
[Faculty of Science
Information and Computing Sciences]

Corrective Hints for Type Incorrect Generic
Java Programs

Jurriaan Hage
e-mail: jur@cs.uu.nl

homepage: http://www.cs.uu.nl/people/jur/

Joint work with Nabil El Boustani.

Department of Information and Computing Sciences, Universiteit Utrecht

January 18, 2010



[Faculty of Science
Information and Computing Sciences]

2

The topic of our work

I How can we modify the type checking process of Java, so
that implementations may give more informative error
messages?

I Zooming in: only for generic method invocations
A first step was published in (Boustani et al, PEPM ’09)

I Zooming in: providing hints that may help resolve type
errors.



[Faculty of Science
Information and Computing Sciences]

2

The topic of our work

I How can we modify the type checking process of Java, so
that implementations may give more informative error
messages?

I Zooming in: only for generic method invocations
A first step was published in (Boustani et al, PEPM ’09)

I Zooming in: providing hints that may help resolve type
errors.



[Faculty of Science
Information and Computing Sciences]

2

The topic of our work

I How can we modify the type checking process of Java, so
that implementations may give more informative error
messages?

I Zooming in: only for generic method invocations
A first step was published in (Boustani et al, PEPM ’09)

I Zooming in: providing hints that may help resolve type
errors.



[Faculty of Science
Information and Computing Sciences]

3

In a larger context

I My agenda: Error Diagnosis Oriented Static Analysis
I Multiple languages, multiple paradigms, multiple analyses.

I Java, Haskell, PHP, JavaScript
I intrinsic type systems, security analysis, optimizing analyses

with explicit annotations.

I Cross-fertilization: parametric polymorphism in Haskell
prepares for genericity in Java.

I Sharing experience, heuristics and implementations
between compilers

I Back to Java...



[Faculty of Science
Information and Computing Sciences]

4

A selection of complications

I The (generics part of the) JLS is large and complicated
I The JLS is operational rather than declarative.

I Hard on programmers, harder on compiler builders.

I Type error messages provided by major tools are not very
informative

I Types not part of the program are constructed and appear
in error messages

I Compilers follow the JLS slovenly
I Similar issues, but dissimilar messages
I Deviation from JLS gives programs that should not compile

I See (Boustani et al, PEPM ’09) for illustrations.



[Faculty of Science
Information and Computing Sciences]

5

The current paper

Make error messages more informative by providing hints as to
how they may be resolved.

What is a hint?

A hint describes how the program may be changed so that the
observed error does not anymore occur.

Complication: we have to guess at the programmer’s intentions.

Danger: we may easily guess wrong.

A solution: weigh evidence in order to decide when to provide
hints.

Implemented into Jastad EJC (Hedin et al.)



[Faculty of Science
Information and Computing Sciences]

5

The current paper

Make error messages more informative by providing hints as to
how they may be resolved.

What is a hint?

A hint describes how the program may be changed so that the
observed error does not anymore occur.

Complication: we have to guess at the programmer’s intentions.

Danger: we may easily guess wrong.

A solution: weigh evidence in order to decide when to provide
hints.

Implemented into Jastad EJC (Hedin et al.)



[Faculty of Science
Information and Computing Sciences]

5

The current paper

Make error messages more informative by providing hints as to
how they may be resolved.

What is a hint?

A hint describes how the program may be changed so that the
observed error does not anymore occur.

Complication: we have to guess at the programmer’s intentions.

Danger: we may easily guess wrong.

A solution: weigh evidence in order to decide when to provide
hints.

Implemented into Jastad EJC (Hedin et al.)



[Faculty of Science
Information and Computing Sciences]

5

The current paper

Make error messages more informative by providing hints as to
how they may be resolved.

What is a hint?

A hint describes how the program may be changed so that the
observed error does not anymore occur.

Complication: we have to guess at the programmer’s intentions.

Danger: we may easily guess wrong.

A solution: weigh evidence in order to decide when to provide
hints.

Implemented into Jastad EJC (Hedin et al.)



[Faculty of Science
Information and Computing Sciences]

5

The current paper

Make error messages more informative by providing hints as to
how they may be resolved.

What is a hint?

A hint describes how the program may be changed so that the
observed error does not anymore occur.

Complication: we have to guess at the programmer’s intentions.

Danger: we may easily guess wrong.

A solution: weigh evidence in order to decide when to provide
hints.

Implemented into Jastad EJC (Hedin et al.)



[Faculty of Science
Information and Computing Sciences]

6

1. Examples



[Faculty of Science
Information and Computing Sciences]

7

Example 1: exploit return type invariance §1

<T> List<T> foo(Map<T, ? super T> a){}
...
Map<Number, Integer> m = null;
List<Integer> ret = foo(m);

javac:
cxt_heuristic/Test1.java:6:
<T>foo(Map<T,? super T>) in Test1 cannot be applied
to (Map<Number,Integer>)

ejc:
The method foo(Map<T, ? super T) in the type Test1
is not applicable for the arguments
(Map<Number,Integer>)



[Faculty of Science
Information and Computing Sciences]

8

Example 1: exploit return type invariance §1

<T> List<T> foo(Map<T, ? super T> a){}
...
Map<Number, Integer> m = null;
List<Integer> ret = foo(m);

ours:
cxt_heuristic/Test1.java:6
Method <T>foo(Map<T, ? super T>) of type
Test1 is not applicable for the argument of
type (Map<Number, Integer>), because:
[*] The type Integer in Map<Number, Integer>
on 5:9(5:21) is not a supertype of the inferred
type for T: Number. However, replacing Number
on 5:13 with Integer may solve the type conflict.



[Faculty of Science
Information and Computing Sciences]

9

Example 2: satisfy subtype conflicts §1

<T> void foo(T a, T b,
Map<? super T, ? super T> c) {}

...
Map<Number, Double> m = ...;
Number n = ...;
foo(1, n, m);

Test1.java:13
Method <T>foo(T, T, Map<? super T, ? super T>) of
type Test1 is not applicable to the arguments of
type(int, Number, Map<Number, Double>), because:
[*] The type Double in Map<Number, Double> on
11:9(11:21) is not a supertype of the inferred
type for T: Number. However, replacing Double on
11:21 with Number may solve the type conflict.



[Faculty of Science
Information and Computing Sciences]

10

2. Adapting the type checking process



[Faculty of Science
Information and Computing Sciences]

11

The Java type checking process §2

Method resolution determines a single, most specific method
that the programmer may be calling.

I Multiset is reduced by applying various heuristics.

I Ambiguity, or lack of a fitting method: error message is
returned.



[Faculty of Science
Information and Computing Sciences]

11

The Java type checking process §2

Relate arguments to parameters via constraints:
foo(new HashMap<Number, String>, new Integer(2))
to call void foo(HashMap<T,S extends T> map, S)

gives
HashMap<Number, String> <: HashMap<T, S extends T>
Integer <: S



[Faculty of Science
Information and Computing Sciences]

11

The Java type checking process §2

Decompose constraints: we get
{T = Number, S = String, S <: T, Integer <: S}



[Faculty of Science
Information and Computing Sciences]

11

The Java type checking process §2

Type inference/generic instantiation:
find “suitable” types for T and S, T = Number and S = String.



[Faculty of Science
Information and Computing Sciences]

11

The Java type checking process §2

Type inference/generic instantiation:
find “suitable” types for T and S, T = Number and S = String.
Type checking :
subtype constraint S <: T and Integer <: S both fail.



[Faculty of Science
Information and Computing Sciences]

12

Adaptations to the Java type checking process §2

I Principle 1: relax
I Allow more than one candidate method.
I Avoid taking decisions influenced by what is likely to be

wrong. Erase generics!

I Principle 2: don’t change, add
I Error messages are constructed after type checking has

failed.

I Principle 3: hold on (to constraints)
I Message is based on the original constraints.

I Again, see (Boustani et al, PEPM ’09)



[Faculty of Science
Information and Computing Sciences]

13

Conflict of interest? §2

I deciding type correctness is easier with simplified
constraints, but

I the original constraints are closer to the program.
I easier to make informed decisions
I error messages will make more sense
I makes it possible to provide hints

I In practice, compiler builders choose one of the two
approaches

I But why not do both?



[Faculty of Science
Information and Computing Sciences]

13

Conflict of interest? §2

I deciding type correctness is easier with simplified
constraints, but

I the original constraints are closer to the program.
I easier to make informed decisions
I error messages will make more sense
I makes it possible to provide hints

I In practice, compiler builders choose one of the two
approaches

I But why not do both?



[Faculty of Science
Information and Computing Sciences]

14

How does it work, a stepwise description §2

I After a type error is discovered, we consider the original
constraints anew.

I The constraints cannot be satisfied simultaneously.

I But which constraint(s) are most likely to be responsible?
I Based on that information we can

I provide a suitable error message
I try to come up with a hint that solves the problem.

I Various heuristics consider the set of constraints
(independently) and try to find a suitable hint.

I An error manager decides which of these is best
I Heuristics are currently ranked in a fixed order.

I and attaches it to the error message.



[Faculty of Science
Information and Computing Sciences]

15

3. Heuristics



[Faculty of Science
Information and Computing Sciences]

16

Heuristics §3

We add heuristics to the process to:

I Bias the error messages in the presence of enough
evidence.

I Ten say T should be Number, one says its String.

I Encapsulate expert knowledge about the kind of mistakes
people make.

I Not every programmer understands that or why collector
classes are invariant, so if that knowledge solves the
problem we can explicitly mention this.

I Heuristics decide which constraint is erroneous, but also
suggest how to avoid generating that constraint in the next
compile.

I Suggest to replace String with Number.

In more detail: context type invariance and super Object



[Faculty of Science
Information and Computing Sciences]

17

Example: exploit context type invariance (again) §3

<T> List<T> foo(Map<T, ? super T> a){}
...
Map<Number, Integer> m = null;
List<Integer> ret = foo(m);

Works under the following circumstances

I method has a generic/parameterized return type

I that contains type variables

I method invocation is in an assignment context
I the assignment should give rise to an equality constraint

I Here between T and Integer



[Faculty of Science
Information and Computing Sciences]

18

Example heuristic: context type invariance §3

<T> List<T> foo(Map<T, ? super T> a){}
...
Map<Number, Integer> m = null;
List<Integer> ret = foo(m);

I The assignment gives concrete information about T.

I that we hope is correct.

I Verify that information is consistent with constraints
derived from the method signature.

I What should change in the invocation to accommodate:
Map<Number, Integer> =⇒ Map<Integer, Integer>

I The hint suggests this change: However, replacing
Number on 5:13 with Integer may solve the type
conflict.



[Faculty of Science
Information and Computing Sciences]

19

Example: context type invariance (advanced) §3

<T, R, S extends Map<R, T>>
Map<T, R> baz(T a, R b, S c) {}

Number t = ...;
Number r = ...;
Map<Double, Integer> ms = ...;
Map<Integer, Double> ret = baz(t, r, ms);

<omitted for reasons of space> because:
[*] The type Map<Double, Integer> on 14:9 is
not a subtype of S’s upper bound Map<Number,
Number> in ‘S extends Map<R, T>‘. However,
replacing the types:
- Number on 12:9 with Integer
- Number on 13:9 with Double
may solve the type conflict.



[Faculty of Science
Information and Computing Sciences]

20

Example heuristic: super Object §3

I What can you do with a variable of the following type?

List<? super Object>

I Any value can be added to the list: every type is a subtype
of Object, so also of any supertype of Object.

I You can only safely read values of type Object.

I Therefore, the list behaves exactly like List<Object>.

I The use of ? may make a program type incorrect.
I The heuristic

I detects constraints that mention ? super Object
I replaces these parts with Object,
I verifies that the constraint set becomes satisfiable.

I Similarly, ? extends X where X is final can be dealt with.



[Faculty of Science
Information and Computing Sciences]

21

Example: super Object §3

<T> void foo(Map<T, T> a) {}
...
Map<? super Object, ? super Object> m = ...;
foo(m);

Test1.java:6
Method <T>foo(Map<T, T>) of type Test1 is not
applicable to the argument of type
(Map<? super Object, ? super Object>), because:
[*] ‘? super Object’ may not always equal
‘? super Object’ and invariance demands this.
However, replacing
- ‘? super Object’ on 5:13
- ‘? super Object’ on 5:28
with Object may solve the type conflict.



[Faculty of Science
Information and Computing Sciences]

22

4. Wrapping up



[Faculty of Science
Information and Computing Sciences]

23

Summary §4

I I have
I sketched the type inference process,
I discussed the use of heuristics,
I illustrated by one or two example heuristics,
I and gave examples of their effects.

I I omitted
I majority heuristic for equality constraints (5.1)
I confusing super and extends (5.3).
I mismatches between super and extends (5.3.2)
I majority heuristic for subtype conflicts (5.4)
I warnings (5.5)
I illustrated by many more examples
I related work



[Faculty of Science
Information and Computing Sciences]

24

Future work §4

I Become a (Generic) Java expert
I Thus far only (generic) invocations.

I What about other constructs, like inner classes?

I More heuristics, also for the non-generic parts

I Expert and experimental validation.
I Collect programs: weird and normal.

I Have any? Send them to jur@cs.uu.nl.

I Other combinations of subtyping and generics.
I Johan Nordlander’s Timber


	Examples
	Adapting the type checking process
	Heuristics
	Wrapping up

