelCal with support for predicates. Predicates make it possible to conve-
niently express restrictions and exclusions on sets and relations. To integrate JRelCal with SIG’s SAT we have
created a converter that converts a SIG graph to a JRelCal relation. In this way, a seamless integration with
the SAT is obtained.

Transitive closure is one of the most computation intensive operations of JRelCal. Our approach in
optimising queries involving transitive closure is to add a partial transitive closure operation. In many queries
the full transitive operation can be replaced by the cheaper partial transitive closure operation, which prevents
unnecessary computation of successor sets. The optimisation can either be applied manually or by using a
runtime optimisation technique. For the validation of our transitive closure optimisation we have carried out
several experiments to measure the performance on different types of graphs. We compared the performance
with Crocopat and previous JRelCal implementations. The results show that it is an effective optimisation.

We have validated the new JRelCal in a case study in which we re-implement the work of Alves et al. The
case study shows that JRelCal allows us to re-implement the queries of Alves both concisely, declaratively,
and efficiently.

6.1 Research question

In Section 1.3 we formulated our research question:

Can we find a successor of the SIG graph library that allows the SIG to formulate
source code queries concisely, declaratively and efficiently?

Based on the results described in this thesis we can positively answer this question: JRelCal allows SIG to
formulate their source code queries concisely, declaratively and efficiently.

6.2 Contributions

The contributions of our work can be summarised as follows:
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• The formulation of a set of benchmark queries to compare and characterise the languages of five source
code querying tools.

• The formulation of a set of ten criteria: six criteria to compare tool features, four to compare language
features.

• A comparison of the languages and tool features of five different source code querying tools with respect
to the benchmark queries and the criteria.

• A declarative, concise, and efficient way to express source code queries.

• A new source code query tool library with the following unique combination of features:

– Predicates to conveniently express restrictions and exclusions on sets and relations.

– An efficient representation of relations based on adjacency lists.

– Efficient evaluation of reachability queries.

– The possibility to add new implementations of relations.

– Conversion mechanisms allowing the creation of relations from SIG graphs and RSF files.

– A large collection of unit tests.

6.3 Future work

As a result of this thesis project, we now essentially have two projects: the comparison of code query tech-
nologies, and JRelCal. Both can be further improved and extended. First, we explore some ideas for further
work on our tool comparison, followed by a discussion of several possibilities for future work on JRelCal.

6.3.1 Tool comparison

As we explained in Section 3.1, some code querying tools we have encountered have not been considered in
this paper. This is certainly something that can be addressed in the future. Besides the ones we have seen thus
far, there may be tools that we have missed, and in the future new tools will probably emerge.

A different dimension to extend the tool comparison in is to add more criteria. The most important of
these is performance. Although we have actually measured the performance for most of the tools, the results
are still inconclusive and we need to spend more time to be able to compare the tools fairly and correctly. For
this reason, we have omitted the performance criterion from the tool comparison.

6.3.2 Optimisation by algebraic transformation

Numerous algebraic transformations can be used to rewrite an expression into an equivalent expression. A
trivial example of an algebraic simplification is the following:

R−1−1
= R

To avoid unnecessary computations, the double inverse can be eliminated.
Another transformation is called ”reduction in strength” [2]. This is the replacement of a statement by

a cheaper, but equivalent statement. An example of such an transformation is the optimisation of transitive
closure operations by replacing them with a Reach operation when applicable. Besides this example, there
may be more opportunities for applying the ”reduction in strength” pattern.

Note that domain-specific optimisations and transformations may be hard to realise in a general-purpose
language such as Java without resorting to using program transformation tools or adapting the compiler. How-
ever, in Section 4.3.4 we have shown how the ”Reach optimisation” can be implemented within Java as a
runtime optimisation.
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6.3.3 Optimisation by improving implementation

Another approach to optimising JRelCal is to improve its implementation. We distinguish two types of imple-
mentation optimisations: representation optimisation and optimisation of operations.

Depending on the properties of a relation there may be an optimal representation. For example, to rep-
resent sparse graphs, we currently use an adjacency list representation. However, when a graph is dense, an
adjacency matrix is a better representation. Other examples of properties of relations are the size of a relation,
or whether a relation is injective, bijective, etc. The performance of operations partially depends on the rep-
resentation of a relation. As we have mentioned in Section 4.3.5, a depth first search algorithm relies heavily
on obtaining the neighbours of a vertex. It mainly depends on the representation whether this operation can
be implemented efficiently.

Relational operations such as computing the transitive closure or the inverse of a relation can also be
optimised by improving the algorithm or replacing it by a new algorithm. For example, it would be interesting
to implement Tarjan’s [67] algorithm for computing transitive closure and see how it compares to our current
implementation.

6.3.4 Supporting queries involving n-ary relations

In examining the expressiveness of his Calculus of Binary Relations [68], Tarski found that the following can
not be expressed in his binary relational calculus:

∀x∀y∀z∃u(xRu∧ yRu∧ zRu)

If we would try to express this first order logic expression in binary relational calculus the first step is to use
relational composition to ’simulate’ the existential quantification ∃u. To do this, we first rewrite the previous
expression to the following, equivalent expression:

∀x∀y∀z∃u(xRu∧uR−1y∧uR−1z)

This makes it possible to express the first part of the expression like this:

R◦R−1

However, we cannot simulate the last part of the expression using relational composition. Veloso [72] explains
that the reason for this is that BRC has no variables over individuals and the relational composition R ◦R−1

”consumes”, so to speak, the variable u.
We can overcome this difficulty by extending BRC with a new operation: the fork operation. In [72],

Veloso shows that the extension of binary relational calculus with a fork operation will make it possible
to express this query. Moreover, Veloso proves that by extending the BRC with the fork operation and an
additional concatenation operation and two new constants, BRC will have the expressive power of first-order
logic. The fork operation is defined as follows:

ROS = {(x,(y,z)) | xRy∧ xSz}

The extension of BRC with the fork operation allows us to express Tarski’s problem as follows:

R◦ (R−1OR−1)

In JRelCal we can provide the fork operation with the following method signature:

public Relation <S, Pair <T,T>> fork(Relation <S,T> relation){...}

It would be interesting to see how we can properly add the fork operation to JRelCal and see whether it is a
useful operation in the domain of source code analysis.
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6.3.5 Other language constructs

During the tool comparison we found that some tools had useful language constructs that are not available in
JRelCal. It would be interesting to take a closer look at these constructs and see whether they can be added to
JRelCal. Since most of these language constructs rely on syntactic constructs, we expect that it will be hard
to elegantly implement these in Java.

• List Comprehensions A powerful construct we found in Rscript is list comprehension. The Rscript im-
plementations of the benchmark queries in Section 3.3 show that list comprehensions allow the concise
expression of many code queries.

• Existentials Crocopat offers an existential quantifier operation. An existential quantifier can be useful
to express queries that only need one condition to hold to be able to conclude something, e.g., lifting
from class to package level only requires the discovery of one relation on class level to have a relation
on package level.

• Aggregates SemmleCode offers an aggregate constructs that allows for concise expression of counting,
summing, minning, maxing, or averaging of values. A concrete example is select sum(Class c | c.

getPackage().getName().matches("org.jhotdraw%")| c.getNrOfMethods()) in which the sum of the lines of
code in all packages that match the regular expression org.jhotdraw% is computed. The general format
for an aggregation is: aggfunc(declarations | condition | value) Here aggfunc is one of count, sum,

max, min, or avg(for average).

• Regular path expressions GReQL 2 supports regular path expressions, which make it possible to
search for paths that satisfy particular properties. They can be useful to express reachability queries that
require the path to the reachable vertices to satisfy particular properties.

6.3.6 Creation of a DSL on top of JRelCal

By creating a DSL on top of JRelCal we reuse its implementation, and a DSL can make it easier to implement
some of our previous future work suggestions: implementing algebraic optimisations becomes easier because
these can be performed at compile time in the DSL compiler, and since we can create or own syntax, adding
new syntactic constructs becomes possible.
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