
[Faculty of Science
Information and Computing Sciences]

Improving Error Messages for Generic Java

Jurriaan Hage
e-mail: jur@cs.uu.nl

homepage: http://www.cs.uu.nl/people/jur/
Joint work with Nabil El Boustani.

Department of Information and Computing Sciences, Universiteit Utrecht

March 31, 2009

[Faculty of Science
Information and Computing Sciences]

2

The topic of our work

I How to modify the type checking process of Java,

I so that implementations give more informative error
messages

I for generic method invocations

I Complicated by complexity and size of Java Language
Specification (JLS)

I Implementation as part of Jastad EJC (Hedin et al.)

I But first some motivational examples

[Faculty of Science
Information and Computing Sciences]

2

The topic of our work

I How to modify the type checking process of Java,

I so that implementations give more informative error
messages

I for generic method invocations

I Complicated by complexity and size of Java Language
Specification (JLS)

I Implementation as part of Jastad EJC (Hedin et al.)

I But first some motivational examples

[Faculty of Science
Information and Computing Sciences]

3

Overview

Motivating examples

The type checking process

The new type checking process

Wrapping up

[Faculty of Science
Information and Computing Sciences]

4

1. Motivating examples

[Faculty of Science
Information and Computing Sciences]

5

Example: no explanation why §1

<T> void foo(Map<T,T> a){
Map<Number, Integer> m1 = ...;
foo(m1);

ejc:
1. ERROR in Listing1.java (at line 6)

foo(m1);
The method foo(Map<T,T>) ... is not applicable
for the arguments (Map<Number,Integer>)

[Faculty of Science
Information and Computing Sciences]

6

Example: no explanation why §1

<T> void foo(Map<T,T> a){
Map<Number, Integer> m1 = ...;
foo(m1);

ours:
Listing1.java:6
Method <T>foo(Map<T, T>) of type Listing1 is
not applicable for the argument of type
(Map<Number, Integer>), because:
[*] The type variable T is invariant, but
- Integer in Map<Number, Integer> on 5:9(5:21)
- Number in Map<Number, Integer> on 5:9(5:13)
are not the same type.

[Faculty of Science
Information and Computing Sciences]

7

Example: exposes type checking artifacts §1

<T> void bar(Map<T, T> a) {
Map<? extends Number, ? extends Number> m = null;
bar(m);

}

javac:
Test1.java:20: cannot find symbol
symbol : method bar(Map<capture#954 of ? extends
Number, capture#0 of ? extends Number>)
location: class Test1
foo(m);

[Faculty of Science
Information and Computing Sciences]

8

Example: exposes type checking artifacts §1

<T> void bar(Map<T, T> a) {
Map<? extends Number, ? extends Number> m = null;
bar(m);

}

ours:
Listing4.java:6
Method <T>bar(Map<T, T>) of type Test1 is not
applicable for the argument of type
Map<? extends Number, ? extends Number>, because:
[*] The type variable T is invariant,

but the type ‘? extends Number’ is not.

[Faculty of Science
Information and Computing Sciences]

9

Example: erroneous behaviour §1

Sun’s javac accepts the following, and similar programs:

<T extends Number> void foo(List<? super T> a)
...
List<String> x = ...
foo(x);

I Why is it wrong to accept this?

I foo should only work for lists of types that lie between
Number and Object. Not for String.

I Why does it go wrong?

I Condition T extends Number is ignored.

[Faculty of Science
Information and Computing Sciences]

9

Example: erroneous behaviour §1

Sun’s javac accepts the following, and similar programs:

<T extends Number> void foo(List<? super T> a)
...
List<String> x = ...
foo(x);

I Why is it wrong to accept this?

I foo should only work for lists of types that lie between
Number and Object. Not for String.

I Why does it go wrong?

I Condition T extends Number is ignored.

[Faculty of Science
Information and Computing Sciences]

10

Example: strange behaviour §1

<T extends Number>
void foo(Map<? super T, ? super T> a)

...
Map<String, Number> m = ...;
foo(m);

ejc:
1. ERROR in Listing5.java (at line 10)
foo(m);

Bound mismatch: The generic method foo(
Map<? super T, ? super T>) of type Listing5 is not
applicable for the arguments (Map<String,Number>).
The inferred type String is not a valid substitute
for the bounded parameter <T extends Number>

[Faculty of Science
Information and Computing Sciences]

11

Example: strange behaviour §1

<T extends Number>
void foo(Map<? super T, ? super T> a)

...
Map<Number, String> m = ...;
foo(m);

ejc:
1. ERROR in Listing5.java (at line 10)
foo(m);

The method foo(Map<? super T,? super T>) in the
type Listing5 is not applicable for the arguments
(Map<Number,String>)

[Faculty of Science
Information and Computing Sciences]

12

A summary of complications §1

I The (generics part of the) JLS is large and complicated
I The JLS is more operational than declarative.

I Hard on programmers, harder on compiler builders.

I Type error messages are not very informative

I Types not part of the program are constructed and appear
in error messages

I And compilers follow the JLS slovenly
I Similar problems, but dissimilar messages
I Deviation sometimes gives programs that should not

compile

[Faculty of Science
Information and Computing Sciences]

13

2. The type checking process

[Faculty of Science
Information and Computing Sciences]

14

The Java type checking process §2

Method resolution determines a single, most specific method
that the programmer may be calling.

I Multiset is reduced by applying various heuristics.

I Ambiguity, or lack of a fitting method: error message is
returned.

[Faculty of Science
Information and Computing Sciences]

14

The Java type checking process §2

Relate arguments to parameters via constraints:
foo(new HashMap<Number, String>, new Integer(2))
to call void foo(HashMap<T,S extends T> map, S)

gives
HashMap<Number, String> <: HashMap<T, S extends T>
Integer <: S

[Faculty of Science
Information and Computing Sciences]

14

The Java type checking process §2

Decompose constraints: we get
{T = Number, S = String, S <: T, Integer <: S}

[Faculty of Science
Information and Computing Sciences]

14

The Java type checking process §2

Type inference:
find suitable types for T and S, T = Number and S = String.

[Faculty of Science
Information and Computing Sciences]

14

The Java type checking process §2

Type inference:
find suitable types for T and S, T = Number and S = String.
Type checking :
subtype constraint S <: T and Integer <: S both fail.

[Faculty of Science
Information and Computing Sciences]

15

3. The new type checking process

[Faculty of Science
Information and Computing Sciences]

16

Principle 1: don’t change, just add §3

I Why? It’s too fragile.

I So, type checking process is performed as usual.
I If it fails, then we “redo” the process,

I allow more candidates from resolution, and
I don’t simply decompose,
I but also keep the original constraints around.

I Why?
I failing at method resolution gives uninformative error

message: constraints are not yet in the picture.
I the original constraints more easily tie back to the source

code.

[Faculty of Science
Information and Computing Sciences]

17

A utility class §3

class UtilLib {
<T> void foo(HashMap<T, ? extends T> a,

List<? super T> b){}
<T> void foo(Map<T, ? extends T> a,

LinkedList<? super T> b){}
...

foo(new HashMap<Integer, Number>(),
new LinkedList<Number>());

}

javac:
UtilLib.java:11: cannot find symbol
symbol : method foo(HashMap<Integer,Number>,

LinkedList<Number>)
location: class UtilLib

foo(new HashMap<Integer, Number>(),

[Faculty of Science
Information and Computing Sciences]

18

What is our messages here? §3

ours:
Method
<T>foo(Map<T, ? extends T>, LinkedList<? super T>)
of type UtilLib is not applicable for the arguments
of type
(HashMap<Integer, Number>, LinkedList<Number>),
because:
[*] The type Number from the expression

‘new HashMap<Integer, Number>()’
on 11:11 is not a subtype of the inferred type
for T: Integer.

[Faculty of Science
Information and Computing Sciences]

19

Principle 2: relax §3

I Weakened Method Resolution instead of Method
Resolution.

I Erase generic parts to obtain raw types.
I HashMap<T, ? extends T> a becomes HashMap a

I javac performs type inference and bounds checking to
decide which foo is a likely suspect.

I For neither case, an explanation of the mistake is given.

I Why?

I Some checks are made to decide method resolution, but
they are not used to generate the error message.

[Faculty of Science
Information and Computing Sciences]

20

Why is method resolution like that? §3

Maybe because it is already quite complicated to begin with:

I Modifiers: private, static,
I Overloading: potentially many candidates

I Need to weed out superfluous ones

I Autoboxing

I Methods with variable number of arguments

I Again, a very operational specification

[Faculty of Science
Information and Computing Sciences]

21

Principle 3: hold on §3

I Type inference in JLS:
I Instantiation based on decomposed constraints
I During later checks original constraints are gone
I Original constraints, however, link back to the source code

I So keep them around!

I Moreover, heuristics that weigh evidence won’t work

[Faculty of Science
Information and Computing Sciences]

22

Example §3

I Consider the set of constraints:
{String <: T, Integer <: T, T <: Number}

I Original type inference sets T to the lub of String and
Integer, which is Object

I The type checker later sees T <: Number, but it does not
know how T got to be Object

I Indeed, no supertype of String can satisfy the third
constraint

I So maybe the third constraint is wrong?
I Ignore it, and the lub is completely different

I And more constraints are satisfied

[Faculty of Science
Information and Computing Sciences]

23

Order of instantiation §3

<T, S extends T> void foo(Map<S, S> a, T a){
...
Map<Integer, String> m = ...;
foo(m, 1);

I Original algorithm instantiates randomly and independently

I What we do: type variables on which others depend are
done first

I The more variables depend on it, the sooner we consider it

I Example: S depends on T .

I After T is set to Integer, we can see that the best
instantiation for S is Integer, not String

[Faculty of Science
Information and Computing Sciences]

24

4. Wrapping up

[Faculty of Science
Information and Computing Sciences]

25

What I did not discuss, §4

I but is “part” of the paper:
I Implementation in the Jastad EJC (Hedin et al.)
I Many examples
I Actual descriptions how to modify the various parts of the

type checking process
I We omit many of them from the paper too :-(
I They are in Nabil’s Master Thesis

I is not in the paper, but we did do:
I heuristics for suggesting fixes to type errors
I These are only discussed in Nabil’s Master Thesis

[Faculty of Science
Information and Computing Sciences]

26

Future work §4

I Become a (Generic) Java nerd
I Thus far only (generic) invocations.

I What about other constructs, like inner classes?

I More heuristics, by capturing “expert” knowledge on error
diagnosis

I Also for the non-generic parts

I Collect programs: weird and normal
I Have any? Send them to jur@cs.uu.nl.

[Faculty of Science
Information and Computing Sciences]

27

Things to take home §4

I Implementing a type checking process is one thing.

I Having it explain why type checking fails is quite another.

I Ideally, type system designers would also consider the
usability of a type system.

I Besides the usual soundness, completeness,
I Three guiding principles:

I Decouple type check from diagnostics.
I Keep original process in tact.

I Relax, ignore at first what is likely to be wrong.
I E.g., the generic parts of types.

I Keep more information, and longer.
I Do not simply decompose constraints: structure is lost.

[Faculty of Science
Information and Computing Sciences]

27

Things to take home §4

I Implementing a type checking process is one thing.

I Having it explain why type checking fails is quite another.

I Ideally, type system designers would also consider the
usability of a type system.

I Besides the usual soundness, completeness,

I Three guiding principles:
I Decouple type check from diagnostics.

I Keep original process in tact.

I Relax, ignore at first what is likely to be wrong.
I E.g., the generic parts of types.

I Keep more information, and longer.
I Do not simply decompose constraints: structure is lost.

[Faculty of Science
Information and Computing Sciences]

27

Things to take home §4

I Implementing a type checking process is one thing.

I Having it explain why type checking fails is quite another.

I Ideally, type system designers would also consider the
usability of a type system.

I Besides the usual soundness, completeness,
I Three guiding principles:

I Decouple type check from diagnostics.
I Keep original process in tact.

I Relax, ignore at first what is likely to be wrong.
I E.g., the generic parts of types.

I Keep more information, and longer.
I Do not simply decompose constraints: structure is lost.

[Faculty of Science
Information and Computing Sciences]

28

Just in case §4

I Type variables: <T> void blah(Map<T,T> hm)

I Wildcards: LinkedList<?> st = ..., but not ? x =

I Capture conversion: local propagation of unknown types,
but not for Set<Set<?>>

I Bounds: T extends Number, ? extends String

I All in the presence of subtyping, interfaces, ...

	Motivating examples
	The type checking process
	The new type checking process
	Wrapping up

