
Improving Type Error Messages for Generic

Java

Nabil el Boustani

27th April 2008

Abstract

Generics, alternatively called parametric polymorphism, are a powerful pro-
gramming concept that makes higher and cleaner abstractions possible, which
help developing reusable code. Java supports parametric polymorphism since
its 1.5 release, where it was perceived as one of the great and most advanced
features added to the language. However, adding parametric polymorphism to
a language that is built on inclusion polymorphism can be confusing to a novice
programmer, because the typing rules are suddenly di�erent and, in the case of
Java, quite complex.

To help novice programmers get accustomed to the new typing rules, we
describe a framework in this thesis that can be used by the type checking process
to generate error messages that explain why a type error occurs and contain
additional hints, which describe how to correct a type error or prevent new
errors in future compilations. This framework only supports the type checking
of generic method invocations, where the compiler must infer the type arguments
of a method. First we show what constitutes this framework, and then discuss
a number of heuristics to further improve the error messages. We also provide
many examples of error messages generated by our framework and compare
them with the error messages generated by the Sun java compiler and Eclipse
java compiler.

Contents

1 Introduction 1

1.1 Motivating examples . 1
1.2 Structure of this thesis . 3

2 Type Systems and Java Generics 5

2.1 Type systems . 5
2.2 Java Generics . 6
2.3 Subtyping and Containment . 8
2.4 Type variance . 8

2.4.1 Covariance . 8
2.4.2 Contravariance . 9
2.4.3 Invariance . 9

2.5 Wildcards . 9
2.6 Bounds . 11

3 Current Type Checking 13

3.1 Method Resolution . 14
3.2 Constraint Decomposition . 19
3.3 Generic Instantiation . 24

4 Improved Type Checking 29

4.1 Weak Method Resolution . 30
4.2 Constraints Generation . 37
4.3 Constraint Solving . 41

4.3.1 Checking Type Parameter Bounds 41
4.3.2 Ordering Type Variables 42
4.3.3 Constraint Solver . 44
4.3.4 Extended Constraint Solver 46

4.4 Examples . 46

5 Error Messages 52

5.1 Equality Errors . 52
5.2 Supertype Errors . 54
5.3 Subtype Errors . 55

2

5.4 Bound Errors . 59

6 Heuristics 61

6.1 Maximal Equality . 61
6.2 Context Type Invariance . 70
6.3 Wildcards . 73

6.3.1 Bounded Lower Bound Wildcard 73
6.3.2 Opposite Wildcards . 74
6.3.3 Wildcard Reduction . 76

6.3.3.1 Super Object . 76
6.3.3.2 Extends Final 78

6.4 Maximal Subtyping . 79
6.5 Equality Warnings . 81

7 Conclusion and Future Work 83

7.1 Conclusion . 83
7.2 Future Work . 83

A Architecture and Implementation 85

A.1 Architecture . 85
A.2 Implementation . 86

B Manual 90

B.1 Download and install . 90
B.2 Usage . 90

C Syntax 92

C.1 Name syntax . 92
C.2 Type syntax . 92
C.3 Type argument syntax . 93
C.4 Primary expression syntax . 94
C.5 Method invocation synatx . 94

3

Chapter 1

Introduction

A quick browse through the literature shows that most compilers for functional
languages such as ML and Haskell, sometimes generate error messages that are
not easily understood by novice programmers. One of the reasons why these
error messages are regarded as cryptic by novices is that compilers do not or
cannot always locate the real source of a type error [14].

Since the introduction of generics to Java, we believe that beginner pro-
grammers will experience the same thing. In this thesis we aim to develop an
extension for the type checking algorithm already present in the Java compilers
to provide better feedback to novice programmers. The thesis considers only
the problem of generating constructive error messages for generic method invo-
cations. The extension presented here is used by the type checking algorithm
only when generic method invocation fails to type check. In this case, the type
checking algorithm will request the extension to examine the failed invocation
to provide an error message. This extension analyzes the method invocation
to locate all possible sources of the type errors, and may subsequently apply a
number of type heuristics that will attempt to describe corrections for the type
con�icts. The type heuristics describe only how to change method invocations
and not method declarations. Suggesting to change the later requires a global
analysis of a program instead of a pratial analysis as we do.

1.1 Motivating examples

Consider the code in Listing 1.1. The method invocation is rejected by the
compiler, which claims that there is no method declared with the signature
foo(Map<Number, Integer>). This can be very confusing to a programmer,
because he/she is trying to invoke the generic method declared with the signa-
ture foo(Map<T,T>). The programmer probably thinks that since Integer is a
subtype of Number, it might be legal to call foo with Map<Number, Integer>.
This is, however, not correct, because a type variable can only be instantiated
with a single type. The error messages generated when compiling the code with

1

<T> void f oo (Map<T, T> a){}
. . .
Map<Number , Integer> m1 = . . . ;
f oo (m1) ; // Error

Listing 1.1: Type equality con�ict

Test.java:6: <T>foo(java.util.Map<T,T>) in Test cannot be applied to
(java.util.Map<java.lang.Number,java.lang.Integer>)

foo(m1);

1. ERROR in Test.java (at line 6)
foo(m1);

The method foo(Map<T,T>) in the type Test is not applicable for the
arguments (Map<Number,Integer>)

Figure 1.1: javac and ejc error messages for the invocation in Listing 1.1

the Sun java compiler (javac) and the Eclipse java compiler (ejc) are given in
Figure 1.1, respectively. Both compilers state in their error message that the
method foo cannot be applied to the argument m1. It would be, however, in-
structive to the programmer if the error message would explain why the method
invocation fails. In this case, the invocation fails because the type system ex-
pects the generic type Map in the actual parameter to be instantiated with
exactly the same type, i.e. either both with Number, or both with Integer.

Now take for example the code given in Listing 1.2. The method call
is rejected by javac and ejc complaining that the method with the signature
<T>bar(Map<T, ? extends T>) cannot be applied to Map<Integer, Number>
(see Figure 1.2). These error messages do not clarify why the method is not
applicable to the actual parameter. Therefore, they do not provide the pro-
grammer with the slightest idea on how to correct his/her mistake. For this
example, it would be more appropriate to inform the user that the type system
instantiates the type variable T to Integer, which then causes a con�ict with
Number in the actual parameter, because Number is not a subtype of Integer.

Consider the last example given in Listing 1.3. The compiler javac gener-
ates the same error message for this method call as it did for the invocation in
Listing 1.1. Aside from the fact that the error message is not very helpful, the
compiler should have generated a di�erent error message just like ejc, because

2

stat ic <T> void bar (Map<T, ? extends T> a){}
. . .
Map<Integer , Number> m2 = . . . ;
bar (m2) ; // Error

Listing 1.2: Subtyping con�ict

Test.java:11: <T>bar(java.util.Map<T,? extends
java.util.List<T>>) in Test cannot be applied to
(java.util.Map<java.lang.Number,java.util.List<java.lang.Integer>>)

bar(m2);

1. ERROR in Test.java (at line 11)
bar(m2);

The method bar(Map<T,? extends List<T>>) in the type Test is not
applicable for the arguments (Map<Number,List<Integer>>)

Figure 1.2: javac and ejc error messages for the invocation in Listing 1.2

the reason why this invocation failed is completely di�erent from why the invo-
cation in Listing 1.1 is rejected. The method call is illegal, because the type that
the type variable T should be instantiated with must be a subtype of Number.
Since the type Comparable<Integer> of the actual parameter is not a subtype
of Number, the method invocation is incorrect.

1.2 Structure of this thesis

In Chapter 2 we provide some background information about generics in Java,
and introduce some basic concepts and de�nitions needed to understand this
thesis. Next, in Chapter 3 we review the current type checking of method invo-
cations in Java. Chapter 4 describes how the type checking process is extended
to produce better error messages, and provide two examples to illustrate how

stat ic <T extends Number> void baz (Lis t<T> a){}
. . .
L i s t<Comparable<Integer>> l = . . . ;
baz (l) ; // Error

Listing 1.3: Bound con�ict

3

Test.java:16: <T>baz(java.util.List<T>) in Test cannot be applied to
(java.util.List<java.lang.Comparable<java.lang.Integer>>)

baz(l);

ERROR in Test.java (at line 16)
baz(l);

Bound mismatch: The generic method baz(List<T>) of type Test is not
applicable for the arguments (List<Comparable<Integer>>). The inferred
type Comparable<Integer> is not a valid substitute for the bounded para-
meter <T extends Number>

Figure 1.3: javac and ejc error messages for the invocation in Listing 1.3

the extension works in general. Chapter 5 provides a list of di�erent kinds of
type errors and shows how the error messages generated for these type errors by
our framework compare to the error messages generated by the only two Java
compilers that support generics at the moment: The Sun java compiler and the
Eclipse java compiler. In Chapter 6 we present a number of heuristics that we
have developed to further improve the quality of an error message by providing
repair hints. We also provide examples for each type heuristic to illustrate how
the additional hints improve an error message. Chapter 7 will conclude the
thesis.

4

Chapter 2

Type Systems and Java

Generics

In this chapter we provide some background information about generics (para-
metrized polymorphism) in Java and introduce some of the basic concepts and
terminology used in the rest of this thesis. Readers who have some programming
experience with Java generics may skip to the next chapter.

2.1 Type systems

A type system in its broadest sense is de�ned in Types and Programming Lan-
guages [8] as:

A type system is a tractable syntactic method for proving the ab-
sence of certain program behaviors by classifying phrases according
to the kinds of values they compute.

This de�nition consists of two parts. The �rst part identi�es a type system
as a means of reasoning about the behavior of a program. The second part
describes a type system as a classi�cation system that arranges and groups
program values and expressions into categories based on their meaning. These
categories are called types. The meaning of the term type in computer science
very much resembles the meaning of sets in mathematics. In mathematics the
symbol N denotes a set of natural numbers, also known as counting or ordering
numbers. Thus, when de�ning a variable α as a member of N (α ∈ N), α can
only take one of the values contained in N. The same principal also holds in
Java's type system. When declaring a variable of type unsigned int, then this
variable can only take a value that is de�ned in N. Note, however, that due to
hardware limitations the type int is a �nite set, thus int is actually only a �nite
subset of the in�nite set N. Furthermore, types in computer science also restrict
the operations that can be performed on a value, e.g. the strings �Hello� and

5

�world!� can be concatenated together, but it makes no sense to multiply them
together.

Type systems vary considerably from one programming language to another,
but they are all implemented for the same purposes:

• Safety: detect meaningless operations such as: �hello world� + 2, which
can lead to run-time errors.

• E�ciency: information about types of expressions can help the compiler
choose better program representations and more e�cient machine instruc-
tions.

• Abstraction: allow programmers to think about programs at higher level
instead of just as a sequence of machine instructions or bits.

Type systems can be classi�ed in several ways. One reasonable way of catego-
rizing type systems is to look at how they reason about programs. There are
basically two kinds of type systems:

• Type checkers: require program code, typically the identi�ers, to be an-
notated with type information which they can use to verify that every
expression in the program can be assigned a correct and appropriate type.

• Type inferencers: require a minimal amount or no type information at all
to be present in the program code, because they can deduce the type of
expressions and identi�ers based on how they are used.

2.2 Java Generics

Generic or parametrized typing was an advanced feature that has been long an-
ticipated by the Java community. It was introduced in Java version 5 (JDK 1.5)
with the primary purpose of creating type-safe collections. Before the release of
JDK 1.5, collections in Java were heterogeneous, meaning that collections can
contain elements of di�erent types. This was possible because every reference
type in Java is a subtype of Object and collections were made to contain Object
references. So in a situation where a homogeneous collection is required, pro-
grammers had to rely on casts to make sure that an element returned from a
collection is indeed of the right type.

L i s t l = . . . ;
l . add (new Object ()) ;
l . add (" s t r i n g ") ;
l . add (new I n t eg e r (1)) ;
S t r ing myStr = (St r ing) l . get (1) ;
myStr = (St r ing) l . get (2) ;

Listing 2.1: Heterogeneous collection

6

The second assignment in Listing 2.1 will succeed at compile time, but will
fail at run-time, because the third element in the list is not a string. Having to
keep track of types of elements added to and read from a collection is a tedious
and error-prone job that can be better performed by the compiler. Java generics
added that extra safety to Java, by detecting errors such as the one above at
compile time instead of run-time[2]. To be able to detect errors at compile-

interface List<E>{
public boolean add (E o) ;
. . .

}

Listing 2.2: Declaration of a homogeneous collection

time, the existing List interface has to be modi�ed to include a type parameter.
The type parameter functions as placeholder for the list's element real type, see
Listing 2.2. The type checker ensures that a list contains only elements of the
same type or elements with a type that is a subtype of the list's element type,
e.g. a list of numbers can contain elements of type number and elements of type
double or integer. Instantiating the List with a type argument String makes
casting unnecessary when reading from the list, because any attempt to add
anything to the list but a String will be immediately detected by the compiler
as an error, as illustrated in Listing 2.3.

L i s t<Str ing> l = . . . ;
l . add (new Object ()) ; // compile−t ime error
l . add (" s t r i n g ") ;
l . add (new I n t eg e r (1)) ; // compile−t ime error
St r ing myStr = l . get (1) ; // no ca s t r e qu i r ed

Listing 2.3: Using a homogeneous collection

Java not only allows you to de�ne parametrized types, but also parame-
trized or generic methods. The utility class Collections in java.util package
contains several examples of generic methods. One of these methods is <T>
void �ll(List<? super T>, T), which replaces all the elements in a list with the
second parameter in the method declaration. Generic methods can be called in
two ways:

• the user supplies the type arguments that type variables need to be in-
stantiated with, e.g. Collections.<Integer>�ll(someIntegerList, 23), or

• the type arguments are omitted, e.g. Collections.�ll(someIntegerList, 23).
In this case, the compiler is smart enough to instantiate the type variables
with types that will make invocation succeed.

7

2.3 Subtyping and Containment

Since types are much like sets, they can also be partially ordered. The or-
dering operator for types is a subtyping operator denoted by `<:'. A type C
is considered to be a subtype of D (C <: D), if D can be substituted by C
everywhere D is used or expected. In terms of sets, every element of C is a
element of D. The subtyping operator is re�exive and transitive, meaning that
C <: C and (C <: D ∧ D <: E) ⇒ C <: E. To give a concrete example
consider the classes Reader, Bu�eredReader and LineNumberReader available
in the package java.io, which can be used to read character streams. Since the
class LineNumberReader extends Bu�eredReader and this later class extends
the class Reader, then LineNumberReader also extends Reader, i.e. LineNum-
berReader <: Reader.

Subtyping among normal types, i.e. non-generic types, is simple and straight-
forward, but subtyping among generic or parametrized types requires an addi-
tional kind of ordering known as containment, denoted by `≤:'. A parametrized
type C<S1, . . . , Sn> is considered to be a subtype of D< T1, . . . , Tn > if C <: D
and 1 ≤ i ≤ n, Ti contains Si (Si ≤: Ti). Containment itself is also partially
de�ned in terms of subtyping as shown below:

• ? extends T ≤: ? extends S if T <: S

• ? super T ≤: ? super S if S <: T

• T ≤: T

• T ≤: ? extends T

• T ≤: ? super T

2.4 Type variance

From the previous section it is clear that types can be partially ordered, but
sometimes it is also important to express how types can vary from each other
in a type system. The notions covariance, contravariance and invariance were
introduced to represent this change.

2.4.1 Covariance

Covariance indicates that applying a type operator to two types preserves the
ordering on the result types. In Java, for example, Integer <: Number and
Integer [] <: Number []. Thus arrays in Java are covariant, because their ordering
is the same as the ordering of their component type, in this case Integer and
Number. Another example of covariance in Java is the return type of a method.
If a method in class returns some type C, then it can be overridden by another
method in a subclass to return a subtype of C.

8

2.4.2 Contravariance

Contravariance is the exact opposite of covariance. Applying a contravariant
operator to two types reverses the ordering of the result types. Suppose that a
function f takes an argument of type C and returns a value of type D (written as
C → D), then substituting f with another function g of type C ′ → D′ requires
that C ′ → D′ <: C → D. This is a very logical condition, but what does
that mean for the types C, D, C ′ and D′? Assuming that (→) is a covariant
type operator, one can conclude that C ′ <: C and D′ <: D. For the types
D and D′ this is correct, because D′ can replace D anywhere. However, the
condition C ′ <: C breaks the substitution. Assuming that f takes a Number as
a parameter, then g must take a subtype of Number, such as Integer or Double,
as its parameter. But in this case g can not replace f completely, since a call to
g with a Number as a parameter would be illegal. Thus, instead of C ′ <: C, we
must demand the opposite C <: C ′. Now it is guaranteed that any call to f is
also a legal call to g. Thus, the operator (→) is contravariant in the parameter
types. Because this is somewhat counter-intuitive and because of some other
issues, some type systems avoid contravariance and prefer to restrict the types of
parameters of the substituting function to be exactly the same as the parameter
types of the substituted function.

2.4.3 Invariance

Invariance is the middle ground between covariance and contravariance. When a
type operator is both covariant and contravariant, then it is said to be invariant.
It was mentioned earlier that arrays in Java are covariant, but that is not entirely
correct. An array of bytes (byte[]) is not a subtype of array of ints (int[]). bytes[]
and int[] are in fact completely di�erent from each other, despite the fact that
byte is subtype of int. Arrays in Java are invariant if the base type is a primitive
type (not a reference type).

Aside from arrays of primitive types, concrete parametrized types in Java
are also invariant. Consider for example the interface Set<E> in the package
java.util, where E is a type variable that can be instantiated with any reference
type. Although Integer <: Number, it is not the case that Set<Integer> <:
Set<Number>. Note, however, that it is allowed to add integers to a set of type
Set<Number>, but only numbers can be read from the set.

2.5 Wildcards

Although in most cases, programmers use homogeneous collections or data struc-
tures in general, it is sometime necessary to be able to write code that does not
depend on the data structure's type parameter. Prior to the introduction of
generics, one could write the method in Listing 2.4 to print all the objects in a
collection.

public void p r i n tA l l (Co l l e c t i on co){

9

Collection<?>

Collection<Object> Collection<Number> Collection<Integer> Collection<...>

null

Figure 2.1: Generic subtyping relation

for (int i = 0 ; i<co . s i z e () ; ++i){
System . out . p r i n t l n (co . get (i)) ;

}
}

Listing 2.4: Print a heterogeneous collection

Although the code above will function just �ne with generics code, it is con-
sidered bad style to use parametrized types in their raw form. Besides, support
for the raw types may become deprecated in the future. Therefore, adapting
the above code to create a polymorphic method may yield the following method
signature: void printAll(Collection<Object>). However, a method with this sig-
nature will accept only collections that contain objects with type Object. This
seems a bit odd at �rst, but it actually makes sense if you know that Collec-
tion<Object> is not a supertype of all parametrized Collection types. In fact the
subtype relationship between the types de�ned by the interface Collection<T>
is like a lattice that is in�nite in width with null as its bottom and Collec-
tion<?> as its top, see Figure 2.1. The symbol (?) stands for the unknown
type, that can be replaced by any other type. Thus, the correct signature of the
above method, must be: void printAll(Collection<?>).

The invariance of concrete parametrized types is in some occasions very
restrictive and even problematic. Consider, for example, de�ning a class �eld
whose type is List with an arbitrary element type [13, 12]. Declaring a �eld of
type List<Object> would be incorrect due to the invariance, but List<?> will
be correct, because every possible instantiation of List is a subtype of List<?>.
Wildcards add a great deal of �exibility to Java, because types instantiated with
a wildcards can be either covariant or contravariant. The subtype relationship
between wildcard parametrized types is illustrated in Figure 2.2.

Wildcards add a nice abstraction and expressive power to the language, but
they also introduce a layer of complexity and problems. Consider a reverse
method, which takes a list and returns a copy of this list with the elements
in the reverse order. This method could be declared as: <T>List<T> re-
verse(List<T>). This method will work for any kind of list except for lists
instantiated with a wildcard, such as List<?>. This is because the exact type

10

List<? extends Number>

List<? extends Integer>

List<? extends Object> Object

Number

Integer

����������	
����
	
�

����������	
��
�	���

����������	
����	�	
�

Figure 2.2: Subtyping between wildcard parametrized types

of the list's element cannot be deduced. Weakening the method's signature to:
List<?> reverse(List<?>) will solve the problem, but we will lose the informa-
tion that the returned list is of the same type as the list passed to the method.
To handle this situation a mechanism called wildcard capture conversion[13]
was de�ned that makes it possible in some type safe situations to call generic
methods even though no concrete type can be inferred for the type parame-
ters. Wildcard capture is based on the observation that even though the actual
type of List<?> may not be known, at the moment that the method reverse
is called, the list will have a certain speci�c element type. Thus, the run-time
type behind the wildcard is captured and used to instantiate the type variable T
with, hence the name wildcard capture. This, however, works only on top level
type variables, e.g. List<List<?>> can not be passed to a method expecting
List<List<T>>, because two elements of the list with the type List<?> may
have di�erent element types, which can not be captured by T.

Since wildcards are not concrete types that are known at compile-time, it is
forbidden in Java to use them as type arguments to call generic methods. For
example, Collections.<? extends Number>�ll(someIntegerList, 23) is illegal.

2.6 Bounds

Since type parameters are merely placeholders for real types provided at class
instantiation or method invocation, it is not possible to call a method or access
a �eld of the value of a type parameter in the body of the declaring class or
method. Consider, for example, a method compare with the signature <T> int
compare (T a, T b) that can be used to compare objects. In the body of compare
we cannot call the method compareTo provided by the interface Comparable,
because the type that the type variable T will be instantiated to during an
invocation it is not guaranteed to be a subtype of the Comparable interface. To
narrow the range of possible types that a type parameter can take, Java provides
a way to restrict the instantiation of parametrized types to make polymorphic
code somewhat speci�c. To illustrate this, suppose that we have a class Matrix

11

in Listing 2.5 which allows to perform basic math operations on it such as �add�
and �multiply�. In this case it is very reasonable to constrain the methods of
Matrix to work only on Matrix objects and to restrict the instantiation of Ma-
trix to types that are numbers.

class Matrix<T extends Number>{
<S extends Matrix<T>>void add (S other){ . . . }
<S extends Matrix<T>>void mult ip ly (S other){ . . . }

}

Listing 2.5: Upper bound restriction

The extends keyword in the class declaration forces the type parameter
passed to the Matrix constructor to be at most of type Number. Thus, any
subtype of Number can be used to instantiate the Matrix class. Since Number
is a class, any subclass of Number is a good candidate. Types such as Object
or String are not accepted, because they do not extend the class Number. On
the other hand, if Number was an interface than any class implementing the
Number interface will make the instantiation of Matrix correct. This restriction
ensures that elements of a matrix can indeed be added together and multiplied
by each other. The same e�ect is achieved in the method declarations.

Besides the upper bound, Java also allows to specify a lower bound, which is
useful in situations where the user is interested in the upper part of the inheri-
tance tree instead of the lower part. This can be illustrated by an example from
Java Collection Framework. The class TreeSet<E> has four di�erent construc-
tors and one of these constructors is TreeSet(Comparator<? super E>). This
constructor provides the user with the �exibility to use the comparator de�ned
for a supertype of E in case E itself does not override the implementation of
the Comparator interface. Another situation where it is useful to have a lower
bound is given in Listing 2.6. Instead of restricting the type of the sink to be
Sink<T>, we can use any sink object that was instantiated with a supertype of
T.

public stat ic <T> T wr i t eA l l (Co l l e c t i on<T> c o l l
, Sink<? super T> snk){

T l a s t ;
for (T t : c o l l) {

l a s t = t ;
snk . f l u s h (l a s t) ;

}
return l a s t ;

}

Listing 2.6: Lower bound restriction

12

Chapter 3

Current Type Checking

This chapter discusses the portion of the type system of Java which is responsible
for type checking method invocations. An overview of method invocation type
checking is given in Figure 3.1. The type checking of method invocations is
discussed here in a top-down fashion. First method resolution is examined,
the initial step in the type checking process. Then constraint decomposition is
discussed. This is a pre-processing step that allows method resolution to trigger
the generic instantiation algorithm. And at last generic instantiation itself is
discussed; it infers the type arguments of generic methods, so that they can be
processed by method resolution.

Figure 3.1: An overview of the method invocation type checking

Generics instantiation is referred to in reference [3] as inference. However,
in this thesis we prefer to call it generic instantiation because the inference in
Java as we will see never fails and may infer nonsensical types. However, type
inference in its broadest sense, unlike generics instantiation in Java, might fail
in some occasions and never infers absurd types. These two properties of type
inference become more apparent when one realizes that type inference problem
is just another form of constraints satisfaction problem. Thus, depending on

13

the constraints, type inference might fail if:

• the constraints are unsatis�able, or

• the constraints have too many solutions, but no best solution is can be
determined.

In this thesis we will also adhere to the same naming convention as in [3]:

• Type expressions are represented by the letters A, F, U, and V, where A
is used to denote the type of an actual parameter, and F the type of a
formal parameter.

• Type variables are represented using the letters S and T.

• Generic type, i.e. class and interface, declarations are represented by the
letters G and H.

3.1 Method Resolution

All programming languages that support modularity or some sort of overloading
need to implement name resolution, that determines what program entity is
being referred to by an identi�er. This name resolution or name look-up can
take place at di�erent levels, such as packages, module, types and methods.
Name resolution varies in complexity from one language to another. A function
look-up in Haskell is almost as easy as looking up a keyword in a dictionary, if it
did not have support for modules and aliases, because function names and type
constructors are only allowed to be used once. In Java, however, function look-
up or method resolution [3], is much more complicated due to the presence of
overloading, overriding, visibility and other factors. Method resolution in Java
is responsible for �nding the most speci�c method declaration that matches a
method invocation, and it consists of three phases.

1. Determine the name of the method to be invoked and the receiver. The
receiver is the class or interface to whom the method de�nition belongs.
A method invocation in Java can take several forms (Appendix C.5), and
for these forms the name of the method and the receiver are determined
as follows:

• If the invocation has the form of MethodName1 then:

� IfMethodName is a simple Identi�er, then Identi�er is the method
name. If Identi�er appears within the scope of a visible method
declaration, the receiver is the innermost class or interface that
encloses the method declaration.

1We do not agree with the term MethodName used in the language de�nition. It gives the
impression that we are referring to the name of a method, while in fact MethodName can also
be a concatenation of a method name and some other identi�ers separated with a dot(.), e.g.
this.�eld.meth.

14

� If MethodName is TypeName.Identi�er, where TypeName is the
name of a class, then the receiver is the class named TypeName
and the method name is Identi�er.

� If MethodName is FieldName.Identi�er, then let T be the de-
clared type of the �eld or local variable named FieldName. If T
is a class or interface then the receiver is T, or the upper bound
of T if T is type variable.

Example 3.1. The code given below provides an example of each case
discussed above. In the �rst call the receiver is the enclosing class
Foo and the method is bar. In the second call the receiver is the class
Foo, which is indicated by the identi�er Foo before the period (.),
and the method is again bar. In the third call the receiver would be
the type of the parameter a, but since the type of a is a type variable
T, the receiver is then the upper bound of T : Number. The method
in this case is byteValue.

class Foo{
stat ic <T extends Number>void bar (T a){

bar (null) ;
Foo . bar (null) ;
a . byteValue () ;

}
}

• If the invocation has the form:
Primary.NonWildTypeArgumentsoptIdenti�er

2, then let T be the type
of the Primary expression (see Appendix C.5); the receiver is T if T
is a class or interface, or the upper bound of T if T is a type variable.

Example 3.2. The following code gives a couple examples of this kind
of method invocation. The receiver in the �rst call is the type of the
expression this, which is always the innermost class that encloses the
method invocation, and the method is foo. In the second call the
receiver is the return type of Collections.<String>emptySet() and
the method is size. The receiver in the last call is the class Class,
which is the type of int.class, and the method is getCanonicalName.
An example of an invocation where the receiver is the upper bound
of type variable is given in the previous example. The method byte-
Value invoked in the last invocation belongs to the upper bound of
T: Number.

this . f oo () ;
Co l l e c t i o n s .<Str ing>emptySet () . s i z e ()
int . class . getCanonicalName () ;

2It is impossible in Java to parametrize calls with wildcards.

15

• If the invocation has the form
super.NonWildTypeArgumentsoptIdenti�er, then the name of the method
is Identi�er and the receiver is the superclass of the class whose dec-
laration contains the method invocation.

Example 3.3. The following code is an example of this form of in-
vocation. The receiver in this case is the supertype of Bar, which is
Foo, and the method is intVal.

class Foo{
public int in tVal (){ return 0 ; }

}

class Bar extends Foo{
public void baz (){ super . in tVal () ; }

}

• If the invocation has the form
ClassName.super.NonWildTypeArgumentsoptIdenti�er, then the name
of the method is Identi�er and the receiver is the superclass of the
class named ClassName.

Example 3.4. The code below is an example of this kind of invo-
cation. The method name in this example is intVal and the receiver
is the superclass of Bar Foo, which was de�ned in Example 3.

class Baz extends Foo{
class Inner {

public void t e s t (){ Baz . super . in tVal () ; }
}

}

• If the invocation has the form
TypeName.NonWildTypeArguments Identi�er, then the name of the
method is Identi�er and the receiver is the class named TypeName.

Example 3.5. This kind of invocation has been introduced before
in the previous examples. It is used for invoking static methods. An
example of this invocation is: Collections.<String > emptySet().
The receiver in this case is the class Collections and the method is
emptySet.

2. The second step searches in the receiver obtained in the �rst step for all
accessible and applicable method members. The search is �rst performed
using only the name determined in the �rst step to identify potential
applicable methods. A method is considered potentially applicable if all
following conditions hold:

16

• The name of the method is identical to the name in the invocation.

• The method is accessible from the method invocation site.

• If the method is a variable arity method with arity n, the arity of the
method invocation must be greater than or equal to n-1.

• If the method is a �xed arity method with arity n, then the arity of
the method invocation must be equal to n.

• If the method invocation includes explicit type parameters, and the
method is a generic method, then the number of actual type para-
meters must be equal to the number of formal type parameters.

After having identi�ed the potential methods, the compiler continues by
eliminating any method that can not be correctly invoked given the ar-
guments in the method invocation. This elimination takes place by com-
paring the actual parameters with the formal parameters of the each po-
tentially applicable method. Due to the support of Java for subtyping,
auto-boxing and variable arity methods, determining whether a method
is truly applicable is a complicated process. Therefore, it is divided into
three phases. These phases are executed in the exact order presented be-
low, and a phase is executed only if the phases that proceed it fail to
deliver any applicable methods.

(a) Identify methods with an arity that matches the number of actual
parameters in the method invocation and is applicable only by sub-
typing. Let F 1 to Fn be the types of the formal parameters and
A1 to An be the types of the actual parameters, then a method is
applicable by subtyping if

for 1 ≤ i ≤ n:

• Ai is a subtype of F i (Ai <: F i), or

• Ai is a raw type that can be converted to a parametrized type
C i, and C i <: Fi

If a method is generic, then all type variables in F 1 to Fn are substi-
tuted with the type parameters provided by the method invocation.
If these type parameters are absent, then the inferred types are used
(see Section 3.3). The generic method is then applicable only if be-
sides the conditions above, all its type parameters are within their
bounds. For example, given the following type variable declaration
<T extends Number>, T is said to be within its bounds if the type
that T is instantiated to is a subtype of Number.

(b) Identify methods with an arity that matches the number of actual
parameters in the method invocation and is applicable by method
invocation conversion, i.e. widening in combination with (un)boxing.
Let F 1 to Fn be the types of the formal parameters and A1 to An be
the types of the actual parameters, then a method is applicable by

17

method invocation conversion if for 1 ≤ i ≤ n, Ai can be converted
by a method conversion to F i.
If the method is generic then type variables in the formal parameters
are �rst substituted with either the given type parameters in the
method invocation, or by the inferred type arguments. The method
is then considered to be applicable if all type parameters are within
their bounds.

(c) Identify applicable methods with variable arity. Let F1 to Fm[] be
types of the formal parameters and A1 to An be the types of the
actual parameters, where 1 ≤ m ≤ n. The method is applicable if
the following conditions hold:

• For 1 ≤ i < m, Ai can be converted by method conversion to Fi

• If n ≥ m, then for m ≤ i ≤ n, Ai can be converted by method
conversion to the type of Fm

If the method is generic, then type variables in the formal parameters
are �rst substituted with either the given type parameters in the
method invocations, or by the inferred type arguments. The generic
method is then applicable if the above conditions hold and all its
type parameters are within their bounds.

If more than one applicable method was found, then the most speci�c
method is chosen.
For �xed arity methods a method m1 with the parameters T 1 to Tn is
considered more speci�c than m2 with the parameters S 1 to Sn, if for
1 ≤ i ≤ n T i is subtype of Si.
For variable arity methods a method m1 with the parameters T 1 to Tn[]
is more speci�c then m2 with the parameters S 1 to Sm[], where m ≤ n,
if the following conditions are met:

• For all 1 ≤ i < m− 1 , Ti <: Si

• For all m ≤ i ≤ n , Ti <: Sn

If it cannot be determined which method is the most speci�c, then the
compiler deals with the ambiguity as follows:

• If all methods have override-equivalent signatures, then:

� If all methods are abstract except for one, then return this non-
abstract method.

� If all methods are abstract, then choose arbitrarily the method
with the most speci�c return type.

• otherwise report an ambiguous method invocation error.

3. The third step checks whether the method chosen in the previous step
is appropriate, e.g. an instance method cannot be called from a static

18

context, an abstract method in class can not be called from subclass (su-
per.abstractMethod()), and a method with void as return type can be used
as top level expression only.

3.2 Constraint Decomposition

The generic instantiation process in Java proceeds by running a constraint de-
composition algorithm on the method arguments to collect as much type in-
formation as possible that will later help and guide the inference algorithm to
compute the best possible types for the type parameters. The purpose of con-
straint decomposition is to simplify complicated type constraints, by decompos-
ing them into simple atomic constraints. For example, if generic instantiation
starts with a single constraint List<Integer> <: List<T>, where T is type
variable, then the constraint decomposition algorithm will return the constraint
T = Integer. There are three kind of atomic constraints in Java; equality con-
straints of the form of T = σ, supertype constraints denoted as σ <: T , and
subtype constraint represented by T <: σ, where σ is a type expression.

The layout sensitive pseudo-code in Listing 3.1, 3.2, and 3.3 describe how
the constraints are decomposed. Each procedure takes an actual parameter A,
a formal parameter F and a set of constraints TC, which is initially empty,
and returns the set TC augmented with new constraints. The procedure in
Listing 3.1 checks whether the formal parameter F contains any type variables,
and if not it returns the set TC unchanged. The procedure returns also the
set TC without any changes if the actual parameter is the expression �null�. If
the procedure does not stop at the �rst if-statement, then it checks whether the
actual parameter A is a primitive type, such as int or char. If A is indeed a
primitive type, then the procedure replaces A with its corresponding reference
type and calls itself. If A is not a primitive type, then the procedure adds the
constraint A <: F to the set TC if F is a type variable. If F is an array type
instead of a type variable, then the procedure ensures that A is an array type
too or it is a type variable with an array type as a bound and then calls itself
with the component type of the array types U [] and V []. If F is an instantiation
of a generic type G and A itself or a supertype of it is also an instantiation of
G, then the procedure performs a case statement on the type arguments of G
in which it calls itself or the other procedures in Listing 3.2 and 3.3. If a pair of
type arguments (Ui and Vi) of G do not match any of the patterns in Listing 3.1,
then the procedure simply ignores these type arguments and moves on to next
pair.

The procedure in Listing 3.2 is very similar to the one in Listing 3.1, but
it only adds equality constraints to the set TC, because it only calls itself re-
cursively. The procedure in Listing 3.3 looks complicated, but in fact it is
very similar to the procedure in Listing 3.1. The only di�erence between these
procedures is that the formal parameter F should be a subtype of the actual
parameter A in the procedure COLLECT_SUB_CONSTRAINTS instead in
of the other way around.

19

The generic instantiation of type variables for a method invocation starts by
invoking the procedure in Listing 3.1 on the initial constraints A <: F, where A
is an actual parameter and F is the formal parameter. This will lead to number
of type constraints depending on the form of the types A and F (see Table 3.1
for some examples). For a detailed textual description of this process the reader
is advised to read section 15.12.2.7 of [3]

Initial constraint Final constraints

List<Integer> <: List<T> {T = Integer}

List<? extends Integer> <: List<? extends T> {T <: Integer}

List<? super Integer> <: List<? super T> {Integer <: T}

List<Integer> <: List<? extends T> {T <: Integer}

List<? super Integer> <: List<? super T> {Integer <: T}

List<? extends List<? super Integer>> <: List<? extends List<? super T>> {T <: Integer}

List<? super List<? extends Integer>> <: List<? super List<? extends T>> {T <: Integer}

List<? super List<? super Integer>> <: List<? super List<? super T>> {Integer <: T}

Map<Integer , Number> <: Map<T , ? extends T> {T = Integer , T <: Integer}

Table 3.1: Example of constraints collection

20

DEF COLLECT_SUPER_CONSTRAINTS(INPUT : A , F , TC, OUTPUT:TC)
IF F has no type v a r i a b l e s OR

A i s the type o f the e x p r e s s i o n ' n u l l ' THEN
EXIT

IF A i s p r i m i t i v e type THEN

COLLECT_SUPER_CONSTRAINTS(BOX(A) , F , TC)

ELIF F i s type v a r i a b l e THEN

add A <: F to TC

ELIF F = U [] THEN
IF A = V [] OR A i s type v a r i a b l e w i th a bound V []

COLLECT_SUPER_CONSTRAINTS(V, U, TC)

ELIF F = G<U1 , . . . , Un> AND G<V1 , . . . , Vn> i s s up e r t y p e o f A THEN

FOR i = 1 TO n
IF Ui AND Vi a r e c on c r e t e t yp e s THEN

COLLECT_EQUAL_CONSTRAINTS(Vi , Ui , TC)

ELIF Ui = ' ? ex t end s X ' THEN
IF Vi i s a c on c r e t e type THEN

COLLECT_SUPER_CONSTRAINTS(Vi , X , TC)

ELIF Vi = ' ? ex t end s Y '
COLLECT_SUPER_CONSTRAINTS(Y, X, TC)

ELIF Ui = ' ? supe r X ' THEN
IF Vi i s a c on c r e t e type THEN

COLLECT_SUB_CONSTRAINTS(Vi , X , TC)

ELIF Vi = ' ? supe r Y '
COLLECT_SUB_CONSTRAINTS(Y, X, TC)

Listing 3.1: Decompose the type constraints A<:F into a set of atomic con-
straints.

21

DEF COLLECT_EQUAL_CONSTRAINTS(INPUT : A , F , TC, OUTPUT:TC)
IF F i s type v a r i a b l e THEN

add A = F to TC

ELIF F = U [] THEN
IF A = V [] OR A i s type v a r i a b l e w i th a bound V [] THEN

COLLECT_EQUAL_CONSTRAINTS(V, U, TC)

ELIF F = G<U1 , . . . , Un> AND G<V1 , . . . , Vn> i s a s up e r t y p e o f A THEN

FOR i = 0 TO n
IF Ui and Vi a r e c on c r e t e t yp e s THEN

COLLECT_EQUAL_CONSTRAINTS(Vi , Ui , TC)

ELIF Ui = ' ? ex t end s X ' AND Vi = ' ? ex t end s Y ' THEN
COLLECT_EQUAL_CONSTRAINTS(Y, X, TC)

ELIF Ui = ' ? supe r X ' AND Vi = ' ? supe r Y ' THEN
COLLECT_EQUAL_CONSTRAINTS(Y, X, TC)

Listing 3.2: Decompose the type constraintA=F into a set of atomic constraints.

22

DEF COLLECT_SUB_CONSTRAINTS(INPUT : A , F , TC, OUTPUT:TC)
IF F has no type v a r i a b l e s OR

A i s the type o f the e x p r e s s i o n ' n u l l ' THEN
EXIT

IF F i s type v a r i a b l e THEN

add F <: A to TC

ELIF F = U [] THEN
IF A = V [] OR A i s type v a r i a b l e w i th a bound V [] THEN

COLLECT_SUB_CONSTRAINTS(V, U, TC)

ELIF F = G<Ui , . . . , Un> THEN

IF A i s not a g e n e r i c type THEN

EXIT

ELIF A = H<V1 , . . , Vn> THEN

IF H<Si , . . . , Sn> i s s up e r t y p e o f F THEN

{− s u b s t i t u t e Si w i t h Ui −}
COLLECT_SUB_CONSTRAINTS(A, H<S1 , . . . , Sn>[Si/Ui] , TC)

ELIF A = G<V1 , . . . , Vn> THEN

FOR i = 1 TO n
IF Ui i s a c on c r e t e type THEN

IF Vi i s a c on c r e t e type THEN

COLLECT_EQUAL_CONSTRAINTS(Vi , Ui , TC)

ELIF Vi = ' ? ex t end s Y ' THEN
COLLECT_SUB_CONSTRAINTS(Y, Ui , TC)

ELIF Vi = ' ? supe r Y ' THEN
COLLECT_SUPER_CONSTRAINTS(Y, Ui , TC)

ELIF Ui = ' ? ex t end s X ' AND Vi = ' ? ex t end s Y ' THEN
COLLECT_SUB_CONSTRAINTS(Vi , Xi , TC)

ELIF Ui = ' ? supe r X ' AND Vi = ' ? supe r Y ' THEN
COLLECT_SUPER_CONSTRAINTS(Yi , Xi , TC)

Listing 3.3: Decompose the type constraint F<:A into a set of atomic con-
straints.

23

3.3 Generic Instantiation

The generic instantiation process is started by the type-checker each time a
generic method is marked as a potential method by the method resolution. Its
purpose is to compute the best possible types for the type variables declared
in the generic method. The best type in this case are not the principal types
as the readers who are familiar with a type inference based on the Hindley-
Milner(HM) algorithm [6] might expect, but the most speci�c types that can
make the method invocation correct. The generic instantiation used in Java was
introduced in the Generic Java project (GJ) [1, 2] as partial local inference [9, 7],
because types are inferred based on the arguments in the method invocation and
not on the context. There are some cases, however, where context does play a
role in instantiating the type variables. For example, context is used when a
generic method has no formal parameters, or when the type constraints do not
provide enough information about a type variable.
Method invocations are also processed separately, thus if for one method invo-
cation a type variable T is inferred to be Integer, it could be that the same type
variable T in another method invocation is inferred to be String.

<T> T idFunc (T a){ return a ; }
. . .
I n t eg e r i = idFunc (idFunc (4 2)) ;

Listing 3.4: Type parameters are inferred on method invocation basis

Consider the code in Listing 3.4. The type parameter T is instantiated
two times instead of once. Due to strict nature of Java, the inner method
invocation must be �rst evaluated before it can be passed as an argument to
the outer method invocation. This means that the outer invocation does not
get an argument of type T, but an argument of type Integer. Thus, there is no
constraint propagation here as one might have expected. Generic instantiation
is applied for each invocation, and hence T is instantiated twice.

The pseudocode in Listing 3.5 depicts how the generic instantiation algo-
rithm works. From this pseudo-code, it is clear that the algorithm handles the
equality constraints by simply assigning the �rst encountered type to the type
variable in equality constraint without performing any uni�cations. Reader who
have experience with the HM inference system might be surprised by this some-
what unusual approach, because HM system uses uni�cation to make sure that
all equality constraints can be satis�ed simultaneously. Thus, generic instanti-
ation will not fail even if the equality constraints are contradictory. But rest
assured, the fact that generic instantiation always succeeds does not mean that
method invocation type check succeeds always. An example of an incorrect
method invocation is given in Listing 3.6. Although, the type variable T is in-
stantiated with String, the call is incorrect because HashMap<String, Integer>
is not subtype of HashMap<T, T>, where T is substituted with String.

<T> void f oo (HashMap<T, T> a){}
. .

24

f oo (new HashMap<Str ing , Integer >()) ;

Listing 3.6: Illegal method invocation

In some occasions type parameters can be underconstrained, e.g. have no
constraints at all, which means these type parameters can take any type possible.
To deal with this ambiguity Java assigns the type Object to any type parameter
that was not instantiated/inferred.

Unlike the equality constraints, the generic instantiation algorithm does per-
form uni�cations for the supertype constraints. This is denoted in Listing 3.5
by the function lub, which stands for least upper bound. The function, as its
name implies, calculates the least supertype of a set of types, for example
lub(Integer, Double) = Number. However, computing the least upper bound
is not as easy it may seem. For example, lub(Integer, String) does not return
the type Object, but the much more speci�c and complicated intersection type
denoted by:

Object & Serializable & Comparable <? extends Object & Serializable & Comparable <?>>

The interface Serializable and the generic interface Comparable are part of the
intersection type, because both types Integer and String implement these inter-
faces. It becomes even more complex when one tries to compute the least upper
bound of parametrized types. The reason why lub computes these intersection
types is because they are more informative, i.e. they allow more operations to
be performed on an object than when the type is only known to be Object.
To compute the intersection type of parametrized types lub uses two auxiliary
functions lci3 and lcta4. The complete de�nition of lub function is as follows:

lub(U1 . . . Uk) = Candidate(W1) & . . .&Candidate(Wn),
where Wi is an element from MEC

Candidate(W) =

{
CandidateInvocation(W) if W is generic

W otherwise

CandidateInvocation(G) = lci(Inv(G))

lci(e1 . . . en) = lci(lci(e1, e2), e3 . . . , en)
lci(G<X1 . . . Xn >,G<Y1 . . . Yn >) = G<lcta(X1, Y1), . . . , lcta(Xn, Yn)>

3short for least containing invocation
4short for least containing type argument

25

lcta(U, V) =

{
U if U = V

? extends lub(U, V) otherwise

lcta(U, ? extends V) = ? extends lub(U, V)
lcta(U, ? super V) = ? super glb(U, V)

lcta(? extends U, ? extends V) = ? extends lub(U, V)

lcta(? extends U, ? super V) =

{
U if U = V

? otherwise

lcta(? super U, ? super V) = ? super glb(U, V)
glb(V1, . . . , Vn) = V1 & . . .&Vn is an intersection of types

The function glb is the dual function of lub. It takes a set of types and returns
the greatest lower bound of those types. This is done by intersecting all types.
Note that this, however, does not mean that the result of glb is always an
intersection type. For example:

glb(Number, Serializable, Cloneable) = Number &Cloneable

and

glb(Component, TextComponent, TextF ield) = TextF ield

The interface Serializable is not included the result, because the class Number
already implements it. The result of the second glb is simply TextField because
this class is a subclass of both Component and TextComponent.
Unlike lub, glb does not always succeed. Consider the case of glb(Integer, String);
there is no type in the Java language that can be both a subtype of Integer and
String except for the special null type5. However, the java compiler prefers not
to return this type, but will return a compile-time error instead.

Inv(G) = {V | 1 ≤ i ≤ n, V ∈ ST (Ui) : V = G<. . .>, G ∈ MEC}
where Ui is one of the parameters of lub

MEC = {V | V ∈ EC, ∀W ∈ EC : V 6= W, W ≮: V }
EC = ∩{EST (U) | U in U1 . . . Uk} where U1 . . . Uk are the parameters of lub

EST (U) = {V |W ∈ ST (U) : V = |W |}, where |W | is the erasure type of W

ST (U) = {W | U <: W}

ST is a function that returns all the possible supertypes of a type. The result of
this function is subsequently used by the function EST to compute a set of raw
supertypes, i.e. erased types that are supertypes of the argument U. EC is an
intersection of sets of raw supertypes of the types U1, . . . , Un that are supposed
to be subtypes of a type variable T, i.e. U1 <: T, . . . , Un <: T . EC is used to

5type of the expression null

26

compute the minimal set of most speci�c types, denoted by MEC. Given EC =
{Integer, Number, String, Object} the minimal set of most speci�c types is
MEC = {Integer, String}. The function Inv is used by lci to compute all the
parametrized supertypes, whose erased type is a member of MEC.

27

DEF INFER(INPUT : TC, OUTPUT: SUBST)
INFER_REC(TC, FALSE , SUBST)

DEF INFER_REC(INPUT : TC, STOP, OUTPUT: SUBST)
TCequal ← a l l Ti = U in TC
TCsuper ← a l l U <: Ti i n TC
TCsub ← a l l Ti <: U i n TC
{− p r o c e s s e q u a l i t y c o n s t r a i n t s −}
FOR i = 1 TO n

FOR Ti = U IN TC_equal
IF U i s a type v a r i b a l e Tj THEN

IF Ti = Tj

remove Ti = U from TC_equal
ELSE

r e w r i t e Ti = U to Tj = U in TCequal , TCsuper and TCsub

ELSE

add Ti = U to SUBST
r e p l a c e Ti with U i n TCequal , TCsuper and TCsub

{− p r o c e s s s up e r t y p e c o n s t r a i n t s −}
FOR i = 1 TO n

{− U1 <: Ti , . . . , Uk <: Ti −}
sub t ype s ← {}
FOREACH U <: Ti IN TC_super

add U to sub t ype s
add Ti = lub (sub t ype s) to SUBST

{− p r o c e s s subtype c o n s t r a i n t s i f not a l l t ype v a r i a b l e s
have been i n f e r r e d

−}
rema in ing_var s ← TVARS(TC)\TVARS(SUBST)
IF r ema in ing_var s 6= ∅ THEN

IF STOP THEN

FOR i = 1 TO n
{− Ti <: U1 , . . . , Ti <: Uk −}
s up e r t y p e s ← ∅
FOR Ti <: U IN TC_sub

add U to s up e r t y p e s
add Ti = g lb (s u p e r t y p e s) to SUBST

ELSE

IF method oc cu r s i n an as s i genment THEN

R ← r e t u r n type o f the method
R ' ← app l y SUBST to R

ELSE
R ' ← Object

S ← t ype o f the a s s i g enment
newTC ← COLLECT_SUB_CONSTRAINTS(S , R ' , ∅)
FOREACH T IN rema in ing_var s

FOREACH B IN bounds o f T
B ' ← app l y SUBST B
newTC ← COLLECT_SUB_CONSTRAINTS(B ' , T , newTC)

SUBST ← INFER_REC(TCsub , TRUE, newTC)
FOREACH T IN TVARS(TCsub)\TVARS(SUBST)

add T = Object to SUBST

Listing 3.5: Inference algorithm of Java language

28

Chapter 4

Improved Type Checking

In this chapter we introduce a new type checking algorithm for generic method
invocations, which is tailored towards generating error messages that explain
why a type error occurs and contain additional hints, which describe how to
correct a type error or prevent new errors in future compilations. We discuss
the algorithm in similar manner as in Chapter 3. We will �rst introduce a new
method resolution and explain why it is needed. After that we discuss constraint
generation, which is a modi�ed version of the constraint decomposition process
discussed earlier. In Section 4.3 we discuss our new algorithm for solving type
constraints and will conclude the chapter with a few examples to demonstrate
how the algorithm works. Figure 4.2 illustrates how our type checking algorithm
di�ers from the original type checking algorithm in Java (see Figure 3.1).

Figure 4.1: An overview of generic method invocation type checking as presented
in this chapter

29

4.1 Weak Method Resolution

The method resolution process presented in Chapter 3 relies on generic instan-
tiation to instantiate all the type parameters of generic methods, so that their
instantiated signature can be used to �nd the most speci�c method declaration
for a given method invocation. Since generic instantiation never fails, it is always
possible to obtain an instantiated signature of generic method. The absence of
failure in generic instantiation, as it was mentioned earlier, is due to the default-
ing mechanism that makes sure that all type variable are instantiated, and the
way equality constraints are handled. The method invocation in Listing 4.1

import java . u t i l . ∗ ;
. . .
<T> void f oo (Map<T, T> a) { . . }
. . .
Map<Str ing , Number> map = . . .
f oo (map) ;

Listing 4.1: Inference failure

will generate the following constraint set: {T = String, T = Number}. The
types String and Number are clearly not the same, therefore it is impossible to
assign a type that satis�es both constraints to the type variable T. A Haskell
compiler will halt and report a type con�ict to the user. But generic instantia-
tion will, according to Listing 3.5, instantiate the type variable T with the �rst
encountered type String and will not report any type con�ict. In fact, a type
error is only reported when the type checker tries to verify whether the formal
parameters of a method match the actual parameters in the method invocation.

The choice of ignoring constraints violations by the generic instantiation al-
gorithm is correct, because any apparent type con�ict during the generic instan-
tiation process is guaranteed to be caught later by the type checker. However,
there are cases where the method resolution fails to return any method at all.
In this situation the only error message reported by the compiler, is that the
user is calling a method that does not exist. With the introduction of generics
to the Java language, this kind of error message is not very helpful (see the error
messages reported by the Eclipse compiler and the Sun compiler for the method
invocation in Listing 4.2 in Table 4.1).

<T extends Number> void f oo (T a){}
<T extends Error> void f oo (T a){}
. . .
f oo ("He l lo ") ;

Listing 4.2: No method declaration matches the call

30

1. ERROR in Test.java (at line 7)
foo("");
^^^

Bound mismatch: The generic method foo(T) of type Test is not
applicable for the arguments (String). The inferred type String is not a
valid substitute for the bounded parameter <T extends Error>

Test.java:7: cannot �nd symbol
symbol : method foo(java.lang.String)
location: class Test

foo("");
^

Table 4.1: Error messages reported by the Eclipse compiler and the Sun compiler
respectively

Consider the method declaration in Listing 4.2, where none of the method
declarations matches the method invocation, because of a bound mismatch: the
type of the argument �Hello� is String, which is subtype of neither Number nor
Error. This kind of error could be caused by a beginner programmer who does
not know much about bounded type variables, or could be a result of removing
or modifying a generic method that used to allow arguments of type String.

<T extends Number , S> void f oo (Lis t<S> a , T b){}
<T extends Number , S> void f oo (Lis t<T> a , S b){}
. . .
L i s t<Str ing> l i s t = . . .
f oo (l i s t , "42") ;

Listing 4.3: Ambiguous method invocation

Another interesting example is given in Listing 4.3. The error in this case
arises because both type parameters T and S are instantiated to String. Chang-
ing the second argument in the method call to a subtype of Number will
correct the error, but so will changing the �rst argument to any subtype of
List <? extends Number>. Thus, it will be more constructive to make the
programmer aware of this fact by producing two di�erent error messages or one
error message that involves both method declarations, rather than just one error
message for only one of the methods.

Thus for the sake of better error reporting, the method resolution has to be
weakened to allow all methods whose name and arity matches the name and
number of arguments of the invocation respectively. This would allow us to
treat the methods in Listing 4.2 and 4.3 as candidates. Weakening the method
resolution does not mean that inaccessible methods such as overridden meth-
ods, instance methods in a static context, or simply methods declared with a
restricted visibility, are considered as candidates for error reporting. However,

31

considering inaccessible methods, is a possibility that one could explore, but
we prefer not to in this thesis. To weaken the method resolution, the second
step that searches a class or an interface for applicable member methods, must
ignore the type parameters and determine the most speci�c method based on
raw types only. This is done by erasing the generic parts of types and ignoring
bound information. Thus, the signature of the method declarations in Listing
4.2 will be converted to void foo (Object) and the signature of the method dec-
larations in Listing 4.3 will be converted to void foo (List, Object). Listings
4.5, 4.6, and 4.7 depict how the method resolution is modi�ed compared to the
original method resolution introduced in Chapter 3.

The procedure METHOD_RESOLUTION takes a method invocation as an
argument and returns a set of most speci�c method declarations. The procedure
starts �rst by searching for potentially applicable methods, which are methods
with the same name as in the invocation and an arity equal to the number
of arguments in the invocation if the method has �xed arity, or an arity less
than the number of arguments in the invocation if the method has a variable
arity. This search is performed by the procedure POTENTIAL_APPLICABLE
in Listing 4.6. After constructing a set of potentially applicable methods,
METHOD_RESOLUTION tries to narrow this set to a (smaller) set of most
speci�c methods. Computing a set of most speci�c methods is performed by
using the procedures de�ned in Listing 4.7, which work exactly as described
in Section 3.1, except that they ignore any kind of generic information. After
having constructed a set of most speci�c methods, METHOD_RESOLUTION
will remove any method declaration that is not appropriate (e.g. not accessible
from the call site) from the set and return the remaining methods.

<T, S extends Number> void f oo (Co l l e c t i on<T> a , Lis t<S> b){}
<T, S extends Number> void f oo (Lis t<T> a , ArrayList<S> b){}
. . .
f oo (new LinkedList<Integer >() , new ArrayList<Integer >()) ; // OK
f oo (new LinkedList<Double >() , new ArrayList<Integer >()) ; // WRONG

Listing 4.4: Both declarations match the call, but the second one is more speci�c

Type checking method invocations with this weak method resolution is
slightly more e�cient than the original version, because it reduces the number of
methods for which the generic instantiation/inference process must be initiated.
This e�ciency is achieved only when the method parameters are parametrized
types, such as in Listing 4.4. During type checking the generic instantiation
process must be initiated for both method declarations in Listing 4.4, because
they are both potentially applicable. For both method invocations the sec-
ond method declaration will be eventually chosen as the most speci�c method,
because its parameters are subtypes of the parameters of the �rst method dec-
laration. The weakened method resolution presented here, will choose the same
method to be the most speci�c one without using generic instantiation to in-

32

DEF METHOD_RESOLUTION(INPUT : i n v)
poten t i a l_methods ← ∅
FOREACH meth IN member methods o f the r e c e i v e r

IF POTENTIAL_APPLICABLE(meth , i n v) THEN

add meth to potent i a l_methods

spec i f i c_method s ← ∅
FOREACH meth IN potent i a l_methods

IF meth i s f i x e d a r i t y AND APPLICABLE_BY_SUBTYPING(meth , i n v) THEN

add meth to spe c i f i c_method s
most_spec i f i c_methods = MOST_SPECIFIC_METHOD_FIX(spec i f i c_method s)

IF #most_spec i f i c_methods == 0 THEN

sp e c i f i c_method s ← ∅
FOREACH meth IN potent i a l_methods

IF meth i s f i x e d a r i t y AND APPLICABLE_BY_METHOD_CONV(meth , i n v) THEN

add meth to spe c i f i c_method s
most_spec i f i c_methods = MOST_SPECIFIC_METHOD_FIX(spec i f i c_method s)

IF #most_spec i f i c_methods == 0 THEN

sp e c i f i c_method s ← ∅
FOREACH meth IN potent i a l_methods

IF meth i s v a r i a b l e a r i t y AND APPLICABLE_BY_METHOD_CONV(meth) THEN

add meth to spe c i f i c_method s
most_spec i f i c_methods = MOST_SPECIFIC_METHOD_VAR(spec i f i c_method s)

FOREACH meth IN most_spec i f i c_methods
IF meth i s not a p p r o p r i a t e THEN

remove meth from most_spec i f i c_methods ;
RETURN most_spec i f i c_methods

Listing 4.5: Weakened method resolution

33

DEF POTENTIAL_APPLICABLE(INPUT : meth , i n v)
IF meth . name 6= i n v . name THEN

RETURN FALSE
IF meth i s not a c c e s s i b l e from i n v ' s l o c a t i o n THEN

RETURN FALSE
IF meth . a r i t y 6= #inv . arguments AND meth i s f i x e d a r i t y THEN

RETURN FALSE
IF meth . a r i t y < (# i n v . arguments − 1) AND meth i s v a r i a b l e a r i t y THEN

RETURN FALSE
RETURN TRUE

DEF APPLICABLE_BY_SUBTYPING(INPUT : meth , i n v)
FOR i = 1 TO n

fparam = WIDE_ERASURE(meth . arguments [i])
aparam = in v . arguments [i]
IF aparam i s not subtype o f fparam THEN

RETURN FALSE
RETURN TRUE

DEF APPLICABLE_BY_METHOD_CONV(INPUT : meth , i n v)
FOR i = 1 TO n

fparam = WIDE_ERASURE(meth . arguments [i])
aparam = in v . arguments [i]

IF aparam cannot be method conve r t ed to fparam THEN
RETURN FALSE

RETURN TRUE

DEF WIDE_ERASURE(INPUT : tp)
IF tp i s a type v a r i a b l e THEN

RETURN Object
ELIF tp i s g e n e r i c THEN

{− i f tp = G<... > then r e t u r n G −}
RETURN raw form o f tp

ELSE
RETURN tp

Listing 4.6: Implementation of method applicability test

34

DEF MOST_SPECIFIC_METHOD_FIX(INPUT : meth_set , OUTPUT: meth_set)
FOREACH m1 IN meth_set

FOREACH m2 IN meth_set
IF MORE_SPECIFIC_FIX(m1, m2) THEN

remove m2 from meth_set

DEF MORE_SPECIFIC_FIX(INPUT : m1, m2)
FOR i = 1 TO n

arg1 = WIDE_ERASURE(m1 . arguments [i])
a rg2 = WIDE_ERASURE(m2 . arguments [i])
IF arg1 not subtype o f arg2 THEN

RETURN FALSE

RETURN TRUE

DEF MOST_SPECIFIC_METHOD_VAR(INPUT : meth_set , OUTPUT: meth_set)
FOREACH m1 IN meth_set

FOREACH m2 IN meth_set
IF MORE_SPECIFIC_VAR(m1, m2) THEN

remove m2 from meth_set

DEF MORE_SPECIFIC_VAR(INPUT : m1, m2)
IF #m1. arguments > #m2. arguments THEN

RETURN MORE_SPECIFIC_VAR(m2, m1)

k = min(#m1. arguments , #m2. arguments) − 1
n = max(#m1. arguments , #m2. arguments)

FOR i = 1 TO k
arg1 = WIDE_ERASURE(m1 . arguments [i])
a rg2 = WIDE_ERASURE(m2 . arguments [i])
IF arg1 not subtype o f arg2 THEN

RETURN FALSE

FOR i = k TO n
arg1 = WIDE_ERASURE(m1 . arguments [i])
a rg2 = WIDE_ERASURE(m2 . arguments [k+1])
IF arg1 not subtype o f arg2 THEN

RETURN FALSE

RETURN TRUE

Listing 4.7: Determine the most speci�c method(s)

35

stantiate any type variables. It should be noted, however, that this weakened
version of method resolution is not intended to replace the original one, but it
is merely used to discover a larger set of methods the programmer might be
trying to call. Having a large set of methods provides more clues and insight of
what the user is attempting to achieve, which can be used to improve the error
messages.

36

4.2 Constraints Generation

Recall that the generic instantiation algorithm presented in Chapter 3 does not
check for any constraint violations. If a constraint violation does occur, then
the algorithm does not report it, because it is unaware of any type con�ict. In
fact, type errors during the generic instantiation process are just delayed until
all type parameters are instantiated and the type checker starts doing its job.
The Java language is a statically type-checked language, i.e. the compiler veri�es
that the types of program expressions satisfy their type declarations. Therefore,
we expect that a type error is generated if something does not type check. All
type con�icts, such as T = Integer ∧ T = String, that might go undetected
during the generic instantiation process will always lead to type-checking errors.
However, even when there are no inconsistencies in the type constraints, it is
still not guaranteed that the type-checking will succeed. In Listing 4.8, the

<T> void f oo (Lis t<T> a , Lis t <? super T> b){}
. . .
L i s t<Number> l1 = . . . ;
L i s t <? extends Number> l2 = . . . ;
f oo (l1 , l 2) ;

Listing 4.8: Inference succeeds, but type checking fails.

type parameter T is instantiated to Number, because the only type constraint
available for T is {T = Number}. But unfortunately, List<? extends Number>
is not a subtype of List<? super T>, where T is substituted by Number. In
this situation the type checker reports that the method foo cannot be applied
to the arguments of type List <? extends Number >and List < Number >,
but it cannot for example explain to the programmer why the error occurred
or how to �x it: it does not have enough knowledge to do so. Keeping the
type constraints around after generic instantiation has been performed, will
help the type checker produce better error messages. Another solution, which
is pursued here, is to provide the constraints solver, that will be introduced
in Section 4.3, with more constraints that will ensure that a type is inferred
only if all type constraints are satis�ed and no type-checking error will occur.
Therefore the constraints decomposition algorithm in Listings 3.1 and 3.3 is
extended to generate additional constraints, which cannot be decomposed into
atomic constraints. The new constraints generation algorithm will, for example,
generate the following constraints:

{T = Number} d {List<? extends Number> <: List<? super T>}

for the method invocation in Listing 4.8. The constraints above are not joined
together, but are kept separate because they serve di�erent purposes. The
�rst set of constraints � left operand of d� is used to infer a type for T,
while the second set is used to ensure that an inferred type will not cause any

37

type-checking errors. The second set of constraints also allows the constraint
solver to take additional measures in case an inferred type does not satisfy
one of the constraints in this set, such as providing the programmer with a
possible correction. Moreover the role that the extra constraints play in the
inference process, is explained in the next sections. Listing 4.9 and 4.10 illustrate
the constraint generation algorithm. The procedures in these listings are very
similar to those de�ned in Section 3.2. The di�erence between these procedures
and those in Section 3.2 is the generation of an additional set of non-atomic
constraints, which is indicated in the pseudo-code by the comment �{- add
the actual and formal parameter to ETC -}�. The part of the algorithm that
normalizes equality constraints is equivalent to the one in Listing 3.2.

Java types and type declarations in JastAdd Extensible Java Compiler[11]
(JastAdd ECJ) are not directly connected to identi�ers and expressions in the
AST. The type of an expression can easily be looked up in the type environment,
but it is not possible to query an expression for its type, which is necessary in
some situations, e.g. printing an expression and its location in the source code,
�nding the generic type that a certain type in the type constraints originated
from, or counting the number of times a certain type is used in a method call.
The constraint generation algorithm is also extended to gather additional infor-
mation about types that is needed, but cannot be directly provided by JastAdd
ECJ. This additional information can be used to improve error messages or can
be used by the heuristics which will be introduced later on in Chapter 6.

38

DEF COLLECT_SUPER_CONSTRAINTS(INPUT : A , F , AP, FP , KIND , TC, ETC,
OUTPUT:TC, ETC)

IF F has no type v a r i a b l e s OR

A i s the type o f the e x p r e s s i o n ' n u l l ' THEN
EXIT

IF A i s p r i m i t i v e type THEN

COLLECT_SUPER_CONSTRAINTS(BOX(A) , F , TC)
ELIF F i s type v a r i a b l e THEN

add A <: F to TC
ELIF F = U [] THEN

IF A = V [] OR A i s type v a r i a b l e w i th a bound V []
COLLECT_SUPER_CONSTRAINTS(V, U, TC)

ELIF F = G<U1 , . . . , Un> THEN

IF G<V1 , . . . , Vn> i s s up e r t y p e o f A THEN

FOR i = 1 TO n
IF Ui AND Vi a r e c on c r e t e t yp e s THEN

COLLECT_EQUAL_CONSTRAINTS(Vi , Ui , TC)
ELIF Ui = ' ? ex t end s X '

IF Vi i s a c on c r e t e type THEN

COLLECT_SUPER_CONSTRAINTS(Vi , X , TC)
ELIF Vi = ' ? ex t end s Y '

COLLECT_SUPER_CONSTRAINTS(Y, X, TC)
ELSE

{− add the a c t u a l and fo rma l paramete r to ETC −}
IF KIND i s supe r type check THEN

add AP <: FP to ETC
IF KIND i s sub type check THEN

add FP <: AP to ETC
ELIF Ui = ' ? supe r X '

IF Vi i s a c on c r e t e type THEN

COLLECT_SUB_CONSTRAINTS(Vi , X , TC)
ELIF Vi = ' ? supe r Y '

COLLECT_SUB_CONSTRAINTS(Y, X, TC)
ELSE

{− add the a c t u a l and fo rma l paramete r to ETC −}
IF KIND i s supe r type check THEN

add AP <: FP to ETC
IF KIND i s sub type check THEN

add FP <: AP to ETC

Listing 4.9: Extending generation of super type constraints to include initial
constraints

39

DEF COLLECT_SUB_CONSTRAINTS(INPUT : A , F , AP, FP , KIND , TC, ETC,
OUTPUT:TC, ETC)

IF F has no type v a r i a b l e s OR

A i s the type o f the e x p r e s s i o n ' n u l l ' THEN
EXIT

IF F i s type v a r i a b l e THEN

add F <: A to TC
ELSE IF F = U [] THEN

IF A = V [] OR A i s type v a r i a b l e w i th a bound V [] THEN

COLLECT_SUB_CONSTRAINTS(V, U, TC)
ELIF F = G<Ui , . . . , Un> THEN

IF A i s not a g e n e r i c type THEN

EXIT

ELIF A = H<V1 , . . , Vn> THEN

IF H<Si , . . . , Sn> i s s up e r t y p e o f F THEN

{− s u b s t i t u t e Si with Ui −}
COLLECT_SUB_CONSTRAINTS(A, H<S1 , . . . , Sn>[Si/Ui] , TC)

ELIF A = G<V1 , . . . , Vn> THEN

FOR i = 1 TO n
IF Ui i s a c on c r e t e type THEN

IF Vi i s a c on c r e t e type THEN

COLLECT_EQUAL_CONSTRAINTS(Vi , Ui , TC)
ELIF Vi = ' ? ex t end s Y ' THEN

COLLECT_SUB_CONSTRAINTS(Y, Ui , TC)
ELIF Vi = ' ? supe r Y ' THEN

COLLECT_SUPER_CONSTRAINTS(Y, Ui , TC)
ELIF Ui = ' ? ex t end s X ' THEN

IF Vi = ' ? ex t end s Y ' THEN
COLLECT_SUB_CONSTRAINTS(Vi , Xi , TC)

ELSE

{− add the a c t u a l and fo rma l paramete r to ETC −}
IF KIND i s supe r type check THEN

add AP <: FP to ETC
IF KIND i s sub type check THEN

add FP <: AP to ETC
ELIF Ui = ' ? supe r X ' THEN

IF Vi = ' ? supe r Y ' THEN
COLLECT_SUPER_CONSTRAINTS(Yi , Xi , TC)

ELSE

{− add the a c t u a l and fo rma l paramete r to ETC −}
IF KIND i s supe r type check THEN

add AP <: FP to ETC
IF KIND i s sub type check THEN

add FP <: AP to ETC

Listing 4.10: Extending generation of subtype constraints to include initial con-
straints

40

4.3 Constraint Solving

4.3.1 Checking Type Parameter Bounds

Type parameters in a generic method can have bounds just like type parameters
in a class declaration. These bounds can be seen as limitations or restrictions
that narrow the range of types that certain type parameters can take. But these
bounds can also be viewed as type constraints that provide valuable information
about the kind of type that will be inferred for a type variable. The bound
constraints, however, do not play an active role in inferring type arguments,
except if a type variable does not have any equality or supertype constraints.
Since we want to improve the error messages, we would like to exploit any kind
of information available. Consider the code in Listing 4.11. The method

<T extends Number> void f oo (T a , Map<? extends T, ? super T> b){}
. . .
Map<Integer , Number> m = . . . ;
f oo ("He l lo " , m) ;

Listing 4.11: The parameter m is not a subtype of the formal parameter b

invocation will not type check, because the second actual parameter is not a
subtype of the second formal parameter and the inferred type for the type
parameter T is not a subtype of its bound Number. To analyze why this error
occurs, one needs to view the generated constraints and deduce which type
was inferred for the type variable T. The generated constraints for the method
invocations are:

{String <: T, Integer <: T, T <: Number}

According to the algorithm given in Listing 3.5, the type that is inferred for
T is the result of lub(String, Integer), which is the type Object1. By substi-
tuting the type variable T in all formal parameters with the type Object, one
can conclude that the type-check error arises because the type ‘? super Object'
does not contain Number, and Object is not subtype of Number. This error
could have also been noticed during the inference process if the third constraint
(T <: Number) was checked. Thus, it is possible to determine why the method
invocation does not type check during both the inference and type-checking.
However, type-checking unlike inference, cannot determine what caused the er-
ror. Judging only by the collected constraints above, one could blame:

• the type Number, because it is not a supertype of lub(String, Integer),
or

• the type String, because it is not a subtype of Number.

1In fact the inferred type is a more complicated type, but for simplicity we approximate
it with Object.

41

Which type could be blamed depends on the order in which the type constraints
are solved. Since generic instantiation, see Chapter 3, ignores the subtype con-
straints (T <: U) in the presence of supertype constraints, one could assume
that Number should be blamed for the type con�ict. However, this assumption
would be totally wrong. Examining the bounds of T, reveals that actually String
is the source of the con�ict. Since String is not a subtype of Number, taking
the least upper bound of any subtype of Number and String will always lead to
a type that is not a subtype of Number.

To bene�t from the information encoded in the bounds of type parameters,
we propose to check all the types in the equality and supertype constraints
against the bounds of the corresponding type variables before solving the gen-
erated constraints. To minimize the number of produced error messages, we
restrict the checking of types against the bounds of type variables to the types
that contribute to inferring type parameters only. For example if the generated
constraints for a type variable T are

{T = String, Integer <: T, T <: Number},

then we only have to veri�ed whether String is a subtype of the bounds of T,
because only the equality constraint determines the inferred type for T in this
case. Thus, if Double is a bound of T, then an error message is issued informing
the programmer that String does not satisfy the bounds of T.

<T extends Comparable<T>> void f oo (T a , . . .) { }
. . .
<T, S extends Comparable<T>> void bar (S a , T b , . . .) { }

Listing 4.12: Bounds involving type variables

While involving the bound constraints in the inference process can improve
the generated error messages, it is not always possible because type parame-
ter bounds might contain type variables. Consider the method declarations in
Listing 4.12. In the �rst declaration, the bound of T expresses only that the
inferred type for T must implement the interface Comparable instantiated with
the inferred type. Since we are interested in checking the bounds before we begin
inferencing the type parameters, the bound of T does not carry any information
that we can exploit. In the second declaration, the bound of S does not carry
any information just like in the �rst declaration. However, this can change if we
control the order in which type parameters are inferred. If we manage to infer
T before S, then we can substitute T in the bound of S. This would allow us
then to check the types in the constraints on S against the instantiated bound.

4.3.2 Ordering Type Variables

In the Haskell and ML community it is known that the famous algorithm W
and folklore algorithm M do not always report the same program location as
where the type con�ict occurred[14, 5]. The reason behind this di�erence is
the order in which they infer the sub-expressions, which in�uences the order

42

of uni�cation. The order of uni�cation subsequently speeds up or delays the
detection of type con�icts. The same thing could be said about our inference
algorithm and generic instantiation discussed in the previous chapter. Thus, the
order in which constraints are processed has an impact on the reported error
messages. Since type parameters are instantiated in Java separately, the order
in which they are instantiated has no in�uence on produced error messages.

<T, S extends Number> void f oo (T a , S b){
foo (1 , a) ; // OK or NOT

}

Listing 4.13: Independent type variables

To explain what we mean by inferring each type parameter independently,
consider the code in Listing 4.13. One may think that the method invocation
will type check just �ne, because:

• the type parameter T is inferred/instantiated to be Integer,

• S is inferred to be T and since T is Integer, S also becomes Integer

• Integer is a subtype of Number; the upper bound of S.

This is unfortunately not correct. The type parameter T is indeed inferred to be
Integer, but the type inferred for S is T, not Integer. Since T is an unbounded
type parameter, it can virtually be any type. Therefore, T is chosen to beObject,
and hence we cannot conclude that T is a subtype of Number. Therefore, the
method invocation does not type check.

In our inference algorithm type parameters are still inferred separately, but
because we involve bound constraints in the inference process, the order of
inferring the type parameters does have a substantial impact on the generated
error messages.

<T, S extends T> void f oo (Map<S , S> a , T a){}
. . .
Map<Integer , Str ing> m = . . . ;
f oo (m, 1) ;

Listing 4.14: Order of type parameters matters

Consider the code in Listing 4.14, which gives rise to the following constraints
{S = Integer, S = String, Integer <: T}. Our constraint solver, unlike generic
instantiation, will not infer S to be Integer or String. The inferred type of S
is the special type ⊥, which denotes that the type constraints can not all be
satis�ed simultaneously. In this case, we will issue an error message explaining
to the user that S is invariant, but that the types Integer and String are not
equivalent. This a good error message compared to what other compilers gen-
erate, because it explains the source of the type error. Actually, we can even
improve this error message by proposing a possible �x for the type con�ict. To

43

do that, however, we need to change the order in which the type parameters are
inferred. If we infer T �rst and than S, then we can bene�t from bound con-
straints of S. Inferring T �rst, means that S must be a subtype of Integer : the
inferred type for T. Looking at type constraints on S we establish that String
is the type that makes the constraints inconsistent. Therefore, we add a hint in
our previous error message explaining to the programmer that replacing String
with Integer may �x the type con�ict.

The order in which type variables need to be inferred to provide good error
messages is determined by what we call bound dependency. We say that a
type variable T1 depends on another type variable T2, if T2 occurs in one of
the bounds of T1. For example, the type parameter S in Listing 4.14 depends
on T. Type variables that have a large number of type variables depending on
them should be inferred �rst. For example, given the following type parameter
declaration:

< T, S, R extends Map<S, T>, U extends Map<R, S>>

The type parameters need to be inferred in the following order: S, T, R and U.
This ordering is computed as follows:

DEF UpdatePrior (tvar)
tvar . p r i o r++
FOREACH bound IN tvar . bounds

FOREACH var IN bound
IF var 6= tvar THEN

UpdatePrior (var)

Listing 4.15: Computing the priority of type parameters

The procedure UpdatePrior takes a type parameter as argument and in-
creases its priority and the priority of each type parameter in its bounds. Ap-
plying this procedure to the parameters above results in the following ordering
priorities:{T := 3, S := 4 , R := 2, U := 1}.

4.3.3 Constraint Solver

We present here a constraint solving algorithm that returns a substitution that
satis�es all the constraints of each type parameter. The algorithm, much like
generic instantiation in Section 3.3, processes one type parameter at a time
and solves the constraints in a �xed order. The algorithm solves the equality
constraints for a type parameter �rst by ensuring that all the types in equality
constraints are the same type. Given the following equality constraint set {T =
τ1, . . . , T = τn} of a type parameter T, the algorithm veri�es that ∃j, 1 ≤ j ≤
n,∀i, 1 ≤ i ≤ n : τi = τj and then infers T to be τj . If the type parameter T
has the following supertype and subtype constraints:

{α1 <: T, . . . , αm <: T, T <: β1, . . . , T <: βk}

44

then the algorithm ensures furthermore that ∀p, q, 1 ≤ p ≤ m, 1 ≤ q ≤ k : αp <:
τj ∧ τj <: βq. If the algorithm fails to �nd τj , or not all subtype and supertype
constraints can be satis�ed by τj , then the algorithm returns no substitution
for T and generates an error message.
If a type parameter does not have equality constraints, then supertype con-
straints have to be solved to infer the type parameter. These constraints are
solved by computing the lub of all types in the supertype constraints. After
computing the lub, the algorithm veri�es that all subtype constraints of the
type parameter that is being inferred, are satis�ed. Given the constraints:

{α1 <: T, . . . , αm <: T, T <: β1, . . . , T <: βk}

The algorithm infers T to be lub(α1, . . . , αn)= ρ and ensures that ∀q, 1 ≤ q ≤
k : ρ <: βq. If the subtype constraints cannot be satis�ed, then the algorithm
returns no substitution for T and produces an error message.
At last, if a type parameter T does not have either equality or supertype con-
straints, then the algorithm infers the type parameter based on the combination
of constraints from the context and the subtype constraints. If the constraints
from the context contain either equality or supertype constraints, then the type
parameter is inferred as mentioned above, otherwise it is inferred to be the glb
of all types in subtype constraints. If glb does not exist then the algorithm will
not return a substitution for T and generates an error message.
If a type parameter does not have any type constraints at all, then it is simply
inferred to be Object.

<T, S> List<S> foo (Map<T, ? super T> a , Lis t <? super S> b){
return . . . ;

}
. . .
Map<Number , Integer> m = . . . ;
L i s t<Double> ld = . . . ;
L i s t<Float> l f = foo (m, ld) ;

Listing 4.16: Type con�icts in constraints on T and S

Consider, for example, the code in Listing 4.16. The generated constraints
for the invocation of the method foo are {T = Number, T <: Integer , S <:
Double}. The constraint solver solves the constraints for T by inferring T to
be Number. After that, the constraint solver substitutes T in the constraint
T <: Integer with Number to verify that inferred type is correct. Since Number
is not a subtype of Integer, the constraint solver will not return a substitution
for T, but generates an error message expressing that the inferred type Number
is not a subtype of Integer. Since there are no more constraint involving T, the
constraint solver moves on to the next type variable S. The type variable S has a
single subtype constraint, therefore additional constraints from the context are
required. Since the invocation appears on the right hand side of an assignment,

45

the constraints {S = Float} are generated from the initial constraint List<S>
<: List <Float>. Combining all the constraints on S yields the constraints
{S = Float, S <: Double}. The constraint solver infers S to be Float from these
constraints, but upon substituting S with Float the constraint solver discovers
that Float is not a subtype of Double. The constraint solver will return no
substitution for the type variable S, but generates an error message expressing
that Float is not a subtype of Double.

4.3.4 Extended Constraint Solver

In the previous section we showed how constraints are solved to infer type
parameters of generic methods. In this section we extend the constraint solver to
check the bounds of type parameters and verify that the second set of constraints
obtained by the constraint generation is satis�ed. Figure 4.2 shows how bound
constraints and the constraints obtained from constraint generation are used to
infer type parameters.

Figure 4.2: Extended constraint solver

The solver �rst checks that all types in the atomic constraints of a type para-
meter T satisfy the bounds of T. If these types do not satisfy the bounds, then
an error message is generated for each bound con�ict. The solver performs this
step only if all bounds of T have been successfully instantiated. The constraint
solver then proceeds to infer a type parameter using only atomic constraints.
Solving atomic constraints, as explained earlier, can result in either returning a
substitution or a set of error messages. After having instantiated a type parame-
ter T, the solver ensures that the inferred type satis�es the bounds of T if that
was not done before. As a last step, the solver con�rms that the inferred types
satisfy all the non-atomic constraints obtained during constraint generation.

4.4 Examples

Consider the utility class presented in Listing 4.17 where the method foo has
been overloaded multiple times. Applying our weak method resolution from

46

Section 4.1 in Listing 4.5 to the �rst method invocation disquali�es the �rst
method declaration as a potential candidate, because it does not have enough
parameters. The other methods do have the right number of parameters, there-
fore, are marked as potential candidates and their signatures are converted to
the signatures in Table 4.2.

Signature Method on line

foo(Map, Collection) 4
foo(Map, List) 7

foo(HashMap, List) 10
foo(HashMap, LinkedList) 13

foo(HashMap, Set) 16

Table 4.2: Raw signatures of potential candidate

Since there are no primitive types in the �rst method invocation and decla-
rations, and the method declarations have a �xed arity, the applicable methods
can be determined using subtyping only, i.e. no type promotion is applied to
the actual parameters. The second parameter LinkedList in the invocation is
not a subtype of the generic interface type Set, therefore, the last method is not
considered to be applicable.

Next, our weak method resolution from Section 4.1 needs to reduce the set
of applicable of methods {foo4, foo7, foo10, foo13}2 to a set of most speci�c
methods. Comparing the parameters of foo4 with foo7 yields foo7 to be more
speci�c, because List is subtype of Collection but not vice versa. The method
foo7 is then compared with foo10, which yields the last method to be more
speci�c, because HashMap is a subtype of Map. At last foo10 is compared with
foo13, which yields foo13 to be more speci�c. Since there are no more methods
to compare foo13 with, a singleton set {foo13} of most speci�c applicable meth-
ods is returned by the weak method resolution from Section 4.1. The reason
a set is returned instead of a single method, is that we want to know all the
methods that the programmer might be trying to call.

After have identi�ed a set of most applicable methods, we proceed to infer
the type variables of the methods in this set one method at a time. But before
we can infer anything we need to generate the the constraints �rst. Applying the
procedure in Listing 4.9 to actual and formal parameters returns the following
constraint sets:

{T = Integer, Integer <: T, T <: Number} d ∅

Normally the next steps would be to order the type variables and check the
bounds, but since there is only one type variable with no bounds the algorithm
skips these steps altogether.

Now we proceed to solve the type constraints starting with the equality
constraints. Since there is only one equality constraint, we directly infer T to

2Subscript is the line number of the method signature in Listing 4.17

47

1 class FooLib{
2 <T> void f oo (Map<T, ? extends T> a){}
3

4 <T> void f oo (Map<T, ? extends T> a ,
5 Co l l e c t i on <? super T> b){}
6

7 <T> void f oo (Map<T, ? extends T> a ,
8 List <? super T> b){}
9

10 <T> void f oo (HashMap<T, ? extends T> a ,
11 List <? super T> b){}
12

13 <T> void f oo (HashMap<T, ? extends T> a ,
14 LinkedList <? super T> b){}
15

16 <T> void f oo (HashMap<T, ? extends T> a ,
17 Set<? super T> b){}
18 }
19 . . .
20 Ut i lL ib . foo (new HashMap<Integer , Integer >() ,
21 new LinkedList<Number>()) ;
22 Ut i lL ib . foo (new HashMap<Double , Number>() ,
23 new LinkedList<Integer >()) ;
24 LinkedList <? extends Number> wl = . . . ;
25 Ut i lL ib . foo (new HashMap<Number , Double >() , wl) ;

Listing 4.17: Example of an utility class

48

be Integer and check that supertype and subtype constraints are satis�ed after
replacing T with Integer as illustrated below.

{T = Integer, Integer <: T, T <: Number}
⇒ {Integer <: T, T <: Number}[T/Integer]
⇒ {Integer <: Integer, Integer <: Number}
⇒ X

The last step in the algorithm is to check whether non-atomic constraints are
satis�ed, but in this case the set of non-atomic constraints is empty. Thus, the
�rst method call type checks and no error message is generated. Normally our
algorithm is used only when type checking in Java fails, but this example serves
to show that the algorithm can also handle valid calls.

The second method invocation is processed exactly in the same way as the
�rst invocation. The set of most speci�c applicable methods is again {foo13},
but the set of generated type constraints is di�erent:

{T = Double, Number <: T, T <: Integer} d ∅

The type variable T is inferred to be Number due to the equality constraint, and
the rest of the constraints are veri�ed after having substituted T with Number.

{T = Double, Number <: T, T <: Integer}
⇒ {Number <: T, T <: Integer}[T/Double]
⇒ {Number ≮: Double, Double ≮: Integer}
⇒ ⊥

Clearly this method call is not valid because of the supertype and subtype
con�icts shown above. The algorithm in this case generates an error message
reporting about these con�icts.

For the third invocation, foo13 is also the only speci�c method and the
generated constraints are:

{T = Number, Double <: T}
d

{LinkedList <? extends Number> <: LinkedList <? super T>}

The algorithm proceeds again by inferring T to be Number and veri�es that
the rest of the atomic constraints are satis�ed. This time there are no con�icts
as shown below.

{T = Number, Double <: T}
⇒ {Double <: T}[T/Number]
⇒ {Double <: Number}
⇒ X

49

Having successfully inferred the type of T, the algorithm veri�es whether the in-
ferred type is a valid substitution for T by checking the non-atomic constraints.

{LinkedList <? extends Number> <: LinkedList <? super T>}[T/Number]
⇒ {LinkedList <? extends Number> ≮: LinkedList <? super Number>}
⇒ ⊥

The type Number as shown above is not a valid a substitution for T, therefore,
the algorithm generates an error message describing the type con�ict above.

For one last example consider the code in Listing 4.18. In this example all bar
methods are considered potential candidates because their name and number of
parameters match the name and number of parameter in the method invoca-
tions, respectively. Since our weak method resolution ignores all bound infor-
mation, the signature of all methods bar are converted to bar(Object, Object).

1 class BarUti l {
2 stat ic <T extends Number>void bar (T a , T b){}
3 stat ic <T extends Integer>void bar (T a , T b){}
4 }
5 . . .
6 BarUti l . bar (' 0 ' , 3 . 1 4) ;

Listing 4.18: Type variables as parameters

Observing that the type of parameters in the invocation are primitive types,
we can deduce that the weak method resolution will not �nd any applicable can-
didates using only subtyping. Therefore, the weak method resolution will try to
�nd methods that are applicable using method invocation conversion. This leads
to returning the following set as applicable method candidates: {bar2, bar3}.

Starting with the method bar2, we generate the following constraints:

{Character <: T, Double <: T} d ∅

Primitive types are �rst promoted to their equivalent reference types, before
they are added as constraints. Since we are dealing with a single type vari-
able, the algorithm skips the ordering of type variables, and proceeds to bound
checking. Bound checking is performed by taking all the types in supertype
constraints of T and ensuring that they are subtypes of all the bounds of T.
Thus in this case, we have one con�ict Character ≮: Number. The algorithm
generates an error message for this bound con�ict, but continues to infer T to
be lub(Character, Double). The result of lub is not returned as a substitution,
because the we already know that the result type will be incorrect, but it is
used to uncover all the type con�icts. For example, if T had one additional
subtype constraint T <: Integer, then this constraint will emphasize the fact
that the types used to infer the type variable T are not correct. Providing an
error message that contains all type con�icts that contribute to making an invo-
cation incorrect, will prevent the programmer from providing a �x for the bound

50

error only and compile the program again without ensuring that the other type
con�icts are resolved.

After having inferred T to be lub(Character, Double), the algorithm stops
because there are no more constraints that have to be resolved, and returns the
error message generated earlier about the bound con�ict.

The algorithm infers the last method bar3 using the exact constraints given
above. This time the algorithm reports two bound con�icts Charachter ≮:
Integer and Double ≮: Integer. Just like before, the algorithm halts after
computing lub(Character, Double) and generates an error message describing
both bound con�icts.

To summarize this last example, the algorithm generates an error message
for each method declaration explaining why it is not applicable to arguments in
the invocation.

51

Chapter 5

Error Messages

In this chapter we present a number of type con�icts and show the error messages
our extension of the type-checking process generates for these con�icts. We also
compare the error messages generated by our extension with the error messages
produced by the two best Java compilers available at the moment; the Sun java
compiler (javac) and the Eclipse java compiler (ejc). First we start with some
examples of equality con�icts, and then will move on to supertype and subtype
con�icts, and we end the chapter with few examples of bound con�icts.

5.1 Equality Errors

<T> void f oo (Map<T, T> a){}
. . .
Map<Integer , Str ing> m = . . . ;
f oo (m) ;

Listing 5.1: Simple equality error

Listing 5.1 provides a simple example of a type error caused by an inconsistency
in the equality constraints. The error message generated for this example by
our type-checking extension is the following:

Test1.java:19
Method <T>foo(Map<T, T>) of type Test1 is not applicable to the argument
of type (Map<Integer, String>), because:
[*] The type variable T is invariant, but the types:
- String in Map<Integer, String> on 18:9(18:22)
- Integer in Map<Integer, String> on 18:9(18:13)
are not the same type.

52

<T> void swap (Map<T, T> a){
. . .
T key = . . . ;
a . put (a . remove (T) , key) ;

}
. . .
Map<Integer , Double> m1 = . . . ;
Map<? extends Number , ? extends Number> m2 = m1; // l i n e 8
swap (m2) ;

Listing 5.3: Type variance

ejc and javac generate error messages that are somewhat similar. ejc informs
the programmer that the method foo(Map<T, T>) is not applicable to the ar-
gument Map<Integer, String>, while the javac complains about not being able
to �nd any method with the signature: foo(Map<Integer, String>) .

A good example of a mistake that novice programmers may make when
working with wildcards is given in Listing 5.2.

<T> void bar (Map<T, T> a){}
. . .
Map<? extends Number , ? extends Number> m = . . . ;
bar (m) ;

Listing 5.2: Wildcard equality error

The call is illegal because type parameters in Java are invariant, while upper
and lower bound wildcards are covariant and contravariant, respectively. To
further illustrate what we mean by this, consider the code in Listing 5.3. The
assignment on line 8 is legal because both types Integer and Double are subtypes
of Number. If we would allow the call to the method swap, which swaps the keys
and values in a map, with the argument m2, then we will be replacing integers
with doubles and vice-versa.

The error message we generate for the illegal call in Listing 5.2 is:

Test1.java:20
Method <T>bar(Map<T, T>) of Type Test1 is not applicable to the argument
of type (Map<? extends Number, ? extends Number>), because:
[*] The type variable T is invariant, but the type `? extends Number' is not.

The error messages reported by ejc and javac are:

53

1. ERROR in Test1.java (at line 20)
foo(m);

The method bar(Map<T,T>) in the type Test1 is not applicable for the argu-
ments (Map<capture#1-of ? extends Number,capture#2-of ? extends Num-
ber>)

Test1.java:20: cannot �nd symbol
symbol : method bar(Map<capture#954 of ? extends Number,capture#0 of
? extends Number>)
location: class Test1

foo(m);

The �rst thing that one may notice when comparing the error messages
of javac and ejc, is that they are very similar and they both include internal
representation of wildcard types that are subjected to capture conversion. In
our type system we try to follow the guide lines of the manifesto speci�ed by
Yang [5] to measure the quality of error messages. Therefore, we try to avoid
any kind of information that is not directly available in the source code from
being reported in an error message.

When comparing our error message with that of javac and ejc, it is not easy
to judge whether our brief error message is better than that of javac and ejc.
The understanding of our error message depends on whether the user is familiar
with the term type invariance.

5.2 Supertype Errors

This kind of type errors occur when a type variable is inferred using equality
constraints, but the inferred type does not satisfy the supertype constraints.
Consider the code in Listing 5.4, where the type of T is instantiated to Inte-
ger from the equality constraint set {T = Integer}. Aside from the equality
constraints, T also has a set of supertype constraints {Number <: T}.

<T> void f oo (Map<? extends T, T> a){ }
. . .
Map<Number , Integer> m = . . . ;
f oo (m) ;

Listing 5.4: Supertype error

Instantiating T with Integer means that we can substitute T with Integer
in Number <: T . However, Number is not a subtype of Integer. This reasoning
is captured in our error message given below.

54

Test1.java:6
Method <T>foo(Map<? extends T, T>) of Type Test1 is not applicable to
the argument of type (Map<Number, Integer>), because:
[*] The type Number in Map<Number, Integer> on 5:9(5:13) is not a subtype
of the inferred type for T: Integer.

javac and ecj both reject the method call above and generate the same error
message given below; none of them explains why the invocation is invalid.

Test1.java:6:

<T>foo(Map<? extends T,T>) in Test1 cannot be applied to
(Map<Number,Integer>)

foo(m);

5.3 Subtype Errors

A subtype error, much like a supertype error, occurs when the inferred type from
equality or super constraints does not satisfy the subtype constraints. Consider
the example given in Listing 5.5. The type parameter T is instantiated with
Number due to the equality constraint {T = Number}. The type variable T
also has a subtype constraint {T <: Integer}, which cannot be satis�ed, because
Number is not a subtype of Integer.

<T> void f oo (Map<? super T, T> a){ }
. . .
Map<Integer , Number> m = . . . ;
f oo (m) ;

Listing 5.5: Subtype error

In the error message generated by our constraint solver, we explain that the
method call is incorrect because of this inconsistency. The error message is
given below:

Test1.java:6
Method <T>foo(Map<? super T, T>) of type Test1 is not applicable to the
argument of type (Map<Integer, Number>), because:
[*] The type Integer in Map<Integer, Number> on 5:9(5:13) is not a supertype
of the inferred type for T: Number.

55

javac and ejc produce a similar error message, but they do not explain why
the method call is incorrect.

Subtype errors could also occur as a result of a failure to compute glb. An
example of this case is in Listing 5.6. Since the method has void as its return
type, we cannot instantiate the type variable T based on the context. Therefore,
T must be instantiated based on the subtype constraints {T <: Number, T <:
String} with glb(Number, String). But since Number and String have no
common subtype, we generate the following error message:

Test6.java:7
Method <T extends Number>foo(Map<? super T, ? super T>) of type Test6
is not applicable to the argument of type (Map<Number, String>), because:
[*] The types Number in Map<Number, String> on 5:9(5:13) and String in

Map<Number, String> on 5:9(5:21) do not share a common subtype.

ejc and javac generate the same error message as they produced for the illegal
call in Listing 5.5.

<T extends Number> void f oo (Map<? super T, ? super T> a){}
Map<Number , Str ing> m = . . . ;
f oo (m) ;

Listing 5.6: Number and String have no common subtype

Type errors that occur due to a failure to compute glb can be very confusing,
because ejc and javac do not yet provide complete support for generics. Take
for example the code in Listing 5.7. JLS speci�es that the type variable T
should be instantiated using the subtype constraint T <: String and the bound
constraint T <: Number. Thus, T must be glb(String, Number). However,
we have already established in the previous example that Number and String
do not have a common subtype. Therefore, the call to the method foo is illegal,
yet javac does not reject it. The reason this call is accepted by javac is that the
bound constraint is ignored when instantiating T.

<T extends Number> void f oo (Lis t <? super T> a){}
. . .
L i s t<Str ing> l = . . . ;
f oo (l) ;

Listing 5.7: Simple and confusing

A few more examples of how odd subtype constraints are resolved by javac
are given in Listing 5.8. All the method invocations need to be rejected, because
the type that T is instantiated with in each invocation is in con�ict with the

56

types in the parameters of that invocation. The constraints generated for the
�rst call are {T <: List <String>}. Recall from Listing 3.5 that type variables
that have only subtype constraints are inferred based on the context if the return
type of the method where these type variables are declared in is not void and
the result of the invocation occurs in an assignment context. The type variable
T will, therefore, be instantiated based on the constraints generated from the
assignment. These constraints are {T = Integer}. Thus, T is instantiated to
Integer. Because Integer is not a subtype of List<String>, the call is illegal.
Our constraint solver rejects this call as it should with the error message below,
while javac accepts it.

Test.java:17
Method <T extends Number>bar(Map<? super T, ? super T>) of type Test is
not applicable to the argument of type (Map<List<String>, List<String>>),
because:

[*] The type List<String> in Map<List<String>, List<String>> on
15:9(15:9) is not a supertype of the inferred type for T: Integer.

The second invocation is also invalid, for the same reason as the �rst call.
The type variable T is instantiated from the context as a Float. But since Float
is not subtype of Double, our constraint solver rejects the call and reports the
following error message. javac on the other hand accepts the call without any
complaints.

Test.java:18 Method
<T extends Number>bar(Map<? super T, ? super T>) of type Test is not
applicable to the argument of type (Map<Double, Number>), because:
[*] The type Double in Map<Double, Number> on 16:9(16:13) is not a

supertype of the inferred type for T: Float.

The third call resembles the �rst call except that this time the type vari-
able T is instantiated as Float instead of Integer. Float is not a subtype of
List<String>. Therefore, our constraint solver rejects this call too.

Some may argue that it is safe to allow the invocations in Listing 5.8 because
no heap pollution can take place. Since no write operations can be performed
on a generic type that is instantiated with a lower bound wildcard without
using casts, this might be true. However, allowing these calls contradicts with
the type checking rules of method invocation. A method invocation in Java is
legal if the actual parameters are subtypes of the formal parameters. In the
�rst call, for example, T is instantiated to Integer, which means that the formal
parameter becomes Map<? super Integer, ? super Integer>. The instantiated
formal parameter is de�nitely not a supertype of the actual parameter, which
has the type Map <List<String>, List<String>>.

57

<T extends Number> List<T> bar (Map<? super T, ? super T> a) { . . . }
. . .
Map<List<Str ing >, Lis t<Str ing>> m1 = . . . ;
Map<Double , Number> m2 = . . . ;
L i s t<Integer> l = bar (m1) ;
L i s t<Float> s = bar (m2) ;
s = bar (m1) ;

Listing 5.8: Context

ejc also has its share of strange behaviour when dealing with subtype con-
straints. The code example in Listing 5.9 causes an interesting change in the
error messages generated by the compiler. The constraints generated for

<T extends Number> void f oo (Map<? super T, ? super T> a){}
. . .
Map<Str ing , Number> m1 = . . . ;
f oo (m1) ;
Map<Number , Str ing> m2 = . . . ;
f oo (m2) ;

Listing 5.9: Subtype con�icts

both method calls are according to the JLS the same. These constraints are
{T <: Number, T <: String}, or {T <: Number, T <: String, T <: Number}
if we would allow duplicates. Thus, it is obvious why the method invocations
are rejected. Nevertheless, the error messages generated for the invocations are
very di�erent. The error messages produced for the �rst and second invocation
are given below, respectively.

1. ERROR in Test8.java (at line 10)
foo(m);

Bound mismatch: The generic method foo(Map<? super T,? super T>) of
type Test8 is not applicable for the arguments (Map<String,Number>). The
inferred type String is not a valid substitute for the bounded parameter <T
extends Number>

1. ERROR in Test8.java (at line 11)
foo(m);

The method foo(Map<? super T,? super T>) in the type Test8 is not ap-
plicable for the arguments (Map<Number,String>)

58

This unexpected change in the reported error messages, is due to the way
the ejc resolves subtype constraints. ejc instantiates the type variable T to be
the �rst type it encounters in the subtype constraints, which explains why it
claims in the �rst error message that T is instantiated to String. Our constraint
solver, however, generates the same error message for both invocations, because
the source of the type con�ict is the same.

5.4 Bound Errors

Consider the code in Listing 5.10. The method call fails, because the type of its
argument int is not a subtype of the bound Cloneable. This exact explanation
is given below in the error message produced by our type checking extension.

Test1.java:6
Method <T extends Number & Cloneable>foo(T) of type Test1 is not applica-
ble to the argument of type (int), because:
[*] The type int of the expression `1' on 6:13 is not a subtype of T's upper

bound Cloneable in `T extends Number & Cloneable`.

<T extends Number & Cloneable> void f oo (T a){}
. . .
f oo (1) ;

Listing 5.10: Simple bound error

If we compile the same code above with javac and ejc, we get the following
error messages:

Test1.java:6:
<T>foo(T) in Test1 cannot be applied to (int)

foo(1);

ERROR in Test1.java (at line 6)
foo(1);

Bound mismatch: The generic method foo(T) of type Test1 is not applicable
for the arguments (Integer). The inferred type Integer is not a valid substitute
for the bounded parameter <T extends Number & Cloneable>

We clearly see that ejc provides a good error message compared to javac.
However, ejc does not say which bound exactly is con�icting with the type that
T was instantiated to. It also includes the promoted type of the argument In-
teger in the message. In our messages we try to stay as close as possible to the

59

types given in the source code to prevent confusion.

Extending the method foo given above with one more parameter and relaxing
the bounds of its type parameter T yields the code in Listing 5.11.

<T extends Number> void f oo (T a , T b){}
. . .
f oo (1 , fa l se) ;

Listing 5.11: Bound error

Compiling this code with ejc gives the error message below, while javac fails
to report an error message due to an internal error1 in the compiler.

1. ERROR in Test1.java (at line 12)
foo(1, false);

Bound mismatch: The generic method foo(T, T) of type Test1 is not
applicable for the arguments (Integer, Boolean). The inferred type Ob-
ject&Comparable<?>&Serializable is not a valid substitute for the bounded
parameter <T extends Number>

ejc informs the programmer that the intersection type that T was instanti-
ated with is not a subtype of its bound Number. This seems acceptable, but we
believe that the type error can be explained without resorting to the inferred
intersection type. The source of the error is the second parameter in the method
invocation; the type boolean is not a subtype of Number, hence taking the lub
of int and boolean will not be a subtype of Number either. The error message
produced with our type system is provided below.

Test1.java:12
Method <T extends Number>foo(T, T) of type Test1 is not applicable to the
arguments of type (int, boolean), because:
[*] The type boolean of the expression `false' on 12:16 is not a subtype of T's

upper bound Number in `T extends Number`.

1This is caused by the in�nite number of calls to the function lub(Integer, Boolean) from
the function lcta when trying to compute the type that the interface Comparable needs to be
instantiated with.

60

Chapter 6

Heuristics

In this chapter we present a number of heuristics that we have developed to
improve the generated error messages beyond what was shown in Chapter 5.
Except for a single heuristic that generates warnings, all the other heuristics
that we present are program correcting heuristics that explain to the user how
to modify the source code to resolve the type errors. Eight of the nine correcting
heuristics that we implemented operate on the generated type constraints for
a method invocation, and all of the heuristics are triggered by type con�icts.
Since several heuristics can be triggered by the same type con�ict, we have
prioritized the heuristics so that only the heuristic with highest priority can
extend the content of an error message. In reality, all the heuristics have the
freedom to extend an error message, but only the extension of the heuristic with
the highest priority will be visible in the �nal error message presented to the
programmer. The priorities are assigned to the heuristics by an error manager,
who has the responsibility to collect all the type con�icts discovered by the
constraints solver. At the moment the priorities of heuristics are static, and a
heuristic cannot change its priority. This is something that we might have to
experiment with in the future.

In the �rst section, we present a heuristic for correcting type equality con-
�icts, and after that we discuss a heuristic that can be used in any kind of type
con�ict. In the third section we present a number of heuristics that are all tar-
geted at correcting type con�icts caused by wildcards. In the last two sections
we present a heuristic that can correct subtype con�icts and a heuristic that
tries to compensate for the fact that the constraint solver sometimes might fail
to report all type con�icts that contribute to rejecting a method call.

6.1 Maximal Equality

The Maximal Equality heuristic is used to correct type equality con�icts by
choosing a type based on the equality constraints that satis�es as many type
constraints as possible. Consider the code in Listing 6.1. The method invocation

61

leads to the constraints:

{T = Integer, T = Number, Number <: T}

The type variable T gives rise to a type equality con�ict because Integer 6≡
Number. This con�ict can be resolved in two ways; we can choose T to be
Integer, or we can choose T to be Number. Since the �rst possible choice will
give rise to a new con�ict with the third constraint (Number ≮: T), the error
message generated for the method invocation is extended with a repair hint that
can lead to T being instantiated to Number, as given below.

Test1.java:18
Method <T>foo(Map<T, T>, T) of type Test1 is not applicable to the argu-
ments of type (Map<Integer, Number>, Number), because:
[*] The type variable T is invariant, but the types:
- Number in Map<Integer, Number> on 6:9(6:22)
- Integer in Map<Integer, Number> on 6:9(6:13)

are not the same type. However, replacing Integer on 6:13 with Number may
solve the type con�ict.

<T> void f oo (Map<T, T> a , T b){}
. . .
Map<Integer , Number> m = . . . ;
Number n = . . . ;
f oo (m, n) ;

Listing 6.1: Equality type con�ict

In some occasions it might be the case that an equality con�ict has multiple
solutions. By a solution we mean how the types in the invocation should be
modi�ed in order for the invocation to be correct. Listing 6.2 provides two
examples of an equality con�ict that has two solutions.

<T> void f oo (Lis t<T> a , Lis t<T> b , Lis t<T> c){}
. . .
L i s t<Number> s r c = . . . ;
L i s t<Integer> smal l = . . . ;
L i s t<Integer> big = . . . ;
f oo (src , small , b ig) ;
f oo (src , src , b ig) ;

Listing 6.2: Equality con�ict with two solutions

The invocations have exactly the same constraints {T = Number, T =
Integer}, thus we can decide to replace Integer with Number or the other way
around. In such situation, we can either extend the error messages generated
with an arbitrary chosen possible repair, or not to extend the error messages at

62

Map

Integer Integer

Figure 6.1: Tree representation of Map<Integer, Integer>

all, because none of the solutions is better than the other. To solve this problem
of choice, we can de�ne a function that can assess the quality of solutions, and
help us to �nd the best solution. For this heuristic we choose to use the minimal
number of edits or modi�cations required in the source code to implement the
suggested repair(s). The notion of an edit here, is the act of adding or removing
a type or a type constructor. We consider a parametrized type to be a tree,
and a non-parametrized type to be a tree with a single node. Non-parametrized
types are treated as single atomic entities. Thus, removing an int is as costly
as removing a String. The algorithm that computes the costs of converting a
type to another type works by �attening the tree structure of types into lists
and then counting the number of di�erences between these lists. For example,
converting int to String takes 2 edits, because we have to remove int and add
String. Converting List<Integer> to Map<Integer, Integer> would take 3 ed-
its. Flattening these types results in the lists [List, Integer] and [Map, Integer,
Integer](see �gure 6.1 for the tree representation of this type), which we call the
source and target list respectively. The source list does not contain the type
Map from the target list, thus this type must be added (1 edit). Integer occurs
only once in the target list, thus we need to add an extra Integer(1 edit). At
last, the target does not contain the type List, so this this type must be removed
(1 edit).

Thus, for the �rst invocation in Listing 6.2 we can propose to change the type
Number with Integer, because the programmer needs only to change the type of
the parameter src. Proposing to change Integer to Number would mean that
the user has to perform more edits, because both types of the parameters small
and big have to be modi�ed. For the second invocation we do not propose a
repair because both solutions require the same number of modi�cations.

The minimal number of edits is a reasonable assessment function, but it is
not the only criteria that can be used determine the best solution. Consider for
example the code in Listing 6.3, where the number of edit operations required
to change the type Integer to Number or vice-versa is exactly the same.

In this case the heuristic can not determine the best solution based on the
number of edits. However, the heuristic also tends to favor localized changes.
Often it is easier for the user to change the types in one place instead of mul-
tiple places or �les. Therefore, we generate the following error message for the
invocation in Listing 6.3:

63

<T> void f oo (Map<T, T> a , Lis t<T> b ,
Lis t<T> c , Lis t<T> d) {}

. . .
Map<Number , Number> m = . . . ;
L i s t<Integer> l = . . . ;
L i s t<Integer> l2 = . . . ;
f oo (m, l , l , l 2) ;

Listing 6.3: Equality con�ict with two equivalent solutions

Test6.java:9
Method <T>foo(Map<T, T>, List<T>, List<T>, List<T>) of type
Test6 is not applicable to the arguments of type (Map<Number, Number>,
List<Integer>, List<Integer>, List<Integer>), because:
[*] The type variable T is invariant, but the types:
- Integer in List<Integer> on 7:9(7:14)
- Number in Map<Number, Number> on 5:9(5:13)
are not the same type. However, replacing Number on 5:13 with Integer

may solve the type con�ict.

Localized changes, however, are not always desired. For example, the user
may have compiled the code in the middle of an un�nished re-factoring. To
change the default behaviour of the system, the user can use the command line
option �-distinct� to prevent the system from suggesting a repair for the invo-
cation in Listing 6.3.

Until now, the presented examples for this section have been rather simple
and straightforward. Now we will show some more complicated examples. Con-
sider the code in Listing 6.4, where the heuristic must take the type variable S
into consideration when trying to solve the equality con�ict of T.

<T, S extends T> void f oo (Map<T, T> a , S b){}
. . .
Map<Integer , Str ing> m = . . . ;
f oo (m, "") ;

Listing 6.4: Con�ict involving two type variables

The problem of �nding a solution for the equality con�ict of T is a constraint
satisfaction problem (CSP). The variables in our CSP are the type variables
{T, S}, the domains of the variables are {Integer, String} for T and {String}
for S, and the constraints are {S <: T}. Solving the CSP by trying all possible
types for T and S quickly shows that T should be String.

64

To speed up the process of �nding a solution of a type variable group in
general we make use of two search heuristics: the degree heuristic and forward
checking [10]. The degree heuristic tries to minimize the number of branches
when looking for solutions by selecting the most constrained variable and assign
a type to it. For example, consider the following type variable declaration:

< T, S extends T, R, U extends Map <R, S> &T, V extends Map <U, T>>

Using the variable dependency discussed in Section 4.3.2 we obtain the de-
pendency graph given in Figure 6.2. The arrows denote how type variables de-
pend on each other. The solid arrows are direct dependencies, and the dashed
arrows are indirect dependencies. The node in the graph with the most incoming
edges is the most constrained variable. Note how assigning a type to the type
variable T limits which types can be assigned to the type variables S, U and V.
The type variable T and R are independent of each other, because instantiating
one type variable does not a�ect how the other can be instantiated. If the type
variable R had the same number of incoming edges in the graph as T, then the
heuristic would have composed a set of partial solutions by simply taking the
cartesian product of the domains of T and R.

T

S

U

V

R

Figure 6.2: Type variable dependency graph

Forward checking is used to ensure that when instantiating a type variable,
the type variables directly depending on the instantiated this type variable con-
tinue to have at least one type in their domain that is within their bounds.
For example, when instantiating the type variable T to σ, the domains of the
type variables S and V are checked to verify that S can be instantiated so that
S <: σ and V can be instantiated so that V <: Map <?, σ>.
Listing 6.5 provides an example of what kind of errors this heuristic can repair.
Note that every type variable has an equality con�ict. Since all type variables are

65

<T, S extends T, R extends S> void f oo (Map<T, T> a
, Map<S , S> b
, Map<R, R> c){}

. . .
Map<Integer , Double> m1 = . . . ;
Map<Integer , Byte> m2 = . . . ;
Map<Integer , Byte> m3 = . . . ;
f oo (m1, m2, m3) ;

Listing 6.5: Single type variable group

S

R

T

Figure 6.3: Dependency graph of type variables in Listing 6.5

members of the same dependency graph (see Figure 6.3), the heuristic processes
all type variables as a single type variable group. The error message generated
by our system using the maximal equality heuristic is:

Test8.java:12
Method <T, S extends T, R extends S>foo(Map<T, T>, Map<S, S>, Map<R, R>)
of type Test8 is not applicable to the arguments of type (Map<Integer, Double>,
Map<Integer, Byte>, Map<Integer, Byte>), because:
[*] The type variable T is invariant, but the types:
- Double in Map<Integer, Double> on 9:9(9:22)
- Integer in Map<Integer, Double> on 9:9(9:13)
are not the same type. However, replacing Double on 9:22 with Integer may solve

the type con�ict.
[*] The type variable S is invariant, but the types:
- Byte in Map<Integer, Byte> on 11:9(11:22)
- Integer in Map<Integer, Byte> on 11:9(11:13)
are not the same type. However, replacing Byte on 11:22 with Integer may solve

the type con�ict.
[*] The type variable R is invariant, but the types:
- Byte in Map<Integer, Byte> on 11:9(11:22)
- Integer in Map<Integer, Byte> on 11:9(11:13)

66

are not the same type. However, replacing Byte on 11:22 with Integer may solve

the type con�ict.

Grouping type variables based on their bound dependencies when solving
equality con�icts is de�nitely better than solving the con�icts for each type
variable separately, because we can prevent proposing repairs that would other-
wise cause con�icts with the bound constraints. However, sometimes grouping
type variables just based on their bound dependencies is not enough. Consider
the code in Listing 6.5, where the type variables in the �rst method declaration
form one type group, while in the second they form two separate groups.

<T, S extends T> void bar (Map<S , ? extends T> a , Map<T, T> b){}
. . .
Map<Integer , ? super Double> sm = . . . ;
Map<Str ing , Number> tm = . . . ;
bar (sm , tm) ;
. . .
<T, S extends T, R> void baz (Map<S , ? extends R> a

, Map<T, T> b , Map<R, R> c){ }
. . .
Map<Integer , ? super Double> sm = . . . ;
Map<Str ing , Number> tm = . . . ;
Map<Object , Number> rm = . . . ;
baz (sm , tm , rm) ;

Listing 6.6: Con�ict in non-atomic constraints

The error messages generated by our system for the method invocations are:

Test9.java:23
Method <T, S extends T>bar(Map<S, ? extends T>, Map<T, T>) of
type Test9 is not applicable to the arguments of type (Map<Integer, ?
super Double>, Map<String, Number>), because:
[*] The type variable T is invariant, but the types:
- Number in Map<String, Number> on 22:9(22:21)
- String in Map<String, Number> on 22:9(22:13)
are not the same type. However, replacing String on 22:13 with Number

may solve the type con�ict.

Test9.java:38
Method <T, S extends T, R>baz(Map<S, ? extends R>, Map<T, T>,
Map<R, R>) of type Test9 is not applicable to the arguments of type

67

(Map<Integer, ? super Double>, Map<String, Number>, Map<Object,
Number>), because:
[*] The type variable T is invariant, but the types:
- Number in Map<String, Number> on 36:9(36:21)
- String in Map<String, Number> on 36:9(36:13)
are not the same type. However, replacing String on 36:13 with Number

may solve the type con�ict.
[*] The type variable R is invariant, but the types:
- Number in Map<Object, Number> on 37:9(37:21)
- Object in Map<Object, Number> on 37:9(37:13)
are not the same type.

Note that the suggested repair for the type variable T in the �rst invocation
will solve the equality con�ict, but it will also create a new con�ict. The con�ict
arises when checking the non-atomic constraints, because Map<Integer, ? ex-
tends Double> ≮: Map<S, ? extends T>, where S and T are substituted by
Integer and Number, respectively.

In the second invocation the type variable groups {T, S} and {R} are solved
separately, which causes the heuristic to propose to repair the type con�ict
of T by replacing String with Number. For the type variable R, no repair
was suggested because both types Object and Number are equivalent solutions.
Note, however, that the proposed repair in this case will also lead to a type
con�ict when checking the non-atomic constraints.

To help the heuristic �nd a solution that will satisfy all the constraints, the
user can use the command-line option �-strict�. This �ag will force the heuristic
to combine the solutions of all type variable groups whose members are involved
in non-atomic constraints, e.g. {T, S} and {R} will become {T, S, R}, and then
�lter out all the solutions that do not satisfy all the non-atomic constraints
involving type variables from the joined type variable groups. The generated
error messages when using the -strict �ag are given below:

Test9.java:23
Method <T, S extends T>bar(Map<S, ? extends T>, Map<T, T>) of
type Test9 is not applicable to the arguments of type (Map<Integer, ?
super Double>, Map<String, Number>), because:
[*] The type variable T is invariant, but the types:
- Number in Map<String, Number> on 22:9(22:21)
- String in Map<String, Number>
on 22:9(22:13) are not the same type.

Test9.java:38

68

<T> void f oo (Map<T, T> a , Map<? super T, ? extends T> b){}
. . .
Map<Number , Integer> m = . . . ;
Map<? super Integer , ? super Integer> m2 = . . . ;
f oo (m, m2) ;

Listing 6.7: Con�ict in all constraints

Method <T, S extends T, R>baz(Map<S, ? extends R>, Map<T, T>,
Map<R, R>) of type Test9 is not applicable to the arguments of type
(Map<Integer, ? super Double>, Map<String, Number>, Map<Object,
Number>), because:
[*] The type variable T is invariant, but the types:
- Number in Map<String, Number> on 36:9(36:21)
- String in Map<String, Number> on 36:9(36:13)
are not the same type. However, replacing String on 36:13 with Number

may solve the type con�ict.
[*] The type variable R is invariant, but the types:
- Number in Map<Object, Number> on 37:9(37:21)
- Object in Map<Object, Number> on 37:9(37:13)
are not the same type. However, replacing Number on 37:21 with Object

may solve the type con�ict.

Observe that the system retracted the repair it suggested before, because now
it knows that the repair is not a complete solution. In the second message we
see that system proposed an additional repair, because now it has the necessary
criteria to judge whether Number should be replaced by Object or the other way
around.

Someone may argue why we do not always run this heuristic in its strict mode
since it will only provide safer solutions. The reason we do not do this is because
non-atomic constraints themselves can be a source of con�icts. To illustrate
this, consider the code in Listing 6.7. Running this heuristic by default in strict
mode will not propose a repair of the invocation in Listing 6.7, because the type
variable T is overconstrained with the (unsatis�able) non-atomic constraints.
In this case the programmer has to �gure out by himself what is wrong with
the invocation. But if the heuristic is run in its normal mode, then a repair hint
suggesting to replace Number in the type of the parameter m with Integer will
be presented to the programmer. In this case, if the programmer applies the
suggested repair and compiles for the second time, then he will be presented
with another error. However, the constraint solver will present a repair for
this second error too, which is suggested by the opposite wildcards heuristic
discussed in Section 6.3.2.

69

6.2 Context Type Invariance

In this section we present a powerful heuristic that relies on information from
the context to correct type con�icts. The heuristic is based a very simple logic:
type variables in Java are invariant. This heuristic, however, can only be applied
in a situation where all the following conditions are met:

• The method has parametrized return type, that contains type variables.

• The method invocation appears in an assignment context.

• Let S be the type the left-value and R be the return type of the method,
then R <: S should give rise to an equality constraint.

Consider the code in Listing 6.8, where the type variable T has a subtype
con�ict, because T is instantiated to Number, but Number is not a subtype of
Integer.

<T> List<T> foo (Map<T, ? super T> a){ }
. . .
Map<Number , Integer> m = . . . ;
L i s t<Integer> r e t = foo (m) ;

Listing 6.8: Return type invariance

Because the result of the invocation is assigned to a local variable, we can
conclude that whatever type T is instantiated to, List<T> must be a subtype of
List<Integer>. Due to type invariance we can further conclude that T can only
be instantiated to Integer. Thus, the heuristic substitutes the type inferred for
T with Integer and veri�es that all constraints are satis�ed. The error message
generated after having applied the context type invariance heuristic is given
below.

Test1.java:6
Method <T>foo(Map<T, ? super T>) of type Test1 is not applicable to the
argument of type (Map<Number, Integer>), because:
[*] The type Integer in Map<Number, Integer> on 5:9(5:21) is not a supertype
of the inferred type for T: Number.
However, replacing Number on 5:13 with Integer may solve the type con�ict.

This heuristic runs in strict mode by default, meaning that it considers all the
constraints when verifying whether the type deduced from the context can solve
the type con�icts. Thus, bound and non-atomic constraints are also checked.
Therefore, the heuristic does not propose any repairs for the invocations in
Listings 6.9 and 6.10.

In Listing 6.9 the heuristic solves the subtype con�ict (Object ≮: Number) of
T by inferring from the context that T must be Integer. However, substituting T

70

<T, S extends Map<Number , T>> List<T> baz (Map<T, ? super T> a
, S b){}

. . .
Map<Object , Number> mt = . . . ;
Map<Number , Str ing> ms = . . . ;
L i s t<Integer> r e t = baz (mt , ms) ;

Listing 6.9: Bound con�ict

<T extends Number> List<T> bar (Map<T, T> a
, Lis t <? extends T> b){}

. . .
Map<Boolean , Str ing> m = . . . ;
L i s t <? super Number> l = . . . ;
L i s t<Integer> i = bar (m, l) ;

Listing 6.10: Non-constraint con�ict

with Integer in the bound of S causes a bound con�ict, i.e. Map<Number, String>
is not a subtype of Map<Number, Integer>.

In Listing 6.10 the heuristic solves the equality con�ict of T by inferring from
the context that T must be Integer. Substituting T with Integer, however, will
not satisfy the non-atomic constraint:

List<? super Number> ≮: List<? extends T>

Although, the heuristic does check the bound and non-atomic constraints
before suggesting a repair, it will, however, propose a repair for the call in
Listing 6.11 as given below.

Test8.java:7
Method <T extends Number, S>foo(Map<T, S>, List<? extends S>) of type Test8
is not applicable to the arguments of type (Map<String, String>, List<? super
Number>), because:
[*] The type String in Map<String, String> on 5:9(5:13) is not a subtype of T's

upper bound Number in `T extends Number`.
However, replacing String on 5:13 with Integer may solve the type con�ict.

[*] The type List<? extends S>, where S was inferred to be String is not a supertype

of List<? super Number> on 6:9.

The reason we suggest a repair in this case is because we want to help the
programmer as much as possible. By default, the heuristic always proposes
repairs for type variables that are not directly responsible for bound con�icts or
a con�ict in the non-atomic constraints, like in Listing 6.11. Suggested repairs,

71

<T extends Number , S> List<T> foo (Map<T, S> a , Lis t <? extends S> b){}
. . .
Map<Str ing , Str ing> m = . . . ;
L i s t <? super Number> l = . . . ;
L i s t<Integer> i = foo (m, l) ;

Listing 6.11: Indirect con�ict

however, are not always in line with the beliefs and intention of the programmer.
Therefore, to disable printing any repairs which will not guarantee that the
invocation will type check, the user can provide the command-line option �-
verystrict� to the heuristic.

Note that this heuristic does not only resolve type con�icts of the type
variables that occur in the return type of a method, but also bound con�icts and
non-atomic con�icts of other type variables. Con�icts of other type variables,
however, are only resolved under the condition that these con�icts involve at
least one type variable from the return type. For example consider the code in
Listing 6.12. The type variables T and R have no con�icts at all, but S has
a bound con�ict that involves both T and R, therefore, the heuristic suggests
to change the types that T and R were instantiated to, as given in the error
message below.

<T,R, S extends Map<R, T>> Map<T, R> baz (T a , R b , S c){}
. . .
Number t = . . . ;
Number r = . . . ;
Map<Double , Integer> ms = . . . ;
Map<Integer , Double> r e t = baz (t , r , ms) ;

Listing 6.12: Indirect bound con�ict

Test9.java:15
Method <T, R, S extends Map<R, T>>baz(T, R, S) of type Test9 is not applicable
to the arguments of type (Number, Number, Map<Double, Integer>), because:
[*] The type Map<Double, Integer> on 14:9 is not a subtype of S's upper bound

Map<Number, Number> in `S extends Map<R, T>`.
However, replacing the types:
- Number on 13:9 with Integer
- Number on 13:9 with Double

may solve the type con�ict.

72

6.3 Wildcards

In this section we present a couple of heuristics that specialize in correcting type
con�icts caused by wildcards.

6.3.1 Bounded Lower Bound Wildcard

This heuristic targets only bound con�icts caused when a bounded type vari-
able was instantiated with a lower bound wildcard. Consider, for example,
the code in Listing 6.13. The type variable has only one equality type

<T extends Number> void f oo (Lis t<T> a){}
. . .
L i s t <? super Integer> l = . . . ;
f oo (l) ;

Listing 6.13: Instantiating bounded type variable with a lower bound wildcard

{T = capture(? super Integer)}. Therefore, the constraint solver instantiates T
to ω1, which is obtained by performing capture conversion on �? super Integer �1.
Since it is not guaranteed that ω1 will be a subtype of Number, the bound of T,
a bound con�ict arises. We know that the bound con�ict will arise no matter
what the lower bound is in the wildcard. Therefore, we know that the program-
mer might have intended to use an upper bound wildcard instead of the lower
bound. Thus, the heuristic changes the type List<? super Integer> to List<? ex-
tends Integer> and veri�es whether all constraint can be satis�ed simultane-
ously. The change of the lower bound to an upper wildcard in Listing 6.13 will
cause the constraints to change to {T = capture(? extends Integer)}. The type
variable will be instantiated to a capture of �? extends Integer � ω2. Since ω2 is
subtype of Integer, ω2 will also be a subtype of Number. The heuristic informs
the programmer that bound change in the wildcard may solve the con�ict as
given below.

Test1.java:6 Method <T extends Number>foo(List<T>) of type Test1 is not
applicable to the argument of type (List<? super Integer>), because:
[*] The type `? super Integer' in List<? super Integer> on 5:9(5:14) is not

a subtype of T's upper bound Number in `T extends Number`. However `?
extends Integer' is a subtype of Number

Consider the code in Listing 6.14. The heuristic will not suggest a repair for
this invocation. Converting List<? super Integer> to List<? extends Integer>

1see Section 2.5 about capture conversion

73

would yield the constraints:

{T = capture(? extends Integer)}
d

{List<? extends Integer> <: List<? super T>}

Because T has only one type equality, it will be instantiated to ω3, where ω3

is the capture of �? extends Integer �. However, substituting T with ω3 in
List<? super T> will not resolve the non-atomic constraints, because �? super
ω3� does not contain

2 �? super Integer �.

<T extends Number> void f oo (Lis t<T> a , List <? super T> b){}
. . .
L i s t <? super Integer> l = . . . ;
f oo (l , l) ;

Listing 6.14: Replacing 'super ' with 'extends' doe not solve the con�ict

6.3.2 Opposite Wildcards

This heuristic can be considered to be a variation of the previous heuristic, be-
cause it solves the type con�icts caused by incompatible wildcards. Consider,
for example, the code in Listing 6.15. The invocation does not type check, be-

<T> void f oo (Map<? extends T, T> a){}
. . .
Map<? super Integer , Number> m2 = . . . ;
f oo (m2) ;

Listing 6.15: Wildcard con�ict

causeMap<? super Integer, Number> is not a subtype ofMap<? extends T, T>
, where T is instantiated to Number. However, changing the keyword `super'
to `extends' in the declaration of the local variable m2 will make the invocation
type check. Therefore, the heuristic proposes to change the type of m2 as shown
below.

Test3.java:16
Method <T>foo(Map<? extends T, T>) of type Test3 is not applicable to
the argument of type (Map<? super Integer, Number>), because:

2see Section 2.3 about type containment

74

[*] The type Map<? extends T, T>, where T was inferred to be Number is
not a supertype of Map<? super Integer, Number> on 15:9. However Map<?
extends Integer, Number> is a subtype of Map<? extends T, T>

The heuristic can also repair con�icts where the lower bound wildcard is used
in the formal parameters and the upper bound in the actual parameter (see List-
ing 6.16 for an example). The invocation of the method bar does not type check

<T> void bar (Map<? super List<T>, T> a){}
. . .
Map<? extends List<Integer >, Integer> m = . . . ;
bar (m) ;

Listing 6.16: Another wildcard con�ict

for the same reason as in Listing 6.15: the �rst type parameter in formal para-
meter �? super List<T>� does not contain the type �? extends List<Integer>�,
where T is instantiated to Integer. The situation changes, however, when we
change the bound of the wildcard in the actual parameter. The heuristic dis-
covers this and reports it to the user as illustrated below.

Test4.java:7 Method <T>bar(Map<? super List<T>, T>) of type Test4
is not applicable to the argument of type (Map<? extends List<Integer>,
Integer>), because:
[*] The type Map<? super List<T>, T>, where T was inferred to be Integer

is not a supertype of Map<? extends List<Integer>, Integer> on 6:9. However
Map<? super List<Integer>, Integer> is a subtype of Map<? super List<T>,
T>

The heuristic can also handle nested wildcards, such as in Listing 6.17, be-
cause it checks iteratively whether the bounds in the wildcards are compatible.
The error messages produced for the method invocations are presented below.

Test5_1.java:7
Method <T>foo1(List<? extends List<? extends T>>) of type Test5_1
is not applicable to the argument of type (List<? super List<? super Inte-
ger>>), because:
[*] The type List<? extends List<? extends T>>, where T was inferred to

be Object is not a supertype of List<? super List<? super Integer>> on 6:9.
However List<? extends List<? extends Integer>> is a subtype of List<?
extends List<? extends T>>

75

<T> void foo1 (Lis t <? extends List <? extends T>> a){}
. . .
L i s t <? super List <? super Integer>> l = . . . ;
foo1 (l) ;
. . .
. . .
<T> void foo6 (Lis t <? extends List <? super T>> a){}
. . .
L i s t <? super List <? extends Integer>> l = . . . ;
foo6 (l) ;

Listing 6.17: Nested wildcards

Test5_2.java:37
Method <T>foo6(List<? extends List<? super T>>) of type Test5_2 is not
applicable to the argument of type (List<? super List<? extends Integer>>),
because:
[*] The type List<? extends List<? super T>>, where T was inferred to

be Object is not a supertype of List<? super List<? extends Integer>> on
36:9. However List<? extends List<? super Integer>> is a subtype of List<?
extends List<? super T>>

6.3.3 Wildcard Reduction

In the previous sections we showed how our heuristics can revert the bounds of
wildcards in the actual parameters until they match the wildcards in the formal
parameters to correct type con�icts. In this section we present two heuristics
that correct con�icts by reducing wildcard instantiated types to concrete types.

6.3.3.1 Super Object

Consider, for example, the type List<? super Object>. We can add an element
of any type to this list, because every possible type in Java is a subtype of Object,
and hence it is also a subtype of �? super Object�. Furthermore, this list can
only refer to a list instantiated with a type that can contain �? super Object�.
The only type in Java that can do this, is Object itself. Since we can only read
elements of type Object from this list, we can say that this list behaves almost
exactly the same as a list of type List<Object>. Therefore, it will be a good
idea to check whether type con�icts caused by the wildcard �? super Object�
can be resolved by using Object instead.

Consider the code in Listing 6.18, where a type con�ict is caused by the use
of the wildcards �? super Object�. The captures of wildcards are never equivalent

76

<T> void f oo (Map<T, T> a){}
. . .
Map<? super Object , ? super Object> m = . . . ;
f oo (m) ;

Listing 6.18: Equality con�ict caused by wildcards

<T> void f oo (Map<? extends T, T> a){}
. . .
Map<? super Object , ? super Object> m = . . . ;
f oo (m) ;

Listing 6.19: Type error caused by `? super Object '

even if the wildcards are syntactically equivalent. Replacing the wildcards with
just Object resolves this type error; therefore the heuristic hints at this repair
in the error message below.

Test1.java:6
Method <T>foo(Map<T, T>) of type Test1 is not applicable to the argument
of type (Map<? super Object, ? super Object>), because:
[*] The type variable T is invariant, but the type `? super Object' is not.

However, replacing
- `? super Object' on 5:13
- `? super Object' on 5:28

with Object may solve the type con�ict.

Besides equality con�icts, this heuristic can also revolve type con�icts in the
non-atomic constrains (see Listing 6.19 for an example). The invocation does
not type check, because T is instantiated to a capture of �? super Object� ω, but
�? extends ω� does not contain the wildcard �? super Object� from the actual
parameter. Replacing the second wildcard in the type of the variable m with
Object, will cause T to be instantiated to Object. Since Object is the supertype
of all types, the invocation will type check. This repair is suggested in the error
message presented below.

Test2.java:6
Method <T>foo(Map<? extends T, T>) of type Test2 is not applicable to
the argument of type (Map<? super Object, ? super Object>), because:
[*] The type Map<? extends T, T>, where T was inferred to be `? super

Object' is not a supertype of Map<? super Object, ? super Object> on 5:9.

77

<T> void f oo (Map<T, T> a){}
. . .
Map<? extends Str ing , ? extends Str ing> m = . . . ;
f oo (m) ;

Listing 6.20: Type con�ict caused by wildcards

<T> void f oo (Map<? extends T, T> a){}
. . .
Map<? extends Str ing , ? extends Str ing> m1 = . . . ;
f oo (m1) ;

Listing 6.21: Supertype con�ict

However, replacing `? super Object' on 5:29 with Object may solve the type
con�ict.

6.3.3.2 Extends Final

This heuristic is very similar to the previous one, because it attempts to solve
type con�icts caused by upper bound wildcards, where the bound is a �nal
type, e.g. String and Integer in the java.lang package. Consider the code
in Listing 6.20. The method invocation fails, because T can not be in-
stantiated to two captures of `? extends String'. Since the type String is �-
nal, i.e. can not have subtypes, the variable m can only be instantiated with
Map<String, String>. Therefore, the heuristic substitutes the wildcards with
String and veri�es whether the invocation will type check. It is clear from the
error message below, that the substitution of the wildcards will correct the type
con�ict.

Test1.java:9
Method <T>foo(Map<T, T>) of type Test1 is not applicable to the argument
of type (Map<? extends String, ? extends String>), because:
[*] The type variable T is invariant, but the type `? extends String' is not.

However, replacing
- `? extends String' on 8:13
- `? extends String' on 8:31
with String may solve the type con�ict.

Wildcards cannot only cause type equality con�icts, but also supertype con-
�icts. Consider, for example, the code in Listing 6.21. The constraints gener-

78

<T> void f oo (T a , T b , Map<? super T, ? super T> c){}
. . .
Map<Number , Double> m = . . . ;
Number n = . . . ;
f oo (1 , n , m) ;

Listing 6.22: Subtype con�ict

ated for this invocation are: {T = ω, String <: T}, where ω = capture(? extends String).
It is clear from the constraints that T will be instantiated to ω, but ω is not a
supertype of String ; ω itself is a subtype of String. But if we change the second
wildcard in the declaration of m1 to String, then the invocation will type check,
because T will be instantiated to String, and String is of course a subtype of
itself. The heuristic includes a hint to this repair as shown in the error message
below.

Test3.java:10
Method <T>foo(Map<? extends T, T>) of type Test3 is not applicable to
the argument of type (Map<? extends String, ? extends String>), because:
[*] The type String in Map<? extends String, ? extends String> on 8:9(8:13)

is not a subtype of the inferred type for T: `? extends String'. However,
replacing `? extends String' on 8:31 with String may solve the type con�ict.

Upper bound wildcards are used sometimes to disallow write operations on
parametrized types. For example, given a list l1 of type List<Integer>, we
can prevent adding elements to this list by assigning it to a list l2 of type
List<? extends Integer>. Now, if we allow the access to l1 only through l2,
then we cannot write to l2 because the type system will not allow it. This is
not something we encourage, but if the programmer wants to use this practice,
then he/she can disable the use of the extends �nal heuristic by providing the
command-line option �-df � to the type system.

6.4 Maximal Subtyping

This heuristic corrects subtype errors in a way similar to how the maximal
equality heuristic, presented in Section 6.1, corrects con�icts. The heuristic
attempts to correct subtype con�icts by �nding a type, or set of types, that
satis�es as many constraints as possible. The constraints generated for the
invocation in Listing 6.22 are {Integer <: T, Number <: T, T <: Double, T <:
Number}. If we ignore the order in which constraints are processed, then we
could say that T will either be Number3 or Double4. If we let T be Number, then

3Result of lub({Integer, Number})
4Result of glb({Double, Number})

79

<T> void f oo (T a , T b , T c , Map<? super T, ? super T> d
, Lis t <? super T> e){}

. . .
FocusEvent p1 = . . . ;
ComponentEvent p2 = . . . ;
AWTEvent p3 = . . . ;

Map<AWTEvent, FocusEvent> m = . . . ;
L i s t<Str ing> l = . . . ;

f oo (p2 , p3 , p1 ,m, l) ;

Listing 6.23: Non-computable glb

we have the following con�ict: Number ≮: Double. But if we let T be Double,
then we obtain the following con�icts: Integer ≮: Double and Number ≮:
Double. Thus, instantiating T with Number will satisfy more constraints than
instantiating with Double will. Hence the error message below.

Test1.java:13
Method <T>foo(T, T, Map<? super T, ? super T>) of type Test1 is not
applicable to the arguments of type (int, Number, Map<Number, Double>),
because:
[*] The type Double in Map<Number, Double> on 11:9(11:21) is not a

supertype of the inferred type for T: Number. However, replacing Double on
11:21 with Number may solve the type con�ict.

In the previous example, the heuristic solved the con�ict by comparing the
number of con�icts caused by the result of lub and glb. But, sometimes glb can-
not be computed such as in Listing 6.23. In this case, the heuristic computes
the best possible glb, which is FocusEvent = glb({AWTEvent, FocusEvent}).
Comparing the number of con�icts that would arise if we instantiate T to Fo-
cusEvent or AWTEvent5 yields the following results:

T = FocusEvent ⇒


ComponentEvent ≮: FocusEvent

AWTEvent ≮: FocusEvent

FocusEvent ≮: String

T = AWTEvent ⇒

{
AWTEvent ≮: FocusEvent

AWTEvent ≮: String

5Result of lub({FocusEvent, ComponentEvent, AWTEvent})

80

Instantiating T with AWTEvent will obviously satisfy more constraints, thus
the heuristic adds a repair hint to the error message below, which also contains
all the reasons why the invocation does not type check.

Test2.java:34
Method <T>foo(T, T, T, Map<? super T, ? super T>, List<? super T>) of
type Test2 is not applicable to the arguments of type (ComponentEvent, AWTEvent,
FocusEvent, Map<AWTEvent, FocusEvent>, List<String>), because:
[*] The types AWTEvent in Map<AWTEvent, FocusEvent> on 30:9(30:13) and

String in List<String> on 31:9(31:14) do not share a common subtype.
[*] The types FocusEvent in Map<AWTEvent, FocusEvent> on 30:9(30:23) and

String in List<String> on 31:9(31:14) do not share a common subtype.
[*] The type FocusEvent in Map<AWTEvent, FocusEvent> on 30:9(30:23) is not

a supertype of the inferred type for T: AWTEvent.
[*] The type String in List<String> on 31:9(31:14) is not a supertype of the inferred

type for T: AWTEvent.
However, replacing
- String on 31:14
- FocusEvent on 30:23

with AWTEvent may solve the type con�ict.

In case the best possible glb causes the same number of con�icts as lub,
the heuristic tries to compute the best possible lub that does not necessarily
include all the types in the supertype constraints, but does satisfy more subtype
constraints than the original lub. If after comparing the best possible glb and
lub, it was determined that they both cause the same number of con�icts, then
the heuristic resorts to comparing all the types in the constraints separately. If
the heuristic still cannot �nd a type with a minimal number of con�icts, then
the heuristic just chooses the type that is used the most, if possible.

6.5 Equality Warnings

We have mentioned in one of the previous chapters that the order in which
type constraints are processed has an impact on the generated error messages.
Since the type constraints in Java are solved in a �xed order, there are certain
errors that can remain undetected, because the constraint solver abruptly halts.
Consider, for example, the code in Listing 6.24. The constraint solver stops
at solving the equality constraints and does not check the supertype constraints
because no type can be assigned to T. Thus, the user receives only a complaint
about the type Integer and Double not being equal. The programmer might be
completely unaware of the fact that even if he/she substitutes one of the types in
the equality constraints with the other, the invocation will still not type check,
because neither Integer nor Double are supertypes of String. Thus, in order to
compensate for the fact that our type checking algorithm does not report all the
reasons why the invocation does not type check, we have developed this heuristic

81

<T> void f oo (Lis t <? extends T> a , Map<T, T> b){}
. . .
L i s t<Str ing> l = . . . ;
Map<Integer , Double> m = . . . ;
f oo (l , m) ;

Listing 6.24: Hidden error

that warns the programmer that the types in the equality are not only in con�ict
with each other, but also with the supertype and/or subtype constraints. For
the invocation in Listing 6.24, the heuristic generates the warning shown below.

Test1.java:13
Method <T>bar(List<? super T>, Map<T, T>) of type Test1 is not ap-
plicable to the arguments of type (List<String>, Map<Integer, Double>),
because:
[*] The type variable T is invariant, but the types:
- Double in Map<Integer, Double> on 12:9(12:22)
- Integer in Map<Integer, Double> on 12:9(12:13)

are not the same type.
[Warning]: The types Double and Integer will cause a type con�ict with String

in List<String> on 11:9(11:14)

The warning in this case is an essential part of the error message, because
it will prevent the user from providing a repair for the equality con�ict without
verifying that all constraints will be satis�ed. The heuristic, in general, generates
a warning with a minimal set of types that will cause con�icts. For example,
given the following constraints:

{T = Integer, T = Number, T <: Comparable<Integer>, T <: String}

The heuristic will report that only String will be in con�ict with Integer and
Number, even though Comparable <Number> will also cause a con�ict if the
user decides to replace Integer with Number. The reason why we do not report
the type Comparable <Number >, is because we suspect that String is the
type that does not belong in the type constraints. Note that this heuristic will
normally not report a warning if the maximal equality heuristic presented at
the beginning of this chapter had found a repair for the equality con�icts.

82

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis we have shown that an existing Java type system can be extended
to produce better feedback when generic method invocations fail to type check.
This extension does not require any drastic changes in the original type checking
process. It is invoked only when a type error occurs in a generic method call.
We have shown that even though generic instantiation of type variables can be
performed without any type con�icts, it is still not guaranteed that a method
invocation will type check. Therefore, as a counter measurement, we require
that the constraints passed to the constraint solver in our extension should also
include non-atomic constraints, which will be used to verify that type variables
are correctly instantiated. Due to the way generic instantiation is interwoven in
the method resolution, we also require a weaker version of the method resolution
that will always return a non-empty set of methods, even if generic instantiation
fails (It is, however, allowed to return a empty set if the user is calling a non-
existing method). It is important that the weaker method resolution returns a
set of methods instead of a single method, because we would like to know all
the methods that the user might be trying to call in order to produce better
error messages. But, to prevent redundant and unnecessary error messages, we
restrict the number of returned methods to a set of most speci�c methods only,
which are determined without using any generic type information.

7.2 Future Work

There are di�erent directions in which future research could continue. One
can conduct an empirical research to study into what extent our framework
helps programmers to learn generics, and how the the framework can be further
improved so that programmers can take full advantage of it. One could also
implement additional heuristics or improve the current ones. In this thesis, it
was assumed that all actual parameters are available in source form. This can

83

lead to repair heuristics suggesting to change a type located in a class �le. This,
however, is not always possible if the source code is not available. Consider, for
example, proposing to the programmer to change the type of the �eld out in
the class System, which is part of the package java.lang.To prevent proposing
such repair hints, heuristics must be aware of the origins of all the types in the
constraint set.

To further improve the repair hints, it might be interesting to explore how
the type constraints of nested calls can be solved in one step. The frame-
work infers currently each method invocation separately. Given, the invocation
g(f(a1, . . . , am), b2 . . . , bn), our framework (and Java type checker) infer the type
variables of the method f �rst, and then instantiates f with the inferred types.
The instantiated method f is subsequently used to infer g. The disadvantage
of this approach is that a repair heuristic might suggest to change the type of
f(a1, . . . , am). Since the return type of f(a1, . . . , am) was inferred, it might not
be easy for a beginner programmer to �gure out how to change the return type.
It will be a lot easier if a heuristic could instruct the programmer to change the
types of the parameters a1, . . . , am instead of the return type.

In this thesis we have focused only on the method invocations where the
compiler has to infer the omitted type parameters. But, there is also room to im-
prove the error messages produced for method invocations and constructors that
provide their own type arguments, such as Collections.<Integer>.�ll(...,...).
Our constraint solver can be used as a basis to improve the generated feed-
back for these kind of method and constructor calls. As proof of concept, we
have added minimal support for type parametrized method invocations and con-
structor calls. The provided type arguments in an invocation are �rst checked
to make sure they satisfy the bound constraints. If they do, then we proceed
to check whether actual parameters are subtypes of formal parameters, where
all type variables in the later parameters are substituted by the user provided
type arguments. If not all actual parameters are subtypes of their corresponding
formal parameters, then we ignore the provided type arguments and try to in-
stantiate the type variables using our constraint solver. If the constraint solver
successfully instantiates all the type variables, then we advise the programmer
to change the provided type arguments to the types found by the constraints
solver.

84

Appendix A

Architecture and

Implementation

A.1 Architecture

The architecture of our framework can be best described as a set of modules and
classes that are connected and centered around the type checker of the JastAdd
Extensible Java Compiler (JastAdd EJC). This illustrated in Figure A.1. The
type checker sends a method invocation, which fails to type check, to the weak
method resolution which returns a set of methods. The type checker then gen-
erates type constraints for the method invocation and each method declaration
using the constraint generation algorithm described in Section 4.2. After having
generated the constraints, the type checker passes these constraints along to our
constraint solver with the return type of a method declaration and the type of
the lvalue if the invocation appears in a assignment context. The constraint
solver will then solve the constraints and return an error message to the type
checker if the constraints are unsatis�able. The error messages returned by the
constraint solver are maintained and collected by a separate error manager. The

Figure A.1: Architecture

85

error manager is also used by the heuristics to extend the error messages gener-
ated by the constraint solver. The heuristics use the error manager also to check
whether they should run or not. For example, the Maximal Equality heuristic
runs only if it encounters an equality error message in the error manager.

A.2 Implementation

Our framework is implemented as a combination of JastAdd code and normal
Java code. JastAdd[4, 11] is an attribute grammar compiler that allows to
specify compiler semantics in an aspect-oriented way by means of declarative
attributes and semantic rules using ordinary Java code. The framework is built
as an extension to the JastAdd EJC which is built entirely using JastAdd.

For the convenience of the weak method resolution discussed earlier, the or-
dering of type variables, and the computation of greatest lower bound, which
was not present in the version of JastAdd EJC used in this project, are imple-
mented using JastAdd. We have contributed the module that we have devel-
oped for computing the greatest lower bound to the creator and maintainer of
JastAdd EJC, who has added it to the repository as a part of the compiler.
Several other aspects are implemented in JastAdd code such as modifying the
type parameters of a parametrized type, printing simple names for types used
in an invocation and all other required functionality that was not present in
the classes of JastAdd EJC. Since JastAdd EJC is a compiler that is still in
development, there were also some bugs that needed �xing. For example, the
containment of lower bound wildcards was incorrect, which did not only impact
on our project but on the entire type checker of the compiler. This bug was
�xed in JastAdd.

All the other aspects of the project that did not require augmenting the
classes of the JastAdd EJC are implemented in Java. The constraint solver,
for example, is implemented in three classes as illustrated by the class dia-
gram in Figure A.2. The superclass BasicSolver has two important �elds named
�constraintsMap� and �errMan�. The �rst �eld constraintsMap is a map that
contains all constraints on each type variable of a method as it is returned by
the ConstraintMapBuilder, which is responsible for generating constraints from
the actual and formal parameters as discussed in Section 4.2. The type Con-
straintSet contains all the types of a type variable which are divided into three
separate lists for ease of access. The equality constraints list contains all the
types that should be equal to the inferred type of a type variable. For example,
if a type variable S has the constraints {S = Number, S = Integer}, then
the equality constraints list contains Number and Integer. The supertype con-
straint list contains all the types that should be subtypes of the type that the
type variable will be instantiated to. The subtype constraint list contains all the
types that should be supertypes of the type that the type variable will be in-
stantiated to. The second �eld errMan is an error manager which collects all the
type error messages generated by the solver. The �elds supertypeAfterChecks
and subtypeAfterChecks are used to collect the non-atomic constraints.

86

Figure A.2: Constraint solvers classes

87

To infer the types of each type variable, the method inferTypes can be
used. The method iterates through constraintsMap and calls the methods
resolveEqulaityConstraints, resolveSupertypeConstraints, and resolveSubtype-
Constraints on each type variable. The method resolveEqulaityConstraints
checks whether all the types in the equality constraints are the same and in-
stantiates T (the type variable passed to it as an argument) to the type in
equality constraints. If the types in the equality constraints are not the same,
such as Integer and Number or `? super String ' and `? super String ', then it
adds an equality error message to the �eld errMan. The method resolveSu-
pertypeConstraints checks �rst whether T was not already instantiated by the
method resolveEqulaityConstraints. If T was indeed instantiated, then the
method checks that all the types in the supertype constraints are subtypes of
the type that T was instantiated to. If T was not instantiated before, then
the method resolveSupertypeConstraints will instantiate T by computing the
least upper bound of all the types in supertype constraints. The method for
computing the least upper bound is provided by the class TypeDecl, which is a
part of the JastAdd EJC. The last method, resolveSubtypeConstraints, checks
whether T was already instantiated by resolveSupertypeConstraints. If T was
instantiated, then the method checks that types in the subtype constraints are
supertypes of the type that T was instantiated to. If T was not instantiated,
then resolveSubtypeConstraints will instantiate it to the greatest lower bound
of all the types in the subtype constraint set if the parameter calcGLB is set to
true.

After having iterated though all the type variables in constraintsMap, the
method inferTypes calls the method afterCheck to verify that the types that
the type variables were instantiated to can satisfy the non-atomic constraints.

The CompleteSolver class augments the class BasicSolver by adding the pos-
sibility to infer type variables that do not have any constraints. The Method-
Solver class extends the CompleteSolver class by allowing to run type heuristics
after having processed all the type constraints on all the type variables.

The heuristics are also implemented in plain Java. All the heuristics imple-
ment a simple interface which provides a single method named analyze, which
is called from the MethodSolver class (see Figure A.3). The method �ndSource-
OfBoundError in AbstractHeuristics is used by the heuristics to search for the
type variables that are directly responsible for an bound con�ict. Each heuris-
tic provides its own implementation of the analyze method which performs an
analysis on the constraints obtained from the constraints solver and reports its
�nding to the error manager (also obtained from the MethodSolver) by adding
an instance of interface MessageExtension to it or adding the extension directly
to error message that triggered the heuristic. The error manager, as mention
earlier, decides based on the priority of the heuristic which message extension
will be shown to the programmer.

88

Figure A.3: Heuristics classes

89

Appendix B

Manual

B.1 Download and install

All the required �les to use and test our framework are currently available from
the svn repository at:
https://svn.cs.uu.nl:12443/repos/Swa5/project.

To check out a copy, users must install the version control system Subversion
available at http://subversion.tigris.org/. The �les can be checked out from a
console using the following command:
svn co https://svn.cs.uu.nl:12443/repos/AFP_Exercise_2006/project

After having downloaded the �les, users can build the framework by going
to the directory Java1.5Backend, which contains an ant build �le. Running
the command �ant� will perform all the steps necessary to build the framework
and will create a bin directory in the same folder where the svn checkout was
performed. Users that do not have ant installed on their system can download
it from http://ant.apache.org. The bin folder will contain all the compiled �les
needed to run JastAdd EJC combined with our framework. The repository
contains also a large number of test �les categorized by the kind of type error,
which can be used to learn about the kind of error messages our framework can
generate.

B.2 Usage

The JastAdd EJC can be used to compile java �les by running the following
command in the bin directory created by ant:
java JavaCompiler [options] <java files>

Running JavaCompiler with the option �-help� will show all the available
options the compiler can take, as illustrated below:

Usage: java Java5Compiler <options> <source files>

-verbose Output messages about what the compiler is doing

90

-classpath <path> Specify where to find user class files

-sourcepath <path> Specify where to find input source files

-bootclasspath <path> Override location of bootstrap class files

-extdirs <dirs> Override location of installed extensions

-d <directory> Specify where to place generated class files

-help Print a synopsis of standard options

-version Print version information

Heuristic options:

-strict Run heuristics in strict mode

-verystrict Run heuristics in very strict mode

-df Disable running the final heuristic

-collapse Print each bound error on a line

-distinct Print minimal repairs even if they are not localized

The standard options of JastAdd EJC are printed �rst and the options that
are speci�c to our framework are printed below the line �Heuristic options:�.
The option �-strict� is used by the heuristics Maximal Equality, Extends Final,
Super Object and Maximal Subtyping discussed in Chapter 6. When this option
is set, the heuristics will print a repair for a type variable only if the non-atomic
constraints involving this type variable are satis�ed by the repair. The option
�-verystrict� is used by the heuristic Context Type Invariance to make sure
that the entire invocation will type check. Thus, if an invocation, for example,
has a con�ict in the non-atomic constraints, but the non-atomic constraints do
not involve the type variables for which the heuristic suggests to be repaired,
then these repairs will be printed, unless the option �-verystrict� is set. The
option �-df� is used in the constraint solver to disable running the Extends
Final heuristic for the reason that was discussed in Section ??. The �-collapse�
option is used to force the error manager to print each bound error of a type
variable on a separate line. Printing each bound error an separate line has the
advantage of quickly letting the programmer know how many errors he has to
deal with. But, the disadvantage of printing each bound error separately is that
an error message can become very large. The �nal option �-distinct� is used in
the Maximal Equality heuristic to print repairs that require a minimal number
of edits, even though they might have to be performed in di�erent places in the
source code.

91

Appendix C

Syntax

C.1 Name syntax

PackageName:
Identi�er
PackageName . Identi�er

TypeName:
Identi�er
PackageOrTypeName . Identi�er

MethodName:
Identi�er
AmbiguousName . Identi�er

PackageOrTypeName:
Identi�er
PackageOrTypeName . Identi�er

AmbiguousName:
Identi�er
AmbiguousName . Identi�er

C.2 Type syntax

ReferenceType:
ClassOrInterfaceType
TypeVariable ArrayType

ClassOrInterfaceType:
ClassType

92

InterfaceType

ClassType:
TypeDeclSpeci�er
TypeArgumentsopt

InterfaceType:
TypeDeclSpeci�er
TypeArgumentsopt

TypeDeclSpeci�er:
TypeName
ClassOrInterfaceType . Identi�er

TypeName:
Identi�er
TypeName . Identi�er

TypeVariable:
Identi�er

ArrayType:
Type []

C.3 Type argument syntax

TypeArguments:
< ActualTypeArgumentList >

ActualTypeArgumentList:
ActualTypeArgument
ActualTypeArgumentList , ActualTypeArgument

ActualTypeArgument:
ReferenceType
Wildcard

Wildcard:
? WildcardBoundsOpt

WildcardBounds:
extends ReferenceType
super ReferenceType

93

NonWildTypeArguments:
< ReferenceTypeList >

ReferenceTypeList:
ReferenceType
ReferenceTypeList , ReferenceType

C.4 Primary expression syntax

Primary:
PrimaryNoNewArray
ArrayCreationExpression

PrimaryNoNewArray:
Literal Type . class
void . class
this
ClassName.this
(Expression)
ClassInstanceCreationExpression
FieldAccess
MethodInvocation
ArrayAccess

C.5 Method invocation synatx

MethodInvocation:
MethodName (ArgumentListopt)
Primary . NonWildTypeArgumentsopt Identi�er (ArgumentListopt)
super . NonWildTypeArgumentsopt Identi�er (ArgumentListopt)
ClassName . super . NonWildTypeArgumentsopt Identi�er (ArgumentListopt)
TypeName . NonWildTypeArgumentsopt Identi�er (ArgumentListopt)

ArgumentList:
Expression
ArgumentList , Expression

94

Bibliography

[1] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Mak-
ing the future safe for the past: adding genericity to the Java programming
language. In OOPSLA '98: Proceedings of the 13th ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages, and applica-
tions, pages 183�200, New York, NY, USA, 1998. ACM Press.

[2] Gilad Bracha, Martin Odersky, David Stoutamire and Philip Wadler. GJ:
Extending the Java Programming Language with type parameters. 1998.

[3] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java Language
Speci�cation. Addison-Wesley Professional, third edition, July 2005.

[4] G. Hedin and E. Magnusson. The jastadd system - an aspect-oriented com-
piler construction system. Science of Computer Programming, 47(1):37�58,
April 2003. http://www.cs.lth.se/ gorel/publications/2003-JastAdd-SCP-
Preprint.pdf.

[5] Bastiaan J. Heeren. Top Quality Type Error Messages. PhD thesis, Uni-
versiteit Utrecht, The Netherlands, September 2005.

[6] Robin Milner. A theory of type polymorphism in programming. J. Comput.
Syst. Sci., 17(3):348�375, 1978.

[7] Martin Odersky, Christoph Zenger, and Matthias Zenger. Colored Local
Type Inference (colored version) (black and white version). In POPL 2001,
2001.

[8] Benjamin C. Pierce. Types and Programming Languages. The MIT Press,
Massachusetts Institute of Technology Cambridge, Massachusetts 02142,
February 1 2002. ISBN:0262162091.

[9] Benjamin C. Pierce and David N. Turner. Local type inference. In Con-
ference Record of POPL 98: The 25TH ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, San Diego, California,
pages 252�265, New York, NY, 1998.

[10] Stuart Russell and Peter Norvig. Arti�cial Intelligence: A Modern Ap-
proach, chapter 5, pages 137�151. Pearson Education, second edition, 2003.

95

[11] Görel Hedin Torbjörn Ekman. Jastadd extesible java compiler.
http://jastadd.cs.lth.se/web/extjava.

[12] Mads Torgersen, Erik Ernst, and Christian Plesner Hansen. Wild FJ. In
Proceedings of FOOL 12. School of Informatics, University of Edinburgh,
2005.

[13] Mads Torgersen, Christian Plesner Hansen, Erik Ernst, Peter von der Ahé,
Gilad Bracha, and Neal Gafter. Adding wildcards to the Java programming
language. In SAC '04: Proceedings of the 2004 ACM symposium on Applied
computing, pages 1289�1296, New York, NY, USA, 2004. ACM Press.

[14] Jun Yang. Explaining Type Errors by Finding the Source of a Type Con-
�ict. In SFP '99: Selected papers from the 1st Scottish Functional Program-
ming Workshop (SFP99), pages 59�67, Exeter, UK, UK, 2000. Intellect
Books.

96

