[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

Corrective Hints for Type Incorrect Generic
Java Programs

Jurriaan Hage
e-mail: jur@cs.uu.nl
homepage: http://www.cs.uu.nl/people/jur/

Joint work with Nabil ElI Boustani.
Department of Information and Computing Sciences, Universiteit Utrecht

January 18, 2010

The topic of our work

» How can we modify the type checking process of Java, so
that implementations may give more informative error

messages?
_’\\\‘Wﬁ) [Faculty of Science
%Ué Universiteit Utrecht Information and Computing Sciences]
2 N

The topic of our work

» How can we modify the type checking process of Java, so
that implementations may give more informative error
messages?

» Zooming in: only for generic method invocations
A first step was published in (Boustani et al, PEPM '09)

5&\\“’%}) [Faculty of Science
; N % Universiteit Utrecht Information and Computing Sciences]
2 N

The topic of our work

» How can we modify the type checking process of Java, so
that implementations may give more informative error
messages?

» Zooming in: only for generic method invocations
A first step was published in (Boustani et al, PEPM '09)
» Zooming in: providing hints that may help resolve type
€rrors.

:gwyf/) [Faculty of Science
K

= o o a . .
§ Universiteit Utrecht Information and Computing Sciences]

2 %ﬂ»

In a larger context

v

My agenda: Error Diagnosis Oriented Static Analysis

v

Multiple languages, multiple paradigms, multiple analyses.
» Java, Haskell, PHP, JavaScript
> intrinsic type systems, security analysis, optimizing analyses
with explicit annotations.

v

Cross-fertilization: parametric polymorphism in Haskell
prepares for genericity in Java.

v

Sharing experience, heuristics and implementations
between compilers

Back to Java...

v

‘S\\‘Wﬂ [Faculty of Science

AW
; N) % Universiteit Utrecht Information and Computing Sciences]

N

A selection of complications

» The (generics part of the) JLS is large and complicated
» The JLS is operational rather than declarative.
» Hard on programmers, harder on compiler builders.

» Type error messages provided by major tools are not very
informative

» Types not part of the program are constructed and appear
in error messages
» Compilers follow the JLS slovenly

» Similar issues, but dissimilar messages
» Deviation from JLS gives programs that should not compile

See (Boustani et al, PEPM '09) for illustrations.

v

5&\\“% [Faculty of Science
; N) % Universiteit Utrecht Information and Computing Sciences]

N

The current paper

Make error messages more informative by providing hints as to
how they may be resolved.

What is a hint?

5&\\“’%}) [Faculty of Science
% N § Universiteit Utrecht Information and Computing Sciences]
N

5 \

The current paper

Make error messages more informative by providing hints as to
how they may be resolved.

What is a hint?

A hint describes how the program may be changed so that the
observed error does not anymore occur.

5&\\“% [Faculty of Science
; % Universiteit Utrecht Information and Computing Sciences]
K

&J
5 N

The current paper

Make error messages more informative by providing hints as to
how they may be resolved.

What is a hint?

A hint describes how the program may be changed so that the
observed error does not anymore occur.

Complication: we have to guess at the programmer's intentions.

‘S\\‘Wﬂ [Faculty of Science

AW
; N) % Universiteit Utrecht Information and Computing Sciences]

N

The current paper

Make error messages more informative by providing hints as to
how they may be resolved.

What is a hint?

A hint describes how the program may be changed so that the
observed error does not anymore occur.

Complication: we have to guess at the programmer's intentions.

Danger: we may easily guess wrong.

‘S\\‘Wﬂ [Faculty of Science

AW
? : Universiteit Utrecht Information and Computing Sciences]

N

The current paper

Make error messages more informative by providing hints as to
how they may be resolved.

What is a hint?

A hint describes how the program may be changed so that the
observed error does not anymore occur.

Complication: we have to guess at the programmer's intentions.
Danger: we may easily guess wrong.

A solution: weigh evidence in order to decide when to provide
hints.

Implemented into Jastad EJC (Hedin et al.)

@Wﬁ' [Faculty of Science

AW
; N) % Universiteit Utrecht Information and Computing Sciences]

N

1. Examples

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = = E DA

Example 1: exploit return type invariance §1

<T> List<T> foo(Map<T, ? super T> a){}

Map<Number, Integer> m = null;
List<Integer> ret = foo(m);

javac:
cxt_heuristic/Testl.java:6:

<T>foo(Map<T,? super T>) in Testl cannot be applied
to (Map<Number,Integer>)

ejc:
The method foo(Map<T, 7 super T) in the type Testl
is not applicable for the arguments
(Map<Number , Integer>)

AW
; N) % Universiteit Utrecht Information and Computing Sciences]

@Wﬂ [Faculty of Science
K

Example 1: exploit return type invariance §1

<T> List<T> foo(Map<T, ? super T> a){}

Map<Number, Integer> m = null;
List<Integer> ret = foo(m);

ours:
cxt_heuristic/Testl. java:6

Method <T>foo(Map<T, ? super T>) of type
Testl is not applicable for the argument of
type (Map<Number, Integer>), because:
[*] The type Integer in Map<Number, Integer>
on 5:9(5:21) is not a supertype of the inferred
type for T: Number. However, replacing Number
on 5:13 with Integer may solve the type conflict.
= b % Universiteit Utrecht Information and Computing Sciences]

7

@Wﬂ [Faculty of Science
K

Example 2: satisfy subtype conflicts §1

<T> void foo(T a, T b,
Map<? super T, ? super T> c) {}

Map<Number, Double> m = ...;
Number n = ...;
foo(1, n, m);

Testl.java:13
Method <T>foo(T, T, Map<? super T, ? super T>) of
type Testl is not applicable to the arguments of
type(int, Number, Map<Number, Double>), because:
[*] The type Double in Map<Number, Double> on
11:9(11:21) is not a supertype of the inferred
type for T: Number. However, replacing Double on
_ 11:21 with Number may solve the type conflict.
RN [Faculty of Science
4

AW
? N) % Universiteit Utrecht Information and Computing Sciences]

N

2. Adapting the type checking process

&‘W% [Faculty of Science

N ZZ a qo-0 a - .
ESIN) é Universiteit Utrecht Information and Computing Sciences]

T\

The Java type checking process §2

Type Checking

(N
Method Resolution
Invocation X No] Errelr
p— Generics » or
A
v
Yes
Actual +Formal
parameters
Type arguments
\J
i N Constraints L -
Constraint decomposition Generic instantiation
~ J

Method resolution determines a single, most specific method
that the programmer may be calling.

» Multiset is reduced by applying various heuristics.

» Ambiguity, or lack of a fitting method: error message is

returned.
5&\\“% [Faculty of Science
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]
11 AN

The Java type checking process §2

11

Type Checking
-

Method Resolution

\/

. error
Invocation .
— Generics Y or

v
Yes
Actual +Formal
parameters

Type arguments

\
) . Constraints - .
Constraint decomposition Generic instantiation
. J

Relate arguments to parameters via constraints:
foo(new HashMap<Number, String>, new Integer(2))
to call void foo(HashMap<T,S extends T> map, S)

gives
HashMap<Number, String> <: HashMap<T, S extends T>
Integer <: S
@Wﬁ' [Faculty of Science
Information and Computing Sciences]

NI
o= . P
Z U F Universiteit Utrecht

N

The Java type checking process §2

Type Checking

(N
Method Resolution
Invocation X No] _ el
— Generics y\ » or
v
Yes
Actual +Formal
parameters
Type arguments
\J
. . Constraints L .
Constraint decomposition Generic instantiation
~ J

Decompose constraints: we get
{T = Number, S = String, S <: T, Integer <: S}

‘S\ Vf/) [Faculty of Science
; V= § Universiteit Utrecht Information and Computing Sciences]
11 N

The Java type checking process §2

Type Checking

(N
Method Resolution
Invocation . No] el
—_— Generics Y » or
v
Yes
Actual +Formal
parameters
Type arguments
\
j o Constraints . -
Constraint decomposition Generic instantiation
\\§ J

Type inference/generic instantiation:
find “suitable” types for T and S, T = Number and S = String.

5&\\“% [Faculty of Science
; N) % Universiteit Utrecht Information and Computing Sciences]
no N

The Java type checking process §2

Type Checking
e N

Method Resolution
Invocation X No] el
—_— Generics Y » or
v
Yes
Actual +Formal
parameters
Type arguments
\
j o Constraints . -
Constraint decomposition Generic instantiation
\\§ J

Type inference/generic instantiation:

find “suitable” types for T and S, T = Number and S = String.
Type checking:

subtype constraint S <: T and Integer <: S both fail.

5&\\“% [Faculty of Science
; N) % Universiteit Utrecht Information and Computing Sciences]

1 N

Adaptations to the Java type checking process §2

» Principle 1: relax

» Allow more than one candidate method.
» Avoid taking decisions influenced by what is likely to be
wrong. Erase generics!

» Principle 2: don't change, add

» Error messages are constructed after type checking has
failed.

» Principle 3: hold on (to constraints)
» Message is based on the original constraints.

» Again, see (Boustani et al, PEPM '09)

= o o a . .
§ Universiteit Utrecht Information and Computing Sciences]

:gwyf/) [Faculty of Science
12 TN

Conflict of interest? §2

» deciding type correctness is easier with simplified
constraints, but

» the original constraints are closer to the program.
> easier to make informed decisions
> error messages will make more sense
» makes it possible to provide hints

5&\\“% . . . [Facul.ty of S'cience
= b = Universiteit Utrecht Information and Computing Sciences]
N
13 /[

Conflict of interest? §2

13

» deciding type correctness is easier with simplified
constraints, but
» the original constraints are closer to the program.
> easier to make informed decisions
» error messages will make more sense
» makes it possible to provide hints
» In practice, compiler builders choose one of the two
approaches

» But why not do both?

5&\\“% [Faculty of Science
; N) % Universiteit Utrecht Information and Computing Sciences]

N

How does it work, a stepwise description §2

» After a type error is discovered, we consider the original
constraints anew.

» The constraints cannot be satisfied simultaneously.

» But which constraint(s) are most likely to be responsible?
» Based on that information we can
> provide a suitable error message
> try to come up with a hint that solves the problem.
» Various heuristics consider the set of constraints
(independently) and try to find a suitable hint.
» An error manager decides which of these is best
» Heuristics are currently ranked in a fixed order.

» and attaches it to the error message.

5&\\“% [Faculty of Science
; N) % Universiteit Utrecht Information and Computing Sciences]
K

14 N

3. Heuristics

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = = E DA

Heuristics 63

We add heuristics to the process to:

» Bias the error messages in the presence of enough
evidence.

> Ten say T should be Number, one says its String.

» Encapsulate expert knowledge about the kind of mistakes
people make.
> Not every programmer understands that or why collector
classes are invariant, so if that knowledge solves the
problem we can explicitly mention this.

» Heuristics decide which constraint is erroneous, but also
suggest how to avoid generating that constraint in the next
compile.

» Suggest to replace String with Number.

In more detail: context type invariance and super Object
‘S\\‘Wﬂ [Faculty of Science

AW
; N) % Universiteit Utrecht Information and Computing Sciences]

16 N

Example: exploit context type invariance (again) §3

<T> List<T> foo(Map<T, ? super T> a){}

Map<Number, Integer> m = null;
List<Integer> ret = foo(m);

Works under the following circumstances

» method has a generic/parameterized return type
» that contains type variables
» method invocation is in an assignment context

» the assignment should give rise to an equality constraint
> Here between T and Integer

5&\\“% [Faculty of Science
; % Universiteit Utrecht Information and Computing Sciences]
K

&J
i N

Example heuristic: context type invariance §3

<T> List<T> foo(Map<T, ? super T> a){}

Map<Number, Integer> m = null;
List<Integer> ret = foo(m);

» The assignment gives concrete information about T.
» that we hope is correct.

» Verify that information is consistent with constraints
derived from the method signature.

» What should change in the invocation to accommodate:
Map<Number, Integer> —> Map<Integer, Integer>

» The hint suggests this change: However, replacing
Number on 5:13 with Integer may solve the type

conflict.
5&\\“% [Faculty of Science
%U§ Universiteit Utrecht Information and Computing Sciences]
18 YN

Example: context type invariance (advanced) §3

<T, R, S extends Map<R, T>>

Map<T, R> baz(T a, R b, S c) {}
Number t = ...;
Number r 00
Map<Double, Integer> ms = ...;
Map<Integer, Double> ret = baz(t, r, ms);

<omitted for reasons of space> because:
[*] The type Map<Double, Integer> on 14:9 is
not a subtype of S’s upper bound Map<Number,
Number> in ‘S extends Map<R, T>‘. However,
replacing the types:
- Number on 12:9 with Integer
— Number on 13:9 with Double
5 may solve the type conflict. (Facalty of Science

N , wes
; S Universiteit Utrecht Information and Computing Sciences]
g

19 N

Example heuristic: super Object §3

20

v

What can you do with a variable of the following type?
List<? super Object>

v

Any value can be added to the list: every type is a subtype
of Object, so also of any supertype of Object.

» You can only safely read values of type Object.

» Therefore, the list behaves exactly like List<Object>.

» The use of ? may make a program type incorrect.
>

The heuristic
> detects constraints that mention ? super Object
> replaces these parts with Object,
» verifies that the constraint set becomes satisfiable.

» Similarly, ? extends X where X is final can be dealt with.

‘S\\‘Wﬂ [Faculty of Science

AW
? N) % Universiteit Utrecht Information and Computing Sciences]

N

Example: super Object §3
<T> void foo(Map<T, T> a) {}

Map<? super Object, 7 super Object> m = ...
foo(m);

Testl.java:6
Method <T>foo(Map<T, T>) of type Testl is not
applicable to the argument of type
(Map<? super Object, 7 super Object>), because:
[*] ‘? super Object’ may not always equal
‘? super Object’ and invariance demands this.
However, replacing
- ‘? super Object’ on 5:13
- ‘? super Object’ on 5:28
Sy with Object may solve the type conflict.
7 N

;7 & = Universiteit Utrecht

21 N

[Faculty of Science
Information and Computing Sciences]

4. Wrapping up

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = = E DA

Summary 54

> | have

sketched the type inference process,

» discussed the use of heuristics,

> illustrated by one or two example heuristics,
» and gave examples of their effects.

v

» | omitted

majority heuristic for equality constraints (5.1)
confusing super and extends (5.3).
mismatches between super and extends (5.3.2)
majority heuristic for subtype conflicts (5.4)
warnings (5.5)

illustrated by many more examples

related work

vV VY VY VY VY VY

‘S\\‘Wﬂ [Faculty of Science

AW
? N) % Universiteit Utrecht Information and Computing Sciences]

23 N

Future work 54

» Become a (Generic) Java expert
» Thus far only (generic) invocations.
» What about other constructs, like inner classes?
» More heuristics, also for the non-generic parts
» Expert and experimental validation.
» Collect programs: weird and normal.
» Have any? Send them to jur@cs.uu.nl.
» Other combinations of subtyping and generics.

» Johan Nordlander's Timber

5&\\“’7/} [Faculty of Science

= o o q . .
= % Universiteit Utrecht Information and Computing Sciences]

24 KN

	Examples
	Adapting the type checking process
	Heuristics
	Wrapping up

