
Thesis for the degree of Master of Science

Balancing Cost and Precision of
Approximate Type Inference in Python

Levin Fritz

Supervisor: prof. dr. S. D. Swierstra
Daily supervisor: dr. J. Hage

Utrecht, October 2011
ICA-3421252

Department of Information and Computing Sciences
Universiteit Utrecht

P.O. Box 80.089
3508 TB Utrecht
The Netherlands

Abstract

In dynamically typed programming languages, values have types, but vari-
ables and other constructs in the source code do not. A variable can thus refer
to any type at runtime, and in general, it is not possible to statically determine
these types. Nonetheless, it is often useful to have some information on the
types of variables, for example for interactive tools such as editors and IDEs
(integrated development environments).

This thesis presents a method for approximate type inference for the dy-
namically typed language Python. It focuses on balancing precision and cost
to find a method that is fast enough to be used in interactive tools while still
yielding useful type information. To this end, several different variants of the
basic method were developed, and their speed and precision were evaluated
using a set of real-world Python codebases.

Contents

1 Introduction 3
1.1 Type inference . 3
1.2 Approximate Type Inference . 4

2 Related Work 5
2.1 Combining static and dynamic typing 5
2.2 Type inference for functional languages 6
2.3 Type inference for dynamic languages 6

2.3.1 Self . 6
2.3.2 PHP . 7
2.3.3 Smalltalk . 7
2.3.4 Ruby . 8

2.4 Type inference for Python . 8

3 The Python Programming Language 10
3.1 History . 10
3.2 Implementations . 11
3.3 Language features . 11

3.3.1 Imperative programming 11
3.3.2 Names and scopes . 12
3.3.3 Functional programming 12
3.3.4 Object-oriented programming 13
3.3.5 Types . 13
3.3.6 Modules . 13

4 Data Flow Analysis for Python 15
4.1 Basic data flow analysis . 15

4.1.1 Control flow graphs . 15
4.1.2 Lattice values . 16
4.1.3 Monotone frameworks . 16
4.1.4 Worklist algorithm . 17
4.1.5 Widening . 18
4.1.6 Interprocedural data flow analysis 19

4.2 Extended data flow analysis . 20
4.2.1 Adding edges dynamically 20
4.2.2 Optional flow-insensitive analysis 21

1

4.3 Control flow graphs for Python 23
4.3.1 Fully supported constructs 23
4.3.2 Other constructs . 28
4.3.3 Function definitions and calls 29
4.3.4 Variables and scope . 29

5 Type Inference for Python 31
5.1 Basic analysis . 32

5.1.1 A type lattice for Python 32
5.1.2 Getting information on types 34
5.1.3 Modules and import statements 38

5.2 Analysis variants . 39
5.2.1 Parameterized datatypes 39
5.2.2 Context-sensitive analysis 41
5.2.3 Flow-insensitive analysis 42
5.2.4 Manually specified types 43

6 Experimental Evaluation 45
6.1 Method . 45

6.1.1 Measuring precision . 45
6.1.2 Measuring speed . 46

6.2 Example projects . 46
6.3 Results . 47

6.3.1 Variants . 47
6.3.2 Parameters for widening operator 49
6.3.3 Evaluation . 49

7 Conclusions 51
7.1 Future work . 51

A Implementation 53
A.1 Data Flow Analysis . 53
A.2 Type Inference . 53
A.3 Command-line Interface . 54

B Results of Experiments 55

2

Chapter 1

Introduction

Most programming languages entail a notion of types, where a value’s type
limits which operations can be applied to the value. For example, two values
of a number type can be added and a value of function type can be called, but
trying to add two functions or call a number would usually be considered an
error. A typing discipline or type system describes the types of a given language
and their properties.

Type systems are usually classified into static and dynamic. With static typ-
ing, the absence of type errors can be determined from source code, whereas
with dynamic typing, checks for type errors occurs only while a program runs.

When static typing is used, types are assigned not only to values, but also
to language constructs such as variables. This is done with type annotations pro-
vided by the programmer, with type inference, or a combination of both.

The main advantages of static typing are that it enables more optimizations,
that it allows the compiler to ensure the absence of (certain classes of) type
errors, and that it provides useful type information to tools that use the source
code, including interactive tools such as text editors and refactoring tools.

The disadvantages are that a type checker must sometimes err on the side
of safety and reject a program that would not cause an error at runtime, that
some functions cannot be used because the type system cannot express their
type, and that programmers are burdened with the additional complexity of
the type system’s rules.

1.1 Type inference

Type inference means that some or all types for program constructs are inferred
automatically by the compiler or another tool. It was originally developed to
relieve programmers of the burden of writing and maintaining type annota-
tions. For statically typed functional languages, type inference is now standard
(see Section 2.2 below), but there are also imperative programming languages
that incorporate type inference, such as the BitC language [24].

Type inference is also used for dynamically typed languages, to improve
optimization, error checking or tool support. However, type inference for dy-

3

namically typed languages is generally more difficult, because these languages
were not designed to support the assignment of types to source code con-
structs. Such methods therefore have to make a compromise between sound-
ness (inferred types are never wrong), precision (inferred types are not overly
general) and completeness (inference works for all programs).

1.2 Approximate Type Inference

This thesis presents a method of type inference for the Python programming
language, which is a dynamically typed, imperative programming language
widely used for website development, scripting, and other tasks. The method
is intended to support interactive tools such as programmers’ text editors and
IDEs (integrated development environments). These tools can use type infor-
mation for features such as autocompletion (completing an identifier of which
a prefix has been typed in), showing a list of methods that can be called on an
object and displaying contextual help for an expression in the source code.

To be useful in these situations, the method does not have to guarantee
soundness or achieve very good precision, but it is essential that it yields re-
sults quickly. The focus is therefore on balancing cost and precision, to find a
method of type inference that can be included in an interactive tool without
weighing it down with too much additional computation, but that still yields
type information precise enough that it can provide useful hints to program-
mers. This is called “approximate type inference” here to distinguish it from
methods of type inference that are guaranteed to either return exact types or
fail.

4

Chapter 2

Related Work

This section discusses some previous work concerned with type inference and
the idea of bringing static types in some form to dynamic languages.

2.1 Combining static and dynamic typing

Cartwright and Fagan [6] introduced the concept of soft typing in 1991, which
is intended to combine the advantages of static and dynamic typing. They note
that while static typing is useful because it can detect errors at compile time
and produce faster code by removing the need for runtime checks, theses ad-
vantages come at the cost of expressiveness, generality and semantic simplicity.
According to their definition, a soft type system is a type system that accepts
all programs in a dynamically typed language and inserts dynamic checks in
places where it cannot statically infer correct types. The programmer can then
inspect the places where the checker failed and decide if the code should be
changed. The authors present a soft type system for a simple functional lan-
guage based on ML.

Flanagan [8] introduced hybrid type checking in 2006, which is a synthesis
of static typing and dynamic contract checking. Dynamic contract checking
can support more precise specifications than type checking, for example range
checks and aliasing restrictions, but the propositions are not checked until run-
time. With hybrid type checking, very precise interface specifications are pos-
sible, which are checked at compile time where possible and at runtime where
necessary. This is similar to soft typing, but the emphasis is on enabling more
precise specifications than are possible with static type systems.

Gradual typing [12, 21–23] is also based on the idea that static and dynamic
typing have different strengths and weaknesses. It allows mixing static and
dynamic typing within one program: Program elements with type annotations
are checked statically, others are checked dynamically. For a fully annotated
program, gradual typing is identical to conventional static typing.

5

2.2 Type inference for functional languages

Type inference is common for functional languages. In languages such as SML
[16] and Haskell [14], types are inferred by algorithms based on Damas and
Milner’s Algorithm W [7]. Algorithm W assigns types to expressions by infer-
ring a set of type equations, and solving them with a unification algorithm.

2.3 Type inference for dynamic languages

Over the past twenty years, a number of methods have been developed that
infer types for dynamic languages. This section presents some of these that
are particularly relevant to the project proposed here because they have sim-
ilar goals or use a similar method. For clarity, the methods are organized by
programming language.

2.3.1 Self

Ole Agesen introduced the Cartesian Product Algorithm (CPA) in his PhD the-
sis [1] in 1996. The algorithm infers types for programs written in the Self pro-
gramming language and is intended as a basis for optimization, checking and
interactive tools.

CPA is based on an algorithm introduced by Palsberg and Schwartzbach
[18] that uses constraint-based analysis to determine types in object-oriented
programs. This algorithm assigns a type variable to each variable and expres-
sion in the source program and derives a set of constraints. Each type variable
stands for the set of types that the corresponding variable or expression can
have during program execution. A constraint links two type variables; type
variables and constraints together form a directed graph, corresponding to a
data flow graph of the whole program. The system is solved by propagating
types through the system until a fixpoint is reached.

One weakness of this method is that it does not work well for polymorphic
methods: the types of the receiver (the object that the method is called on) and
the arguments from all call sites are combined, leading to imprecise results for
the method’s return value. To avoid this, CPA uses the following technique:
for each polymorphic method, it creates a copy of the subgraph corresponding
to that method for each combination of receiver and argument types, so that
each subgraph corresponds to a monomorphic version of the method. These
subgraphs are created on-demand: when the analysis encounters a method call,
it creates the cartesian product of the type sets of receiver and arguments, and
for each combination, creates the corresponding subgraph (if it is not already
present), and propagates the results. For example, if a method m is called on
object r with one argument a, and the possible types of r and a are {ρ1, ρ2} and
{α1, α2, α3}, the analysis creates six copies of the subgraph for m, corresponding
to the tuples (ρ1, α1), (ρ1, α2), . . . , (ρ2, α3).

6

2.3.2 PHP

Camphuijsen et al. [4] developed a method for type inference for PHP as part of
a tool to detect “suspicious” code, such as code involving a type coercion from
array to string (which is legal in PHP, but not really useful). It uses constraint-
based analysis: it first collects a set of constraints, then solves them using a
worklist algorithm to approximate the maximal fixed point. The analysis is
flow-sensitive and context-sensitive, and it supports union types and poly-
morphic types for arrays. A widening operator is used to ensure termination.
The type system also supports polymorphic types for functions; however, these
cannot be inferred by the analysis. Instead, the user may specify (polymorphic)
type signatures for functions. First-class functions, classes and objects and ex-
ceptions are not supported by the analysis.

2.3.3 Smalltalk

Pluquet et al. [19] presented a method for type inference for Smalltalk, which
they describe as “extremely fast [. . .] and reasonably precise”. Their goal is
an algorithm for type inference that can be used to give direct feedback in an
interactive environment. Fast execution is achieved by two means: First, the
analysis is local in the sense that, to infer the type of a variable, it uses only
information found in the methods of the class it is defined in. Second, it uses a
number of heuristics rather than a theoretical model of program execution.

The basic algorithm works as follows:

1. Infer interface types, which are determined according to the messages sent
to the variable. The algorithm first collects the set of messages sent to the
variable, then looks through all classes in the system to find the ones that
understand these messages.

2. Infer assignment types, which are determined by looking at assignments
made to a variable. The type of the right-hand side of an assignment is
determined by a simple heuristic, so the algorithm does not have to re-
cursively analyze sub-expressions.

3. Determine relations between variables. Two variables are related if one is
assigned to the other. The analysis identifies groups of variables that are
related to each other and merges their interface and assignment types.

4. Merge interface and assignment types according to a heuristic.

The analysis is implemented as a bytecode interpreter. This is done for prac-
tical reasons: the Smalltalk environments used by the authors make the byte-
code produced by the compiler available, and taking advantage of this makes
the implementation faster than an analysis that parses the source code and op-
erates on an abstract syntax tree.

The authors validate the method by using it to infer the types of all vari-
ables in the source code of three Smalltalk applications. In their experiments,
type inference took on average 3.5 ms per variable (the paper does not mention
what kind of computer the experiments were done on). To evaluate precision,

7

they monitored the execution of the programs while running unit tests and in-
teracting with the programs, and recorded the types stored in each variable.
The (incomplete) type information retrieved this way was then compared to
the inferred types. In about 75 % of the cases, the inferred types were correct or
partially correct when using the recorded types as a standard for comparison.

2.3.4 Ruby

Madsen et al. [15] developed a type inference tool for Ruby based on the Carte-
sian Product Algorithm (see above). An interesting aspect of this tool is that
it automatically extracts types for functions and methods in Ruby’s standard
library from the documentation.

Furr et al. [10] present a system called Diamondback Ruby (DRuby), which
consists of three parts: a type language, a method for type inference, and a
type annotation language. To be able to describe realistic Ruby programs, the
type language includes union types, intersection types and parametric poly-
morphism. Types are inferred by a method based on constraint-based analysis;
however, not all code can be typed with this method. Intersection types, for ex-
ample, cannot be inferred automatically. For these cases, and standard library
classes implemented in C, type annotations are used.

DRuby supports most of the Ruby language, but some more dynamic fea-
tures such as adding and removing methods in classes are not well supported.
There are also methods whose type cannot be expressed in the type system;
an example is the Array.flatten method in the Ruby standard library, which
converts an arbitrary nesting of arrays to a flat array.

PRuby [9] is an extension of DRuby that uses dynamic analysis to deal with
highly dynamic constructs such as the eval method, which evaluates a string
as program text. PRuby first instruments program code so that it records a
profile of how dynamic features are used, e.g., which strings are sent to eval.
The user then runs the program, typically with a test suite, to gather a suffi-
cient profile. PRuby uses this profile to guide a program transformation that
removes highly dynamic constructs, before applying DRuby’s type inference
algorithm.

An et al. [2] present a constraint-based dynamic type inference which takes the
idea of using dynamic analysis one step further. Their system is based on a
constraint-based analysis for type inference where all constraints are collected
at runtime. It instruments program code so that each runtime value is wrapped
to associate it with a type variable, and the wrapper generates constraints when
the variable is used. This instrumented code runs a test suite to collect con-
straints, which are afterwards solved to find a valid typing, if one exists. For
code that cannot be analyzed by the analysis, such as standard-library classes
implemented in C, the user can supply type annotations manually.

2.4 Type inference for Python

John Aycock [3] developed a method called “aggressive type inference”, which
is motivated by the goal of writing a Python-to-Perl compiler. Unlike most

8

methods for type inference, it is flow-insensitive and does not use union types;
this is based on the assumption that most Python code does not make use of
the dynamic features of Python’s type system. The algorithm consists of two
phases: it first parses the source code and extracts information on variables and
types, then propagates type information by repeated iteration.

Michael Salib’s master thesis [20] describes a type inference method called
“Starkiller” which is part of a Python-to-C++ compiler. The algorithm is “based
loosely on Agesen’s Cartesian Product Algorithm” (see above), but with mod-
ifications to support Python’s features. It can handle first-class functions and
classes and objects, and supports parametric polymorphism as well as data
polymorphism (differentiating between different instances of a class with re-
spect to the types of its members). Exceptions and generators are not sup-
ported, however, and the analysis is flow-insensitive. The system also includes
an “External Type Description Language”, which is used to describe types for
modules not included in the analysis, such as Python extension modules writ-
ten in C.

Brett Cannon’s master thesis [5] presents a method to improve performance
of Python programs which uses type inference and optional type annotations.
His implementation modifies the CPython Python implementation, which con-
sists of a bytecode compiler and interpreter, by adding support for type an-
notations for method arguments, a type inference phase and a set of type-
specific bytecodes. The method for type inference is rather limited: it only in-
fers basic built-in types such as list and string, and it only applies to local vari-
ables. It is implemented by abstract interpretation on the bytecode produced
by CPython’s compiler.

Gorbovitski et al. [11] describe a method for type inference for Python pro-
grams which they call “precise type analysis”. The main topic of their paper
is alias analysis (computing pairs of variables and fields that refer to the same
object), which serves as a basis for optimization by incrementalization and spe-
cialization, but because constructing a control flow graph in a dynamic lan-
guage requires information about types, their method also includes an analy-
sis to determine types of variables and expressions. This analysis consists of
two steps: type inference and refinement of the control flow graph, which are
repeated until either a fixed point or a preset limit is reached.

The algorithm for type inference is based on “abstract interpretation over a
domain of precise types”. Precise types here means that in addition to primitive
and collection types, there are types for known primitive values and ranges,
and collections of known contents and lengths, so that the type system can
express types such as “bool true”, “int between 1 and 10” and “list of length
5”. The analysis is flow-sensitive and context-sensitive and supports classes
and objects, including dynamic creation and rebinding of fields and methods.

The downside of the method seems to be that it is rather slow. For example,
according to experiment results included in the paper, applying it to the Bit-
Torrent program (about 22000 lines of Python code) took about 20 minutes on
a computer with a four-core Intel Core 2 CPU and 16 GiB of memory.

9

Chapter 3

The Python Programming
Language

Python [25] is a general-purpose high-level programming language that com-
bines an imperative, object-oriented core with features from functional and
scripting languages. It is intended to be expressive and easy to learn and to
support writing clean, readable code. Since its creation in 1989, it has become
widely used for web development and scripting as well as other tasks such as
scientific computing and development of GUI applications. It is maintained as
an open-source community project guided by its creator Guido van Rossum.

3.1 History

Van Rossum started development on Python in the late 1980s while working
at the Centrum Wiskunde & Informatica (CWI, Center for Mathematics and Com-
puter Science) in Amsterdam to create a scripting language for the Amoeba
distributed operating system developed at CWI, and to improve upon the ABC

language, on which he had worked earlier. His goals for the language included
platform independence, so that it could be used both on Amoeba and on the
developers’ Unix workstations, and support for extensibility through modules
written in C.

In 1991, van Rossum first published the source code for his implementation
on the Internet. This version was labeled 0.9 and already included support for
modules, exceptions and classes with inheritance. In 1994, version 1.0 was re-
leased, which included functional programming features such as the map and
filter functions. The next major version, 2.0, was released in 2000. It introduced
Unicode strings as a basic datatype, list comprehensions and better garbage
collection (earlier versions used a simple reference counting scheme that could
not deal with reference cycles).

Version 3.0 was released in 2008. This version breaks compatibility with the
Python 2 series in order to correct certain flaws and simplify the language. For
example, Python 2.2 introduced a new class model, called “new-style classes”,
which unified built-in types and user-defined classes. The previous model,

10

called “old-style classes”, was kept to preserve compatibility until it was re-
moved in version 3.0. While developers are slowly switching to Python 3,
Python 2 still appears to be the more commonly used version as of 2011.

The version of Python used for the method and implementation described
in this thesis is Python 3.2, which was released in February 2011. It should also
work for Python 3.0 and 3.1, since there have been no changes to the language
that would break compatibility. Supporting Python 2 instead of, or in addition
to, Python 3 would mean that the analysis and implementation have to deal
with issues such as the distinction between old-style and new-style classes,
which would detract from more interesting aspects of the method. Therefore,
the method was developed with only Python 3 in mind.

3.2 Implementations

The original Python implementation, called CPython because it is written in C,
is implemented as a bytecode compiler and interpreter. While CPython is still
the most widely-used implementation, there are now several alternatives, in-
cluding Jython, which is an implementation for the Java Virtual Machine, Iron-
Python, which is an implementation for the .NET Command Language Run-
time and PyPy, which is an experimental implementation of Python in Python.

3.3 Language features

This section gives an overview of the Python programming language, in partic-
ular those features that are relevant to the method for type inference presented
below.

The following example code, which calculates and prints the factorial func-
tion for three numbers, shows Python’s syntax and some of its features:

def factorial(x):

if x == 0:

return 1

return x * factorial(x - 1)

numbers = [10, 20, 30]

for n in numbers:

print(n, factorial(n))

Unlike most programming languages, Python uses line breaks to separate
statements and indentation to delimit blocks of statements, where an increase
in indentation indicates the beginning of a block and a decrease indicates the
end of a block. Functions are defined using the keyword def; a new variable is
introduced by assigning to it.

3.3.1 Imperative programming

Python includes the usual constructs for imperative programming: mutable
variables, expressions and statements, loops, an if statement and function def-

11

initions. There are two kinds of loops: while loops and for loops, which iterate
over the elements of a sequence. There is no switch statement; instead the if
statement can have multiple conditions, as in the following example:

if x > 0:

print("positive")

elif x < 0:

print("negative")

else:

print("zero")

Functions may be defined anywhere in the source code. There is no syn-
tax for procedures (functions that don’t return a value); instead if there is no
explicit return value, the built-in value None is returned.

3.3.2 Names and scopes

Variables in Python are introduced not by declarations, but by name binding op-
erations, which include assignments, function definitions and class definitions.
The visibility of a name is limited to the block (module, function body or class
definition) in which it is bound. To resolve a name, the interpreter uses the
nearest enclosing scope where the name is bound. The keywords global and
nonlocal can be used to change this behavior for specific variables.

Names are resolved statically, as shown by the following example:

x = 1

def f():

return x

def g(flag):

if flag:

x = 2

return x

A call to f returns 1, g(True) returns 2, but g(False) causes an exception:
x here refers to the local variable x, which is never assigned to if flag is false.

What’s important for the analysis is that one can determine statically which
variable a name refers to; in other words, one can determine if two names will
refer to the same variable at runtime.

3.3.3 Functional programming

Although Python is not a functional programming language, it does include
some features that enable a functional programming style. Functions are first-
class (they can be assigned to variables, passed to other functions etc.) and ev-
ery function is a closure (it captures variables in the enclosing scope). Python
also has anonymous functions, although these are limited to a single expres-
sion.

Python 2.0 introduced list comprehensions similar to those of Haskell, as in
this example:

12

numbers = [0, -1, 1, -2, 2, -3, 3]

squares = [x*x for x in numbers if x > 0]

This computes the squares of the positive numbers in the list, resulting in
the list [1, 4, 9]. Since Python 3.0, there are analogous constructs for build-
ing sets and dictionaries.

3.3.4 Object-oriented programming

Python’s facility for object-oriented programming, like those of C++, Java and
C#, is based on classes. The following example illustrates its main features:

class A:

x = 1

def m(self, y):

self.x = y

a = A()

a.m(2)

print(A.x, a.x)

This produces “1 2” as output.
A class definition contains a block of code; names bound in this block be-

come the class’s attributes. Calling a class (the expression A() in the example)
creates a new instance. The syntax x.y is used to access the attribute y in the
class or instance that x refers to.

A method is a class attribute which is a function. When a method is called,
its first argument is set to the object on which it is called. By convention, this
argument is named self.

The class system is very dynamic: at runtime, new classes can be created,
attributes (including methods) can be added to or removed from classes and
attributes can be added to and removed from instances. It also supports inher-
itance, including multiple inheritance, and operator overloading with “special
method names” such as __add__ for overloading the + operator.

3.3.5 Types

Every value in Python has a type, which can be queried with the built-in func-
tion type. There are built-in types, such as list and int, and classes.

Since Python is dynamically typed, variables do not have types, nor do
attributes of classes and objects. Instances of the built-in collection types (tuple,
list, set and dictionary) can also hold objects of any type.

3.3.6 Modules

There is no syntax for declaring modules in Python; instead, each source file
corresponds to a module. Thus, the declarations in file foo.py are contained in
module foo at runtime. Names bound in one module can be made available in
another module by an import statement. For example, assuming module foo

13

declares variables x and y, these can be made available as foo.x and foo.y by
the statement

import foo

The following statement imports the names directly into the local names-
pace:

from foo import x, y

14

Chapter 4

Data Flow Analysis for
Python

The method for type inference presented in this thesis is a data flow analysis,
which is a type of program analysis based on a control flow graph for the pro-
gram under analysis. This chapter describes the ideas behind data flow analy-
sis and the techniques used to formalize it, presents two extensions to data flow
analysis and finally discusses the creation of control flow graphs for Python
programs.

4.1 Basic data flow analysis

Data flow analysis is one of the most common types of program analysis. This
section presents an overview of the technique; for a more detailed discussion,
see [17], Chapter 2.

4.1.1 Control flow graphs

The first step in a data flow analysis is the construction of a control flow graph
for the program under analysis. The control flow graph is a directed graph
whose nodes are program points. Program points correspond roughly to state-
ments in the source code, but there also need to be program points for all points
in the program where the flow of control can diverge or converge. For exam-
ple, for a list comprehension in a Python program, there is a program point
for each loop and each condition implied by the list comprehension. The pro-
gram points are the control flow graph’s nodes; edges represent possible flow
of control during program execution.

Figure 4.1 shows a fragment of Python code and the corresponding con-
trol flow graph. In the source code, program points are marked with square
brackets and each is labeled with a unique number. In the graph, the initial
node (where program execution begins) is marked with a curved arrow and
the final node is marked with a box around the number.

15

[x = 1]1

[y = 0]2

while [x < 10]3:

[x += 1]4

[y += x]5

1

2 3 4

5

Figure 4.1: Control flow graph for a fragment of Python code.

4.1.2 Lattice values

A data flow analysis computes values for each program point. To formalize this
idea, it is convenient to restrict these values to be elements of a lattice, which
is defined as a partially ordered set where any two elements have a unique
supremum and a unique infimum. In other words, it is a set L with a relation
v which is reflexive, asymmetric and transitive and is defined so that any two
elements x, y ∈ L have a unique least upper bound x t y and a unique lower
bound x u y. The operators t and u are called join and meet. If the lattice has a
greatest element, it is called top (>); if it has a least element, it is called bottom
(⊥). If > and ⊥ exist, ⊥ v x v > for all x ∈ L.

The data flow analysis computes two values for each program point l: the
context value A◦(l) and the effect value A•(l). The effect value A•(l) is always
computed from the context value A◦(l) and effect values are propagated to
context values along the graph’s edges. There are two ways to do this: in a for-
ward analysis, values are propagated in the direction of the edges; in a backward
analysis, they are propagated in the opposite direction.

Since the analysis presented in this thesis is a forward analysis, the discus-
sion from here on focuses on forward analyses. For the most part, the tech-
niques are the same for backward analyses, except that the direction of the
edges is reversed and initial and final nodes are swapped.

In forward analyses, the context value A◦(l) is computed as the join of the
effect values of all direct predecessors of l (nodes from which an edge leads to
l). A specific analysis must provide an initial value, which is assigned to the ini-
tial node’s context value, and specify, for each program point, how to compute
the effect value from the context value.

4.1.3 Monotone frameworks

Monotone frameworks are a way to formalize these ideas; they provide a frame-
work that abstracts the commonalities and parameterizes the differences of
data flow analyses.

The program under analysis is called S; its program points are identified
by the set label(S). Extremal labels are those that identify program points where
the program begins or ends execution: init(S) ∈ labels(S) is the initial label
and f inal(S) ⊆ labels(S) are the final labels. The program flow f low(S) ⊆

16

labels(S) × labels(S) contains possible transitions from one program point to
the next; the control flow graph is given by (labels(S), f low(S)).

The analysis results are described by a lattice L, called the property space of
the analysis. For each program point l, there is a transfer function fl :

A•(l) = fl(A◦(l))

The extremal value ι ∈ L is used as an initial value for the property space. A
monotone framework can then be described by the seven-tuple

(L,F , F, E, ι, λl. fl)

where

• L is the lattice of analysis results,

• F is the monotone function space containing all transfer functions,

• F is the program flow,

• E is the set of extremal labels,

• ι is the extremal value, and

• λl. fl is the mapping from labels to transfer functions from F .

4.1.4 Worklist algorithm

Computing the result of an analysis expressed as a monotone framework –
“solving” the framework – is done by fixpoint iteration. First, a table with
context values is initialized to ι for the extremal labels and ⊥ for the others.
Then, the transfer functions are applied and their results are propagated along
edges. This step is repeated until it does not result in any further changes and
a fixpoint is reached. The final results are the context values computed in this
manner and the effect values obtained by applying the transfer functions once
more.

A variation of this method is to also store effect values; this is more efficient
if the transfer functions are expensive to compute.

The simplest way to get to the fixpoint, called chaotic iteration, is to apply
all transfer functions in every step, until none of them yield a new result. The
worklist algorithm is a more sophisticated scheme: to avoid applying a trans-
fer function to the same context value twice, the algorithm maintains a work-
list containing all nodes whose context value changed since the last time their
transfer function was computed. The worklist initially contains all nodes; the
algorithm proceeds by taking the first node from the list, applying the transfer
function for that node to its context value, updating effect values by propa-
gating the result along outgoing edges, and adding those nodes whose effect
value was changed to the worklist.

Algorithm 4.2 is the worklist algorithm in more formal notation. This is
the variant of the algorithm that maintains both context and effect values; in
consequence, the worklist (W) contains both edges and nodes and is initialized

17

Initialization:

A◦[l]←
{

ι for l ∈ E
⊥ otherwise

A•[l]← ⊥
W ← N

Iteration:
while W not empty do

i← head(W)
W ← tail(W)
if i = l ∈ N then

if fl(A◦[l]) 6v A•[l] then
A•[l]← fl(A◦[l])
for all l′ with (l, l′) ∈ F do

W ← (l, l′) : W
else if i = (l, l′) then

if A•[l] 6v A◦[l′] then
A◦[l′]← A◦[l′] t A•[l]
W ← l′ : W

Algorithm 4.2: Basic worklist algorithm.

with the set of all nodes (N) instead of the set of all edges. In the iteration, the
test determines if the element taken from the worklist is a node (i = l ∈ N) or
an edge (i = (l, l′)).

4.1.5 Widening

The worklist algorithm is guaranteed to terminate if (L,v) satisfies the ascend-
ing chain condition: for any sequence l1, l2, . . . of elements of the lattice with
ln v ln+1, there is a k such that for n > k, ln = ln+1 (the sequence eventually
stabilizes). If this is not the case, a widening operator can be used to ensure termi-
nation. The widening operator ∇ replaces the join operator t. Like t, it gives
an upper bound of two elements of a lattice, but not necessarily the least upper
bound, and it satisfies the following condition: given any sequence l1, l2, . . . of
elements of the lattice, the sequence

l1, l1∇l2, (l1∇l2)∇l3, . . .

eventually stabilizes.
When the worklist algorithm uses a widening operator to compute context

values from effect values, it is guaranteed to terminate even if L does not satisfy
the ascending chain condition, but its output is not necessarily the least fixed
point anymore. The widening operator therefore needs to be carefully chosen
so that the result of the algorithm with widening is similar to the least fixed
point in the sense that it still represents a useful analysis result.

18

[def]1 [f(x)]23:

[return x + 1]4

[f(1)]56
[f(2)]78

1

5

6

7

8

4

2

3

Figure 4.3: Control flow graph for function definition and function calls.

4.1.6 Interprocedural data flow analysis

If data flow analysis is to be used with any realistic programming language, it
has to deal with procedures (functions). In the control flow graph, these can be
represented as follows: for each procedure, there are two extra program points,
the entry and exit nodes, labeled ln and lx. A call site (a program construct
which indicates a procedure call) is also represented by two program points,
the call and return nodes lc and lr. The call is then indicated by edges (lc, ln)
and (lr, lx).

Figure 4.3 shows a fragment of Python code with one function which is
called in two places.

Context-sensitive analysis

One issue with this type of interprocedural analysis is that results from differ-
ent calls to the same function are combined. The example in Figure 4.4 illus-
trates this problem: analysis results for the two calls to function id are neces-
sarily combined, because they are propagated through the context and effect
values for nodes 2, 4 and 3. An analysis that determines (or approximates) the
values of variables x and y would thus get the same result for both.

The Cartesian Product Algorithm [1] solves this issue by creating multiple
copies of the subgraph for each function: for each combination of argument
types, the nodes and edges for the function are replicated, so that the results of
different calls are combined only if the argument types are the same.

Context-sensitive analysis is a more general solution. The idea here is to
process analysis results separately depending on the context. To do so, the lat-
tice L is replaced with a mapping from context ∆ to L, so that context and effect
values are of type ∆ → L. When computing an effect value, the transfer func-
tion is applied to each lattice value separately.

This method is very flexible, since the context ∆ can be chosen to represent
any property that the analysis needs to differentiate by. To distinguish different
function calls, call strings are used as context. A call string is a list of nodes from
which function calls were made. The transfer function for a call node adds the

19

[def]1 [id(x)]23:

[return x]4

[x = [id(1)]56]
7

[y = [id("a")]89]
10

1

5

6

7

8

9

10

4

2

3

Figure 4.4: Control flow graph for the identity function.

node’s label (lc) to the context; the transfer function for a return node selects
matching call strings and removes the last element of each. The call string can
be seen as an abstraction of the call stack.

Returning to the example of Figure 4.4, the initial context, assuming the
fragment shown is analyzed on its own, would be the empty call string []. The
transfer function for node 5 would change it to [5], the one for node 6 would
change it back to [] and the one for node 7 would change it to [7]. For nodes
2, 4 and 3, the context and effect values would thus contain lattice values for
context [5] and context [7], enabling the analysis to keep results for the different
function calls separate.

The length of the call strings has to be limited to make sure the analysis
does not go into an infinite loop creating ever-longer call strings in the case of
recursive function calls. The maximum length parameter can also be used to
trade off precision for speed.

4.2 Extended data flow analysis

In order to handle Python code properly and to support different variants of
the analysis, the basic data flow analysis described in the previous section was
extended in two ways for the thesis project.

4.2.1 Adding edges dynamically

Because Python has first-class functions and uses late binding for methods, it is
often not trivial to infer which function or method is called at a call site in the
source code. The control flow graph constructed for the analysis is therefore
incomplete at first.

20

Since most Python programs do use classes and methods, a realistic method
for type inference has to solve this issue. The method proposed in this thesis
assigns a unique identifier to each function in the program under analysis and
these identifiers are included in the types inferred for functions, so which func-
tion a call can refer to does become apparent during the analysis.

To be able to use this information, the monotone framework and worklist
algorithm are extended so that edges for function calls can be added to the
control flow graph during execution of the worklist algorithm.

Extended monotone framework

Because the analysis has to be aware of the functions defined in the program,
the monotone framework contains one more element: the function table Λ,
which maps function identifiers to labels for entry and exit nodes. More for-
mally, Λ[f] = (ln, lx), where f is a function identifier and ln and lx are the
labels of the function’s entry and exit program points. The complete monotone
framework then becomes the eight-tuple (L,F , F, E, ι, λl. fl , Λ).

Extended worklist algorithm

The transfer function for a call (lc) program point must indicate which func-
tions may be called at that call site. Therefore, there are two kinds of transfer
functions: simple transfer functions, which are as described above, and call trans-
fer functions, which are used for function call nodes. In addition to the com-
puted effect value, a call transfer function returns a set of function identifiers
indicating which functions may be called at that point. The worklist algorithm
looks up these identifier in the function table and, for each of them, adds two
edges: (lc, ln) and (lx, lr).

The call transfer function also returns a flag to indicate cases where the
analysis cannot identify the function called (e.g., because it is not part of the
source code analyzed). If this flag is set, the worklist algorithm adds an edge
(lc, lr), connecting the call and return nodes directly.

Each edge added to the graph is also added to the worklist, since, obviously,
at that point the most recent effect value has not been propagated across the
edge.

See Algorithm 4.5 for pseudocode of the extended algorithm. The transfer
function fl returns a three-tuple here, where t is the set of functions called at
that program point and d is the flag indicating if there should be an edge from
call to return node. For simple transfer functions, t is ∅ and d is false.

4.2.2 Optional flow-insensitive analysis

One of the basic properties of static analyses is whether they are flow-sensitive
or flow-insensitive: flow-sensitive analyses assign different values to differ-
ent program points; flow-insensitive ones only compute one global value. The
method described in this thesis is flow-sensitive, but it includes variants that
use flow-insensitive analysis for some of the types inferred (see Section 5.2.3).

21

Initialization:

A◦[l]←
{

ι for l ∈ E
⊥ otherwise

A•[l]← ⊥
W ← N

Iteration:
while W not empty do

i← head(W)
W ← tail(W)
if i = l ∈ N then

(t, d, e′)← fl(A◦[l])
if e′ 6v A•[l] then

A•[l]← e′

for all l′ with (l, l′) ∈ F do
W ← (l, l′) : W

F′ ← ⋃
{{(lc, ln), (lx, lr)} | (ln, lx)← Λ[f], f ← t}

if d then
F′ ← F′ ∪ (lc, lr)

if F′ 6⊆ F then
for all e ∈ F′ \ F do

W ← e : W
F ← F′ ∪ F

else if i = (l, l′) then
if A•[l] 6v A◦[l′] then

A◦[l′]← A◦[l′] t A•[l]
W ← l′ : W

Algorithm 4.5: Worklist algorithm extended to add edges for function calls.

22

To also support flow-insensitive results, the analysis maintains a global lat-
tice value in addition to context and effect values. The monotone framework
is extended to include an initial global value ιg, so that it can be written as a
nine-tuple (L,F , F, E, ι, ιg, λl. fl , Λ).

The transfer functions are extended in three ways: they take the current
global value as a parameter, they return the new global value, and they return
a flag indicating if they used the global value or not. Whenever the global value
changes, all transfer functions that use it have to be recomputed. The worklist
algorithm therefore maintains a set of nodes whose transfer functions use the
global value. This set is initially empty; when a transfer function indicates that
it used the global value, its node is added to the set. Thus, if a transfer function
returns a new global value, the global value is updated and all nodes in the set
are added to the worklist.

Algorithm 4.6 is the worklist algorithm with support for adding edges dy-
namically and optional flow-insensitive analysis. Here, g is the global lattice
value and G is the set of program points whose transfer functions use g. In the
tuple returned by the transfer functions, g′ is the new global lattice value and
u indicates if the global lattice value was used.

4.3 Control flow graphs for Python

The first step in a data flow analysis is the creation of a control flow graph for
the code under analysis. Although the language constructs of Python are, on
the whole, similar to those of other imperative, object-oriented programming
languages, there are differences in many details. This section describes how
the analysis handles various features of the Python language, and also which
features are not (completely) supported by the analysis.

4.3.1 Fully supported constructs

This section shows how the basic language constructs such as conditional state-
ments and loops are handled.

Conditionals

The if-else construct, which allows a choice between two code paths depending
on the value of an expression, is one of the basic features of most imperative
programming languages. Figure 4.7 shows Python code with a simple if state-
ment and the corresponding control flow graph. In the places where a sequence
of statements is contained in the statement, the examples have a single assign-
ment, which is represented as a single node in the control flow graph. If the
assignment were replaced by more (complex) statements, the corresponding
node in the graph would be replaced by the subgraph for those statements, but
the rest of the graph would stay the same.

A conditional statement with an elif clause is show in Figure 4.8. As can be
seen, the elif clause adds another node for the condition and the subgraph for
the corresponding sequence of statements.

23

Initialization:

A◦[l]←
{

ι for l ∈ E
⊥ otherwise

A•[l]← ⊥
g← ιg
W ← N
G ← ∅

Iteration:
while W not empty do

i← head(W)
W ← tail(W)
if i = l ∈ N then

(t, d, e′, g′, u)← fl(A◦[l])
if g′ 6v g then

g← g′

for all l ∈ G do
W ← l : W

if u then
G ← {l} ∪ G

if e′ 6v A•[l] then
A•[l]← e′

for all l′ with (l, l′) ∈ F do
W ← (l, l′) : W

F′ ← ⋃
{{(lc, ln), (lx, lr)} | (ln, lx)← Λ[f], f ← t}

if d then
F′ ← F′ ∪ (lc, lr)

if F′ 6⊆ F then
for all e ∈ F′ \ F do

W ← e : W
F ← F′ ∪ F

else if i = (l, l′) then
if A•[l] 6v A◦[l′] then

A◦[l′]← A◦[l′] t A•[l]
W ← l′ : W

Algorithm 4.6: Worklist algorithm extended for flow-insensitive analysis.

if [x]1:

[y = "a"]2

else:

[y = "b"]3

1 2

3

Figure 4.7: Simple if statement.

24

if [x]1:

[y = "a"]2

elif [y]3:

[y = "b"]4

else:

[y = "c"]5

1 2

3 4

5

Figure 4.8: If statement with elif clause.

["a"]2 if [x]1 else ["b"]3 1 2

3

Figure 4.9: Conditional expression.

In addition to the if statement, Python also has a conditional expression.
The control flow graph, shown in Figure 4.9, is basically the same as that for
the if statement in Figure 4.7.

Control flow within expressions

The control flow graph in Figure 4.9 raises a question: program point 1 rep-
resents the condition x, but what do program points 2 and 3 stand for? More
generally, how should program points that correspond to expressions, rather
than statements, be dealt with? The solution used here is to introduce a gen-
erated variable whenever an expression is represented by a subgraph of the
control flow graph. Each generated variable is assigned a unique number; gen-
erated variables are identified by the Greek letter ι here as well as in the analysis
output.

The example in Figure 4.10 shows an assignment with a conditional ex-
pression. The program point for the assignment statement in the source code
becomes the final node; the graph generated for the conditional expression pre-
cedes it in the program’s control flow graph. Nodes 2 and 3 set the value of the
generated variable ι1, which is then used in node 4.

Other expressions that require multiple program points, such as list com-
prehensions and function calls, are handled in the same way. The subgraph for
the expression is always put before the node in which it is used, and its result
assigned to a unique generated variable.

Loops

There are two types of loops in Python: while loops, which loop as long as a con-
dition is true, and for loops, which iterate through the elements of a sequence.

25

[y = ["a"]2 if [x]1 else ["b"]3]4
[x]1

[ι1 = "a"]2 [ι1 = "b"]3

[y = ι1]
4

Figure 4.10: Assignment with conditional expression.

while [x]1:

[y = "a"]2
1 2

Figure 4.11: Simple while loop.

As in C or Java, the break statement can be used to break out of a loop and the
continue statement jumps to the next loop iteration.

Figure 4.11 and Figure 4.12 show control flow graphs for simple while and
for loops. In the for loop, the expression that the loop iterates over (list in the
example) is evaluated before the loop is entered; in Figure 4.12, program point
1 represents this evaluation.

A rather unique feature of Python is that loops can have an else clause
which, if present, is executed when the condition in a while loop is false or the
iterator in a for loop is exhausted. Figure 4.13 shows a while loop with an else
clause; Figure 4.14 shows a while loop with an else clause containing continue
and break statements. Corresponding control flow graphs for for loops would
be identical except for the additional node for the evaluation of the iterator.

List, set and dictionary comprehensions

Figure 4.15 shows an example of a list comprehension, a set comprehension
and a dictionary comprehension. The control flow graph has the same structure
for each of these, so only one graph is shown.

The graph contains one node (labeled 5) for the assignment, two nodes (2
and 3) for the for clause, one node (4) for the if clause and one node (1) for

for [x in list]12:

[y += x]3
1

2 3

Figure 4.12: Simple for loop.

26

while [x]1:

[y = "a"]2

else:

[y = "b"]3

1 2

3

Figure 4.13: While loop with else clause.

while [x]1:

if [y]2:

[continue]3

elif [z]4:

[break]5

[w = "a"]6

else:

[w = "b"]7

1 2 3

4 5

67

Figure 4.14: While loop with continue and break statements.

the accumulation of values. Note that the part of the graph for the for clause
corresponds to that for a for loop in Figure 4.12 (with nodes 4 and 1 as the
loop body) while the part for the if clause corresponds to the graph for an if
statement without an elif or else clause.

Comprehensions can contain any number of for and if clauses; for each ad-
ditional clause, there is a corresponding sub-graph nested within that for the
previous clause, with the node for the accumulation of values innermost.

[squares list = [[x*x]1 for [x in [0,1,2]]23 if [x > 0]4]]5

[squares set = {[x*x]1 for [x in [0,1,2]]23 if [x > 0]4}]5
[squares dict = {[x : x*x]1 for [x in [0,1,2]]23 if [x > 0]4}]5

2

3 4 1

5

Figure 4.15: List/set/dictionary comprehension.

27

with [open(filename) as f]12:

[firstline = f.readline()]3
1

3

2

Figure 4.16: With statement.

The with statement

Python’s with statement encapsulates the try-finally pattern used to ensure a
resource acquired in a block of code is released before leaving it. It takes an
object called a context manager, which provides methods called enter and
exit to handle entry into and exit from an environment. Optionally, the
enter method’s return value can be bound to a variable.

Figure 4.16 shows a typical use of the with statement: opening and closing
a file. The control flow graph for a with statement with multiple context man-
agers is the same as that for multiple nested with statements.

4.3.2 Other constructs

There are two constructs in Python that the analysis does not fully support:
exceptions and generators.

Exceptions

The purpose of exceptions is to break out of the normal flow of control, which,
not surprisingly, is difficult to take into account in control flow graphs. To rep-
resent exception handling in the control flow graph, the analysis would have
to identify the program points that could result in an exception (for instance,
each expression containing a division by a non-constant divisor could result in
a ZeroDivisionError exception), identify the catch clauses and which exceptions
each handles, and add edges representing the flow of control from the former
to the latter.

However, this would add significant complexity to the analysis, so the im-
plementation handles exceptions in a much simpler way: it assumes that since
exceptions only occur in exceptional circumstances, they can be ignored by the
type inference method without changing the results too much, and therefore
catch clauses in the source code are simply not part of the control flow graph.
Figure 4.17 shows the graph for a simple try statement with one catch clause
and a finally clause.

Generators

Python’s generators are a convenient way to create iterators, which can be used
either through the for statement or by calling their methods directly. A gener-

28

try:

[x = y/z]1

except ZeroDivisionError:

[x = 0]2

finally:

[y = 1]3

1

3

Figure 4.17: Try statement.

ator is written like a regular function, but it contains one or more yield state-
ments, which are used to pass data to the caller. When the next element is
requested from the generator, is proceeds until the next yield statement or until
the end of the function.

To handle generators, the analysis could use a method similar to that em-
ployed for regular functions (see Section 4.2.1): a generator table would contain
all generators defined in the program and the program points for yield state-
ments contained in each; the analysis would then dynamically add edges from
and to the nodes for yield program points.

However, because this would require yet another extension to the worklist
algorithm and generators are one of the more obscure features of Python, this
was not done in the thesis project.

4.3.3 Function definitions and calls

The representation of functions and function calls follows the inter-procedural
analysis described above in Section 4.1.6. Figure 4.18 shows a simple example.
For the function definition, program points for entry (ln) and exit (lx) are gener-
ated, with edges from ln to the first program point inside the function and from
the program points for return statements to lx. For each function call, program
points for call (lc) and return (lr) are generated.

There is also a program point for the function definition itself (1 in the ex-
ample). During the analysis, the transfer function for this node adds an entry
binding the function name to a type containing the function id, which is then
propagated through the graph and used by the transfer function for lc to tell
the extended worklist algorithm which function is called at the call site. The
algorithm then adds edges (lc, ln) and (lx, lr), shown as dashed lines in the
graph.

4.3.4 Variables and scope

To build the control flow graph, one of the things the analysis needs to de-
termine is which variable an identifier refers to; in other words, it needs to
find out the scopes of variables. To make this information available to the next
stage of the analysis, the analysis creates program points which indicate where

29

[def]1 [max(a, b)]23:

if [a > b]4:

[return a]5

[return b]6

[x = [max(1, 2)]78]
9

1

7/lc

8/lr

9

2/ln

4

6 5

3/lx

Figure 4.18: Function definition and call.

[def]1 7
8[max(a, b)]23:

if [a > b]4:

[return a]5

[return b]6

[x = [max(1, 2)]910]
11

1

9

10

11

7/sn 2

4

6 5

38/sx

Figure 4.19: Function definition and call, with sn and sx nodes.

variables come into and go out of scope. For each program construct that intro-
duces a new scope, this adds two program points: sn for entry into the scope
and sx for exit from the scope. Each of these contains a list of the variables that
come into/go out of scope.

The control flow graphs shown previously omitted these nodes to reduce
visual clutter. Figure 4.19 is identical to Figure 4.18 except that it includes sn
and sx nodes. In this example, they would indicate the scope of the parameter
names a and b, since no new variables are introduced in the function.

30

Chapter 5

Type Inference for Python

The idea behind the method described here is to infer types for variables in
Python source code. However, this formulation is not quite satisfactory: since
Python is dynamically typed, there is really no notion of “types of variables”
in the language. A more precise statement of the goal of the analysis is: for
each variable in a Python program, try to infer the types of the values it may
be bound to when the program is executed. Variable here includes parameters
of functions and methods (the Python language reference [25] refers to this as
“names”).

In statically typed languages such as Java or Haskell, all types in a program
can usually be determined statically. By contrast, the analysis described here is
approximate, for several reasons:

• Fundamentally, it is impossible for static analysis of a Turing-complete
language to determine the values computed or the flow of control in all
cases. Since the types inferred may depend on run-time values or flow of
control, it is not possible to determine all types precisely by static analy-
sis.

• There are some very dynamic features in Python which make static analy-
sis difficult. An example is the built-in eval function, which takes a string
as argument, interprets it as a Python expression and returns the value
it evaluates to. For instance, eval("1 / 2") returns the floating-point
number 0.5. Since the argument string may be computed at runtime or,
for example, be read from a file, it can be very difficult to statically deter-
mine the return type of a call to eval.

• The analysis as presented here is also limited for pragmatic reasons in
some cases. For example, as described above in Section 4.3.2, exceptions
and generators are not properly supported.

The method is split into a basic analysis and a number of analysis variants,
because one of the goals of the thesis is to compare different variants and de-
termine their influence on precision and speed.

31

u ∈ UTy union types u ::= {v} | >
v ∈ ValTy value types v ::= b | f | c | i
b ∈ BuiltinTy built-in type b ::= int | bool | list | . . .
f ∈ FunTy function types f ::= fl
c ∈ ClsTy class types c ::= class〈l, [c], {n 7→ u}〉
i ∈ InstTy instance types i ::= inst〈c, {n 7→ u}〉
l ∈ N label
n ∈ String name

Figure 5.1: Basic type lattice for Python.

In the implementation, all variants are implemented in the same source
base; a Configuration object is passed around which specifies the analysis vari-
ants and other options used. The user can specify these with command-line
parameters.

The following sections describe first the basic analysis, then each of the
analysis variants.

5.1 Basic analysis

The basic type inference method is a data flow analysis expressed as a mono-
tone framework and solved by the worklist algorithm (see Chapter 4). It is
flow-sensitive, context-insensitive and path-insensitive. (A path-sensitive anal-
ysis computes different results depending on predicates at nodes where the
flow of control diverges. For example, a path-sensitive analysis could infer that
in the body of the statement if x is None: . . . , variable x has value None.)

The following sections describe the lattice used for the analysis, the way
different statements provide information on types, and the method used to
handle modules and import statements.

5.1.1 A type lattice for Python

Figure 5.1 defines a type lattice for Python. In the notation used on the right,
{ν} stands for a set of zero or more elements of the form ν, and [ν] stands for
an ordered sequence of zero or more elements of the form ν.

The type assigned to a variable is called a union type: it is either the set of
types of the values that the variable may be bound to at runtime, or >, which
means the analysis cannot infer anything about the type.

Value types model types of values at runtime. The analysis distinguishes
five kinds of value types. Built-in types are built into Python and rules to deal
with them are built into the analysis. A function type refers to a function in the
source code; these are assigned unique labels to avoid name clashes.

The types for classes defined in the code under analysis and instances of
these are more interesting. Classes and objects are very dynamic in Python:
at runtime, new classes can be created and attributes can be added to and re-
moved from classes and objects. Classes may also have multiple superclasses.

32

⊥

{bool}{ f loat}{int}

{int, f loat} { f loat, bool}

{int, f loat, bool}

. . .

{class〈1, [], {a 7→ {int}}〉}

{class〈1, [], {b 7→ {bool}}〉}

{class〈1, [], {a 7→ {int}, b 7→ {bool}}〉}

. . .

>

Figure 5.2: Part of the basic type lattice.

This is captured by the definitions in Figure 5.1: a class type contains a list of
superclasses and a mapping from names to types for class attributes; an in-
stance type contains the instance’s class and a mapping for instance attributes.
Like functions, classes are also assigned unique labels.

Join operator

Turning the set UTy into a lattice means defining a join operator t and a bottom
element ⊥. (This actually defines only a join-semilattice, because there is no
meet operator u, but this is sufficient for the data flow analysis. For brevity,
UTy will be called a “lattice” here anyways.)

The bottom element is defined as ⊥ = ∅. The join of two union types u1
and u2 is > if u1 = > or u2 = >. If neither of them is >, u1 t u2 is basi-
cally the union of the sets. However, if the set union u1 ∪ u2 contains multi-
ple class types with the same class identifier, or multiple instance types whose
class types have the same identifier, these are merged. When two class types
are merged, the resulting class type contains the superclasses and attributes of
both class types. Similarly, when two instance types are merged, the resulting
instance type contains the attributes of both and their class types are merged
as well.

Figure 5.2 shows some of the elements of the lattice in the form of a dia-
gram. In the diagram, a v b is expressed as an edge from a to b with a being
below b.

Widening operator

To limit the size of types, the basic analysis uses a widening operator ∇n,m,o,
which is parameterized with three numbers: n ∈ N is the maximum size of a
set of types, m ∈ N is the maximum number of attributes of a class or instance
and o ∈ N is the maximum nesting depth. If a union type exceeds one of the
limits, it is replaced by >.

33

The following example illustrates the effect of the n parameter:

{int} ∇2,2,2 {bool} = {int, bool}
{int, bool} ∇2,2,2 {bool, str} = >

On the second line, the join of the types is {int, bool, str}, but this is too large
for the widening operator ∇2,2,2. The next example shows the effect of the m
parameter:

{class〈1, [], a 7→ {int}〉} ∇2,2,2

{class〈1, [], b 7→ {str}〉} = {class〈1, [], a 7→ {int}, b 7→ {str}〉}
{class〈1, [], a 7→ {int}〉} ∇2,2,2

{class〈1, [], b 7→ {str}, c 7→ {bool}〉} = >

The last example show the effect of the o parameter:

{class〈1, [], a 7→ { f loat, int}〉} ∇2,2,3 ⊥ = {class〈1, [], a 7→ { f loat, int}〉}
{class〈1, [], a 7→ { f loat, int}〉} ∇2,2,2 ⊥ = {class〈1, [], a 7→ >〉}

The types f loat and int are at nesting depth 3, so for ∇2,2,2, they are too
deeply nested, and the union type is replaced with >.

Map lattice

Because the goal of the analysis is to determine a type for each variable in the
program, the lattice UTy defined above is not the lattice used for the data flow
analysis. Instead, the value computed for each program point is a mapping
from variables to union types, called a map lattice here. The join operator for
this lattice is defined as follows: a t b contains all mappings present in either
a or b; if a mapping is present in both, its values are combined by the join
operator of the UTy lattice.

5.1.2 Getting information on types

This section describes how various Python constructs provide information on
types to the analysis. In terms of data flow analysis, this corresponds to the
transfer functions generated for different program points in the control flow
graph.

34

Assignments

Assignments are the most obvious source for information on types. For exam-
ple, the statements

x = 1

y = z

signal to the analysis that, after the statements are executed, x has type int
and y has the same type as z. However, assignment statements in Python can
be more complex than these. There are two types of assignment statements:
regular assignments such as x = 1 and augmented assignments such as x += 1.

A regular assignment statement has one or more targets on the left-hand
side and an expression on the right-hand side, as in the following example:

x = y = 2*z+1

Here, x and y are the targets, which are assigned the value of the expression
2*z+1. Note that multiple targets are a special case in the syntax; assignments
are not expressions as in C or Java.

The analysis determines the type of the expression and uses the result to
modify the type of each of the targets. Types of expressions are determined
recursively using rules built into the analysis. For the most part, these are ob-
vious; only the rules for arithmetic expressions are somewhat involved (these
are described in Chapter 5 of [25]).

Targets in assignments can have multiple forms, which are handled differ-
ently by the analysis. A target can be:

• A variable: in this case, the type of the variable is set to the type deter-
mined for the right-hand side.

• A target list, as in the following example:

x, y, *z = [1,2,3,4,5]

This assigns the first element of the list to x, the second to y and all fur-
ther elements to z. For a star target, such as *z in the example, the analysis
filters out all sequence types (from the elements of the union type deter-
mined for the left-hand side) and assigns these to the variable. The other
targets are assigned > by the basic analysis.

• An attribute reference, as in the following example:

x.a = 1

Here, the analysis looks up the type of x, selects class and instance types
and modifies the type of attribute a.

• A subscription, such as x[1], or a slicing such as x[1:3]: the basic analysis
filters out the sequence types (strings, tuples, lists) from the type of x.
Better support for these is part of the analysis variant for parameterized
datatypes (Section 5.2.1).

35

An augmented assignment is an assignment of the form lhs α= rhs, where
α is an operator such as + or −. Its effect is that of the statement lhs = lhs α rhs,
except that lhs is evaluated only once. The analysis thus determines the type of
lhs α rhs and uses the rules described above for regular assignments to modify
the type for lhs.

Del statements

The del statement is used to remove an identifier binding, to remove an at-
tribute from a class or object or to remove one or several elements from a col-
lection type. In the analysis, if the target of a del statement is a variable, its type
is set to ⊥; if it is an attribute reference, the attribute is removed from class and
instance types; if it is a subscription or slicing, its type is not changed.

Functions

For a function definition, the analysis creates three nodes in the control flow
graph in addition to those for the function body: entry and exit nodes (ln and lx)
and a node for the function definition itself. It also generates a unique identifier
i for each function.

The transfer function for the function definition is straightforward: it as-
signs a function type fi, containing the function’s unique identifier, to a vari-
able corresponding to the function’s name.

The program points for ln and lx are best considered together with those
generated for function calls: the call (lc) and return (lr) nodes. The analysis
adds edges from lc to ln and from lx to lr to represent the effect of function
calls.

The transfer functions for lc and ln need to represent argument passing in
terms of the analysis, i.e., they have to transfer the types of arguments. Argu-
ments are represented as special variables α0, α1, etc. for the first, second, etc.
argument. The transfer function for lc determines the types of the expressions
in the function call and sets the types for the argument variables accordingly;
the transfer function for ln reads out the types of argument variables, trans-
fers them to variables for the function arguments and removes the argument
variables.

This system works correctly for cases where one function call can refer to
multiple functions (an lc node has multiple outgoing edges) or a function is
called from multiple call sites (an ln node has multiple incoming edges). In the
first case, the same argument variables are propagated along all the outgoing
edges; in the second, argument types from different call sites are automatically
combined with the join operator.

The transfer functions for lx and lr, together those for return statements,
handle passing the types of return values. A function’s return value is rep-
resented by the special variable ρ, just like arguments are represented by the
variables α0, α1, etc. The transfer function for a return statement sets ρ to the
type of its argument expression and the one for lr transfers the type from ρ to
a generated variable and removes ρ from the map lattice. The lx node ensures

36

[def]1 5
6[toFahrenheit(c)]

2
3:

[return c * (9/5) + 32]4

[f = [toFahrenheit(100)]78]
9

1

7
5 2

4

36
8

9

Figure 5.3: Control flow graph for function definition and function call.

that values for ρ from different return statements are joined and it also sets ρ to
NoneType if it is not already set for the case where there is no return statement.

Scopes

As explained in Section 4.3.4, for each scope in the program code, two nodes sn
and sx are created for entry to and exit from the scope. These program points
are parameterized with the list of variables local to the scope. The transfer func-
tion for sn adds each of these to the map lattice and sets its type to⊥; the trans-
fer function for sx removes these entries.

An Example

An example makes it clear how the various transfer functions for functions
and scopes work together. Figure 5.3 shows a three-line program that defines
a function to convert from degrees Celsius to degrees Fahrenheit and uses it to
convert 100◦C. When the analysis is applied to this program, the effect of the
various transfer functions, in the order implied by the control flow graph, is as
follows:

• For node 1: the type of variable toFahrenheit is set to { f1}, 1 being the
identifier assigned to the function.

• For node 7 (lc): the argument variable α0 is set to {int}, which is the type
of the expression 100.

• For node 5 (sn): variable c is set to ⊥.

• For node 2 (ln): the type for variable c is set to that of variable α0, then α0
is removed from the lattice.

• For node 4: using the current type lattice, the type of the expression c *
(9/5) + 32 is determined to be { f loat} (the division 9/5 yields a floating-
point value); this is assigned as the type of variable ρ.

• For node 3 (lx): the transfer function checks if ρ is set, and since it is, does
not change anything.

37

• For node 6 (sx): the transfer function removes variable c.

• For node 8 (lr): the type for the generated variable ι1 is set to that of vari-
able ρ, then ρ is removed from the lattice.

• For node 9: this is a simple assignment; it sets the type of f to that of ι1.

In the end, the analysis correctly infers that the type of f is float.

5.1.3 Modules and import statements

Section 4.3 describes how control flow graphs for Python modules are created,
but if the program under analysis consists of multiple modules, the analysis
has to do two more things: create a single control flow graph for the program
from the graphs for its modules, and let analysis results flow between modules
according to the import statements in the code.

To create a control flow graph for the whole program, the analysis first cre-
ates a graph for each module, then combines the graphs. The combined graph
contains all nodes and edges from the module graphs, and one additional node
with label 0. Edges are added from node 0 to the initial nodes of all module
graphs, and node 0 becomes the initial node of the combined graph. This en-
sures that the initial node has no incoming edges, which simplifies solving the
monotone framework.

The contents of one module can be made available to another by an import
statement. When an import statement is encountered at runtime, the module it
refers to is loaded and executed (if it has not been executed already) and the
names it defines are made available to the local namespace. An import state-
ment thus implies flow of control to the module imported and back, similar to
the way a function call implies flow of control to the function called and back.
The representation of import statements in the analysis is therefore analogous
to that of function calls: for each import statement, two nodes are generated, ic
and ir, and edges are added from ic to the initial node of the imported module
and from its final nodes to ir.

The transfer function for ic does not need to do anything, but the transfer
function for ir has to rename variables as specified by the import statement. For
example, for the statement

import module1 as module2

it needs to go through the map lattice and rename all variables of the form
module1.x to module2.x. Similarly, for the statement

from module1 import x, y

it needs to look up variables module1.x and module1.y and turn them into vari-
ables in the local scope.

38

5.2 Analysis variants

This section presents several extensions and modifications of the basic analy-
sis which are intended to make it faster or more precise. Each of these can be
enabled independently from the others, so that any combination of variants is
possible.

5.2.1 Parameterized datatypes

One limitation of the basic analysis is that it does not track the contents of the
built-in collection types (lists, sets, dictionaries and tuples). Whenever values
are stored in a collection, their type is thus lost to the analysis, so that when the
contents of a collection are accessed, e.g. by a for loop or by a subscription, the
analysis has to assign type > to the result.

The solution is to introduce parameterized datatypes such as list〈int〉mean-
ing “list containing values of type int”, or, more concisely, “list of int”. The no-
tation with angle brackets was chosen to resemble that of generic types in Java
and C#.

Extended type lattice

To support parameterized datatypes, the type lattice is extended by adding to
the definition of basic types:

b ::= . . . | list〈u〉 | set〈u〉 | f rozenset〈u〉 | dict〈u; u〉 | tuple〈[u]〉

Each of the new types is parameterized with one or more union types. The
list and set types take one parameter, as does the frozenset type, which is essen-
tially the same as the set type except that frozenset objects are immutable. The
dict (dictionary) type takes two parameters: one for the type of keys and one
for the type of values.

The tuple type takes a list of parameters, so that each position is assigned a
separate type. A parameterized tuple type could be defined more simply with
only one parameter for all positions, but the form chosen here should give
better precision in many cases.

To avoid visual clutter in the type expressions, when a type is parameter-
ized with a set of types, it is written without the curly brackets, for instance,
list〈int, f loat〉 instead of list〈{int, f loat}〉. Where a type has multiple parame-
ters, they are separated by semicolons, while the elements of a union type are
separated by commas, so that no ambiguity arises.

The join operator treats parameterized types specially, similar to the way
it treats class and instance types. For example, if union types a and b contain
types list〈ua〉 and list〈ub〉, respectively, then a t b contains only one parame-
terized list type list〈ua t ub〉. Set and dictionary types are handled analogously.
For parameterized tuple types, only those of the same length are combined.

Figure 5.4 shows some of the elements of the lattice with parameterized
datatypes in a diagram similar to Figure 5.2.

39

⊥

{list〈⊥〉}

{list〈int〉} {list〈 f loat〉}

{list〈int, f loat〉}

. . .

{list〈>〉}

. . .

>

{dict〈⊥;⊥〉}

{dict〈str; int〉} {dict〈str; f loat〉}

{dict〈str; int, f loat〉}

. . .

{dict〈>;>〉}

. . .

Figure 5.4: Part of the type lattice with parameterized datatypes.

The widening operator ∇n,m,o described in Section 5.1.1 can be used un-
changed for parameterized datatypes. Its parameter n was defined to limit the
size of sets of types, so that it also applies to type parameters, as in the follow-
ing examples:

set〈int〉 ∇2,2,2 set〈bool〉 = set〈int, bool〉
set〈int, bool〉 ∇2,2,2 set〈bool, str〉 = set〈>〉

Use of parameterized datatypes

Parameterized datatypes are used in a number of circumstances to improve
analysis results:

• List, set, dictionary and tuple literals are assigned parameterized types.
For example, the expression (1, 1.5) is assigned type tuple〈int; f loat〉.

• Expressions that involve a subscription or slicing make use of parameter-
ized types. For example, assuming type {dict〈int; str〉} has been inferred
for variable a, type {str} is inferred for the expression a[1].

• Where the target of an assignment is a subscription or slicing, the param-
eters of parameterized types are modified correctly.

• Parameterized types are assigned to the results of list, set and dictionary
comprehensions.

40

• In for loops, parameterized types are used to assign the most precise type
possible to the loop variable.

The following example code illustrates several of these uses:

def g(x):

return ("square", x*x)

def h(x):

return ("half", x / 2)

functions = [g, h]

results = [f(1) for f in functions]

The basic analysis assigns type {list} to both functions and results. Using
the variant with parameterized datatypes, however, the analysis infers type
{list〈 f1, f2〉} for functions (1 and 2 being the identifiers assigned to g and h),
which enables it to add the edges for the function call inside the list expression
and infer the precise type {list〈tuple〈str; int, f loat〉〉} for results.

5.2.2 Context-sensitive analysis

The second analysis variant implements context-sensitive analysis as described
in Section 4.1.6. The type inference method uses call strings containing the la-
bels of function calls as the context ∆.

In the implementation, context-sensitive analysis is done entirely in the
worklist algorithm, so that no changes are necessary in the type lattice or the
transfer functions. This helps keep the analysis implementation maintainable
by keeping different aspects separate.

Because function call and return edges are already maintained by the work-
list algorithm (see Section 4.2.1), it does not need any additional information
for context-sensitive analysis. The worklist algorithm tags the edges in the con-
trol flow graph according to their function: edges in the monotone framework
are tagged “regular”, while those added for function calls are tagged “call” and
“return”.

Instead of the lattice L specified by the monotone framework, the mapping
∆ → L is used for context and effect values (thought not for the global value
for flow-insensitive analysis). The complete lattice for the analysis is thus ∆→
(Var → UTy), where Var means variables in Python code. However, because
the Var → UTy mapping is not visible to the worklist algorithm (it only deals
with the opaque lattice type) and the call strings are not visible to its users, no
part of the implementation actually has to deal with this “double mapping”
directly.

The empty call string [] is used as initial value for ∆. When processing a call
edge (taken from the worklist), the label lc of the call program point is added
to the end of each call string; when processing a return edge, the worklist algo-
rithm selects only those results where the last element of the call string matches
the lc label of the call site, and removes this element from the call string.

41

To ensure termination, the worklist algorithm takes a parameter k, which
is the maximum length of a call string. This parameter can also be used to
trade off precision for speed: depending on the patterns of function calls in the
program code, a small value of k can lead to imprecise results, but it also re-
duces the number of separate results that are maintained by the analysis, which
should make it faster. In the modified worklist algorithm, context-insensitive
analysis is treated as context-sensitive analysis with k = 0.

5.2.3 Flow-insensitive analysis

Data flow analysis is basically flow-sensitive, but in some cases flow-insensitive
analysis may be more logical. The analysis therefore includes three variants
that use the extension for flow-insensitive analysis described in Section 4.2.2,
which adds a “global value” with flow-insensitive results to the worklist algo-
rithm’s state. In each of these variants, the types for a certain class of variables
are put in the global value, while for other types it still uses context and effect
values.

Support for flow-insensitive analysis affects practically all transfer func-
tions. When a transfer function looks up the type inferred for a variable, it first
determines if flow-insensitive analysis should be used for that variable and, if
so, looks it up in the global value instead of the context value and signals to
the worklist algorithm that it used the global value. Similarly, when a transfer
function modifies the type for a variable for which flow-insensitive analysis is
used, it modifies the variable’s entry in the global value and returns the new
global value. As described above, the worklist algorithm then ensures transfer
functions that use the global value are recomputed.

The three analysis variants for flow-insensitive analysis are described in the
following. Each of them selects a different class of variables for flow-insensitive
analysis, so any combination of the variants can be selected.

Flow-insensitive analysis for module-scope variables

The first variant uses flow-insensitive analysis for module-scope variables, that
is, variables whose scope is not limited to a function or class definition. A
module-scope variable can be modified by every function in its module, as
well as other modules in which it is imported. Unlike variables with function
scope, which are reset every time the function is executed, module-scope vari-
ables are essentially global variables. It makes sense, then, for the analysis to
also treat their types as global.

Flow-insensitive analysis for class types

Classes in Python are very flexible. It is possible, for example, for a function
to add an attribute to a class defined elsewhere, carry out its task using the
extended class and remove the attribute afterwards. However, this would be
seen as poor programming style by Python programmers. Because there is only
one class object for each class, a modification of a class (adding, removing or

42

changing an attribute) affects all of the class’s users. Therefore, this variant
treats classes as global.

This is not quite as simple as for module-scope variables, however, because
class types occur not only as the types of variables, but more often as part of
other types, in particular as part of instance types.

The solution is to use a two-step process for looking up or modifying class
types. Where a class type would be used in the basic analysis, a class reference
type, which contains only the class identifier, is used instead. The actual class
type is put in the global value as the type for a special class identifier variable
containing the identifier of the class. When a transfer function looks up a type
(in the context value or the global value) and finds a class reference type, it
looks up the corresponding class identifier variable and uses or sets its type
instead.

Writing class reference types as class〈l〉, the type lattice defined in Figure
5.1 can be adapted for this variant by adding an alternative to the definition of
ClsTy:

c ::= class〈l, [c], {n 7→ u}〉 | class〈l〉

Flow-insensitive analysis for instance types

Unlike classes, class instances are not global, and each instance has its own
set of attributes independent of other instances. However, in a well-designed
program, the instances of a class will tend to have the same attributes with the
same types – otherwise the class’s methods will not be able to make use of the
instance attributes. The analysis therefore contains a variant that assigns the
same type to all instances of a class.

The method used for flow-insensitive analysis of instance types is similar to
the one described above for class types. Instance reference types are used, which
only contain the class identifier, and the actual instance types are stored in the
global value under an instance identifier variable. When an instance reference
type is encountered, the instance identifier variable is looked up and its type is
used instead.

Just like the previous variant modifies the definition of ClsTy, this one adds
a clause for InstTy:

i ::= inst〈c, {n 7→ u}〉 | inst〈l〉

5.2.4 Manually specified types

For some modules, type inference cannot be used, because their source code is
not available, because they are implemented in C or, for modules in the stan-
dard library, because they are implemented as part of the Python interpreter.
For these cases, it is possible to specify their types manually using a plain-text
format.

The following example gives types for two identifiers from the standard-
library math module:

43

math.pi : {float}

math.sqrt : {lambda {bool, int, float} -> {float}}

Each line contains an identifier and a union type, separated by a colon.
The second type is for a function that takes one argument of type bool, int or
float and returns a float; the syntax used here is based on Python’s syntax for
anonymous functions.

Manually specified types are always treated as global (flow-insensitive).
There is a special syntax for classes and instances: an identifier of the form

classl.x : type

specifies the type of an attribute of the class with identifier l. The syntax class<l>
is then used to assign the corresponding class reference type to a variable, as in
the following example:

class1.write : {lambda {bytes} -> {int}}

class1.flush : {lambda -> {NoneType}}

io.FileIO : {class<1>}

The syntax for instance types is the same, with the keyword instance instead
of class.

Polymorphic function types

The syntax for manually specified types also allows for polymorphic function
types. For example, the identity function:

def id(x):

return x

can be provided with suitable type by the following specification:

m.id : {lambda !a -> !a}

The exclamation mark indicates a type variable. During the analysis, type
variables are replaced with the types of function arguments.

44

Chapter 6

Experimental Evaluation

An important part of the thesis project was an experimental evaluation of the
method using real-world Python code. This was done by applying the imple-
mentation described in Appendix A to the source code of five projects written
in Python and measuring the precision and speed of the analysis. The goal of
the experiments was to compare different analysis variants, evaluate the effect
of its parameters and to assess its suitability for the intended uses.

This chapter first describes the method used to measure precision and speed
and the projects the analysis was applied to before presenting the results of the
experiments. A table with raw data for the results can be found in Appendix B.

6.1 Method

The evaluation was carried out by applying the implementation to all of a
project’s Python source code and measuring the precision of the results as well
as the time needed for type inference. This was repeated for different variants
and parameter settings, for each of five projects.

6.1.1 Measuring precision

The output of the method consists of mappings from identifiers to union types.
For each program point, there are two such mappings, for context and effect,
and there is one global mapping for variables inferred with flow-insensitive
analysis. Ideally, an evaluation of this output would compare it to a ground
truth, which means results known to be correct. Such a ground truth could
be obtained by careful manual inspection of the source code, but because this
would take a long time for all but the simplest programs, it would restrict the
evaluation to a small sample of Python source code. Therefore, an algorithm
was developed that automatically judges precision.

In order to focus on those analysis results that are relevant to a user, the
algorithm starts from the control flow graph. For each node in the graph, it
determines the identifiers used in the statement corresponding to the node.
For example, for the statement

45

a = f(x + 1)

this would yield the identifiers f and x (but not a). The types for these iden-
tifiers are, presumably, the ones that a user would be interested in, since they
determine the effect of the statement. The algorithm then looks up the type in-
ferred for each of the variables in the context or global lattice value and adds
the types to a list.

In the next step, the types in this list are classified in two groups: ⊥ and
> types are classified as “not useful”, all others are classified as “useful”. The
final number is calculated as the ratio of “useful” types to all types in the list.

This method has the advantage that it selects, from the large number of
types contained in the analysis results, those that are most likely to be relevant
to a user. It also gives appropriate weights to types of identifiers for which
flow-insensitive analysis is used: because the analysis infers only one type for
each of these, but one type per program point for others, they might have a
disproportionally small influence on the results of a simpler algorithm. The
method also disregards the types inferred for generated identifiers, which are
not in the original program.

6.1.2 Measuring speed

To measure speed, the implementation records the time just before and just
after running the analysis, and prints the difference in microseconds (µs). The
time measured is CPU time (the amount of time that the program has run on the
CPU), which makes it less likely that the results are influenced by other factors
such as the operating system’s activities.

Haskell, the language that the implementation is written in, uses lazy eval-
uation: expressions are not evaluated before they are needed. This makes it
difficult to measure the runtime of part of a program, because execution of
different parts can be finely meshed together at runtime. To avoid this, the im-
plementation uses the DeepSeq library1 to force evaluation of the analysis’s
input before taking the start time and of its output before taking the end time.

The experiments were done on a MacBook with 2.4 GHz Intel Core 2 Duo
processor and 2 GiB of main memory.

6.2 Example projects

In order to have a variety of Python source code represented in the experi-
ments, five project were used, which are briefly presented here. These projects
in particular were selected because they are compatible with Python 3.2 and
they do not use modules written in C, which the analysis would not be able to
process.

The projects are ordered here from most to least self-contained, so the later
ones are likely to be more problematic for type inference:

1http://hackage.haskell.org/package/deepseq

46

http://hackage.haskell.org/package/deepseq

Modules Lines of code
euler 5 110
adventure 6 2211
bitstring 6 4299
feedparser 2 4454
twitter 13 1868

Table 6.1: Projects used as input for the evaluation.

euler This codebase consists of solutions to five mathematical problems from
the Project Euler website2 written by the author. This is very straightfor-
ward code, which does not use features such as classes or exceptions.

adventure The Adventure3 project is a port of the text-based Colossal Cave Ad-
venture game from Fortran to Python 3. This is a fairly self-contained in-
teractive program; having a text-based interface means it is not depended
on a large GUI library.

bitstring The bitstring library4 provides a convenient interface in Python for
the creation and manipulation of binary data.

feedparser The Universal Feed Parser5 is a library for parsing RSS and Atom
feeds implemented in Python. It consists of only two modules, but there
is quite a bit of nested code to handle all the details of various versions
of the two standards.

twitter The Python Twitter Tools6 contains a library, a command-line program,
and an IRC bot to access the Twitter web site’s public API.

Table 6.1 lists the number of modules and lines of code for each of the
projects.

6.3 Results

The results of the experiments, in the form printed by the implementation pro-
gram, can be found in Appendix B. This section presents various aspects of the
results and uses them to evaluate the analysis variants, the influence of param-
eters and the general suitability of the method.

6.3.1 Variants

Tables 6.2–6.5 show the effect that the analysis variants have on precision and
time. Results of each variant are compared here to the analysis with default pa-
rameters; the numbers shown are differences in percent. Thus, in the precision

2http://projecteuler.net/
3https://bitbucket.org/brandon/adventure/overview
4http://code.google.com/p/python-bitstring/
5http://feedparser.org/
6http://mike.verdone.ca/twitter/

47

http://projecteuler.net/
https://bitbucket.org/brandon/adventure/overview
http://code.google.com/p/python-bitstring/
http://feedparser.org/
http://mike.verdone.ca/twitter/

euler adventure bitstring feedparser twitter mean
precision 11.54 0.00 0.00 1.01 0.00 2.51
time -9.63 0.64 31.58 3.88 2.55 5.80

Table 6.2: Effects of parameterized datatypes on experiment results.

k euler adventure bitstring feedparser twitter mean

1
p 0.00 0.00 0.00 0.25 0.00 0.05
t 36.91 67.92 0.26 117.14 0.16 44.48

2
p 0.00 3.21 0.00 0.25 0.00 0.69
t 102.61 236.74 0.47 429.76 0.14 153.95

4
p 0.00 -9.55 0.00 0.25 0.00 -1.86
t 295.61 505.51 0.47 420.43 0.17 244.44

8
p 0.00 -10.00 0.00 0.25 0.00 -1.95
t 971.09 1395.62 0.46 420.33 0.16 557.53

16
p 0.00 -10.00 0.00 0.25 0.00 -1.95
t 3577.37 4123.39 0.52 420.40 0.16 1624.37

Table 6.3: Effects of context-sensitive analysis on experiment results.

rows, positive numbers indicate better results; in the time rows, positive num-
bers indicate slower operation. The mean column contains the arithmetic mean
of the values.

As can be seen in Table 6.2 and Table 6.3, parameterized datatypes and
context-sensitive analysis did not improve the results by much. Parameterized
datatypes did improve results significantly for the euler example code, but not
for the larger projects. Context-sensitive analysis, which was tested for differ-
ent values of the parameter k (maximum length of call strings) did not signifi-
cantly improve the results in any of the cases.

The results of flow-insensitive analysis, shown in Table 6.4, are more en-
couraging. The first column of the table indicates what flow-insensitive anal-
ysis was used for. It contains the parameters passed to the implementation’s
command-line interface (see Section A.3): f means flow-insensitive analysis is
used for module-scope variables, g means it is used for class types, and h means
it is used for instance types. All seven possible combinations were used.

The best way to use flow-insensitive analysis appears to be to use it only
for module-scope variables. Enabling it also for class or instance types or both
improves the results in some cases, but not by much and at a large cost in
speed.

For the last set of experiments, types were specified manually for identi-
fiers not in the code under analysis (from the standard library or third-party
libraries). Because of time constraints, this was only done for the two smallest
projects. Table 6.5 shows the results; not surprisingly, they indicate that speci-
fying types manually improves precision at a moderate cost in runtimes.

48

euler adventure bitstring feedparser twitter mean

f
p 5.05 73.13 48.23 10.37 -11.13 25.13
t -42.76 18.14 -22.92 12.70 -65.07 -19.98

g
p 0.00 20.90 55.77 0.17 0.00 15.37
t -0.01 1.87 -8.91 1356.03 -24.58 264.88

h
p 0.00 0.00 0.00 0.00 0.00 0.00
t -2.35 -0.09 0.10 -1.62 -0.02 -0.79

fg
p 5.05 78.19 48.23 7.58 -11.13 25.58
t -42.87 10.57 -46.50 938.19 -68.37 158.20

fh
p 5.05 78.19 48.23 6.58 -11.13 25.38
t -42.80 78.11 -22.35 339.55 -63.57 57.79

gh
p 0.00 20.90 55.77 0.17 0.00 15.37
t 0.68 13.43 -9.55 796.72 -24.71 155.31

fgh
p 5.05 78.19 48.23 7.58 -11.13 25.58
t -42.45 31.86 -46.48 536.35 -67.02 82.45

Table 6.4: Effects of flow-insensitive analysis on experiment results.

euler adventure
precision 70.16 39.01
time 1.81 6.81

Table 6.5: Effects of manually specified types on experiment results.

6.3.2 Parameters for widening operator

Table 6.6 shows the results of different values for the parameters of the widen-
ing operator ∇n,m,o (see Section 5.1.1), compared to the default settings n = 3,
m = 3, o = 20. As may be expected, very small values for any of the parameters
lead to poor precision and very large values lead to long runtimes. Other than
that, the results indicate that the default values are actually good choices.

6.3.3 Evaluation

Table 6.7 shows the results in absolute numbers for the configuration that,
according to the experiments, works best: using flow-insensitive analysis for
module-scope variables, but none of the other variants. The analysis inferred
a useful type for variables in the source code in between 45 and 91 percent of
cases. When it was supplied with types for identifiers in external libraries, this
number increased further (by 6 and 27 percent for the two projects used).

To do this, it needed between 0.014 and 23 seconds. The differences are in
part explained by the size of the projects, but not entirely. For example, the
analysis took 9.1 times longer for the feedparser project than for the bitstring
project, but the difference in lines of code is only about 4 percent.

49

euler adventure bitstring feedparser twitter mean

n = 1
p -23.08 0.00 -5.77 -0.25 0.00 -5.82
t -0.43 -0.12 0.35 0.14 0.06 -0.00

n = 2
p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.36 -0.16 0.28 0.25 -0.05 0.13

n = 4
p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.16 -0.33 0.17 0.18 -0.01 0.03

n = 8
p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.08 -0.12 0.26 -0.03 -0.00 0.04

n = 16
p 0.00 0.00 0.00 0.25 0.00 0.05
t -0.00 -0.09 0.23 -0.30 -0.03 -0.04

m = 1
p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.26 -0.25 0.20 -0.28 0.04 -0.01

m = 2
p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.28 -0.23 0.32 -0.34 -0.02 0.00

m = 4
p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.05 -0.32 0.25 -0.33 0.06 -0.06

m = 8
p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.42 -0.26 0.42 -0.22 -0.05 0.06

m = 16
p 0.00 0.00 0.00 0.00 0.00 0.00
t -0.08 0.01 0.25 -0.39 0.05 -0.03

o = 4
p 0.00 0.00 -1.92 -1.14 -21.62 -4.94
t 0.00 -15.10 -9.61 -4.61 -12.47 -8.36

o = 8
p 0.00 0.00 0.00 -0.25 0.00 -0.05
t 0.16 -6.27 -5.39 -2.68 0.09 -2.82

o = 16
p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.51 -0.08 0.32 -1.88 -0.08 -0.24

o = 32
p 0.00 0.00 1.92 1.06 0.00 0.60
t 0.34 -0.10 9.58 13.97 -0.09 4.74

o = 64
p 0.00 0.00 3.85 -2.20 0.00 0.33
t 1.00 -0.25 30.14 2267.87 0.25 459.80

Table 6.6: Effects of parameters of widening operator on experiment results.

euler adventure bitstring feedparser twitter
precision 0.45 0.75 0.91 0.53 0.75
time 14 981 2,531 22,929 3,114

with user- precision 0.72 0.81
defined types time 18 1,075

Table 6.7: Precision and runtime (in ms) using flow-insensitive analysis for
module-scope variables.

50

Chapter 7

Conclusions

This thesis presents a method for type inference based on data flow analysis for
the dynamically typed Python programming language. To account for the lan-
guage’s dynamic nature, the basic data flow analysis was extended to support
adding edges for function calls to the control flow graph during the computa-
tion of types. The resulting analysis is able to deal with first-class functions
and Python’s dynamic class system. It also supports (multiple) inheritance,
modules and import statements, and most of the statements, expressions and
built-in types of Python.

The method was implemented in a proof-of-concept implementation, which
includes six variants that extend or modify the basic method and which was
used to do an experimental evaluation of the method. The results of the eval-
uation show that the method can infer types with reasonable precision fairly
quickly (on the order of milliseconds or seconds).

7.1 Future work

There are several directions in which future research could continue. One ob-
vious way to improve the method would be to add proper support for those
features of the Python language that the method described here does not han-
dle well: exceptions, generators, and the with statement. Of these, exceptions
are the most challenging, since exceptions circumvent the normal flow of con-
trol, so having support for exceptions would complicate construction of control
flow graphs significantly.

One way to better support the use in editors and IDEs, which was the orig-
inal motivation for the method, would be to enable it to infer types incremen-
tally for different program parts. Ideally, it should be possible to apply type
inference once to a whole program and then, whenever the user modifies the
source code, apply it only to the part that was changed. The challenge here
is to reconcile type inference for part of a program with the underlying data
flow analysis, which normally operates on the control flow graph for an entire
program.

Since the analysis already supports user-supplied type specifications, one

51

way to improve precision would be to ask the user to supply types for certain
problematic definitions in the source code. To do this, the analysis would need
a way to go backwards from inferred types to definitions in the source code
and determine which definitions were the cause of poor results.

52

Appendix A

Implementation

Part of the thesis project was an implementation of the type inference method.
This implementation was developed to show that the method is practicable
and to make the experimental evaluation described in Chapter 6 possible.

The implementation is written in the functional programming language
Haskell [14] and built using the Cabal system [13]. It is structured into three
separate Cabal packages: the data-flow-analysis package is a library for data flow
analysis, the python-type-inference package is an implementation of the type in-
ference method, and the infer-python-types package provides a command-line
interface to the implementation.

A.1 Data Flow Analysis

The data-flow-analysis package implements a library for data flow analysis. It
includes features to support dynamic languages (as described in Section 4.2),
but is not specific to Python. It also implements context-sensitive analysis us-
ing call strings; library users only need to specify the maximum length of call
strings to use this.

A.2 Type Inference

The python-type-inference package is the main part of the implementation; it
contains the type inference method including the six analysis variants. It has
four main tasks: parsing Python source code, creating control flow graphs, cre-
ating monotone frameworks for type inference and handling manually speci-
fied types. The TypeInference module serves as a high-level interface for these.

To parse Python source code, the implementation uses the language-python
library1. It also uses the data-flow-analysis library.

1http://hackage.haskell.org/package/language-python

53

http://hackage.haskell.org/package/language-python

A.3 Command-line Interface

The infer-python-types package provides a command-line program, which is
also called infer-python-types. It takes a list of Python source files as command-
line arguments as well as parameters that specify the analysis variants and pa-
rameters to be used. When called without any parameters, the program prints
a usage message explaining possible parameters.

54

Appendix B

Results of Experiments

The numbers gathered by the experiments described in Chapter 6 are listed
in two tables in this appendix. Table B.2 contains the measurements of preci-
sion, while Table B.3 contains the runtime in microseconds. In the tables, each
column corresponds to one of the projects used as input, and each row cor-
responds to a different configuration. The configurations are specified by the
parameters passed to the command-line interface of the implementation; the
first row contains the results for the default configuration. The relevant param-
eters are shown in Table B.1.

Parameter Effect
-p Use parameterized types.
-kk Use context-sensitive analysis; parameter k gives the max-

imum length for call strings.
-f Use flow-insensitive analysis for module-scope variables.
-g Use flow-insensitive analysis for class types.
-h Use flow-insensitive analysis for instance types.
-nn Set parameter n of widening operator (default: 3).
-mm Set parameter m of widening operator (default: 3).
-oo Set parameter o of widening operator (default: 20).
-u file Pass a file with manually specified types.

Table B.1: Command-line parameters used in the experiments.

55

euler adventure bitstring feedparser twitter
0.42623 0.43478 0.61176 0.47716 0.84091

-p 0.47541 0.43478 0.61176 0.48197 0.84091
-k1 0.42623 0.43478 0.61176 0.47837 0.84091
-k2 0.42623 0.44872 0.61176 0.47837 0.84091
-k4 0.42623 0.39326 0.61176 0.47837 0.84091
-k8 0.42623 0.39130 0.61176 0.47837 0.84091
-k16 0.42623 0.39130 0.61176 0.47837 0.84091
-f 0.44776 0.75275 0.90681 0.52664 0.74729
-g 0.42623 0.52564 0.95294 0.47798 0.84091
-h 0.42623 0.43478 0.61176 0.47716 0.84091
-fg 0.44776 0.77473 0.90681 0.51332 0.74729
-fh 0.44776 0.77473 0.90681 0.50858 0.74729
-gh 0.42623 0.52564 0.95294 0.47798 0.84091
-fgh 0.44776 0.77473 0.90681 0.51332 0.74729
-n1 0.32787 0.43478 0.57647 0.47596 0.84091
-n2 0.42623 0.43478 0.61176 0.47716 0.84091
-n4 0.42623 0.43478 0.61176 0.47716 0.84091
-n8 0.42623 0.43478 0.61176 0.47716 0.84091
-n16 0.42623 0.43478 0.61176 0.47837 0.84091
-m1 0.42623 0.43478 0.61176 0.47716 0.84091
-m2 0.42623 0.43478 0.61176 0.47716 0.84091
-m4 0.42623 0.43478 0.61176 0.47716 0.84091
-m8 0.42623 0.43478 0.61176 0.47716 0.84091
-m16 0.42623 0.43478 0.61176 0.47716 0.84091
-o4 0.42623 0.43478 0.60000 0.47172 0.65909
-o8 0.42623 0.43478 0.61176 0.47596 0.84091
-o16 0.42623 0.43478 0.61176 0.47716 0.84091
-o32 0.42623 0.43478 0.62353 0.48220 0.84091
-o64 0.42623 0.43478 0.63529 0.46667 0.84091
-u types 0.72527 0.60440
-f -u types 0.72165 0.81463

Table B.2: Results for precision with different options.

56

euler adventure bitstring feedparser twitter
23,874 830,750 3,283,706 20,345,443 8,913,312

-p 21,574 836,070 4,320,555 21,135,129 9,140,365
-k1 32,685 1,394,964 3,292,313 44,177,870 8,927,858
-k2 48,371 2,797,499 3,299,257 107,782,824 8,926,053
-k4 94,448 5,030,276 3,299,123 105,884,334 8,928,088
-k8 255,713 12,424,888 3,298,955 105,862,736 8,927,310
-k16 877,936 35,085,835 3,300,638 105,877,870 8,927,659
-f 13,665 981,447 2,531,216 22,929,003 3,113,694
-g 23,872 846,304 2,991,282 296,235,225 6,722,823
-h 23,314 830,017 3,286,904 20,016,764 8,911,420
-fg 13,640 918,530 1,756,741 211,224,706 2,818,935
-fh 13,656 1,479,688 2,549,782 89,428,219 3,246,991
-gh 24,036 942,327 2,970,272 182,441,534 6,710,903
-fgh 13,739 1,095,464 1,757,497 129,468,212 2,939,887
-n1 23,771 829,746 3,295,219 20,373,761 8,918,274
-n2 23,959 829,416 3,292,825 20,395,370 8,909,148
-n4 23,913 827,967 3,289,136 20,381,050 8,912,085
-n8 23,892 829,786 3,292,363 20,340,253 8,913,138
-n16 23,873 830,014 3,291,249 20,285,058 8,911,015
-m1 23,936 828,697 3,290,213 20,289,249 8,916,918
-m2 23,941 828,812 3,294,320 20,276,008 8,911,845
-m4 23,887 828,061 3,291,808 20,277,605 8,918,676
-m8 23,974 828,629 3,297,660 20,300,891 8,909,041
-m16 23,854 830,858 3,291,867 20,266,762 8,917,586
-o4 23,874 705,337 2,968,097 19,407,861 7,801,578
-o8 23,912 778,636 3,106,767 19,800,853 8,921,605
-o16 23,996 830,091 3,294,161 19,963,922 8,906,573
-o32 23,956 829,904 3,598,158 23,187,853 8,905,257
-o64 24,112 828,677 4,273,258 481,753,372 8,935,829
-u types 24,306 887,305
-f -u types 17,951 1,074,882

Table B.3: Results for runtime with different options, in µs.

57

Bibliography

[1] Ole Agesen. Concrete type inference: Delivering object-oriented applica-
tions. Dissertation, Jan 1996.

[2] Jong-hoon An, Avik Chaudhuri, Jeffrey S Foster, and Michael Hicks. Dy-
namic inference of static types for Ruby. Technical Report, University of
Maryland, Jul 2010.

[3] John Aycock. Aggressive type inference. 8th International Python Confer-
ence, Jan 2000.

[4] Patrick Camphuijsen, Jurriaan Hage, and Stefan Holdermans. Soft typing
PHP with PHP-validator. Technical Report, Utrecht University, Feb 2009.

[5] Brett Cannon. Localized type inference of atomic types in Python. Master
Thesis, Jun 2005.

[6] Robert Cartwright and Mike Fagan. Soft typing. PLDI ’91: 1991 Conference
on Programming Language Design and Implementation, Jun 1991.

[7] Luis Damas and Robin Milner. Principal type-schemes for functional pro-
grams. POPL ’82: 9th Annual Symposium on Principles of Programming Lan-
guages, Jan 1982.

[8] Cormac Flanagan. Hybrid type checking. POPL ’06: 33rd Annual Sympo-
sium on Principles of Programming Languages, Jan 2006.

[9] Michael Furr, Jong-hoon An, and Jeffrey S Foster. Profile-guided static
typing for dynamic scripting languages. OOPSLA ’09: 24th Annual Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications,
Oct 2009.

[10] Michael Furr, Jong-hoon An, Jeffrey S Foster, and Michael Hicks. Static
type inference for Ruby. SAC ’09: 24th Annual ACM Symposium on Applied
Computing, Mar 2009.

[11] Michael Gorbovitski, Yanhong A Liu, Scott D Stoller, Tom Rothamel, and
K Tuncay Tekle. Alias analysis for optimization of dynamic languages.
DLS ’10: 6th Symposium on Dynamic Languages, Oct 2010.

[12] Lintaro Ina and Atsushi Igarashi. Towards gradual typing for generics.
STOP ’09: 1st International Workshop on Script to Program Evolution, Jul 2009.

58

[13] Isaac Jones. The Haskell Cabal, a common architecture for building appli-
cations and libraries. 2005.

[14] Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised
Report. Apr 2003.

[15] Martin Madsen, Peter Sørensen, and Kristian Kristensen. Ecstatic – type
inference for Ruby using the cartesian product algorithm. Master Thesis,
Jun 2007.

[16] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The def-
inition of standard ML (revised). May 1997.

[17] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
Program Analysis. 2005.

[18] Jens Palsberg and Michael Schwartzbach. Object-oriented type inference.
OOPSLA ’91: 6th Annual Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, Nov 1991.

[19] Frédéric Pluquet, Antoine Marot, and Roel Wuyts. Fast type reconstruc-
tion for dynamically typed programming languages. DLS ’09: 2009 Sym-
posium on Dynamic Languages, Oct 2009.

[20] Michael Salib. Starkiller: A static type inferencer and compiler for Python.
Master Thesis, May 2004.

[21] Jeremy Siek and Walid Taha. Gradual typing for functional languages.
Scheme and Functional Programming Workshop 2006, Sep 2006.

[22] Jeremy Siek and Walid Taha. Gradual typing for objects. ECOOP ’07: 21st
European Conference on Object-Oriented Programming, Jul 2007.

[23] Jeremy Siek and Manish Vachharajani. Gradual typing with unification-
based inference. DLS ’08: 2008 Symposium on Dynamic Languages, Jul 2008.

[24] Swaroop Sridhar, Jonathan S Shapiro, and Scott F Smith. Sound and com-
plete type inference for a systems programming language. APLAS ’08: 6th
Asian Symposium on Programming Languages and Systems, Dec 2008.

[25] Guido van Rossum and Fred L Drake. The Python language reference,
release 3.2. Mar 2011.

59

	Introduction
	Type inference
	Approximate Type Inference

	Related Work
	Combining static and dynamic typing
	Type inference for functional languages
	Type inference for dynamic languages
	Self
	PHP
	Smalltalk
	Ruby

	Type inference for Python

	The Python Programming Language
	History
	Implementations
	Language features
	Imperative programming
	Names and scopes
	Functional programming
	Object-oriented programming
	Types
	Modules

	Data Flow Analysis for Python
	Basic data flow analysis
	Control flow graphs
	Lattice values
	Monotone frameworks
	Worklist algorithm
	Widening
	Interprocedural data flow analysis

	Extended data flow analysis
	Adding edges dynamically
	Optional flow-insensitive analysis

	Control flow graphs for Python
	Fully supported constructs
	Other constructs
	Function definitions and calls
	Variables and scope

	Type Inference for Python
	Basic analysis
	A type lattice for Python
	Getting information on types
	Modules and import statements

	Analysis variants
	Parameterized datatypes
	Context-sensitive analysis
	Flow-insensitive analysis
	Manually specified types

	Experimental Evaluation
	Method
	Measuring precision
	Measuring speed

	Example projects
	Results
	Variants
	Parameters for widening operator
	Evaluation

	Conclusions
	Future work

	Implementation
	Data Flow Analysis
	Type Inference
	Command-line Interface

	Results of Experiments

