Utrecht University

MASTER’S THESIS

Plagiarism detection in Haskell programs
using call graph matching

Author: Supervisors:
M.L. KAMMER dr. H.L. BODLAENDER
Student number: 0307432 dr. J. HAGE

May 2011

To Shanna

"Students must have initiative; they should not be mere imitators.
They must learn to think and act for themselves - and be free.”

- César Chavez, peaceful civil rights activist, 1927 - 1993

Abstract

Ongoing research in the area of plagiarism detection at Utrecht University has in-
dicated the need for an automated tool that can help identify possible cases of
plagiarism in Haskell programs. There are many modifications that can be applied
to the source code of a program in order to hide or mask an attempt at plagia-
rism. Existing tools like Holmes and MOSS make use of token stream analysis and
document fingerprinting techniques to try to see through this, but call graph match-
ing techniques are a relatively unexplored topic in this area. We have developed a
tool based on a tree search algorithm that calculates graph edit distance in order
to measure call graph similarity. Although calculating graph edit distance is an
NP-complete problem and the resulting search tree constructed by our algorithm is
exponential in size, we use preprocessing and domain-specific optimizations to be
able to use the algorithm in practice. With experiments on fabricated cases of pla-
giarism and on actual student submissions for a Haskell programming assignment
we demonstrate the effectiveness and usefulness of our tool in finding possible cases
of plagiarism, in addition to the Holmes tool. In particular, when compared to the
techniques used by the Holmes tool it is shown that our tool is less sensitive to many
refactoring techniques that are typically used by plagiarists.

Acknowledgements

Firstly, my thanks go out to dr. Hans Bodlaender, who not only provided me with
his expert knowledge on graph theory but who also often motivated me with his
positive view on things, and on life in general. In our meetings during this project,
I would often afterwards walk away with renewed energy and enthusiasm. I would
also like to thank dr. Jurriaan Hage, who has extensive experience in the area of
software plagiarism and gave me a lot of ideas to work with.

My achievements at Utrecht University would not have been possible without the
knowledge I acquired from all professors and lecturers, so I would also like to thank
the staff of the Department of Computing Sciences for helping me along the way
towards a Master of Science degree.

Finally, I would like to make a special note about Roel and Joke, who are always
a source of inspiration and great wisdom to me. This thesis would not be complete
otherwise.

Contents

Abstract
Acknowledgements

1 Introduction
1.1 What is plagiarism? oo
1.1.1 Why plagiarism must be counteracted
1.1.2 Plagiarism in software
1.1.3 Plagiarism in natural language
1.2 Plagiarism detection and graph matching
1.3 Outline.

2 Plagiarism of software code
2.1 Masking plagiarism
2.1.1 Renaming and refactoring
2.1.2 Refactoring toolso
2.2 Detecting plagiarism
2.2.1 Requirements of an automated tool
2.2.2 MOSS and other existing tools
223 Holmes.
2.2.4 Call graph matching L.

3 The graph matching problem
3.1 Graphs
3.1.1 Haskell call graphs
3.2 Applications
3.2.1 Plagiarism detection
3.3 Basic concepts and theory o000
3.3.1 Graph isomorphism L.
3.3.2 Maximum common subgraph
3.3.3 Graph edit distance
3.4 Graph matching algorithms
3.4.1 Tree search based methods

10
11
11
12
14

15
15
16
18
18
18
20
23
25

Contents 7
3.4.2 Decision tree approach 0 L. 38

3.4.3 Suboptimal A* search variants 39

3.4.4 Approximate bipartite matching L. 42

3.4.5 Summary of algorithms and their applicability 43

4 A tool for plagiarism detection 45
4.1 General approach and design L. 45
4.1.1 Implementation in Java 46

4.2 Reading input graph files oL 46
4.2.1 Reading output graphs of Sherlock A7

4.3 Preprocessing 48
4.3.1 Adding a dummy root vertex 48

4.3.2 Removing Prelude functions 48

4.3.3 Removing recursiono 49

4.3.4 Other possible modifications 50

4.4 Tree search based algorithm 51
4.4.1 Construction of the search tree o1

4.4.2 Heuristic function L 53

4.4.3 Similarity score oL L 54

4.4.4 Modifications for speedup 54

4.5 Subgraph isomorphism checks 0000 59
4.6 Output ofresults 59

5 Experiments and results 61
5.1 Experiments on refactorings 61
5.1.1 Observations 62

5.2 Experiments onreal data oL 64
5.2.1 Observations 66

5.2.2 Distribution of similarity scores 66

5.2.3 Isomorphic and equal subtrees 68

5.3 Performance 69

6 Summary and conclusions 71
7 Future work 73
Bibliography 74
List of figures 81
A DOT graph files 83

Chapter 1

Introduction

A recent survey by Utrecht University [1] on plagiarism among its students showed
that 78% of all students use ideas from the Internet or somewhere else as an example
for their own work. Of all students, 67% sometimes express these ideas in their own
words and 54% sometimes literally copy these ideas with only minor modifications.
These numbers may seem shockingly high, especially when we consider the fact that
the survey also showed that among students, only 19% find the copying of texts and
presenting it as own work acceptable.

These results show that plagiarism is almost common practice among students,
and yet they know it is unacceptable. In contrast, lecturers and reviewers have only
ever spoken with 3% of all students about their suspicions of plagiarism and about
1% of all students have ever been sanctioned for it in one form or another.

1.1 What is plagiarism?

Plagiarism as defined in the Oxford English Dictionary [2] is

”The wrongful appropriation or purloining and publication as one’s own,
of the ideas, or the expression of the ideas [...] of another.”

This can either be copying or quoting an author’s work without proper acknowl-
edgement, writing a similar text based on another author’s text, or even expressing
the same ideas as another author without acknowledging where these ideas really
came from.

Perhaps surprisingly, what we negatively define as plagiarism today was common
among writers and artists until the 18th century, in order to "imitate the masters”
as explained by Lynch [3]. In modern culture, especially in the fields of academia
and journalism, plagiarism is considered to be immoral and often reason for se-
vere sanctions. Most universities have a low-tolerance policy concerning plagiarism,

10 Chapter 1. Introduction

as is obvious from the following excerpt from a regulations document of Utrecht
University [4] which concerns students attempting plagiarism for a second time:

" Exclusion from all forms of examination for a period of 12 months, and
the formal advice to leave the study course altogether.”

1.1.1 Why plagiarism must be counteracted

The reasons why plagiarism is viewed so negatively include:

e Monetary reasons. If an author intends to make a profit out of his pub-
lished work and someone else steals and publishes the same work without his
knowledge, the original author will make less profit.

e Loss of reputation. An academic paper or an in-depth article by a journalist
can only be significant if it shows innovation and originality. A stolen paper
or article deprives the original author of a certain gain in reputation.

e Unfairness. If a certain result is unrightfully achieved through plagiarism (for
instance, a student achieves a grade by submitting a plagiarized assignment),
this would not be fair to others trying to achieve the same result with hard
work.

Interestingly, in the same regulations document of Utrecht University mentioned
earlier [4] a different definition of plagiarism is given than the more common defi-
nition from the Oxford English Dictionary [2]. This definition, also mentioned by
Vermeer in his important research on plagiarism detection [5], is as follows:

"Fraud and plagiarism are defined as actions, or failure to act, on the
part of a student, as a result of which proper assessment of his/her
knowledge, insight and skills, in full or in part, becomes impossible.”

From this definition another reason why plagiarism is viewed negatively becomes
apparent: if a student plagiarizes in order to pass an assignment he or she may not
learn the skills that would be otherwise required to pass the assignment, which could
result in a diploma being wrongly achieved. This is probably the most important
reason for a university to prevent plagiarism among students and also why Utrecht
University defines plagiarism as mentioned above.

All these reasons not only point out the need to counteract plagiarism but they
also justify all possible means and tools in order to find cases of plagiarism. This
has opened up interesting research areas in computing science, both in string anal-
ysis and graph analysis algorithms, where searching for cases of plagiarism in some
tangible medium (e.g. pieces of text written in a natural language, or software
source code written in a programming language) may be made easier by means of
automated tools.

1.1. What is plagiarism? 11

1.1.2 Plagiarism in software

A number of ways exist in which plagiarism can occur, the most common being
plagiarism of a piece of text written in a natural language: copying some text off the
Internet is easy because of the enormous abundance of available texts. In software
technology, another obvious way of committing plagiarism is by copying someone
else’s source code for a computer program. This can be categorized into two areas:

e by a software company in order to sell a stolen software product as its own, or

e by a student in technical computer science education, in order to pass a prac-
tical assignment in which a computer program must be written.

Although it would certainly be helpful in a law suit to be able to employ some tool
when determining whether or not a software company has actually stolen another
company’s product, it still is only a single comparison that must be made and the
comparison must be checked by humans anyway in order to determine the outcome
of the law suit. This reduces the need for an automated tool. Moreover, there is
only a small chance that a software company will actually be formally accused of
having committed plagiarism since most source code is compiled into unrecognizable
machine code (usually an irreversible operation) and a different user interface can
be employed to mask the inner workings of a computer program.

For these reasons, in this thesis we focus primarily on the second way of commit-
ting plagiarism - by students for a programming assignment - because it provides a
more interesting research area. When comparing assignment submissions, we often
have to compare a large number of programs and we can catch frauds at a much
more frequent rate. For the rest of this thesis we will use the term plagiarism where
we generally mean plagiarism of source code for a programming assignment, unless
otherwise stated.

1.1.3 Plagiarism in natural language

As stated earlier, plagiarism of a text in a natural language is the most common
form in which plagiarism occurs because of the availability of texts on the Internet.
Research towards plagiarism detection in this area is also extensive, but that is
outside the scope of this thesis. We will briefly point out the fundamental differences
between plagiarism detection in natural language and in software source code, so
that it is clear why techniques that work well on natural language are not sufficient
when applied to software code.

e Software code has a much smaller alphabet size. A programming language
typically only has a limited set of keywords, constant names and syntactic
markers (in addition to identifier names), whereas any natural language has

12 Chapter 1. Introduction

a very large set of allowed words. This makes plagiarism detection harder in
software code, because a much smaller alphabet increases the chance that a
found match between words or markers is a coincidence.

e In natural language, the ordering of words is very important. Most lan-
guages allow for only slight variations in word ordering in a given sentence.
In contrast, many aspects of computer programs are unordered. For instance,
the order in which functions are defined matters little or nothing in most pro-
gramming languages, including Haskell. This fundamental difference allows
for a plagiarist to apply many more changes to a computer program in order
to hide his attempt at plagiarism, making the detection process much harder.
For instance, many matching problems in computing science have a much
higher complexity class when dealing with unordered data. Error-tolerant
graph matching, as we will see in the following chapter, is NP-complete (see
Garey and Johnson, [6]) whereas the string edit distance problem (see Wagner
and Fischer, [7]) can be solved in linear time.

e When searching for sources from where a plagiarist copied the original work,
the availability of existing works becomes important. For texts written
in a natural language the Internet can serve as a huge database of existing
works to which given texts can be compared, in order to find possible cases of
plagiarism. With a few exceptions such as Hoogle [8], this is much harder for
software code because source code that meets very specific requirements (for
instance, for a programming assignment) is not usually available online.

We can conclude that although some ideas from the area of plagiarism detection
in natural language might be useful to us, the majority of techniques and tools that
exist in this area will not work for plagiarism detection in software code.

1.2 Plagiarism detection and graph matching

Many tools exist for detecting possible cases of plagiarism. Most of these are specif-
ically designed for dealing with general-purpose programming languages like C+#
and Java. They use a wide variety of techniques for detection, and a few of these
tools have been proven to work very well. For functional programming languages
like Haskell only a few successful tools exist, and they all use more or less the same
general ideas from the field of string and token sequence analysis for detection.

A more advanced algorithmic technique that has been used extensively in the
fields of pattern matching and object recognition is graph matching, examples of
which are shown in Figures 1.1 and 1.2. Graph matching techniques are based on
comparisons between graph representations of objects.

1.2. Plagiarism detection and graph matching 13

Figure 1.1: An example of graph matching.

For plagiarism detection on general-purpose programming languages, a few tools
have successfully applied graph matching techniques in their detection process.
These tools construct graphs like in Figure 1.1 to represent the content of software
code and its internal dependencies. However, for functional programming languages
this is still a relatively unexplored field.

Figure 1.2: An example of object recognition.

Holmes is a plagiarism detection tool for the functional programming language
Haskell, created by Vermeer and Hage [5] also for Utrecht University. This tool
mainly uses string and token sequence analysis techniques. The work in this thesis
can be viewed as an addition to the research done by Vermeer in the sense that we
will now explore graph matching techniques in order to find out if they can success-
fully be used for plagiarism detection in Haskell programs. This would provide a
valuable addition to the detection methods already applied by Holmes.

14 Chapter 1. Introduction

1.3 Outline

Our goal in this thesis is to build a plagiarism detection tool for the Haskell
language that uses graph matching techniques, and to prove that it is effective in
practice. Each following chapter describes a part of this process. In Chapter 2, we
will begin by describing existing tools for plagiarism detection and the techniques
they use in more detail. We will also describe the ways in which frauds try to hide
their attempt at plagiarism, and how these tools cope with this.

Chapter 3 is entirely dedicated to graph matching problems, and we also describe
several algorithmic techniques to solve them. This is followed by the implementa-
tion details for our own plagiarism detection tool in Chapter 4, which uses graph
matching techniques based on some of the ideas in Chapters 2 and 3. In Chapter
5, some experiments (and their results) are described in order to see how well our
tool performs on fabricated cases of plagiarism for the sake of validation, as well as
experiments on real submissions for Haskell programming assignments.

A short summary of the work in this thesis is given in Chapter 6, in which we will
also draw some conclusions from our experiment results given in Chapter 5. The
last part of this thesis consists of a list of future work in Chapter 7, in which we
describe which observations and ideas might be worth further investigating after the
work in this thesis, because research should never be finished.

Chapter 2

Plagiarism of software code

In Chapter 1, we have already established a few notions about plagiarism in general
and we elaborated on the possible reasons for committing it. In this chapter, we will
describe a number of ways in which people try to mask their attempt at plagiarism
of software code. This is followed by a description of how a few popular plagiarism
detection tools work. Finally, we will describe what we require of a tool to help us
search for cases of plagiarism. We use this as a basis for developing and testing such
a tool in subsequent chapters.

2.1 Masking plagiarism

As can be read in a technical report by Jurriaan Hage [9], who has done a lot of
research in the area of software plagiarism for Utrecht University, there are a few
reasons why a student having to do a programming assignment would want to resort
to plagiarism:

e not having enough time to write the required computer program.

e not having the skills to write a computer program with the required function-
ality.

or a combination of these.

Most students are aware that it is likely their submissions will be checked for
plagiarism, either with automated tools or by randomly comparing a number of
submissions by hand if a good tool is not available. Therefore it is also likely that
students will try to mask their attempts at plagiarism, and they have a number
of methods at their disposal with which they can accomplish this. However, as
Hage also points out in [9], a few of these methods are useless because a reviewer
manually looking at source code modified in such ways will immediately suspect
that something is wrong. These include:

16 Chapter 2. Plagiarism of software code

Code obfuscating which leaves the program functionally the same but greatly
changes the appearance of its source code. Common code obfuscation tech-
niques include playing around with whitespace and using strange symbols as
identifiers. For Haskell programs, even more advanced methods are possible
like rewriting keywords (such as let) as lambdas.

Redefining predefined functions with a different name and then calling the re-
defined function instead of the original function. For example, in a Haskell
program one could copy a function from the Prelude (which is what the set of
all predefined functions is called) and give it a different name.

2.1.1 Renaming and refactoring

An obvious way to hide the fact that a function was copied from someone else is to
rename the function. Renaming a function is just one example of many refactoring
techniques that exist. Refactoring is an umbrella term for a collection of struc-
tural changes that can be applied to a program’s source code without changing its
semantics, i.e. without changing it external functional behavior. Of course, these
techniques provide an excellent way to mask plagiarism. Below is an example show-
ing various refactoring methods being applied sequentially in order to transform a
Haskell program (the sum and foldr functions are actually part of the predefined
Haskell Prelude, but only used as example functions here).

1. Original Haskell program that calculates the sum of the list [1,2,3,4]:

sum [] =0
sum (h:t) = (+) h (sum t)
main = sum [1..4]

2. Function sum renamed to foldr:
foldr [] 0

foldr (h:t) = (+) h (foldr t)
main = foldr [1..4]

3. Generalized over 0 in the nil-case:
foldr n [] =n
foldr n (h:t) = (+) h (foldr n t)
main = foldr 0 [1..4]

4. Generalized function applied in the recursive case:

2.1. Masking plagiarism 17

foldr £ n [] =n
foldr £ n (h:t) f h (foldr £ n t)
main = foldr (+) 0 [1..4]

5. New expression total introduced (which is actually the old sum function):

foldr £ n [] =n
foldr £ n (h:t) = £f h (foldr £ n t)
main = total [1..4]
where
total = foldr (+) ©

6. Function total moved to top-level (since it might be reusable):

foldr £ n [] =n
foldr £ n (h:t) = £f h (foldr £ n t)
main = total [1..4]
total = foldr (+) O

Even the simple example above already results in source code that looks quite
different from the original program, but it still produces exactly the same output.
Many more modifications can be applied to the source code, such as:

e Change variable names
e Reorder function declarations

e Move functions only called by one function to the local scope of the calling
function

e Introduce unused functions
e Remove unnecessary functions

e Introduce a function that is called by every other function (for instance, a
debug function)

e Introduce a function that calls all other functions (for instance, a unit test
function)

Especially the last two modifications are notorious: they look innocent to a reviewer
but they can cause problems for plagiarism detection tools because they modify a
large part of the source code.

18 Chapter 2. Plagiarism of software code

2.1.2 Refactoring tools

Of all the methods for masking plagiarism, a student will typically only apply a few.
Recall that a student who plagiarizes does not have enough time or skill to write the
required program. The same reasons apply to the process of masking the plagiarism
attempt: the student will probably not put a lot of effort into this, because otherwise
he could have written the program himself with same amount of effort and he would
not have bothered with resorting to plagiarism in the first place. However, the
existence of automated refactoring tools such as HaRe [10] makes life easier for
frauds and harder for plagiarism detection tools. These tools have the functionality
to apply refactoring in a user-friendly way without requiring the user to have an
extensive knowledge of the program or programming language in question. Many
of these tools are freely available on the Internet and some source code editors even
contain refactoring functions or a refactoring tool as a plugin. When building a tool
for detecting plagiarism one must keep in mind that refactoring will often have been
applied and that the detection tool must see through this.

2.2 Detecting plagiarism

First, it should be noted that completely automated detection of plagiarism as such
is impossible. Automated tools can be used to search for similarity among objects,
but it is up to the user to decide what degree of similarity constitutes a match
and what doesn’t. Even when a match is found, it is still only an indication that
it may be a case of plagiarism. The decision whether or not it is actually a case
of plagiarism not only depends on local regulations and guidelines but also always
has an element of subjectivity, because like any question of guilt in a law system
it must have a human answer. This is so because it can never be guaranteed that
an automated tool does not generate any false positives: indications of plagiarism
where there is in fact no plagiarism at all.

This subtle distinction between a similarity search and plagiarism detection
is not always so clear in the literature. In fact, even in this thesis we often use the
term plagiarism where actually a suspected case of plagiarism is meant, for the sake
of conciseness. Suffice it to say that when developing a tool for detecting plagiarism
we must always keep in mind that it is merely an aid in finding possible cases of
plagiarism and that a human decision must always follow after running the tool.

2.2.1 Requirements of an automated tool

This brings us to the most important requirements of a plagiarism detection tool.
A person must always check a suspected case of plagiarism by hand after the tool
has been run, but it would be infeasible to manually cross-compare all submissions

2.2. Detecting plagiarism 19

because it would simply take too much time. This is where an automated tool comes
in: the tool should eliminate all cases that are definitely not plagiarism and give
an overview of which suspected cases remain, all in a reasonable amount of time.
Also, an important side effect of creating such a tool and spreading knowledge of its
existence among students is that students are less inclined to resort to plagiarism
if they are not able to complete an assignment otherwise, because they are more
fearful their attempted fraud will be discovered.

Scalability

More formally speaking, the program must be scalable. It must be able to compare
a large number of submissions not only with each other but also cross-compare
them with submissions from previous years (if the same assignment was given). The
number of comparisons that must be made is n * (n — 1)/2, where n is the total
number of submissions.

Fortunately, the time constraint on this is not too strict because grading the
submissions and running the tool on them can be done concurrently: each submission
has to be reviewed by hand anyway in order to grade it. This usually takes at least a
few days so it doesn’t really make an important difference whether the tool completes
its work in ten minutes or in a day. However, we do require that the tool takes a most
one day, to avoid any scheduling problems that might arise among the reviewers of
the assignment.

False negatives and false positives

Another obvious requirement is that the program must at least mark all actual
cases of plagiarism as suspects. The situation where a false negative (a case of
plagiarism that is not marked by our tool as such) that slips through our fingers, so
to speak, must be prevented at all costs because this seriously threatens the validity
of grades handed out for an assignment. The tool must also minimize the number
of false positives: cases that are marked by our tool as suspects but are not really
plagiarism at all. These situations are a lot less serious errors because the worst
that can happen is a reviewer having to check more suspected cases of plagiarism by
hand, which only costs more time. If there happen to be too many false positives,
the settings of the tool might also need some adjustment.

Often, a balance between minimizing the number of false negatives and minimiz-
ing the number of false positives must be sought when configuring an automated
tool. For instance, a lower threshold (i.e., a required degree of similarity) for identi-
fying similar programs as suspects may lead to more frauds being caught (less false
negatives) but also to more legitimate work being wrongly marked as suspicious

20 Chapter 2. Plagiarism of software code

(more false positives). Ideally, the tool must work in such a way that it can be
configured to have a low enough threshold to eliminate all false negatives but still
have a minimum number of false positives.

See through refactoring

One of the most important properties of a plagiarism detection tool is how well
it deals with refactored code, or code in which an attempt at plagiarism has been
otherwise masked. Typically, the success rate of a tool will be different for different
types of plagiarism masking that are applied. Ideally, the tool should be successful
in a general sense (with no weak vulnerabilities for specific techniques of masking
plagiarism) and even a combination of methods for masking plagiarism should not
have too great an impact on the success rate.

Code templates

Often when a programming assignment is handed out, a piece of existing source code
is handed out with it. This is called template code and students must expand
the given source code in order to complete the assignment. Functions predefined
in template code are called template functions. It is important to realize that
these functions should be disregarded by a plagiarism detection tool, because all
submissions share these functions. Otherwise, the tool would detect far too many
suspected cases of plagiarism, while it is perfectly legal and often obligated for
students to have identical versions of these template functions. The same notion
applies to functions defined in the Haskell prelude, because these are also functions
that will be identical among submissions.

Other useful properties of plagiarism detection tools include a user-friendly way
of feeding submissions to it and showing the similarity results in an ordered, com-
prehensive way. Also, it should be easily configurable in order to get optimal results
given the size and complexity of a programming assignment.

2.2.2 MOSS and other existing tools

Many tools for detecting plagiarism in software code have been developed over the
years. A widely used tool is MOSS [11], already developed in 1994 at Berkeley. A
great advantage of MOSS over other plagiarism detection tools is that MOSS also
appears to handle functional languages like Haskell well, in addition to only object-
oriented languages like Java and C#. Other plagiarism detection tools are either
not freely available, rarely used or not suited to Haskell programs at all.

2.2. Detecting plagiarism 21

MOSS stands for Measure Of Software Similarity and has been freely available
for use via the Internet since 1997. The tool uses winnowing [12], a local document
fingerprinting technique. This technique uses the notion of k-grams: a k-gram is a
substring of length k taken from a text. A sequence of hashes is calculated for all
possible k-grams in a text, then a subset of these hashes is taken as the document’s
fingerprints. Document fingerprinting is perhaps best explained visually with the
example below.

1. The original text from a document.
The quick brown fox jumps over the lazy dog.

2. The same text but with irrelevant features like spaces removed.
thequickbrownfoxjumpsoverthelazydog

3. The sequence of all 5-grams derived from the text.

thequ hequi equic quick uickb ickbr ckbro kbrow brown
rownf ownfo wnfox nfoxj foxju oxjum xjump jumps umpso
mpsov psove sover overt verth erthe rthel thela helaz
elazy lazyd azydo zydog

4. Hypothetical sequence of hashes of the 5-grams.

43 56 88 97 23 15 75 42 40 69 77
17 50 11 39 45 31 87 83 46 53 72
84 57 40 98 51 62 47 55 38

5. A subset of hashes, by accepting a hash number h if A mod 4 = 0.
56 88 40 72 84 40

Of course, the last step in which certain hashes are selected to form the finger-
prints determines the quality of the comparison between documents. Vital infor-
mation may not be included in the comparison because the corresponding hashes
were not selected. This is where winnowing comes in (described in more detail by
Schleimer et al. in [12]). The basic idea is that a minimum word length for detec-
tion, say t, is chosen (for instance, t = 8 because we want to be certain that words
of length at least 8 are detected). Then, we make sure that we choose a hash value
from each window of hashes of length w =t — k+ 1, by selecting the minimum hash
value in that window and only selecting a particular hash once. The last step in the
scheme above then becomes:

22 Chapter 2. Plagiarism of software code

5. Windows of hashes (window size w = 4).

(43 56 88 97) (56 88 97 23) (88 97 23 15) (97 23 15 75)
(23 15 75 42) (15 75 42 40) (75 42 40 69) (42 40 69 77)
(40 69 77 17) (69 77 17 50) (77 17 50 11) (17 50 11 39)
(50 11 39 45) (11 39 45 31) (39 45 31 87) (45 31 87 83)
(31 87 83 46) (87 83 46 53) (83 46 53 72) (46 53 72 84)
(53 72 84 57) (72 84 57 40) (84 57 40 98) (57 40 98 51)
(40 98 51 62) (98 51 62 47) (51 62 47 55) (62 47 55 38)

6. Selected fingerprints.
43 23 15 40 17 11 31 46 53 40 47 38

This procedure still selects only a reasonably sized subset of hash values but guar-
antees that they are uniformly distributed in a way such that words of length > ¢
will always be found when matching document fingerprints. The authors of [12]
(and creators of MOSS), Schleimer et al., show in greater detail why this procedure
works well in practice.

Marble

As stated earlier, in recent years Jurriaan Hage has done a lot of work towards
plagiarism detection at Utrecht University. A technical report appeared in 2006
about a tool he created, called Marble [9]. Marble was designed for plagiarism
detection in Java programs and a few other object-oriented languages as well. The
technique being used is extensive normalization followed by lexical analysis with the
Unix diff. Following experiments in which Hage applied this technique to Haskell
programs were not successful.

Domain-specific knowledge

Studying the techniques used in MOSS, it is clear why the tool is successful for
a broad range of programming languages because it does not rely on any domain
knowledge about specific languages. One might argue that adding domain-specific
knowledge improves a tool’s success because the tool then has the knowledge which
specific constructs in the source code are important to compare and what is less
important. In other words, the tool "knows what to look for”.

In contrast, when dealing with plagiarists that also know which language con-
structs are important the success rate of a tool might suffer from domain-specific
knowledge instead of having a higher success rate. Consider for example the Haskell

2.2. Detecting plagiarism 23

16 <imagechjects> - 15 <imagecbject> -

17 <imagedata "../lake.jpeg” 16 <imagedata "../lake.jpeg”

12 </imagechject> 17 </imagechject>

19 </mediacbject> 18 </mediacbject>

20 </figure> L o 18 </figure> ==

24 <para>In order to preview this text in a ¥ N " 20 <para "lro">In order to preview this

22 <code "en">Docbook HIML</code N . 21 <code>Docbook HIML</code> transforma

23 <guibutton "en">Configure tr: N o 22 <guibutton>Configure transformation

24 <keycap "en">CTRL+SHIFT+C</ ke N . 23 <keycap>CTRL+SHIFT+C</ keycap> or

25 {<keycap>META+SHIFT+C</ keycap> on Mac 24 {<keycap>META+SHIFT+C</keycap> on Ma

26 <guibutton>0k</gquibutton>.</para> , 25 <guibutton>0k</guibutton>.</para>

27 <para>To apply the stylesheet you have to 26 <f3ectl>

22 press <keycap>CIRL+SHIFT+I</keycap> (<ke 27 «<sectl>

29 </para> 28 <titlerLists and Tables</title>

20 </gectl> 20 <para>This iz a list of useful

31 <gectl> 30 <abbrev>¥ML</abbrev> links:

32 <title>Lists and Tables</title> 4 b </parax

33 <itemizedlist> 32 <itemizedlist>

a4 <listitem> jeic] <listitem>

35 <para> " o 39 <para>

36 <link "http://WWW.W3.0T(N . 35 <link "http://wWwwW.W3.0

37 http: [www.xml.org</link> k o 36 http:/ /www.xml.com</1link>

22 </para> 37 </parax

a9 </listitem> s 38 </listitem> S
4 nr 3 4 nr [$

Figure 2.1: Example of a diff viewer that points out added, removed or modified parts
of a text. A similar technique is used in Marble, and in many plagiarism detection
tools for texts in a natural language (see also Section 1.1.3).

language and a hypothetical tool that deems type information of functions very im-
portant in its similarity search. A student who plagiarizes may cause problems for
this tool when, for instance, he introduces new parameters in function calls (like in
the third refactoring step in the example of Section 2.1.1).

What we can conclude from this is that it is not always justified to assume that
domain-specific knowledge increases the success rate of a plagiarism detection tool.
In fact, it would be more appropriate to say that a tool that uses domain-specific
knowledge is more vulnerable to plagiarism attempts from frauds with tool-specific
knowledge!

2.2.3 Holmes

Intrigued by both Marble’s lack of success when coping with functional languages
like Haskell and by the open question whether or not a Haskell-specific tool would
be more successful than a general-purpose tool like MOSS, further research into
plagiarism detection in Haskell programs was done by Vermeer and Hage in 2010
[5]. This resulted in a tool called Holmes. Holmes is named after the famous fictional
detective Sherlock Holmes [13] and consists of two parts: a pre-processor (Sherlock)
and a comparison part (Holmes).

24 Chapter 2. Plagiarism of software code

The first part, Sherlock, is built on top of the Helium parser. Helium [14] is
both a (large) subset of the Haskell language and a compiler specifically designed
for teaching Haskell, developed by Utrecht University. Much more useful and specific
error messages can be given by Helium so that students learn more quickly. Sherlock
uses the Helium parser to extract what the authors of [5] call abstractions of program
submissions: normalized versions of the source code with irrelevant features removed
such as comments, unused functions (dead code) and template functions. These
features are filtered out to reduce problem complexity and to improve the similarity
search in the second phase.

The second part, Holmes, takes all information stored by the pre-processor and
performs different types of comparisons between submissions. Four types of analysis
that are carried out can be distinguished:

e Literal string analysis in the forms of approximate string matching on all
literal strings that occur in the compared programs, and on all comment sec-
tions in the compared programs.

e Token stream analysis where the source code is transformed into a normal-
ized token stream in which whitespace is removed, literal strings and identifier
names are replaced by symbols, and language specific symbols like brackets
are preserved. Both token streams in which the function definitions were first
ordered and streams in which the functions were not ordered are compared
among submissions using the Haskell diff library, similar to the Unix diff.

e Call graph metrics: static call graphs are constructed for only the top-
level functions, where each graph node represents a function and each edge
represents one function calling another function. For each type of node degree
(in-degree, out-degree and total degree) the minimum, maximum and average
is calculated and compared among submissions. Also the diameter of each
graph is calculated and compared, which is the length of the longest path
among all shortest paths between nodes.

e Document fingerprint matching and winnowing are implemented in very
much the same way as in MOSS [12], using 25-grams for hashing and a window
size of 5.

The authors of [5] implemented the first three methods in order to find out what
works well and what does not. The methods are very different as to make sure
that each type of analysis (literal, structural and semantic analysis) is properly
represented. The fourth method, fingerprint matching, was implemented in order to
see how well the first three methods would compare to an existing tool such as MOSS.
Research and experimentation showed that of all techniques employed by Holmes,

2.2. Detecting plagiarism 25

only token stream analysis and fingerprint matching are reasonably successful when
applied to test data (a Haskell program ’plagiarized’” manually in different ways)
and real-life data (submissions for an actual programming assignment at Utrecht
University).

2.2.4 Call graph matching

With the abstract data gathered by Sherlock, even different types of comparisons
than the ones mentioned in the previous section can be implemented. From an
academic viewpoint, for instance, it was very interesting to find out how well ap-
proximate graph matching on the derived call graphs is suited to finding suspected
cases of plagiarism. But also for the sake of practicality and completeness it would
be useful to have graph matching in addition to the checks performed by Holmes,
hopefully to find suspected cases of plagiarism that are not detected even by the more
successful techniques of token stream analysis and fingerprint matching. Whereas
token stream analysis and fingerprint matching might be vulnerable to certain spe-
cific ways of masking an attempt at plagiarism (or a combination of them), graph
matching might be better able to deal with all sorts of masking techniques.

Implementing a plagiarism detection tool based on graph matching that could be
used in addition to Holmes or that might even perform better than Holmes in a
general sense was the main motivation for the work in this thesis. In this sense, our
work can be seen as a continuation of the research done by Vermeer and Hage [5].
In the next chapter, we will go further into the theory of graph matching and how
we can employ certain techniques when detecting plagiarism.

26

Chapter 2. Plagiarism of software code

Chapter 3

The graph matching problem

The graph matching problem is the problem of, given two graphs, computing their
similarity and deciding whether or not the degree of similarity constitutes a match.
In this chapter we give a few examples of applications in which this problem arises
and lay out some basic concepts and foundations. We will also give an overview of
methods and algorithmic techniques that can be used in order to compute graph
similarity and solve the graph matching problem.

3.1 Graphs

As a short introduction into graph matching theory, we will first briefly recall some
basic graph theory for the less experienced reader. Those familiar with graph theory
may skip this section altogether.

A graph is an abstract model in which objects of some kind are linked together
with one-way or two-way connections. The objects are represented by wvertices
(sometimes called nodes) and the links between them are called edges (or some-
times arcs). More formally speaking,

A graph G is a pair G = (V, E) consisting of a set of vertices V and a
set of edges E, and each edge (v,w) € FE consists of a pair of vertices
veVandweV.

A graph can be directed which implies that all edges are one-way links from one
vertex to another (each edge (v,w) € FE is an ordered pair), or undirected which
only implies that each edge connects two vertices without any particular direction
(each edge (v,w) € F is an unordered pair). A graph that contains a cycle (a path
from a vertex to itself) or multiple cycles is cyclic, a graph without cycles is acyclic.
Connected acyclic graphs in which each vertex has at most one incoming edge are
trees, and a collection of trees is aptly named a forest.

28 Chapter 3. The graph matching problem

Many extensions of this basic definition exist, including graphs in which vertices
and/or edges can have various attributes such as weights or labels. Vertices can
be used to represent all kinds of objects and their properties, although in many
applications all vertices of a graph are usually objects of the same type.

The area of graph theory is vast and contains many complex mathematical prob-
lems and families of algorithms to solve them. The most well-known graph problem
is that of computing a shortest path between two vertices. Dijkstra’s algorithm from
[15] is widely known for solving the shortest path problem efficiently and it is still
used today in many applications such as route planning in car navigation systems,
albeit with extensive modifications and advanced heuristics.

Because of the versatile nature of graphs and the large amount of algorithms that
have been developed to deal with graphs, graphs are used in many applications
so that practical problems can be solved using existing algorithms that have been
proven to be correct and efficient.

3.1.1 Haskell call graphs

Before going further into giving an overview of graph matching methods, it is im-
portant to know more about call graphs that represent the semantics of source code,
especially for Haskell programs. In this section, we will describe the characteristics
of this type of graphs.

A call graph can be constructed to represent the static structure of a Haskell
program. This is a directed, labeled, attributed graph that can be cyclic. Each edge
represents one function calling another function. The graph is labeled because all
functions have a name and a module to which they belong. Functions can also have
various other attributes such as the number of arguments and their types.

The call graph is cyclic if the Haskell program contains self-recursive functions
(such as the maxL function in the example Figure 3.1), mutually recursive functions
(two functions that call each other) or call cycles of more than two functions. From
experience, we know that the first category of cycles (self-recursion and mutual
recursion) is very common in Haskell programs but that bigger cycles are quite
rare. This makes Haskell call graphs look a lot like directed acyclic graphs, which
is fortunate because many efficient algorithms exist for computations on a directed
acyclic graph.

When Prelude functions are left out of the graph, the call graphs of some smaller
Haskell programs (like in Figure 3.1) become trees or tree-like, reducing the com-
plexity of certain calculations even further. However, this is usually not the case

3.2. Applications 29
module Main where
main = total [1..4] @
foldr (+) © .
foldr (*) 1
maxL [x] =X
maxL (x:xs) max x (maxL xs) G @ Q @

Figure 3.1: The example Haskell program from Section 2.1.1 but expanded a little
(left) and its corresponding call graph (right). Prelude functions are shaded in gray.

total
productL

in a standard Haskell program because it almost always contains functions that are
called from more than one other function.

3.2 Applications

As mentioned at the beginning of this chapter, the graph matching problem is the
problem of, given two graphs, computing their similarity and deciding whether or not
the degree of similarity constitutes a match. There are various subfields in science
and engineering in which the graph matching problem is of significant importance.
Because graphs are such a powerful tool for modeling structured objects, the prob-
lem of computing graph similarity arises often when measuring object similarity.
Applications that require measuring object similarity include:

Chemical structure analysis One of the earliest real-world applications of graph
matching is described in detail by Rouvray and Balaban in [16]: finding similar
molecules.

Biometric identification An application that is especially important in the law
enforcement sector is the problem of finding fingerprints that are similar to a
fingerprint that was found at a crime scene. Neuhaus and Bunke [18] describe a
way to represent fingerprints as attributed graphs and they describe procedures
for matching these attributed graphs. Other forms of biometric identification
can be carried out in similar ways.

Computer vision Examples of three-dimensional object recognition in an environ-
ment that requires robot or computer vision are given in [19] and [20], both
papers by Wong.

30 Chapter 3. The graph matching problem

printTable

bigStripe ' printRecords '

pnntRecord

Prelude.putStrLn

i)
%

Prehide.otherwise

Figure 3.2: Call graph of a real Haskell program as outputted by Sherlock. Note
the common occurrence of self-recursion, and the tree-like appearance when Prelude
functions are left out of the graph.

In addition to the listed examples, many more applications of graph matching
have been explored in the last three decades. Bunke [21] gives a brief overview of
many applications described in the literature, and Conte et al. [22] give an extensive
overview of various applications in pattern recognition as well as a more technical
overview and classification of graph matching algorithms that can be applied to
them.

3.2.1 Plagiarism detection

Plagiarism detection in software code might seem different from the aforementioned
applications in the fact that the distortions to the source code are intentionally
applied by humans (or a transformation tool), whereas distortions to structures
in other applications are the result of some random or natural process. However,
the resulting problem remains the same: finding similar structures while taking
into account any type of distortion. Furthermore, research has shown that the

3.3. Basic concepts and theory 31

NH»
X
EHs . HO </Em
/ “CHs
H3C o) HOHO
Caffeine Adenosine

Figure 3.3: Caffeine counteracts the effects of adenosine by binding itself to adeno-
sine receptors on brain cells, which is possible because of the structural similarity
between the molecules (from [17]). This temporarily reduces the sensation of being
tired.

same general techniques and algorithms for graph matching on graphs with natural
distortions are equally effective when applied to graphs with artificial distortions.
For instance, Bruschi et al. [23] and Kriigel et al. [24] successfully applied graph
matching techniques in order to find malware that tries to escape detection by
mutating its own source code. Also, plagiarism detection in Java programs by graph
matching has been researched by Liu et al. [25] resulting in a practical tool (GPlag)
to find cases of plagiarism.

3.3 Basic concepts and theory

There are two main groups of graph matching methods: ezact matching and inexact
(or error-tolerant) matching. Exact matching methods require a strict correspon-
dence between certain properties of the two graphs being compared, while inexact
matching methods allow a degree of error or distortion.

3.3.1 Graph isomorphism

An important concept in exact graph matching is graph isomorphism: two graphs
are isomorphic if two nodes in the first graph that are linked by an edge are also
linked by an edge in the second graph, and the other way around. More formally
speaking, two graphs G' and H are isomorphic if there exists a bijective mapping f
from the vertices of G to the vertices of H such that for any two vertices v and w
in G there exists an edge v — w if and only if there exists an edge f(v) — f(w) in
H. Subgraph isomorphism is the problem of finding out whether or not a subgraph
of graph G exists that is isomorphic to graph H.

32 Chapter 3. The graph matching problem

Figure 3.4: Two undirected graphs that are isomorphic if vertex a is mapped to vertex
1, vertex b to 2 and so on.

Complexity of graph isomorphism

It was already proven in 1971 by Cook [26] that subgraph isomorphism is NP-
complete by reducing to 3-satisfiability, so no known polynomial-time algorithm
exists. Graph isomorphism is a special case of subgraph isomorphism and, interest-
ingly, the complexity of graph isomorphism remains unknown. It has been shown,
however, that for certain special types of graphs efficient algorithms (that run in
polynomial time) do exist. For instance, Bodlaender [27] proved that a polynomial-
time algorithm for graph isomorphism exists for graphs of bounded treewidth < k.
For trees, an even more efficient algorithm that runs in linear time was already given

in 1974 by Aho et al. [28].

Isomorphism in Haskell call graphs

As we have seen in Section 3.1.1, Haskell call graphs tend to look a lot like directed
acyclic graphs. Further, with a few simple transformations (see following chapters)
the call graphs can be modified so that they look even more like trees. This makes
it possible to search for isomorphic subgraphs efficiently. Unfortunately, due to the
exact nature of graph isomorphism which does not tolerate any errors, graph iso-
morphism is not well suited to perform plagiarism detection in source code that has
undergone significant changes such as adding or removing functions which corre-
spond to inserted or deleted vertices in the call graph. However, an isomorphism
check could still be usable (as only a part of our tool) to detect plagiarism when,
for instance, only function names have been changed.

3.3. Basic concepts and theory 33

3.3.2 Maximum common subgraph

Two other important concepts in graph matching that are closely related to each
other are mazimum common subgraph and minimum common supergraph. A max-
imum common subgraph of two graphs G and H is a graph K that is a subgraph
of both G and H and has the maximum possible number of vertices. Minimum
common supergraph is a relatively new concept that denotes a graph L of which
both G and H are subgraphs and that has the minimum possible number of vertices.
The concept is described in [29], in which the authors Bunke et al. also show that
the minimum common supergraph can be computed using a computed maximum
common subgraph. The maximum common subgraph problem is widely studied and
known to be NP-complete, as can be read in the overview of NP-complete problems
given by Garey and Johnson in [6].

3.3.3 Graph edit distance

When dealing with inexact graph matching and no large common subgraph can eas-
ily be determined, an intuitive way to measure graph similarity (or rather, dissim-
ilarity) is to compute the graph edit distance, denoted by d(G, H), which measures
the cost of transforming one graph G into another graph H using a series of edit
operations. Basic edit operations that are common in the literature include the
substitution, insertion or deletion of vertices, or insertion or deletion of edges. An
ordered sequence of edit operations that transform one graph into another graph
is called an edit path (see Figure 3.5 for an example). A cost function defines an
assignment of costs to the individual edit operations, and the cost of an edit path
is the sum of the costs of all edit operations in the path. The graph edit distance is
simply the cost of the minimum cost edit path, also called the optimal edit path.

AL

Figure 3.5: An example of an edit path: deletion of vertex b, insertion of vertex f,
substitution of vertex e by g. Newly introduced vertices and edges are shaded in gray.

34 Chapter 3. The graph matching problem

Although many algorithms designed for dealing with the graph edit distance prob-
lem compute a lowest-cost edit path between two input graphs, when reasoning
about problem complexity the graph edit distance problem is often formulated as
its decision variant:

Given two input graphs G and H, is there an edit path with cost at most
k to transform G into H?

Interestingly, it was shown by Bunke [30] that under a special class of cost func-
tions, the graph edit distance problem and the maximum common subgraph problem
are equivalent. These cost functions have the restriction that substituting a vertex
v by vertex w directly is never cheaper than deleting v and then inserting w. A
consequence of this is that the optimal edit path will only consist of deletions and
insertions. This means that graph edit distance can be viewed as a generalization
of maximum common subgraph and thus inherently even harder to solve from a
computational point of view.

Graph edit distance is one of the harder NP-complete problems to solve. In fact,
Zhang [31] proved that even if the two graphs being compared are binary trees and
the labels of the tree nodes have an alphabet of size 2, the problem remains hard
to solve. In practice, this means that no efficient algorithm (that has a running
time polynomial in the size of the input graphs) exists to compute the edit distance
optimally.

3.4 Graph matching algorithms

Various methods have been employed over the years to match graphs and to compute
graph edit distance. These can be divided into optimal methods and suboptimal
methods or approximation methods. Optimal methods are guaranteed to find the
optimal solution (that is, the lowest-cost mapping between to two input graphs or
the lowest-cost edit path between them) but have a running time and/or memory
usage that is exponential in the size of the input graphs, due to the hardness of
the problem. Suboptimal or approximation methods often have a running
time polynomial in the size of the input graphs which is much faster, but are not
guaranteed to find the optimal solution. Instead, for most approximation methods
an upper bound is given for the solutions they find, which is proven to be within
a certain error margin from the optimal solution. An example of this is the well
known vertex cover problem, discussed by Rivest and Leiserson who give a simple
approximation algorithm in [32] for which they prove that the solutions it finds
contain at most two times the optimal number of vertices.

3.4. Graph matching algorithms 35

In this section, we will look into both classes of algorithms (optimal and subopti-
mal) and elaborate on which algorithms are suitable for our special case of Haskell
call graph matching.

First, we must note that there are subtle differences among what algorithms ac-
tually compute but that this does not matter for what we are trying to achieve.
Many algorithms designed for graph matching compute a lowest-cost edit path be-
tween two input graphs (see Neuhaus et al. [33]), but some algorithms compute a
lowest-cost mapping between the vertices of graph G and the vertices of graph H
(see Riesen et al. [34]). This is equivalent with computing an edit path because
a mapping can be viewed as simply a series of substitutions. The corresponding
edit path only has additional deletions for vertices that are in G but not in H, and
insertions for vertices that are in H but not in G. There is no need here to make a
clear distinction between algorithms that compute the edit distance and algorithms
that actually compute a lowest-cost mapping or edit path, because the latter can
also be used to calculate the edit distance. The edit distance is simply the total cost
of the found mapping or edit path, which is what we are interested in.

3.4.1 Tree search based methods

In their most general form, tree search algorithms are algorithms that take a
starting solution for a given problem and construct a search tree with the starting
solution as its root node. In this search tree, each tree node represents a partial
solution and each edge from a parent node v to one of its child nodes w repre-
sents a transition from partial solution v to partial solution w. Leaf nodes represent
complete solutions. In most tree search algorithms, the transitions between solu-
tions (edges in the tree) are simple modifications. The problem description defines
which modifications are allowed on which partial solutions, and which solutions are
complete solutions. Together, these determine the width and depth of the search
tree.

The way in which the tree is expanded determines whether a found (complete)
solution is optimal, because a yet unexplored area of the search tree may contain
a solution that is even better than the one that was found first. Also, the way in
which the tree is expanded has a great impact on the efficiency and memory usage
of the algorithm because the search tree grows exponentially if each parent node has
at least two child nodes.

When measuring graph edit distance, the tree search is meant to find the lowest-
cost edit path from a graph G to graph H. In this particular application, the root
of the tree corresponds to the original graph G and each non-leaf node corresponds
to a modified version G’ of G (graph G partially transformed to graph H). Each

36 Chapter 3. The graph matching problem

edge between tree node ¢t and n stands for a single edit operation transforming the
graph in node ¢ to the graph in node n, and each leaf node represents a graph that
is completely transformed into H.

The general techniques for tree search described in this subsection are also de-
scribed in Rivest and Leiserson [32], and in more detail in Russel and Norvig [35].
Especially the latter book provides an excellent reference for finding applications of
tree search other than graph edit distance.

Breadth-first search

Two basic ways exist to expand a search tree: breadth-first search and depth-first
search. Breadth-first search makes sure that all nodes at a certain depth of
the search tree are examined before expanding to the next depth. This way, it is
guaranteed that any complete solution that is found is on the smallest possible depth
from the root node (starting solution). If this depth corresponds to the quality
of the solution, then the breadth-first search algorithm always finds an optimal
solution. But of course, the requirement that each depth must be expanded fully
before moving on to the next depth results in exponential running time and memory
usage.

Depth-first search

Depth-first search, on the other hand, always chooses a deepest unexpanded node
for expansion. This is so that a complete solution is reached as fast as possible and
with much less needed memory (fully expanded branches may be removed from the
search tree), but the found solution may not be optimal if the depth corresponds to
the quality of the solution: the still unexplored part of the search tree may contain
a better solution at a lesser depth.

Because of their simplicity and general applicability, breadth-first search and
depth-first search are often used as a substep in many algorithms, albeit in slightly
modified form. However, they are uninformed algorithms that do not have specific
knowledge about the quality of solutions and they both have serious disadvantages
when it comes to optimality and performance.

Best-first search

A basic informed algorithm that does have specific knowledge about the quality of
solutions is best-first search. A best-first search algorithm has a function g(v)
which measures the quality of the solution S, corresponding to tree node v. The
tree node with the best value for g(v) is always expanded. When measuring graph
edit distance, the value g(v) is the cost of the edit path from the original graph Gy

3.4. Graph matching algorithms 37

to tree node G, and is equal to the value g(p) of v’s parent node p plus the cost
of the edit operation from G, to GG,. Note that best-first search is equivalent with
breadth-first search when the cost of every edit operation is equal to 1.

A* search

Because the worst-case running time of best-first search is still exponential, heuristics
are often used to guide the search in a certain direction in order to find a solution
much faster. A heuristic best-first search algorithm has a heuristic function
h(v) that estimates the cost from tree node v to a complete solution (the estimated
remaining cost), and the tree node v with the lowest value for f(v) = g(v) + h(v) is
always expanded. A heuristic function is said to be admissible if it is " optimistic”, i.e.
it never overestimates the remaining cost. An algorithm that uses such an admissible
heuristic function is itself also called an admissible heuristic search algorithm or an
A* search algorithm. Once the A* search algorithm finds a solution v with
estimated remaining costs h(v) = 0, that solution is returned. The A* search
algorithm (see also Figure 3.6) was first described in 1968 by Hart et al. [36]. The
authors also gave proof that the A* search algorithm is optimal and always returns
the optimal solution.

Figure 3.6: An example of a search tree that is constructed by the A* algorithm. The
numbers indicate in which order the nodes were expanded: the node with the lowest
estimated cost f among all currently known nodes is always picked first. Eventu-
ally node n is reached and recognized as the optimal solution because the estimated
remaining costs are 0 and no unexpanded node has a lower estimated total cost.

38 Chapter 3. The graph matching problem

The main idea of the proof of optimality for A* search is this: after its execution,
the algorithm has found a solution with an actual cost g that is lower than (or equal
to) the estimated cost f of any tree node that has not yet been expanded. But since
those estimates are always optimistic, there cannot be another solution with lower
cost through one of those unexpanded nodes. Therefore, the found solution is the
optimal solution.

The running time of the A* search algorithm depends greatly on the quality and
speed of the used heuristic function h. If the simple heuristic function h(v) = 0 is
used, the A* search algorithm is equal to best-first search and will take a lot of time.
In contrast, if a complex heuristic function is used that very accurately estimates the
remaining cost, the search algorithm itself may be fast but computing the heuristic
function may become problematic. Often a tradeoff is sought so that the heuristic
function can be computed efficiently but still adds enough information for guiding
the search algorithm so that a solution is found quickly.

A* search for graph edit distance

A* search algorithms are widely used because of their optimality and expected speed.
In fact, almost all optimal methods for computing graph edit distance are variations
of the A* search algorithm, as Bunke points out in an overview of techniques for
computing graph edit distance given in [21]. Heuristic functions include calculating
the number of remaining possible node substitutions, estimating the number of
remaining edge insertions and deletions or even approximation algorithms.

3.4.2 Decision tree approach

Few other optimal methods for computing graph edit distance have been employed
in practice because of the problem’s complexity. One approach is the construction
of a decision tree in order to classify an input graph among a set of model graphs,
described in a 1999 article by Messmer and Bunke [37]. Their original algorithm has
an intensive preprocessing step in which all possible permutations of the vertices of
the model graphs are calculated and transformed into a decision tree. In the second
phase of the algorithm, the unknown input graph can be matched with one of the
model graphs in a running time quadratic in the number of vertices of the input
graph. However, the decision tree that is contructed is exponential in the number
of vertices of the model graphs so the preprocessing step costs a lot of time and
memory.

In another paper by Messmer and Bunke [38], a way is described to extend the
decision tree method from exact subgraph isomorphism to error-tolerant matching.
A maximal admissible error is introduced, and can either be dealt with in the

3.4. Graph matching algorithms 39

preprocessing step (by incorporating distorted copies of the model graphs into the
decision tree) or at run time (by matching distorted copies of the input graph with
the decision tree as well). However, in the first approach the size of the decision tree
increases even further depending on the maximal admissible error and in the second
approach the running time becomes also dependent on the maximal admissible error
(albeit still polynomial). Messmer and Bunke show in [38] that both approaches are
only feasible for very small graphs in practice.

Decision trees for graph edit distance

The decision tree approach has a number of serious disadvantages when applied
practically to compute graph edit distance. For instance, we do not want to match
a single input graph against a set of model graphs, but we want to cross-compare a
large set of input graphs. With the decision tree approach we would have to do an
intensive preprocessing step (resulting in a decision tree of exponential size) for every
input graph we want to cross-compare against all other submissions which would be
inefficient to say the least. More importantly, the maximal admissible error must be
kept low in order to keep the running time and memory usage feasible but this would
prevent us from finding certain important suspected cases of plagiarism. Consider
the following simple example: in Haskell program A (with a size of 100 functions) a
set of 10 functions was copied from program B (also with a size of 100 functions).
Any maximal admissible error below the difference of 90 functions would prevent
program A from being matched to program B.

Both A* tree search based methods and decision tree based methods have expo-
nential running time in the worst case. Perhaps the most important reason why
we prefer A* search based methods over decision tree based methods for plagiarism
detection is that the efficiency of A* search based methods can be greatly improved
by using a simple but effective heuristic function. Moreover, as we shall see in the
next section, A* search based methods can be easily modified so that they run even
(a lot) faster while still approximating the optimal solution with small differences.

3.4.3 Suboptimal A* search variants

A few simple modifications can be made to the basic A* search algorithm to speed
up graph edit distance computation. For instance, in a 2006 paper [33] Neuhaus et
al. describe two A* search variants that are suboptimal but a lot faster than the
basic A* search algorithm.

A*-Beamsearch

In its most basic implemented form, A* search stores all solutions (search tree nodes)
and the transitions between them in memory. However, most implementations store

40 Chapter 3. The graph matching problem

only the root solution and the frontier of solutions: the list of all unexpanded
nodes, which are leaf nodes until they are expanded. In all internal nodes of the
search tree (that already have been expanded) only transitions to parent and children
nodes are kept in memory. Much less memory is used in this manner if solutions
themselves take a lot of space, while all solutions in unexpanded nodes (which is
the only relevant information in most applications) are still available. Still, no
information is lost in this manner: the specific solution in an internal tree node can
still be computed recursively by computing the solution in its parent node and then
applying the transition from its parent to itself. Also, complete edit paths are still
available by simply walking from a leaf node back up the tree to the root node.

With the modification described above, much less memory is used but optimality
is still guaranteed because the algorithm stays functionally the same. However, we
can reduce memory usage even further by storing only the most promising portion
of the frontier solutions. A predefined setting can indicate, for instance, that only
the best 100 (at most) frontier nodes are kept in memory. This is called A*-
beamsearch and it is a commonly used technique. The number of solutions that
is kept in memory is called the beam width.

glk)=7
hk)=0
fl)=7

Figure 3.7: The same example search tree as in Figure 3.6, but now constructed by
A*-beamsearch with beam width 2. On the left, the situation after the second node
expansion is sketched, with only the two shaded nodes kept in memory and the gray
branches removed from the search tree. The situation on the right is after the fourth
node expansion.

A*-beamsearch can also greatly speed up the algorithm because only a part of
the search tree is expanded. Unfortunately, this also immediately provides proof for

3.4. Graph matching algorithms 41

its suboptimality: because only part of the search tree is investigated, the algorithm
might find a solution that is not optimal. Consider, for instance, the example of
A*-beamsearch given in Figure 3.7. This is the same search tree as in Figure 3.6 but
now constructed using A*-beamsearch with beam width 2. In the original search
tree from Figure 3.6, a child node of node ¢ was found as the optimal solution. In
this example, node 7 is never expanded because it is removed from memory after
expansion of node ¢, since at that point there are two nodes (b and k) that have
better estimated total costs and therefore look more promising. Eventually, the
suboptimal solution in node p is returned.

A*-Pathlength

Neuhaus et al. [33] observed that when running an A* search algorithm on two
similar graphs, in the first stages of execution there is often a long branch being
expanded in the search tree along a single direction. This long branch is a logical
result of a series of low-cost substitutions since the two graphs are similar, and this
partial edit path is probably the optimal one. However, once the algorithm stumbles
on an expensive edit operation along this path, the search algorithm starts to explore
other parts of the search tree. This dramatically increases running time and may be
unnecessary because the optimal solution might be just a few edit operations away
from the currently deepest node in the search tree.

Therefore, Neuhaus et al. proposed another variation on the standard A* search
algorithm for graph edit distance in [33], in which long partial edit paths are favored
over shorter ones. This variation is called A*-Pathlength. In A*-pathlength,
instead of using f(v) = g(v) + h(v) to calculate the estimated total costs of node v,
the following formula is used:

_ g(v) + h(v)
flv) = T ydepth,

in which the depth of node v is equal to the number of edit operations in the partial
edit path from the tree root to v. The higher the value of parameter ¢ (which is
usually a little above 1), the lower the cost of longer partial edit paths.

Efficiency of A*-Beamsearch and A*-Pathlength

A*-beamsearch and A*-pathlength are very efficient when applied to two similar
graphs. This is based on the fact that between similar graphs, there is often one
edit path with costs that are significantly lower than all other edit paths because
many substitutions between vertices of similar graphs are cheap. Both adapted
algorithms are quite effective in eliminating other, uninteresting edit paths from
the search tree. Neuhaus et al. test the effectiveness of A*-beamsearch and A*-
pathlength with experiments in [33], which show that the speedup in those cases

42 Chapter 3. The graph matching problem

is indeed substantial (over ten times faster) but that the edit distance accuracy
remains nearly unaffected (less than one percent difference from the optimal edit
distance).

Is is important to note that a considerable speed improvement of A*-beamsearch
and A*-pathlength over regular A* search is often a much stronger justification for
their use than the decrease in memory usage. This is so because even more radical
ways to spare memory exist. One example is to not store any solution in memory
other than the original root solution and the current solution, while still keeping all
estimated costs and transitions between solutions. This still preserves all relevant
information and the algorithm stays functionally the same as long as it is walking
down a path in the search tree, but it needs to calculate a new current solution every
time it jumps to a different part of the search tree.

Concludingly, A*-beamsearch and A*-pathlength are variations of the standard
A* search that are both very useful when it comes to graph edit distance computa-
tion (and possibly plagiarism detection in Haskell call graphs), or they provide at
least useful insights needed for constructing a plagiarism detection algorithm. Both
have been shown to greatly improve the expected running time of A* search while
still maintaining high accuracy, and as a sort of bonus they use much less memory.

3.4.4 Approximate bipartite matching

The graph edit distance problem can be approximated by computing an optimal
bipartite matching between nodes and their local structure in the two graphs.
Important research in this area has been done by Riesen et al. in [34] and [39]. In
these papers, the authors use the Hungarian method for constructing an optimal
bipartite matching between the graph nodes. The Hungarian method was first
described already in 1955 by Harold Kuhn [40] and later proved to run in strongly
polynomial time by [41]. The algorithm is nowadays usually referred to as Munkres’
algorithm for assignment problems.

The bipartite matching version of the algorithm for approximating graph edit
distance, described by Riesen et al., computes an optimal match between nodes of
the two input graphs with respect to local structure (the edges of the nodes to their
direct neighbors). Although the algorithm is fast (polynomial time) it is suboptimal
because it does not take implicit edge edit operations into account. In the found
matching, a match between nodes v and w (which implies edge edit operations
needed to make both nodes connect to the same neighbors) may have an impact on
a different match between two other nodes so that the matching may not be optimal
globally with respect to the optimal edit path between the whole graphs.

3.4. Graph matching algorithms 43

On a side note, important related work for graphs that are trees has been done by
Zhang in [42], who showed that the edit distance between unordered labeled trees
can also be approximated accurately in polynomial time. The algorithm he describes
puts certain constraints on the mapping between nodes of the two input trees, but
those constraints follow logically anyway from the ancestor-descendant relationships
that occur in trees. The algorithm then reduces the bipartite matching problem to
a minimum-cost flow problem.

Other approximation methods

Many other methods for approximating graph edit distance have been described in
literature. Probabilistic relaxation schemes [43], genetic local search [44] and neural
networks have been proposed in literature and applied practically in pattern recogni-
tion and object recognition problems. Most of these techniques and algorithms run
in polynomial time. All these methods are suboptimal in the same manner as the
assignment algorithm described above, because they only consider local structure for
similarity. A linear programming approach described in [45] also runs in polynomial
time, and computes a lower and upper bound from which an approximation can be
derived.

Besides their suboptimality, many of these approximation methods are designed
to deal with edit distance for a specific class of graphs and as such their effective-
ness in a more general sense can be disputed. Tree search based methods like A*
search variants are much more flexible to apply. Another downside of some of these
approximation methods (like local search based techniques) is that they are nonde-
terministic (or rather, probabilistic) which makes it hard to repeat experiments in
order to show efficiency and accuracy.

3.4.5 Summary of algorithms and their applicability

Summarizingly, the mentioned approximation techniques in the previous sections
can approximate graph edit distance accurately when one of the two input graphs is
similar to a subgraph of the other, or when a subgraph of an input graph is similar
to a graph in a set of predefined model graphs. However, this level of accuracy has
not been shown when only a (small) subgraph of both graphs is similar, which is
typically the case in a plagiarism detection tool. A tree search based method like
A* gearch is both optimal and flexible, and it can be modified so that it already
recognizes which (possibly small) parts of the two input graphs are similar in an
early stage, by finding an edit path that is still only partial but has relatively low
cost. Another optimal method for computing graph edit distance, by means of
constructing a decision tree, requires so much time and memory that it is infeasible
for Haskell call graphs which typically have more than a handful of vertices.

44 Chapter 3. The graph matching problem

Although the approximation methods from the previous sections do not appear
very suitable for the graph edit distance problem on Haskell call graphs, perhaps
they can be used as a heuristic function in an A* search algorithm. An idea described
by Riesen et al. in [46] is to use the bipartite matching procedure as a substep of
the A* search algorithm, in order to estimate the cost of the remaining part of the
edit path constructed so far. Of course, a requirement for this to work is that the
bipartite matching procedure must be modified so that it provides an admissible
heuristic function, i.e. it returns an optimistic estimation of the remaining costs.

Chapter 4

A tool for plagiarism detection

Based on ideas from graph matching techniques described in the previous chapter,
we have implemented a tool for detecting suspected cases of plagiarism. In this
chapter, we will describe the basic design behind this tool and we will go into some
implementation details of the computer program. We also elaborate on some of the
settings we can use and what kind of information the program outputs.

4.1 (General approach and design

We can distinguish five phases in a single run of our program, which we will describe
in greater detail in subsequent sections:

1.

Reading input graphs. The input in this case is a collection of files that
contain call graph data, which represent Haskell programs. These are parsed
into graph objects in the memory of our program.

Preprocessing. Some modifications are performed on the parsed graph struc-
tures which are primarily meant to reduce graph size and to speed up the al-
gorithm in the next step, but we argue that they can also improve plagiarism
detection accuracy.

Edit distance algorithm. The main algorithm in this step is based on a
modified version of A* search for computing graph edit distance, which gives
a similarity score for each pair of compared graphs.

. Subgraph isomorphism algorithm. As an additional check, an exact sub-

tree isomorphism algorithm is executed as well for all graph pairs.

Outputting suspected plagiarism information. With the information
gathered during execution of the algorithms in the previous step, a sorted list
of suspected cases of plagiarism is outputted with the most suspicious case at
the top.

46 Chapter 4. A tool for plagiarism detection

4.1.1 Implementation in Java

The Holmes program [5] was written in Haskell, and our tool may be seen as an
addition to the checks performed by Holmes. Although we understand that imple-
menting our program in Haskell as well would have facilitated the integration of the
two programs into a single tool, we wanted to use a general-purpose programming
language like C# or Java instead. This is mainly because for us, algorithms written
in pseudocode translate more easily to code in these languages. We finally decided
to implement our program with Java because of our own experience with this lan-
guage in previous projects, which is far more extensive compared to our experience
with Haskell, C# and other languages similar to C. Not only does this choice speed
up implementation time, but it also prevents a lot of bugs.

Our program can be run independently from Holmes because both programs use
the same input graph files outputted by Sherlock. Holmes can even execute our pro-
gram directly in one of its steps; this should not be difficult to configure. However,
the integration of our program and Holmes into one tool may be worth investigating
once we have demonstrated the effectiveness of our program. For instance, main-
tainability might start playing a role if the used graph format changes. For this
reason, we will list this task in Chapter 7 on future work.

4.2 Reading input graph files

The first part of our program parses input graph files and constructs graph objects
that are stored in memory. Functions from a Haskell program become vertices in
a graph object, and function calls are implicitly stored: each vertex contains a list
of references to ”"parent” vertices (functions that call this function) and a list of
references to "child” vertices (functions that this function calls). This means that
each edge in the graph is always a double object reference in the memory of our
program. Double object references are always a possible source of bugs in computer
programs, especially in this case when edit operations are applied to the vertices of
graphs. However, this approach is necessary if in our algorithm we want to have
access to all functions calling a given function in constant time. We are confident
that after much testing the correctness of our program is proven by the results it
gives, as shown in the next chapter.

In Section 2.2.3, we briefly mentioned the call graphs that Sherlock creates in
order for Holmes to calculate a few metrics on them. A visual example of such a call
graph was shown in Figure 3.2. The standard DOT file format that our program
reads is described in Appendix A. We use the same graphs as input for our own tool,
for two reasons. The first reason is that by using exactly the same input graph type
we can better compare performance and success rate of our own tool against that

4.2. Reading input graph files 47

of Holmes. Another reason is that by first using Sherlock to extract call graphs,
we use an existing piece of software that has been proven to work well. Otherwise,
we would either have to write our own Haskell parser (which can be a tedious and
buggy task) or use an external library that may not produce the right type of call
graphs. Also, this makes a possible future integration of our tool and Holmes easier
(see future work in Chapter 7).

4.2.1 Reading output graphs of Sherlock

It is important to point out what additional properties these graphs have on top
of the general properties of Haskell call graphs described in Section 3.1.1. The
call graphs extracted by Sherlock are static call graphs of only top-level functions.
This means that any local function definitions (such as in a where or let...in
construction) are excluded. Type information of functions is not extracted either,
so the only attributes that vertices will have are label (function name) and module
name. Furthermore, Sherlock is able to exclude template functions from the graph if
they are marked as such first, but Prelude functions are still included in the graph.
Finally, Sherlock already filters out some dead code: functions that are not statically
referenced from any other function. Note that this cannot remove all dead code: a
function that is called by another function on a certain condition that will never be
satisfied during runtime is also dead code (dynamically speaking), but will not be
removed by Sherlock.

Although type information and local function definitions are important in any
Haskell program, we argue that we do not need this information when searching
for plagiarism with the graph matching algorithm in our tool. One reason for this
is that we claim our tool already has enough information to successfully identify
suspected cases of plagiarism. More importantly, however, we think that this addi-
tional information may in fact even hinder our tool when students have masked their
attempt at plagiarism by modifying exactly this information in their submission, as
explained earlier in Section 2.2.2.

In the next chapter we will show that the claim about the success of our tool
without the need for additional information is justified. However, the claim that
including type information and local functions does not improve the success of our
tool is based on our own logical assumptions rather than empirical evidence. This
makes it an interesting research question to find out how this additional information
will exactly influence the success rate of our tool. For this reason, we have included
this topic when discussing possible future work in Chapter 7. Nevertheless, in the
rest of our program we will limit ourselves to the graphs outputted by Sherlock:
with only top-level functions and without type information.

48 Chapter 4. A tool for plagiarism detection

4.3 Preprocessing

A few modifications are made to the parsed graph objects in this step of the program.
These modifications are meant to reduce graph size and speed up edit distance
computation, but also to increase the accuracy of the algorithm. We will now
describe the different types of modifications in more detail, and explain the reasons
for applying them.

4.3.1 Adding a dummy root vertex

The last step in preprocessing adds a dummy root vertex to each graph. Since
this is the only step that adds something to the graph, we will describe this step
first. Edges are added from this dummy vertex to each other vertex in the graph
that has no incoming edges, which is always at least one vertex. This is to make
sure that the graph is connected, i.e. every vertex can be reached from the dummy
root vertex.

In the algorithm that follows that computes graph edit distance, we make sure
that this dummy vertex does not have any influence on the matching process: we
set the cost of substituting this dummy vertex for the dummy vertex of another
graph to zero, and we set the cost of substituting it for any other vertex to infinity
(a very high number in programming code). This way, a dummy root vertex in the
first graph will always be matched to the dummy root vertex in the second graph.

4.3.2 Removing Prelude functions

Functions that are part of the Haskell Prelude are parsed just like any other function
by Sherlock, and they are included in the outputted graph file. In the example
graph of Figure 3.2, Prelude functions are shaded in gray. Luckily, Sherlock does
not include edges from Prelude functions to other Prelude functions. However, the
Prelude functions that remain in the graph hinder the matching process because
they expand the search tree of the algorithm that computes edit distance: as far as
the algorithm is concerned, substituting a Prelude function for a different Prelude
function, or even for a non-Prelude function, may be expensive but still valid.

We could perform the same method as with the dummy root vertex, by assigning
zero costs to substitution of a certain Prelude function for itself and infinite costs
to substitution for any other function. This would make sure that the algorithm
always substitutes a Prelude function for itself, but all other possible substitutions
for this function would still be included in the search tree.

4.3. Preprocessing 49

Instead, we simply remove Prelude functions from the graph. In all vertices
representing functions that call Prelude functions, we remove the object references
to those Prelude function vertices and keep a separate list of references to Prelude
functions. This way, no information is lost in a vertex object concerning calls to
Prelude functions while the search tree of the edit distance algorithm is reduced in
size, so that the algorithm runs faster.

4.3.3 Removing recursion

Self-recursion and mutual recursion are common among functions in any given
Haskell program. Although other cycles of functions with a size of 3 functions
or more are possible in Haskell, these are quite uncommon. That means that virtu-
ally all Haskell call graphs are cyclic (because of recursion) but that only very few
remain cyclic when recursion is removed from the call graph. Removing cycles is
beneficial for the complexity and running time of many graph algorithms, because
many efficient algorithms for all sorts of purposes exist for directed acyclic graphs
(which the call graphs then become).

We remove self-recursion from the graph by removing all object references from
vertices to themselves and then adding a boolean flag as an attribute to all vertices
indicating whether or not that vertex is self-recursive, so that no information about
recursiveness is lost. Mutual recursion is also easily defined in Haskell, consider the
following example code that can determine whether an integer is even or odd:

even 0 = True
even (n+l) = odd n
odd 0 = False
odd (n+1) = even n

Mutual recursion is a bit trickier to resolve than self-recursion because there are in
fact four object references in our program: an outgoing edge from the even function
to the odd function, an outgoing edge from odd to even, and two incoming edges as
well. Still, we remove all these object references from the normal lists of incoming
and outgoing edges and replace them by a single attribute in both vertices that
indicates the other vertex with which this vertex is mutually recursive.

This somewhat reduces the graph size (in terms of edges) and speeds up the edit
distance algorithm, but only a little since of course no vertices are removed. As said
earlier, these modifications also facilitate the use of certain efficient algorithms that
assume that no cycles exist in the graph if we ignore the possibility of other cycles
(of size 3 or larger) for now.

50 Chapter 4. A tool for plagiarism detection

If such a larger cycle does exist in a call graph, an option would be to always
find the edge (in that cycle) that is closest to the dummy root vertex and remove
that edge from the cycle. The information that there was in fact an edge removed
between two vertices could be stored in an extra attribute in those vertices. However,
we included a check for the existence of cycles in our algorithm and we found no
remaining cycles in any of the call graphs we ran our experiments on, after having
removed recursion from the graphs. For this reason, we decided not to include this
modification in the preprocessing phase. Because this does leave our tool vulnerable
to certain errors that might occur when a large cycle is indeed found, we listed this
modification under future work in Chapter 7.

4.3.4 Other possible modifications

More complex modifications than the ones already described are possible. For in-
stance, one could think of modifications that transform a call graph into a tree.
Many algorithms exist for calculations on trees that are of an even lower complexity
than algorithms that work with directed acyclic graphs, so that we could improve
the speed of our tool even further. Most Haskell call graphs are already very tree-like
after the modifications described above, as can be seen in the example call graph in
Figure 3.2.

Transformation into a tree

To transform a call graph into a tree, a possible modification would be to remove all
back edges from the graph (edges from a certain vertex v back to a vertex w on a
higher level) and store that information in other attributes (of vertex v). Another
option would be to remove the edge from v to w, copy vertex w and then add an
edge from v to the copy of w. But then the problem arises of deciding whether to
match a vertex in a second graph with w or its copy, and we would make the tree
unnecessarily large because there are possibly many duplicates. Moreover, in both
approaches any information regarding the children of vertex w or even the whole
subgraph reachable from w would be lost in the simple copy of w.

Constructing a reachability tree

Another way of obtaining a tree representation of a call graph is to construct its
reachability tree, in which the shortest way of reaching a vertex from the dummy
root vertex is represented by the path in the reachability tree from the root to
that vertex. A reachability tree can be constructed in linear time with breadth-first
search (it is simply the breadth-first search tree). However, in a reachability tree the
information regarding cycles and back edges is lost and as such it is not a completely
accurate representation of the original call graph. Therefore, any optimal edit path

4.4. Tree search based algorithm 51

that is computed from this reachability tree to another graph’s reachability tree may
not be optimal when looking at both original graphs.

Both approaches to obtaining a tree described above have the disadvantage that
certain information regarding graph structure is lost. Any algorithm that is applied
afterwards to calculate similarity cannot take this information into consideration and
therefore is not optimal with respect to the similarity of the original graphs. For
this reason, we chose not to implement these modifications so that we can achieve a
higher accuracy. However, the question remains how these modifications influence
accuracy exactly. We have added this topic of research to Chapter 7, the list of
future work.

4.4 'Tree search based algorithm

In this section, we will give the details of our algorithm. The basic version is listed
in Algorithm 4.1.

4.4.1 Construction of the search tree

As in standard A* search described earlier in Section 3.4.1, the algorithm constructs
a search tree initially consisting of only the root node (which contains the original
untransformed graph GG). Then, in each step the most promising node n is expanded
by adding its children nodes to the search tree. This means that for every possible
edit operation on the partially transformed graph G’ in n, a child node is constructed
in which that edit operation has actually been carried out on a copy of graph G’.
Possible edit operations on graph G’ are:

e Substitution of a vertex v that was in the original graph G, for a vertex w
that was in graph H and that is not yet p