
[Faculty of Science
Information and Computing Sciences]

Neon: a Library for Language Usage
Analysis

Jurriaan Hage Peter van Keeken
e-mail: jur@cs.uu.nl

homepage: http://www.cs.uu.nl/people/jur/

Department of Information and Computing Sciences, Universiteit Utrecht

September 29, 2008

[Faculty of Science
Information and Computing Sciences]

2

1. Introduction

[Faculty of Science
Information and Computing Sciences]

3

The starting point: Helium §1

I Helium for learning Haskell
I Implemented in Haskell

I To get some idea where to improve further we need to
know how students “use” the language?

I do they avoid certain parts of the language?
I which parts of the syntax are often involved in mistakes?
I how long does it take to solve a type error?
I when does it help to know Java, or works against them?
I and so on...

I Each of these questions is a study by itself.

I Today I only talk about the tool, Neon, we developed to
help answer these questions.

[Faculty of Science
Information and Computing Sciences]

4

The first (easy) step: log the compilations §1

I Logging facility added was added from the outset.

I Compiler logs every compile via a socket connection to a
Java server.

bigbrother | T |
1.7.0 (Tue Dec 4 11:00:00 CET 2007) |
-P/usr/local/helium/lib:. --overloading
--enable-logging -v /tmp/Interpreter.hs |
bigbrother/2007-12-14@13_58_20_250/Dummy.hs

I Helium has been in use since 2002.
I Over 68,000 “full” compilation contexts (later is fuller)

I Collection is “in vivo”, so polluted to some extent,

I but loggings have been cleaned up (by Peter).

I Now to analyze the loggings...

[Faculty of Science
Information and Computing Sciences]

5

The design criteria of Neon §1

I To do this effectively, we need support. Hence, Neon.
I Why is effectiveness so important?

I Queries should be concise and conceptually close to what
they intend to express.

I Implementation based on a small set of well-understood
primitives and combinators,

I Eases argumentation that implementation of Neon is
correct.

I It should be easy to reuse code from the compiler.
I We can reuse the lexer, parser etc.

I Generate esthetically pleasing output.
I Support multiple output formats, e.g., HTML tables and

PNG files.

[Faculty of Science
Information and Computing Sciences]

6

The elements §1

I Slick examples, each with its own reservations.
I For which we need more queries...

I Descriptive statistics
I The Neon library that

I implements these ideas
I ... and allows us to generate these slick examples,
I ... by writing a bit of simple, reusable code.

I Concluding remarks, future work, points of discussion.

[Faculty of Science
Information and Computing Sciences]

7

2. The slick examples

[Faculty of Science
Information and Computing Sciences]

8

Example 1: Module Size §2

I Average number of lines for compiled modules, given per
day (year 2003-2004)

Pictures typically raise more questions

I What does it mean?

I Do all students show the same pattern?

I Correlation with grades, experience,?

I Counting code, comments and blank
lines separately.

[Faculty of Science
Information and Computing Sciences]

8

Example 1: Module Size §2

I Average number of lines for compiled modules, given per
day (year 2003-2004)

Pictures typically raise more questions

I What does it mean?

I Do all students show the same pattern?

I Correlation with grades, experience,?

I Counting code, comments and blank
lines separately.

[Faculty of Science
Information and Computing Sciences]

9

Example 2: Phase Analysis (relative) §2

I Why does the ratio of parse errors increase again?

I Do recidivists muddy the picture?

[Faculty of Science
Information and Computing Sciences]

10

Example 2: Phase Analysis (absolute) §2

I Absolute gives an idea of weight: how significant are the
ratios.

I We want these queries to be similar.

[Faculty of Science
Information and Computing Sciences]

11

Example 3 §2

I Average in-between compile time in minutes per student

[Faculty of Science
Information and Computing Sciences]

12

Example 4 §2

I Average number of compiles needed to “solve” a type
error, for a particular student.

I How does one measure this at all?

Students aren’t always the same

[Faculty of Science
Information and Computing Sciences]

12

Example 4 §2

I Average number of compiles needed to “solve” a type
error, for a particular student.

I How does one measure this at all?

Students aren’t always the same

[Faculty of Science
Information and Computing Sciences]

13

3. The basic concepts

[Faculty of Science
Information and Computing Sciences]

14

Descriptive statistics §3

I Easy presentation of results in multiple formats
I ploticus pictures, HTML tables, LATEX

I Grouping loggings, repeatedly
I For each student, for each week, compute the list of

loggings.

I Filtering on (groups of) loggings.
I Only lists with at least 10 compiles for a given student
I Only loggings from the 19th of September

I Computing statistics for groups and other metrics.
I Only the lengths of the logged programs.
I The average length of the lists of loggings.

[Faculty of Science
Information and Computing Sciences]

15

Why not use SQL? §3

I Why Haskell?
I General purpose language with strong typing.
I Built-in support for easy composition and abstraction.

I Particularly higher-orderness, type classes and
polymorphism.

I Reuse Helium code base
I Library uses combinators.

I Facilitates building analyses from others.

I Haskell drawbacks
I Generating pictures can only be done via existing tools.

I We use ploticus.

I Speed could become an issue.
I Haskell is actually doing well these days.

I Limited audience.

[Faculty of Science
Information and Computing Sciences]

16

4. The combinator library

[Faculty of Science
Information and Computing Sciences]

17

The basics §4

I An analysis result is represented by [(key , value)].
I The key datatype allows us to describe what the value

represents.

I by remembering how values have been computed.

I key inhabits the DescrKey class so that the description
can be updated automatically.

I From it, we can generate legend information, filenames and
so on.

[Faculty of Science
Information and Computing Sciences]

18

Some primitives §4

A few of the (not so primitive) primitives

type An k a b = [(k , a)]→ [(k , b)]
basicAnalysis :: (DescrKey k)⇒

String → (a → b)→ An k a b
groupAnalysis :: (DescrKey k , Enum a, DataInfo b)⇒

(a → b)→ ([a]→ [[a]])→ An k [a] [a]
mapAnalysis :: (DescrKey k)⇒ An k a b → An k [a] [b]
� ::An k b c → An k a b → An k a c
runAnalysis :: a → k → An k a b → [(k , b)]

[Faculty of Science
Information and Computing Sciences]

19

Group analysis in more detail §4

groupAnalysis :: (DescrKey k , Enum a, DataInfo b)⇒
(a → b)→ ([a]→ [[a]])→ An k [a] [a]

I First function argument describes which values belong to
the same group.

I Second function computes the actual grouping.

I But why is the result type not [[a]]?

I Flatten: [[1, 2, 3], [2, 4]] grouped on parity is not
[[[1, 3], [2]], [[2, 4]]], but [[1, 3], [2], [2, 4]].

I But how do you know that [1, 3] and [2] belonged to the
same list?

I We store that in the key : [(k1 , [1, 2, 3]), (k2 , [2, 4])] maps
to [(k1 ′, [1, 3]), (k1 ′, [2]), (k2 ′, [2, 4])]

I Avoids arbitrarily nested values.

[Faculty of Science
Information and Computing Sciences]

19

Group analysis in more detail §4

groupAnalysis :: (DescrKey k , Enum a, DataInfo b)⇒
(a → b)→ ([a]→ [[a]])→ An k [a] [a]

I First function argument describes which values belong to
the same group.

I Second function computes the actual grouping.

I But why is the result type not [[a]]?
I Flatten: [[1, 2, 3], [2, 4]] grouped on parity is not

[[[1, 3], [2]], [[2, 4]]], but [[1, 3], [2], [2, 4]].
I But how do you know that [1, 3] and [2] belonged to the

same list?

I We store that in the key : [(k1 , [1, 2, 3]), (k2 , [2, 4])] maps
to [(k1 ′, [1, 3]), (k1 ′, [2]), (k2 ′, [2, 4])]

I Avoids arbitrarily nested values.

[Faculty of Science
Information and Computing Sciences]

19

Group analysis in more detail §4

groupAnalysis :: (DescrKey k , Enum a, DataInfo b)⇒
(a → b)→ ([a]→ [[a]])→ An k [a] [a]

I First function argument describes which values belong to
the same group.

I Second function computes the actual grouping.

I But why is the result type not [[a]]?
I Flatten: [[1, 2, 3], [2, 4]] grouped on parity is not

[[[1, 3], [2]], [[2, 4]]], but [[1, 3], [2], [2, 4]].
I But how do you know that [1, 3] and [2] belonged to the

same list?

I We store that in the key : [(k1 , [1, 2, 3]), (k2 , [2, 4])] maps
to [(k1 ′, [1, 3]), (k1 ′, [2]), (k2 ′, [2, 4])]

I Avoids arbitrarily nested values.

[Faculty of Science
Information and Computing Sciences]

20

Example: number of loggings per phase §4

groupPerPhase :: DescrKey key ⇒ An key [Logging] [Logging]
groupPerPhase =

groupAnalysis phase (groupAllUnder phase)

countNumberOfLoggings :: DescrKey key ⇒ An key [a] Int
countNumberOfLoggings =

basicAnalysis ′′ "number of loggings" length

loggingsPerPhase :: An KeyHistory [Logging] Int
loggingsPerPhase = countNumberOfLoggings � groupPerPhase

[Faculty of Science
Information and Computing Sciences]

21

And now to present this §4

presentLoggingPerPhase :: FilePath → FilePath → IO ()
presentLoggingPerPhase logfile outputfp = do

loggings ← parseLogfile logfile
let analysisResult = runAnalysis loggings loggingsPerPhase
barChart ← renderBarChart outputfp analysisResult
writeFile (outputfp ++ "/analysis.tex")

(renderLateX $ showAsTable1D analysisResult) + + +
plotToFigure barChart

[Faculty of Science
Information and Computing Sciences]

22

The same, but now per week §4

Given the definition of groupPerWeek

loggingsPerPhasePerWeek :: An KeyHistory [Logging] Int
loggingsPerPhasePerWeek =

countNumberOfLoggings
� groupPerPhase
� groupPerWeek

phaseResearch :: FilePath → [(KeyHistory , [Logging])]→ IO ()
phaseResearch outputpath input = do

barChartStacked ← renderBarChartDynamic outputpath
(loggingsPerPhasePerWeek < $ > input)

writeFile ...

Slight reprise

[Faculty of Science
Information and Computing Sciences]

22

The same, but now per week §4

Given the definition of groupPerWeek

loggingsPerPhasePerWeek :: An KeyHistory [Logging] Int
loggingsPerPhasePerWeek =

countNumberOfLoggings
� groupPerPhase
� groupPerWeek

phaseResearch :: FilePath → [(KeyHistory , [Logging])]→ IO ()
phaseResearch outputpath input = do

barChartStacked ← renderBarChartDynamic outputpath
(loggingsPerPhasePerWeek < $ > input)

writeFile ...

Slight reprise

[Faculty of Science
Information and Computing Sciences]

23

5. To conclude

[Faculty of Science
Information and Computing Sciences]

24

What more do we want from Neon? §5

I In-depth studies
I Students do not seem particularly interested in doing this

kind of study

I The use of student properties
I Who is (s)he? What grade was obtained? First language or

not?

I Easy intergration with different versions of Helium.
I Not as easy as it may seem.

[Faculty of Science
Information and Computing Sciences]

25

What more do we want, period? §5

I Money (to hire a PhD student).
I More loggings

I In the process of extending Helium to include type classes
in full.

I I am looking for expertise in empirical research.

[Faculty of Science
Information and Computing Sciences]

26

Points for discussion §5

I Should I include groupByCoherence in the paper?
I a general function on top of groupAnalysis
I specifies which loggings belong “together”.
I Ex.1: in the same programming session (not too far apart

in time)
I Ex.2: the same file (by name, by content)
I Ex.3: the conjunction of these two
I Sometimes you need coherence with lookahead.

I Why not do this for Java?
I Bigger market
I BlueJ

I How do we attain empirical validity, especially external
validity?

I Student properties can help.

[Faculty of Science
Information and Computing Sciences]

27

Coherence §5

I Typically, we analyze sequences of similar loggings
I Two subsequent loggings can be similar if

I files with the same name are compiled
I the compiled files differ in at most one line
I the time stamp between the loggings is at most 30 minutes

apart (time coherence)

I Sequences of loggings grouped into a sequence of
sequences by taking the reflexive, transitive closure of
similarity.

[Faculty of Science
Information and Computing Sciences]

28

An example §5

I Example:
I How long, on average, to solve a type error within a

session?

I Compiles not too far apart and subsequent compiles in a
sequence should concern the “same” program.

I What is “same” here?
I same name
I the diff of the two programs is small
I other or all of the above

I Haskell allows easy parameterization over predicates.
I Higher-orderness and polymorphism really help.

[Faculty of Science
Information and Computing Sciences]

29

Lookahead §5

I Scenario:
I program P has a type error
I problem reminds student of another module Q
I student loads and compiles Q
I session terminates
I student solves problem in P

	Introduction
	The slick examples
	The basic concepts
	The combinator library
	To conclude

