[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

Neon: a Library for Language Usage
Analysis

Jurriaan Hage Peter van Keeken
e-mail: jur@cs.uu.nl
homepage: http://www.cs.uu.nl/people/jur/

Department of Information and Computing Sciences, Universiteit Utrecht

September 29, 2008

1. Introduction

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = = E DA

The starting point: Helium §1

» Helium for learning Haskell

>

Implemented in Haskell

» To get some idea where to improve further we need to
know how students “use” the language?

» do they avoid certain parts of the language?

| 2
| 2
>
>

which parts of the syntax are often involved in mistakes?
how long does it take to solve a type error?

when does it help to know Java, or works against them?
and so on...

» Each of these questions is a study by itself.

» Today | only talk about the tool, Neon, we developed to
help answer these questions.

&
e

N

[Faculty of Science

%
N) % Universiteit Utrecht Information and Computing Sciences]

The first (easy) step: log the compilations §1

» Logging facility added was added from the outset.

» Compiler logs every compile via a socket connection to a
Java server.

bigbrother | T |
1.7.0 (Tue Dec 4 11:00:00 CET 2007) |
-P/usr/local/helium/lib:. --overloading
—-—enable-logging -v /tmp/Interpreter.hs |

» Helium has been in use since 2002.
> Over 68,000 “full" compilation contexts (later is fuller)

» Collection is “in vivo", so polluted to some extent,
» but loggings have been cleaned up (by Peter).
» Now to analyze the loggings...

5&\\“’%}) [Faculty of Science
% N § Universiteit Utrecht Information and Computing Sciences]
N

4 \

The design criteria of Neon §1

v

To do this effectively, we need support. Hence, Neon.
» Why is effectiveness so important?

v

Queries should be concise and conceptually close to what
they intend to express.
» Implementation based on a small set of well-understood
primitives and combinators,

» Eases argumentation that implementation of Neon is

correct.
» It should be easy to reuse code from the compiler.
> We can reuse the lexer, parser etc.
> Generate esthetically pleasing output.
» Support multiple output formats, e.g., HTML tables and
PNG files.
5&\\“% [Faculty of Science
? N) % Universiteit Utrecht Information and Computing Sciences]

N

The elements §1

» Slick examples, each with its own reservations.

» For which we need more queries...

» Descriptive statistics

» The Neon library that

> implements these ideas
> and allows us to generate these slick examples,

> ... by writing a bit of simple, reusable code.

» Concluding remarks, future work, points of discussion.

[Faculty of Science
Information and Computing Sciences]

RN
= b = Universiteit Utrecht

N

2. The slick examples

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = = E DA

62

1ze

Module Si

Example 1

200 —

150

100 —

50

e N e

e e e e T e e T T T T e e T T T e e e T R e e e R e e e e

0D AT D P P e e 00 0060 6000 O O O T O

» Average number of lines for compiled modules, given per

day (year 2003-2004)

[Faculty of Science

Information and Computing Sciences]

N

AN
%{

< Universiteit Utrecht

(N
N

8

Example 1: Module Size §2

» What does it mean?

>
> Average ni » Do all students show the same pattern?

day (year - » Correlation with grades, experience,7

» Counting code, comments and blank
AW lines separately. 2

& = Universiteit Utrecht 2s]

N

Example 2: Phase Analysis (relative)

InternalEre

CodeGen Percentages
1.2 — [| Tuping
B static
1 - RezolOp
Parzing
0.5 - Lexical
0.6 —|

N .
0.2

[S— |

2003 11 —
2003 12 —
2003 13 —
2003 14 —
2003 15 —
2003 16 —
2003 17 —

» Why does the ratio of parse errors increase again?

» Do recidivists muddy the picture?

%‘W
&,
R ™

Example 2: Phase Analysis (absolute)

InternalErr
Codeben Yalue frequency
10000 — W Tuping
B static
Resollp
Parsing
Lexical

SO0

G000 —
4000 —

—— | | | | | |

[y — - | |

2003 11 —
2003 12 —
2003 13 —
2003 14 —
2003 19 —
2003 16 —
2003 17 —

» Absolute gives an idea of weight: how significant are the

ratios.
N : -
£o > We want these queries to be similar.
10 EN

Example 3 §2

w
|
* e

L
1t sooet § ae soe

N=112

» Average in-between compile time in minutes per student
&\‘W% [Faculty of Science

<= Universiteit Utrecht Information and Computing Sciences]

11 %AAL§

Example 4 §2

1 7

5
s -
.
65 | 5.5
77 446154 4 pe s
4 3.6
.
T T T —
o o = « o @ -
o o G ﬂ 5 B a
= o = n o = o
@ 2 @ 2 2 @ 2
4 4 4 2 4 4 b4
S S S S S S S

» Average number of compiles needed to “solve” a type
error, for a particular student.

» How does one measure this at all?

Q Wf) [Faculty of Science
; V= § Universiteit Utrecht Information and Computing Sciences]
12 NS

mple 4 §2

446154 4.25

2003 11
2003 12
2003 13

> Average number
error, for a partic

» How does one m

Universiteit Utrecht |

3. The basic concepts

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = = E DA

Descriptive statistics §3

v

Easy presentation of results in multiple formats
» ploticus pictures, HTML tables, IKTEX
Grouping loggings, repeatedly
» For each student, for each week, compute the list of
loggings.
Filtering on (groups of) loggings.
» Only lists with at least 10 compiles for a given student
» Only loggings from the 19th of September

v

v

v

Computing statistics for groups and other metrics.

> Only the lengths of the logged programs.
» The average length of the lists of loggings.

AW
? N) % Universiteit Utrecht Information and Computing Sciences]

‘S\\‘Wﬂ [Faculty of Science
14 KN

Why not use SQL? §3

» Why Haskell?
> General purpose language with strong typing.
» Built-in support for easy composition and abstraction.
> Particularly higher-orderness, type classes and
polymorphism.
» Reuse Helium code base
> Library uses combinators.
» Facilitates building analyses from others.
» Haskell drawbacks
» Generating pictures can only be done via existing tools.
> We use ploticus.
» Speed could become an issue.
> Haskell is actually doing well these days.
» Limited audience.

N

A 4 [Faculty of Science
; N) % Universiteit Utrecht Information and Computing Sciences]

15 N

4. The combinator library

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] = = = £ DA

The basics §4

17

» An analysis result is represented by [(key, value)].

» The key datatype allows us to describe what the value
represents.

» by remembering how values have been computed.

» key inhabits the DescrKey class so that the description
can be updated automatically.

» From it, we can generate legend information, filenames and
So on.

My
; Y % Universiteit Utrecht

N

[Faculty of Science
Information and Computing Sciences]

Some primitives §4

type Ankab=[(k,a)] — [(k,D)]

basicAnalysis :: (DescrKey k) =
String — (a — b) > Ank a b

groupAnalysis :: (DescrKey k, Enum a, Datalnfo b) =
(@ —b) = ([a] = [[a]]) = An k [a] [a]

mapAnalysis :: (DescrKey k) = An 'k a b — An k [a] [b]

ouwAnkbc—Ankab—Ankac

runAnalysis :: a — k — Ank a b — [(k,)]

5&\\“’%}) [Faculty of Science
% N § Universiteit Utrecht Information and Computing Sciences]
N

18

Group analysis in more detail §4

groupAnalysis :: (DescrKey k, Enum a, Datalnfo b) =
(@ —b) — ([a] = [[a]]) = An k [a] [a]
» First function argument describes which values belong to
the same group.
» Second function computes the actual grouping.
» But why is the result type not [[a]]?

5&\\“’%}) [Faculty of Science
; N % Universiteit Utrecht Information and Computing Sciences]
19 N

Group analysis in more detail §4

groupAnalysis :: (DescrKey k, Enum a, Datalnfo b) =
(@ —b) — ([a] = [[a]]) = An k [a] [a]
» First function argument describes which values belong to
the same group.
» Second function computes the actual grouping.
» But why is the result type not [[a]]?

» Flatten: [[1,2,3],[2,4]] grouped on parity is not
[[[1,3],[2]], [[2,4]]]. but [[1,3],[2],[2,4]].
» But how do you know that [1,3] and [2] belonged to the

same list?
5&\\“% [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
TR\

Group analysis in more detail §4

19

groupAnalysis :: (DescrKey k, Enum a, Datalnfo b) =
(@ —b) — ([a] = [[a]]) = An k [a] [a]
» First function argument describes which values belong to
the same group.
» Second function computes the actual grouping.
» But why is the result type not [[a]]?
» Flatten: [[1,2,3],[2,4]] grouped on parity is not
[[[1,3], [2]], [[2,4]]], but [[1,3],[2],[2,4]].
» But how do you know that [1,3] and [2] belonged to the
same list?
» We store that in the key: [(k1,]1,2,3]),(k2,[2,4])] maps
to [(k1',[1,3]), (k1',[2]), (k2',[2,4])]
» Avoids arbitrarily nested values.
NI [Faculty of Science
7

SAN o o q . .
= % Universiteit Utrecht Information and Computing Sciences]

N

Example: number of loggings per phase §4

groupPerPhase :: DescrKey key = An key [Logging] [Logging]
groupPerPhase =

groupAnalysis phase (groupAllUnder phase)

countNumberOfLoggings :: DescrKey key = An key [a] Int
countNumberOfLoggings =
basicAnalysis” "number of loggings" length

loggingsPerPhase :: An KeyHistory [Logging] Int
loggingsPerPhase = countNumberOfLoggings ¢ groupPerPhase

’\\\‘ [Faculty of Science
=
Z

NN
E N é Universiteit Utrecht Information and Computing Sciences]
N

2

20

And now to present this §4

presentLoggingPerPhase :: FilePath — FilePath — 10 ()
presentLoggingPerPhase logfile outputfp = do
loggings < parseLogfile logfile
let analysisResult = runAnalysis loggings loggingsPerPhase
barChart < renderBarChart outputfp analysisResult
writeFile (outputfp H "/analysis.tex")
(renderLateX $ showAsTablel1D analysisResult) + + +
plotToFigure barChart

g‘v’if/} [Faculty of Science

“ o o a . .
N) % Universiteit Utrecht Information and Computing Sciences]

r
21 KN

The same, but now per week §4

Given the definition of groupPerWeek

loggingsPerPhasePerWeek :: An KeyHistory | Logging| Int
loggingsPerPhasePer Week =

countNumberOfLoggings

o groupPerPhase

o groupPerWeek

phaseResearch :: FilePath — [(KeyHistory, [Logging])] — 10 ()
phaseResearch outputpath input = do
barChartStacked — renderBarChartDynamic outputpath
(loggingsPerPhasePerWeek < $ > input)

writeFile ...
5&\\“% [Faculty of Science
%{US Universiteit Utrecht Information and Computing Sciences]
22 N

The same, but now per week §4

Given the definitior

loggingsPerPhasel Internale value Froquoncy
loggingsPerPhasel o 3 12
countNumberOf. — wo{ .o
o groupPerPhas oo
o groupPerWeei .., |
o | S

phaseResearch :: F L
phaseResearch out

barChartStackea - — 4

(loggingsPerPhasePer Week < $ > input)

2003 11 —
2003 12 —
2003 13 —
2003 14 —
2003 15 —
2003 16 —
2003 17 —

writeFile ...

@ &)— R L. . [Facul_ty of S_cience
% é Universiteit Utrecht Information and Computing Sciences]

22

5. To conclude

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = = E DA

What more do we want from Neon? §5

» In-depth studies

» Students do not seem particularly interested in doing this
kind of study

» The use of student properties

» Who is (s)he? What grade was obtained? First language or
not?

» Easy intergration with different versions of Helium.
» Not as easy as it may seem.

5&\\“’%}) [Faculty of Science
; N % Universiteit Utrecht Information and Computing Sciences]
24 N

What more do we want, period? §5

» Money (to hire a PhD student).
» More loggings

> In the process of extending Helium to include type classes
in full.

» | am looking for expertise in empirical research.

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences
N

25 s

Points for discussion §5

» Should | include groupByCoherence in the paper?

|

>

| 2

>

|

>

a general function on top of groupAnalysis

specifies which loggings belong “together”.

Ex.1: in the same programming session (not too far apart
in time)

Ex.2: the same file (by name, by content)

Ex.3: the conjunction of these two

Sometimes you need coherence with lookahead.

» Why not do this for Java?

| 2

|

Bigger market
BlueJ

» How do we attain empirical validity, especially external
validity?
» Student properties can help.

&
e

2 N

[Faculty of Science

%
N) % Universiteit Utrecht Information and Computing Sciences]

Coherence §5

» Typically, we analyze sequences of similar loggings
» Two subsequent loggings can be similar if

> files with the same name are compiled

» the compiled files differ in at most one line

> the time stamp between the loggings is at most 30 minutes
apart (time coherence)

» Sequences of loggings grouped into a sequence of
sequences by taking the reflexive, transitive closure of
similarity.

‘S\\‘Wﬂ [Faculty of Science

AW
? N) % Universiteit Utrecht Information and Computing Sciences]

27 N

An example §5

» Example:
» How long, on average, to solve a type error within a
session?
» Compiles not too far apart and subsequent compiles in a
sequence should concern the “same” program.
» What is “same” here?
> same name
> the diff of the two programs is small
» other or all of the above
» Haskell allows easy parameterization over predicates.
» Higher-orderness and polymorphism really help.

’\\\‘Wﬁ' [Faculty of Science

? N) % Universiteit Utrecht Information and Computing Sciences]

28 N

Lookahead 85

» Scenario:
> program P has a type error

» problem reminds student of another module Q
» student loads and compiles Q
> session terminates
» student solves problem in P
_#\\\“Vf/) [Faculty of Science
%Ué Universiteit Utrecht Information and Computing Sciences]
29 AN

	Introduction
	The slick examples
	The basic concepts
	The combinator library
	To conclude

