Kamal Sayah
Automated Norm Extraction

from Legal Texts

Master’s Thesis, Utrecht University,
Department of Computer Science.

Master’s Thesis Supervisors:

Prof.dr. T.M. van Engers
Dr. J. Hage

Utrecht, August 2004

Automated Norm Extraction from Legal Texts

Preface

This thesis is the final work of my study at the Institute of Information and
Computing Sciences (IICS) at the Utrecht University. During my thesis research, |
worked at the Tax Office Utrecht, Centrum voor Proces- en Productontwikkeling
(B/CPP).

First, | am very grateful to the Tax Office Utrecht, Centrum voor Proces- en
Productontwikkeling (B/CPP), for giving me the opportunity to write my thesis in a
great company in Utrecht. Of course, | would like to use this opportunity to give a
special thanks to my main advisor Prof. Dr. Tom van Engers at University of
Amsterdam, who has taught me a lot about being a participant of science. | also
would like to use this opportunity to give a special thanks to my second main advisor
Dr. Jurriaan Hage at the University of Utrecht. He has given me guidance and gave me
some critical notes on my work. In that way | kept on a straight line in my research
project.

Special thanks go out to Ron van Gog, employee at the Tax Office Utrecht (B/CPP)
who was always willing to help and assist me during my thesis research and
implementation.

I also want to thank some other people who have supported me in times of need.
First, great thanks go out to my girlfriend, parents and sister. Furthermore, | want to
thank my fellow employees and thesis students at the Tax Office Utrecht, Rob Dijers,
Philipe de Lang, Arian Jacobs, Vincent van Dijk, Niels Egberts, Wilco Niessen and
Faridah Liduan for making it possible to have a great time during my thesis research.

Parts of this master thesis have been published in an article in the proceedings of
the KDNet 2004 Conference (KDNet Symposium: "Knowledge-Based Services for the
Public Sector", [32]). This article (Van Engers, T.M., Sayah, K., Van Gog, R., De Maat,
E., [33]) will also be included in a book on that conference, yet to appear.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 2

Automated Norm Extraction from Legal Texts

Abstract

Within the (E-)POWER research program at the Tax Office Utrecht a new approach
for supporting the chain of processes from the creation of legal texts to the
implementation of normative (juridical) information systems has been developed.
According to this approach, creating formal knowledge models starts with the
analysis of the legal text. This process, executed by knowledge analysts, is very time
consuming. Within the (E-)POWER program, automated concept extraction techniques
and a type model generation tool have been developed to improve modelling
productivity. Formalization of the norms has thus far been a manual process. In this
thesis, a description is given of the development of a further step in overcoming the
knowledge acquisition bottleneck: a complete algorithm for automated norm analysis
from legal texts. This algorithm makes use of invariant linguistic structures at the
syntactical level that characterises specific normative expressions in natural
language.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 3

Automated Norm Extraction from Legal Texts

Content

Lo AN O OO

F N T N TR

1 INTRODUGCTION. .. cttte ettt ettt ee ettt e s st e s s ataeessasetesaasatesaasseessassetessasseesaassesssassetessasaeessasseessasseeessarees
2 THE DUTCH TAX AND CUSTOMSADMINISTRATION ..ottt 11

2.1 EPOWER: EUROPEAN PROGRAM FOR AN ONTOLOGY BASED WORKING ENVIRONMENT FOR

REGULATIONS AND LEGISLATION 1uvtiiiiiiiittttiieeeeiiiitbsseeesssssssssssessssssassssssssssssssssssesssssssssssssssssssssesssssssees 12
211 PrOjEC DESCIIPIION.eiiiiiiti ittt sttt et b e b b e e e b e b sb e s besbeese e e et e seesbe b ne 12
N A o 1= ot A o= 1 Y= 13
3 PROBLEM DESCRIPTION ...ttt ettt s et s e e s s bte s s sesba e s s sabaeessbbesssasbessssabanassnanness 14
R TRt R o N = 1 1 =5 15
3.2 THE GENERAL PURPOSEcoiccttttiiiie e e ieitte et e e e s e e s itteet s e s s sessbbastsassssssabbeseeasssssabasaeeesssssassssbeeesessssssrrenes 15
4 AUTOMATED NORM EXTRACTIONttt ettt s ettt ee e s s s s aare e e s s s s sssaasseeessssssssnrseees 18
4.1 NOUN-PHRASE EXTRACTION .eiiiivetiieeretesseeeesssseessassssessassesssssessssssssessssssesssssessssssssessssssesssssessssssssessssses 18
4.2 VERB-PHRASE EXTRACTION ...ciiiecttteeiieeiiesitteeteeesessssssstsesssssassssssessssssssssssesssssssssssssssssssssssssssssessssessnses 19
5 THE CATEGORIZATION OF LEGAL SENTENCES.......c oo 21
5.1 PARSING NORMATIVE TEX TS . uuttttiiiiiiiiiitieiiiesiiisitrseteesssesissssssesssees 22
6 THE PARTSOF THE NORM EXTRACTION TOOL ...uvviiieie e 24
(700 R 1 = [0) R 25
6.2 UNIFICATION GRAMMARcoiiittttiitie et ieiittetetesssesabbeeseesssasiabbaseeesseassabbsseeesssssabbsaeessesssassbbbanssesssassssrenes 27
6.3 TRANSLATION PATTERNS ..ottt ittt e s e et e e e s s s e s bbb e e e e e s s e e sa b b s b e e e s eessaababbeeeaesssasbbbbeeesesssassebnness 29
7 THE GENERATION OF PRODUCTION RULES. ...ttt sesane e 34
8 AN EXAMPLE; PARSING A JLC .ottt s ettt e e e s s s seaaa e e s s s s s ssaaaseeesessssssnereees 36
9 CLASSATTRIBUTE GENERATION ...ttt ettt e sttt e e s s s e sbvaee s e s s sesabseseeessssssnnes 40
10 SPECT AL TREATIMENT oottt ettt e ettt e s s et e s e ettt e s saeaeeessbeeesaasseessasseeesssbeeesaasaeessasseessssreees 43
0 I Y Y = 43
10.2 INHERITANCE AND THE GENERATION OF CLASS NAMES.....uttiiiiiiiitteiiieeeeesiitieereesssssessssseesssssssssssseesssss 45
10.3 FIXED NOUN PHRASES......cccttttiiiiiiiiiiittieee e s s sesatretssesssasbabaetsessessabbaseeassessabbrseeasssssssbbabeeesssssasbbabenesessan 48
11 AN ALTERNATIVE SOLUTION. ..ottt e sttt s s s eaee s s e e e s sbae s s sbaeesssmbesessnbaeessans 50
J11.1 DYNAMIC ILC STORAGE......ttttiiiiiiiiiitttietee et seiibre et e e et s asbbb e et e e sseasabbaseeassssssabbbseeasssssaabbsbeeesssssasbbabeeesesaan 50
1111 Excluding INvalid NLC SEOUENCES.......c.oiiriirierierieie ettt s s see e sae e 52
11.1.2 Advantages/DiSA0VANTAQGES.c.cueieeieerieiieesee et e seeseestesteseesreesreesteessessesaeesseesseensesssesseessenss 53
11.2 SPLITTING OF JURIDICAL INFORMATION ..eiiiiiiiitttteiiieeiiiiitreeieesssasssbeseesssssssssssssessssssssssssessssssssssssssssesss 53
11.3 BEST OF TWO WORLDS......coiccutettieeeeeieisteeeesesssesisestssssssasssssestsasssasssssssteasssssassssseasssssssssssseessssssssrsseesssss 54
12 AUTOMATED RULE MANAGEMENT: GRAMMAR EDITOR ..cocoi ittt 56
12.1 IMPLEMENTING THE TOOL ...uuuuvtiteeeieieisseeeesesssasisssssssssssasssssssssesssssssssssessssssssssssssesssssssssssssesssssssssssseessssns 56
12.2 GRAMMAR EDITOR SCREENSHOTS. ... uuuttiitieiiiiiirretteesssasissestsesssssisssstssssssssssssseessssssmsssseesssssssssssseessssns 59
13 PRETTY PRINTEReeie ettt ettt e ettt e e ettt st ettt e s s aa e e s sasaesssaasaeessbaeessasbeessasseesssarseessasreeess 60
13.1 IMPLEMENTING THE PRETTY PRINTER ..ttiiiiiiiiiiitiiiiie ettt e s s ee st bae e e s s s e s sabbase e e s s e s saabbaseessssssansnsenesesann 60
13.2 SCREENSHOT OF THE OUTPUT wutiiiiiiiiiititiiiiie s i seiitteessesssesssssssssssssasssbsssns 62
14 RELATED WORK .ottt ettt ettt sttt e et e s s aae e s s s abe e e s abb e e s sbba e s s eabaee s s bbesssasbeesssabenessasbeness 63

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004

Automated Norm Extraction from Legal Texts

15 CONGCLUSION ...ttt sttt b ettt e e e s b e bt s bt eh e e ae e s s e eseabesbesbeebeeaeeneeneanbesbesaennis 64
16 RECOMMENDATIONS FOR FURTHER RESEARCHccoccv i 66
16.1 PROGRESSIVE DECONSTRUCTING OF ABSTRACT LANGUAGE CONSTRUCTS.....ecvttieereeeseeesreeeeeeesneesaeens 66
16.2 AUTOMATED PATTERN MANAGEMENTuteitteiteesteserseesseesseesteensesssesseesseessesssesnsssnssssessseessesssesnsessessenss 67
16.3 TRANSITIVE AND INTRANSITIVE VERBS.....ccittitiittieraeesteesteenteetesstessessseesseessesssssnssssessseessesssessessessenss 68
16.4 FIXED VERB-PREPOSITION COUPLESccteiteiteesteserseesseesseenteesessssssessseessesssesnsssnssssessseessesssesssessessenss 70
16.5 ENUMERATIONS. ..ccttitieeesueesteesteeteestesseesseesseesseensesseesseeaseesseenseenseessesseesseessesssesnsesnssssessseessesnsesnsesnsessenss 72
16.6 THENLC FORMULA ...ttt sttt ettt st be s bttt e e s aeesheesbeesbeeabe e e e saeesaeeeneebeenbeenresnnenneens 73
16.7 MULTIPLICITY IN ASSOCIATIONS. ...ecutttutesteesteessesssesessseesseesseeseasesssesseessesssesssesssssnsssssesseessesssesssesnsessenss 74
16.8 ALTERNATIVE STORAGE OF THE LEXICAL DATA ..ottt sttt 75
16.9 MULTIPLE LANGUAGE SUPPORTceiutttttesteesteestesssesessseesseasseesesssesssessssssesssesssssnsesssssessseessesnsesnsesnsessenss 75
16.10 MULTIPLE LAW TYPES SUPPORTcuuituteiteesteesteasseseeseesseesseesseasesssessesssesssesssesnsssnsssssssseessesnsessessessenns 76
16.11 ERRORS AND OTHER CLASSIFICATION PROBLEMSc.uciitiiitietieieseesieesieesteessesseeseesaeesseesseesesssesnnesseens 76
16.12 IMPROVEMENTS ON OUR IMPLEMENTATIONc.utiittiteeeesseasteeteetesseesseesseesseessesnsesssssessseessesnsesnsesssessenss 76
L oy N[SRS 79
N e = VT 5 P 82
N e = VT G = P 84
Workbench.Natural Language.Lexicon.Lexicon.LookupLexemes(StringCollection lexemesTolL ookup,
string Mode, CUILUrEINFO CUITUINE)o.eiuiiieirierieeestee sttt bbbt 84
APPENDIX € ..ottt h et s e bt bbb et e a e e eE oA e SRt SRR e e Re e R e e e e b e Rt eheeheeReeRe et e nteneenre e ne 85
PRODUCTION RULES FOR THE NOUN-PHRASE EXTRACTION.....cciuiiuiriiiiiiesri s 85
PRODUCTION RULES FOR THE VERB-PHRASE EXTRACTIONcviiviiiriiiiiiesie s 93
APPENDIX D ..ttt bttt et h e bbb e e e Ao R e Rt SRR £ e RE e R e e eR e b b eheehe e Rt ene et e beneeerenns 103
APPENDIX E ..ottt et b e bt btk e e R e R e Rt SR e R £ e RE e R e e eR e bt ehe bt ehe e Rt e ne et e be e erenas 108
Workbench.Natural Language.Grammar.Editor.Grammar ClassMOdel.CScocovvviervvvnenceeenene s 108
Workbench.Natural Language.Grammar.Editor.Grammar ElementEdit.CS..........cocovvvivvevnienceccenenesenene 115
Workbench.Natural Language.Grammar.Editor.GrammarFeatur Edit.CS........ccoovvivvivrivnenceeierere e 120
Workbench.Natural Language.Grammar.Editor.Grammar RUIEEIL.CS...........cceoeveriervrienerieesere e 124
Workbench.Natural Language.Grammar . Editor.Grammar FOrMLCS.......c.ovveerinennenenesese e 127
Workbench.Natural Language.Grammar.Editor.Grammar TreeModel.CS.......ccovvvriereneneniccenene s 136
APPENDIX F ettt h et et h e bbb et e s e e s E e b e SRt SR e R e e Re e R e e eR e benhe bt e b e e Rt e ne et e beneeerenas 139
TRANSLATION PATTERNS FOR NOUN-PHRASE EXTRACTIONcoittetietieiresieesieesteestesseesessseesneesseesesssesnsesseens 139
type = "np" and (root not in ("bedrag", "waarde", "hoogte") or pp.prep <> "van")......cccceeenenienennens 139
107§ Yo [S ST URUSTRP PPN 139
17§ LS Vo | U URUSTRP PPN 139
137 €L o] o R TP P TP RPN 140
107 L= 1o 1V 1 OSSOV 140
117 LS = 1o 1Y OSSPSR 140
type = "np" and root in ("bedrag", "waarde", "hoogte™) and pp.prep = "Van" ... 140
type = "bijvoeglijke_bijzin" and main.adv.hd.type = "PP" ..o 140
TYPE = NP _IMONEY " ...t r e nre e nne s 140
107 0 1S o o] o T o{o o USRS UP PPN 141
107 LS T o L = USRS SPPRORPN 141
107 S LS o o o o] U PTURURUSTSPPRORPN 141
107§ LS Yo [oo USRS RPPRORPN 141
type = "bijvoeglijke_bijzin" and main.adj.type = "ad]"cccereiirie e 142
18] €L o] o YA TP TP UU PSPPI 142
TRANSLATION PATTERNS FOR VERB-PHRASE EXTRACTION....ccueiieiereistestrseesseeeeeeseesseseessessesseeseesssssessessenees 143
1Y LS o | o TSSOSO 143
107 LS G 1 SOV 143
type = "bijvoeglijke_bijzin" and main.type = "X ISt ..o 143
1Y) €T = o PP 144

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 5

Automated Norm Extraction from Legal Texts

YD = S A bbb bRt E bt e b Rt et ne e 144
type="s def2" or type="s def3" or type ="S defd"coc oo 145
18] €L ST 6 o TP PP 147
18] €S PP P PP 147
BYPES " NP_TOIMUIA" ... e et bbbt b e bt b e 148
TYPE = " SCOPEAET" ... et bbb bbb bbbt b e et b e 148
1Y LS = RSOSSN 148
TYPE = "NADEPALING" ... oo bbb e et bbb e et be e nae s 149

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 6

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004

Introduction

Governments and many other organisations have often to deal with many
regulations and business rules. These are often expressed in natural language and
sometimes their volume and complexity are a burden for these organisations. Many
processes are affected when new or adapted regulations have to be implemented and
both the organisations responsible for the implementation of the regulations and
their clients will benefit from a design methodology well suited for this. Within the (E-
)POWER ((European) Program for an Ontology based Working Environment for
Regulations and Legislation) research program (a project of the Tax Office Utrecht) a
first version of such methodology has been developed (see e.g. Van Engers &
Boekenoogen 2003 [1]).

The (E-)POWER approach is concentrated around the processes that are involved in
implementing normative knowledge sources, i.e. legislation, regulation or business
rules etc. This will result in operational processes, which subsequently are based on
these regulations, described in the aforementioned normative knowledge sources and
on the policy, which may be influenced by business economical considerations. These
operational processes form the implementation of a normative system (a system that
states what is prohibited, should be done or is allowed). The normative knowledge
sources themselves are created in the political arena and the process of creating such
knowledge is embedded in a social environment (see Figure 1).

Social
environment

Back office {}

Regulations/ Level |
Business rules

[]

Processes and

Systems
Level Il
Front office

© Client

Figure 1. General interoperability framework for normative systems (from the presentation at
KDNet Symposium [32]).

The design methodology developed in the (E-)POWER project follows the steps
from the normative knowledge sources represented in document form, via the

Automated Norm Extraction from Legal Texts

generation of a relevant formal model to a knowledge-based component (i.e. a piece
of software able to make inferences about a certain regulatory domain). Figure 2
shows us the different steps followed by the (E-)POWER project.

Texts
containing Description in
formal logic
Analysis and
Modelin g
v v
Quality Improvement Control

Figure 2. Aims of the (E-)POWER approach (from the presentation at KDNet Symposium [32)]).

Each of the aforementioned steps consists of a specific approach aimed at solving
problems that come with the transformation from one form of knowledge into
another (e.g. translating a sentence in a piece of law text into a formal expression or
model containing the norm addressed in that piece of text).

As may be expected from any design methodology, these steps should be
repeatable and transparent. The formal descriptions created using the (E-)POWER
approach can be used as a basis for creating the operational processes and
supporting (knowledge-based) systems.

The first step (the generation of the formal models from normative sentences) is
also known as “automated norm extraction from legal texts”. During this thesis
research, one of the subproblems of this first step, verb-phrase extraction, will be
tackled.

This thesis is based on the preliminary research done by De Maat 2003 [6]. De
Maat has tried to formalise legal knowledge using natural language processing by
introducing a (limited) set of predefined natural language constructs (in this thesis
they are called JLC’s (Juridical (Natural) Language Constructs)), which can be used to
define a subset of all possible legal sentences. During this thesis research, this
knowledge is used for the generation of the formal models. Because the set of JLC's
is not yet complete, this approach will also be limited. After this thesis project, the
possibility arises to extend the legal knowledge (set of JLC’s) by further examination
of the complete set of legal sentences. In the end the ePower Workbench, the relevant
project started by (E-)POWER, will have all the knowledge to translate the complete
set of legal sentences into their relevant formal model.

When using the legal knowledge (the different JLC’s) a legal sentence can be
classified to one or more JLC types. This is done by parsing according to a set of
production rules, which consist of normative elements. Considering each of the
production rules we determine which of these matches with the current sentence.
After this classification step, the relevant normative information is extracted from the

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 8

Automated Norm Extraction from Legal Texts

legal sentence. When a single classification is not possible, feedback has to be
provided. In case of multiple classifications (i.e. in the presence of ambiguity), the
user will be asked to make choice and in case no classification is possible then either
the legal sentence is incorrect or it cannot be classified according to the existing set
of production rules. As a result of the latter, some production rules have to be
changed or new ones have to be constructed. The user can make these relevant
changes, so afterwards this legal sentence can be recognized (see Section 16.11).
Ambiguities can be handled in various ways: the user can decide in an ad hoc way,
which classification is to be preferred, or he can decide to refine the existing
production rules to distinguish between the classifications.

The next step is the translation of the normative information into a formal model
(in this case expressed in UML/OCL). Special translation patterns are necessary.
These patterns make use of the parsed information and translate this into the formal
model. The next example illustrates this idea.

IB 2001 art 2.1 member 2.2
A Dutchman who is employed by the kingdom of the Netherlands as a diplomatic or
consular official is deemed to reside in the Netherlands during that period.

ﬁ Application of the JLC Deeming Provision

<subject> [i s] <denotation of time period> [deened] <fiction>

ﬁ Application of the Translation Pattern

Dutchman

- isEmployedByTheKingdomOfTheNetherlandsAsADiplomaticOrConsularOfficial: Boolean
- isDeemedToResidelnTheNetherlandsDuringThatPeriod: Boolean

<<Attributel nvariant>>

isEmployedByTheKingdomOfTheNetherlandsAsADiplomaticOrConsularOfficial implies
isDeemedToResidelnTheNetherlandsDuringThatPeriod

The above example shows us a legal sentence, which can be classified to the JLC
type Deeming Provision, by application of the relevant production rule. The
constituents in the example production rule are called normative constructs (i.e.
<subject>, [deemed]). The normative elements are those parts of the legal sentence
which match with the normative constructs (i.e. “A Dutchman who is employed by the
kingdom of the Netherlands as a diplomatic or consular official”, “deemed”). The next
step is the generation of the formal model. This is done by application of the
translation pattern for the JLC type Deeming Provision. In the example the
isDeemedTo—part of the attribute isbeemedToResidelnTheNetherlandsDuringThatPeriod: Boolean Seems
unnecessary because of the existing implication (see the Attributelnvariant).
Nevertheless, in our implementation the verbs are also concatenated with the other

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 9

Automated Norm Extraction from Legal Texts

attribute parts. The normative information within each of the attributes are not taking
into account! so at this moment this seems the best possible solution.

Chapter 2 gives a description of the internal organization of the Tax Office Utrecht
and the ePOWER project. Chapter 3 is used to describe the main problem and the
different hypotheses. In addition, the general purpose of automated norm extraction
from legal texts is described in this chapter. In Chapter 4, a detailed description is
given of automated norm extraction. Chapter 5, 6, 7, 8, and 9 describe which
techniques are used in this thesis project in order to implement a tool for the second
step, verb-phrase extraction, for automated norm extraction from legal texts.
Chapter 10 describes the treatment of some special normative constructs (values,
inheritance and the generation of class—-names, fixed noun-phrases). In Chapter 11,
an alternative solution for the main problem is described. Chapter 12 and 13, give a
description of the implemented components added to the ePOWER Workbench for
efficiency reasons.

Also, in these chapters some optimisations (alternative solutions) and adaptations
to the preliminary research, done by other members of the (E-)POWER project, are
discussed. At the end of this thesis some recommendations for future research are
made. In addition, some related work (alternative specifications for this specific
problem) is mentioned.

1 Maybe in the nearby future some better knowledge becomes available of the normative information
within the attributes of the different JLC’s, so a more practical formal model can be constructed.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 10

Automated Norm Extraction from Legal Texts

2 The Dutch Tax and Customs Administration

My thesis research has been done at the Tax Office Utrecht, Centrum voor Proces- en
Productontwikkeling (B/CPP)2 as the final project of my study at the Institute of
Information and Computing Sciences (ICS) at the Utrecht University. In the next
couple of paragraphs a short description will be given about the different parts from
which the Dutch Tax and Customs Administration is composed of.

The Dutch Tax and Customs Administration is part of the Ministry of Finance, which
is subdivided in a couple of individual organisations:

- Directorate -General Dutch Tax and Customs Administration (DGBel)3
- Tax- and Customs Offices

- Facility Centres

- A Detection facility

The first organisation is the staff of the Directorate -General Dutch Tax and Customs
Administration. Together with the Internal Accountancy Directorate (IAB)4, they are
responsible for the financial accountability of the Dutch Tax and Customs
Administration. They also give advice about the different aspects of the internal
management.

All offices, so the executive facilities (like the Tax- and Customs offices), and the
DGBel (Directorate -General Dutch Tax and Customs Administration) are supported
by the different Facility Centres (technically and informally). The Facility Centres take
care of all the services and applications used to support the employees in fulfilling
their daily tasks. One can think of internal/external communication services, network
control and the development of services for supporting and improving the internal
business processes. One of the Facility Centres is the so called B/CPP (Centrum voor
Proces- and Productontwikkeling). This facility centre develops new processes and
products, which are used by the Dutch Tax and Customs Administration to pursue
their targets and strategies (initially for supporting the primary process). One can
think of the translation of the legislation to computational models (which is the
development where | am taking part of during my thesis research), designing and
modelling of the logistical process or the improvement of existing products and
processes.

All employees working at the B/CPP work, dependent on their knowledge area
(normally they are called experts in one field of science), in one of the twelve so
called domains. Every domain is managed by a domain manager. Every domain can

2 The English name for the “Centrum voor Proces- en Productontwikkeling” is “The Centre for Process and
Product Development”.

3 The Dutch name for the “Directorate -General Dutch Tax and Customs Administration” is “Directoraat-
Generaal Belastingdienst” also known as the DGBel.

4 The Dutch name for the “Internal Accountancy Directorate” is “Interne accountantsdienst belastingen” also
known as the IAB.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 11

Automated Norm Extraction from Legal Texts

2.1

2.1.1

be seen as some kind of Job Centre> from where the employees are dispatched to
projects within their area of expertise, and beside this also fulfilling their daily tasks.
One of the domains, from where this thesis research has been started is the
Vakontwikkeling Klantbehandeling® domain. One of the projects started by this
domain is the POWER project (Program for an Ontology based Working Environment
for Regulations and Legislation)?.

A couple of years ago the POWER project started a project called The ePOWER
Workbench (see Workbench 2.6 2000 [2], and USER DOCUMENTATION ePOWER
Workbench 2.6 [3]. The main target of this project (and of the (E-)POWER project) is
developing a tool to support one of the steps (see Chapter 1) for the generation of
knowledge components (from normative knowledge sources represented in
document form, via a formal model to a knowledge-based component (i.e. a piece of
software able to make inferences about a certain regulatory domain)). The final tool
can be seen as some starting point for the implementation of normative reasoning
applications (applications that have the ability to reason about cases). In the next
sections | will discuss the detailed aims and objectives of the (E-)POWER project (see
Organisatie van de Belastingdienst 2004 [4] for a more detailed specification of the
internal structure of the Dutch Tax and Customs Administration).

ePOWER: European Program for an Ontology based Working
Environment for Regulations and Legislation

Within this section a description is given about the (E-)POWER project. The
information is collected from the (E-)POWER web page (see E-POWER Homepage [5]).
For more information about the (E-)POWER project visit this homepage.

Project Description

The E-POWER project is supposed to achieve at least the following results:

« Developing a method, and supporting tools, with which legislation can be
'translated’ into formal specifications that can be used by computers.

« Developing a pension server for the (European) citizens with which they will be
able to analyse their own pension regulations.

Since the project will apply the same method to both Belgian and Dutch (pension)
legislation and regulations it will be possible to compare these two types of
legislation and analyse the differences.

One of the objectives is furthermore not only to make this domain more
transparent for the citizens but also for example for insurance companies that offer
pension arrangements. The Netherlands aim to open up their pension market to
foreign companies but these companies will have to meet requirements. The analysis
with the E-POWER method also strives to give insights into these requirements. In

5 The Dutch word for “Job Center” is “Uitzendbureau”.
6 The English word for “Vakontwikkeling Klantbehandeling” is “Development of Client Handling Processes”.
7 The Dutch abbreviation “POWER” stands for “Programma Ondersteuning Wet- en Regelgeving”.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 12

Automated Norm Extraction from Legal Texts

this way it should provide an instrument, which could decrease cross border
obstacles for pension providers.

The opening of the Dutch market will also expand the options for Dutch citizens.
They will be able to choose providers from different countries.

Concluding: E-POWER aims to realise a methods8, but also products (e.g. E-services
such as the pension server). The applicability is not confined to just one of pension
legislation and regulations, but directed at all three.

2.1.2 Project Objectives

E-POWER will implement a knowledge management solution by providing a
method that help to improve the quality of legislation while the enforcement of law is
being facilitated.

This method will decrease the time to market new/changed legislation, facilitate
the maintenance of legislation, and it will improve the access to the governmental
body of knowledge by offering new E-services.

Furthermore, the use of this method will result in a more efficient use of scarce
knowledge resources. The E-POWER project will result in transparency of pension
arrangements for the (future) elderly citizens.

The project will offer tools that help with the harmonisation of pension
regulations. By providing easy access (using the Internet) to vital information the
project will contribute to the social inclusion of citizens. E-POWER will consequently
improve the effectiveness and efficiency of public administrations and contribute to
the completeness of the internal market.

8 When in the rest of this chapter the word “method” is used also “method and tools” can be used.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 13

Automated Norm Extraction from Legal Texts

3 Problem Description

In the introduction (Chapter 1) it is mentioned that the global approach of the
(E-)POWER project consists of a couple of subsequent implementation steps (from
normative knowledge sources represented in document form, via a formal model to a
knowledge-based component, see Figure 2). The first step towards the generation of
knowledge components is the generation of formal models from normative texts
(legal sentences). For the generation of these formal models a special tool has to be
developed. In Chapter 2, the relevant tool, which is part of a production environment,
is called The ePOWER Workbench?. The main problem of generating formal models
from legal sentences can be subdivided into two sub problems. The first one is the
recognition and translation of noun-phrases (concepts) from legal texts (noun-
phrase extraction), and the second one is the recognition and translation of verb-
phrases (verb-phrase extraction). When | started my thesis research the norm
extraction tool (part of the ePOWER Workbench) had all the functionality needed for
the noun-phrase extraction step.

My task was to extend the ePOWER Workbench norm extraction tool with all the
functionality necessary for the second step, verb-phrase extraction, of the generation
of formal models. Finally, the norm extraction tool will have all the necessary
functionality needed for the generation of knowledge components. Of course,
afterwards we have to check that we have preserved the intended meaning of the
initial legal sentences. This is done by inspecting (by hand and brain) the outcome of
the translation process.

A starting point for this thesis research is the availability of a subset of all legal
sentences described in the Dutch legislation in a form that they can be used by a
computer to reason about. This means that these legal texts are built upon some
kind of template (Word-documents'0 subdivided in structure blocks), so they can be
used as input for the final norm extraction tool (the translation engine of the ePOWER
Workbench).

During my thesis research, | made use of the results of some research done by De
Maat 2003 [6]. De Maat has tried to formalise legal knowledge using natural language
processing by introducing a (limited) set of predefined natural language constructs
(in my thesis research known as JLC’s (Juridical Natural Language Constructs)), which
should define all possible legal sentences (i.e. legal norms). These JLC’s could
consequently be used to extend the norm extraction tool with functionality necessary
for verb-phrase-extraction. In Chapter 5, the usability of those JLC’s will become
clear.

Because, this thesis research is a continuation of the initial research done by De
Maat the extension of the ePOWER Workbench translation engine is limited to the
recognition of a subset of the complete Dutch legislation. Within this research only a

9 Another name for the ePOWER Workbench tool is the Norm Extraction Tool. Both names will appear and
be used to explain something in this thesis, so both have the same meaning.
10 Word-documents (Microsoft Office Word 2003 [7]).

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 14

Automated Norm Extraction from Legal Texts

3.7

single law has been partly translated into JLC’s. This is the law on income taxes from
2001 (Wet Inkomsten Belasting 2001, IB2001 [8]). Therefore, the examples used
within my thesis are similar to the examples used by De Maat. Of course, during the
test phase of my implementation some other legal sentences are used.

Hypothesis

In my thesis research the main problem is to find a way to recognize verb-phrases
and extract their normative content and then translate them into their relevant formal
models (in this case expressed in UML/OCL, see Fowler, M., Scott, K. 2000 [9] &
Warmer, J., Kleppe, A. 1999 [10]). Initially, the concept extraction tool has
functionality to extract and translate noun-phrases as mentioned in previous
sections. My task was to extend the initial ePOWER Workbench with the functionality
needed for the second step towards automated norm extraction (verb-phrase
extraction).

My thesis research is a continuation of the thesis research done by De Maat 2003
[6]. Therefore my approach is built upon the legal knowledge (the knowledge about
how legal sentences can be formalized by using natural language processing)
described in a form of a (limited) set of predefined natural language constructs
(JLC’s). By examining each of these JLC’s (the global structure of the JLC’s) | can
generate special parse rules for extracting the relevant information from the legal
sentence (the recognition step) and afterwards generating a translation pattern for
the generation of the relevant formal model (the translation step).

Thus, for the recognition step | will test the following hypothesis:

When examining the (limited) set of predefined natural language constructs
(ULC’s) defined by Emiel de Maat, special parse rules can be generated to
extract the necessary legal knowledge from the legal sentences.

And for the translation step | will test the following hypothesis:

After the application of the parse rules, special translation patterns can be
applied to generate the relevant formal models (expressed in UML/OCL).

3.2 The General Purpose

The formal models used in the (E-)POWER approach are expressed in UML/OCL
(Unified Modelling Language/Object Constraint Language, see Fowler, M., Scott, K.
2000 [9] & Warmer, J., Kleppe, A. 1999 [10]). Van Engers and Glassée 2001 [11]
describe the way legal source texts are translated into UML/OCL models. These
UML/OCL representations of the legal texts have shown to be quite suitable in
different projects. Creating these formal models however is a time consuming
activity, and has to be done by high-skilled staff (according to the (E-)POWER project
members experience it takes an experienced knowledge analyst approximately 1.5
days per A4 law text). As a regular approach to be used in large organisations the

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 15

Automated Norm Extraction from Legal Texts

productivity of the modelling process has to be improved since the global aims of the
(E-)POWER approach are three (see Section 2.1):

Reduction of implementation time (time to market)

Improvement of the quality of the normative knowledge (or legal quality)
3. Reduction of total cost of ownership (of the normative systems that result

from the implementation processes).

To improve the productivity of knowledge analysts in their job, in the (E-)POWER
program a research project on using natural language processing (NLP) was started to
analyse normative texts expressed in natural language and for the generation of
(parts of) the formal models that contain the normative knowledge in a form that is
suited for building knowledge-based components (programs that have the ability to
reason about cases). So, the logic that implicitly lies beneath the regulations becomes
explicit.

The fact that legislation and other normative texts are written in natural language
causes some difficulties. The most important problem is that natural language is
ambiguous, which entails that an expression in natural language can have multiple
meanings. This problem can arise both at word level, for example ‘bank’, and at
phrase or sentence level, for example ‘it is not allowed to shoot a man with a gun’'.
Another problem that arises is that natural language contains vague and unclear
notions like ‘almost’, ‘for the most part’ and typical juridical open evaluative terms
like ‘justified’ or ‘good practice’. When using legal texts (acts, norms etcetera) there
are also some anomalies.

When we look at the following characteristics of legal texts this statement
becomes clear:

- Legal texts are the explicit results of a group-dynamic process.

- They contain norms that express what is obligated, permitted and allowed.

- These norms reflect underlying preferences and value systems

- Legal texts can be perceived as specifications for normative systems.

- Legal texts are under specified.

- They suffer from anomalies: inconsistencies, circularities, open evaluative
terms and vagueness.

So, before normative reasoning (e.g. in law enforcement) can be automated,
legislation has to be translated into a language that does not have these
aforementioned problems and can be read by a computer, i.e. a formal specification
language, in our case expressed in UML/OCL. Governments can furthermore benefit
from the fact that ambiguous constructs in the law can be detected during the
translation into such a specification language. This is especially the case when the

11 This sentence has two possible interpretations. In the first place, one can interpret that it is not allowed
to use a gun to shoot a man. The other can interpret that it is not allowed to shoot a man who has a gun.
The difference in interpretation lies in the attachment of the preposition (also known as the PP-Attachment
problem).

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 16

Automated Norm Extraction from Legal Texts

translation is done at an early stage in the chain of processes needed to implement
new or adapted regulations. Than it is often still possible to change ambiguous
constructs, vague terms etcetera, before the law becomes enacted (since repairing
unintended meaning in a later stage is much more expensive). When changes are not
possible or desirable, one could still provide the law enforcement organizations with
non-ambiguous interpretations (which of course should be documented as additional
knowledge sources). In the ideal situation, normative texts should be
non-ambiguous.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 17

Automated Norm Extraction from Legal Texts

4 Automated Norm Extraction

In this chapter, the complete process of automated norm extraction is described.
Figure 3 visualizes this complete process. It shows us the general approach towards
automated norm extraction. The arrows in the figure are used to indicate the
subsequent steps for the generation of the knowledge components. The implemented
tool accepts Legal Sources'? as input for the translation step. The translation step
results in two possible models: Process models and Conceptual models. The Process
models can be transformed into Task models (for a detailed description of how to use
UML/OCL for expressing process and task knowledge, see Egberts 2004 [12]). From
both the Conceptual models and Task models, the final Knowledge components can
be generated. The dashed arrows are cyclic arrows (the model or the component
leads to a new legal source, which can be translated again).

____________ > Legal Sources

Translation Process Models

| I

Conceptual Models Task Models

Generate

Knowledge Components

Figure 3. The general approach towards Automated Norm Extraction (from the presentation at
KDNet Symposium [32]).

For the complete automated norm extraction two different implementation steps are
used, namely noun-phrase extraction (the extraction of concepts) and verb-phrase
extraction (the extraction of meaningful coherent structures in legal sentence). Both
describe functionality, which can be used within the translation step to generate the
relevant (formal) models. Later on, we can use these specific models to generate
knowledge components, which can then be used in knowledge applications.

4.1 Noun-phrase Extraction

The first implementation step has resulted in an automated concept extractor,
which allows a computer to identify the different concepts (noun-phrases) that exist

12 The input texts are written in Microsoft Word based on a predefined template.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 18

Automated Norm Extraction from Legal Texts

4.2

in a given legal sentence (see Van Gog & Van Engers 2001 [13]). This step is largely
based among others upon the Object Modelling Technique (OMT) (see Rumbaugh
1999 [14], Frederiks 1997 [15]). From a computational linguistic point of view this is
a simple method to implement. The general disadvantage of this method, however, is
that generally too many object types are introduced. This is not a problem when
using an automated concept extraction tool. Rumbaugh, not benefiting from the
availability of an automated extraction device, gives a few guidelines for reducing the
number of object elements (types, attributes, operations and roles/relations). These
guidelines aim at reducing redundant, irrelevant and vague object elements as well as
implementation constructs. Generally speaking, world knowledge is needed to
determine whether these criteria apply. Considering world knowledge however is not
desirable, because the possibility exists that extra information is introduced into the
model that we want to derive from the original legal source texts and of course we
don’t want this model to contain any knowledge that is not part of that normative
knowledge source. If the use of world knowledge can’t be avoided, that knowledge
should at least be explicated (and documented as a separate knowledge source).

One can easily understand the benefits of being able to extract the concepts that
are used in a specific piece of law text. For various reasons it is important to have
insight in the concepts that are used for legal reasoning. Legislation drafters could
use the insight in existing concepts to decide on the reuse of those concepts.
Sometimes introduction of new concepts is needed or specialization is needed for
being able to express the normative statements (e.g. expressed as an article in the
law), but if an already existing concept can be reused this will reduce the
implementation effort. Furthermore, reduction of administrative costs for citizens and
business are one of the interests for the legislator. Insight in the concepts used in a
piece of law can therefore be used to calculate administrative costs.

From a knowledge engineering perspective, the automated concept extractor has
further benefits. Not only it reduces the amount of work that knowledge analysts
normally have to do, but since automated generation of models also increases inter-
analyst independency its application results in more uniform models as well. More
uniform models are easier to understand, easier to process when creating
applications based on these models and easier to maintain.

Verb-phrase Extraction

The second step towards automated norm extraction consists of modelling
elementary sentences (later named as JLC’s) in the original normative knowledge
source, optionally using the results of the first step. This step is partly comparable
with the NIAM approach by Nijssen 1989 [16]. The disadvantage of NIAM is that the
text must be transformed into elementary sentences, which is quite labour intensive.
The modelling of elementary sentences can therefore just be used as an intermediate
step and it must always be possible to trace the final model back to the source text.

In my approach, I try to identify and model meaningful coherent structures in the
text in a pragmatic way. The tool, which has to be developed, should not be limited
to the modelling of nouns, but on the other hand it does not have to model complete

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 19

Automated Norm Extraction from Legal Texts

(elementary) sentences. Therefore, | concentrate on syntactic constructs (invariant
linguistic structures at the syntactical level that characterize specific normative
expressions in natural language) and translation patterns (describing how natural
language constructs should be translated into constructs in the final formal UML/OCL
model). | use standardized transformations to translate the relevant legal constructs
found in the legal sentence into a formal expression or model, thus enhancing
uniformity i.e. inter coder independency. The approach is therefore a ‘middle-out’
approach.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 20

Automated Norm Extraction from Legal Texts

5 The Categorization of Legal Sentences

A previous study (see De Maat 2003 [6]) leads us to the conclusion that the
sentences that occur in legal texts can be grouped in a few categories (see Figure 4):

- Nouns

- Definitions and Type extensions
- Scope Definitions

- Deeming provisions

- Application provisions

- Value assignments and changes
- Conditions

- Norms

For each category (with the exception of norms which are expressed in one or
sometimes more than one natural language sentences), there is a limited set of
possible juridical natural language constructs (so-called JLC’s) used in the sentence.
| refer to Appendix A, for the complete set of global structures belonging to each of
the predefined JLC’s.

A sentence can be classified by studying the constructs used. A description of this
classification is described by De Maat 2003 [6]'3.

Globally normative sentences as they occur in legal texts, i.e. the law, consist of a
main sentence (seven possible types indicated in Figure 4 in italics) and subordinate
clauses (which add constraints). In addition, more extensions exist.

The fat boxes in Figure 4 denote elements that are always present as part of the
higher-level element, while the thin boxes are optional extensions. The simplest
form of a sentence consists of just a main sentence, which includes one or more
noun phrases that are only composed of their main term (the noun), its article and
any adjectives that are not considered part of an implicit condition. Although the
treatment of adjectives has not been described by De Maat we state that adjectives
can be treated as implicit conditions but also as part of a term.

An example is the noun phrase “taxable income”, which can be interpreted as a
single term, or as a term with a condition (the term “income” with a Boolean attribute
“taxable” and a condition “taxable = true” (in our tool the human expert can decide
what translation suites him best, but both interpretations are correct from a
modelling point of view). Sentences that are more complex are created by adding
other elements. For example, a more complex sentence can be created by adding a
condition (optional element, thin box). This condition will at least consist of an actual
condition (necessary element of condition, fat box).

13 The global structure of normative sentences (see Figure 4) is a subset of all possible existing structures
within a legal sentence. Further research is necessary to specify new structures (JLC’s) but at this moment
this can be seen as one further step towards formalizing legal sentences.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 21

Automated Norm Extraction from Legal Texts

sentence
condition main sentence scope definition
definition/

type extension/
value assignment/
value change/

application of another source actual condition application provision

deeming provision/

5.7

norm

noun phrase

main term implicit condition reference

Figure 4. The global structure of normative sentences as they occur in legal source texts
(master’s thesis De Maat 2003 [6]). The user can compose a legal sentence by looking at the
global structure. An element described in a fat box is always present as part of a higher-level
element and the thin boxes are optional extensions.

By using the set of JLC’s any legal sentence'4 can be recognized and classified by
parsing the subsequent language constructs specified in each of the JLC’s (see Figure
5).

IB 2001 art 2.1 member 2.2
A Dutchman who is employed by the kingdom of the Netherlands as a diplomatic or
consular official is deemed to reside in the Netherlands during that period.

<subject> [i s] <denotation of time period> [deened] <fiction>

Figure 5. Example of the subsequent structures specified in the Deeming Provision JLC

After this, a translation component, which consists of a set of translation patterns,
can be used to translate the parsed information to create the relevant formal
specification language e.g. expressed in UML/OCL.

Parsing Normative Texts

Since all categories of legal sentences (see the beginning of this chapter) except
norms can be identified by their specific language constructs, a computer can test for
their presence. Consequently, automated classification (parsing) is possible.

14 Of course, | mean the legal sentences chosen and used within the preliminary research done by De Maat
2003 [6] (law on income taxes from 2001, IB2001 [8]).

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 22

Automated Norm Extraction from Legal Texts

Initially, | thought of making use of the possibility to specify the juridical
information for each of the different words in a lexicon table. The information is
stored in a database (easily extendable, administrable). By specifying an algorithm
(for example pattern matching) which examines the legal sentence for the occurrence
of these different juridical structures, we can classify the legal sentence into a well
known format. However, for the generation of the formal models we need other
language constructs to specify the formal attributes, relations and associations. In
addition, when we look at the structure of the JLC Definition 1 (<subject>< is>
<definition>) the main term /s of the structure is not sufficient to classify to one
specific JLC. It also can generalize to other types. See Section 11.1 for a more detailed
description about this dynamic approach.

So, in order to be able to parse sentences in normative texts, the natural language
constructs or ‘patterns’ that can occur have to be described formally. | use a
unification grammar to specify the JLC’s. Shieber 1986 [17] gives a comprehensive
description of a unification grammar. Unification grammars provide us with a both
elegant and efficient description of the language constructs. Grammar rules are used
to describe the general language constructs at a syntactic level, while the unification
rules are used to enforce agreement between the constituents.

An example is that given the grammar rule S -> PRONOUN VERB, both the
sentences “you are” and “you is” are correct according to this rule, while it is clearly
true that the latter is not correct. By adding the unification constraints
PRONOUN.person = VERB.person and PRONOUN.number = VERB.number to the rule
the latter is excluded. In this example, six rules would be needed without unification,
namely one rule for each combination of person and number.

Generally parsing of natural language is problematic because often natural
languages are highly ambiguous and the meaning of concepts can only be
understood looking at their context (see Van Engers & Glassée 2001 [11]). A legal
source should be syntactically unambiguous, so ambiguity should not be a major
problem in our case. Although we cannot guaranty that the legal text is hundred
percent unambiguous, we can assume that syntactical ambiguity is unintended.
Therefore, the parsing process is supervised, so when a syntactical ambiguity is
encountered, all the different alternatives (i.e. the parse trees) will be presented to
the user who subsequently can select the most appropriate one. When such
ambiguous translations are possible, feedback to the legislation drafter or legal
experts is desired, because ambiguity is something we definitely want to avoid.

Finally, it is not necessary to recognize the entire sentence; it is sufficient to parse
the top levels. This is because (in the (E-)POWER project) parts of the sentences are
kept in one piece. For example, a deeming statement has the following pattern:
“noun-phrase [wordt] time-period [geacht] fiction”. When building a model of this
text, the entire fiction and time-period language constructs (the largest part of the
sentence) are often kept in one piece (in almost every case these pieces are translated
to OCL attributes by simply concatenating each word). For the generation of class-
attributes see Chapter 9.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 23

Automated Norm Extraction from Legal Texts

§) The Parts of the Norm Extraction tool

The norm extraction tool (as it is present in the beginning of my thesis research)
consists of a parser, a lexicon (containing Dutch words and their optional juridical
terms), a grammar (containing normal Dutch and specific juridical language
patterns), a ‘lexicon supplementor’ which tries to identify the grammatical category
of an unknown word (e.g. a set of digits will be identified as a number, furthermore a
combination of nouns that individually are part of the lexicon are considered to be a
noun as a whole) and a model generator (also known as the set of translation
patterns) which translates the parsed source text into formal model components. A
modelling interface (the Translate wizard, see Figure 6) is added to assist the
knowledge engineer to adapt the generated model to suit his needs.

The norm extraction tool is used to generate the domain ontology (or conceptual
model) consisting of types, attributes and relationships, expressed in UML.

Van Gog & Van Engers 2001 [13] describe the concept extraction approach. Since
in the end the ambition of this research is to support the formalization of the
normative content of legal text, we have to go a step further than just concept
extraction.

First, let us take a closer look to each of the different language dependent parts of
the ePOWER Workbench, which are stored in the translate-nl's database.

15 Unfortunately, the existing norm extraction tool (the Workbench) only consists of the Dutch language
dependent parts. Because these parts are stored in separate database tables one can imagine that adding
more language support is trivial.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 24

Automated Norm Extraction from Legal Texts

Lexicon

sentence

Lex

Supplementor

icon

Unification
Grammar

unkno
word

tokens

wn

tokens parsings

USER
Patterns
Translate ... Translate >
Engine Wizard
it """";E*;;: """"""" P
Repository ' partial e
SQL-server article model T,
Ty
Legal text Word Workbench Workbench
(Word) Import Repository Explorer
t ////)' A :
y AR Component
Metalex Import/Export Generator
Export T
%H
I I Knowledge-
Legal text Case tool Cokr)nassr?en t
(Metalex) P
/

Proces-
Model

Figure 6. The global model of the ePOWER Workbench. The ePOWER Workbench is composed of
different functionalities that are connected to a central repository (Van Engers, T.M., Sayah, K.,
Van Gog, R., De Maat, E. 2004 [33]). The relevant elements for this thesis project are dotted.

The other parts are just to visualize the complete Workbench Project, so no further description

is given.

6.7 Lexicon

The lexicon is the most standard part of the ePOWER Workbench, because this part
is filled with information, which is derived from different language institutes.
Globally, the lexicon is a description of all possible words and word shapes with their

lexical meaning.

head. | head. head. | head.
head. head. | head.
Id Sem cat Root agr. agr. agr. agr.
subcat mood | Tense
gen case Per num
6 deemed V | MAIN to INDICA | PAST 2 P
deem TIVE

Table 1. A record from the lexicon database table.

Table 1 presents an example of a record corresponding to the word ‘deemed’ as it
is stored in the lexicon table. The table consists of a couple of columns, each
representing some grammatical meaning, also called features.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004

25

Automated Norm Extraction from Legal Texts

Figure 7 presents a global tree structure of the features, which are stored in the
lexicon table. These features can be used during the parsing process for the selection
and extraction of the correct grammatical language constructs from the legal text.
Later on, within the description of the Unification Grammar (see Section 6.2) it will
become clear how this stored feature-set can be extended by describing new features
(Grammar rules) within each production rule.

Feature Tree

— id

— sem

— cat

— head

— subcat

— agr
gen
case
per
num

— mood

L tense

— root

Figure 7. Global Tree structure of the stored features.

We consider in sequence the columns of Table 1, each of which represents a
feature. Id (the foreign key) is necessary for making the record reachable from other
sources within the ePOWER Workbench. The sem feature is the exact shape of the
word as it occurs in the legal sentence. The cat feature states the grammatical
category the word belongs to. The word used in the example has value V, which
means that this is a verb. Other values are N, for nouns, PUNCT (lithographic
punctuations like : ; “”1[(){}.,), CUR s a value to indicate a currency symbol like
€, PREP, for the indication of language prepositions and some more.

The head.subcat feature is a subdivision of the cat feature. For example the subcat
feature value for the cat feature V is MAIN indicates that this verb is a main verb.
Other values for the subcat-feature of a verb are AUX (auxiliary) and COP (copula).
Values for the subcat-feature for the cat-feature NUM are ORD (ordinal) and CARD
(cardinal). Other cat feature values and subcat feature values also exist, but at this
moment | think the global idea is clear.

The example shows that to deem is indicated as the root of the main verb. This
root feature information is used in the final translator. The next couple of features
are sub features of the Aead feature. This feature is subdivided into four general sub
features namely subcat, agr, mood and tense. The first was described earlier. The agr
feature (for a description of how to use the grammatical agreement within Natural
Language Parsing see The Natural Language Processing Dictionary 2003 [18]) is also
subdivided into four sub-sub-features, namely gen (gender), case (e.g. object,
subject), per (person), and num (number, e.g. singular and plural). These features
give value to each of the grammatical agreements of the specific word in the legal
sentence. The mood and the tense features of the head feature give a grammatical

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 26

Automated Norm Extraction from Legal Texts

meaning to verbs. E.g. values for the mood feature are INDICATIVE, INFINITIVE and
PARTICIPLE. For the tense feature some values are PRESENT, PAST and IMPERFECT. All
these head features are language dependent, so other values of the sub and sub-
sub-features are possible. The features feature offers the possibility to extend the
generic features with additional ones when necessary.

With all these grammatical information stored in one database table all necessary
information becomes easily administrable and accessible.

6.2 Unification Grammar

In my approach (verb-phrase extraction), | also make use of the unification
grammar'é for parsing. This Unification Grammar is stored within the translate-nl
database as a separate database table (ProductionRules table). Each record of this
database is filled with information necessary for each of the specific Production rules
(specified in XML, XML Developer Centre 2004 [19]). Each of these production rules
declares some kind of grammatical part of the language used. Because, one of the
building blocks of a Unification Grammar is Production rules we call this approach a
rule based approach (see Rule Based Systems 1994 [20]).

In Figure 8, the general form of a Production rule is depicted.

LHS RHS
NLC -> (NLC)* Grammar Rule
(<Feature-Name> = <Feature-Value>)+ Unification rules (Features)

Figure 8. General form of a Production rule.

In general, a production rule consists of a Grammar rule (in EBNF) and one or more
Unification rules. A grammar rule consists of a /eft-hand-side (LHS) and a right-
hand-side (RHS)'7. The RHS consist of one or more optional Natural Language
Constructs (NLC’s) and the LHS in general is the name of the production rule. Because
the LHS is also a NLC, recursive grammars are possible. The Unification rules
belonging to a Grammar rule each consist of a Feature-Name/Feature-Value pair.

16 The Unification Grammar used within the Workbench consists of a set of Production rules. These
production rules consist of one grammar rule, each consisting of one or more unification rules.

17 When in this thesis the words “LHS"and “RHS” are used also the words “left-hand-side” and “right-hand-
side” can be used.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 27

Automated Norm Extraction from Legal Texts

An example of a production rule which can be used to parse determiners like your,
his, my, her, our and so on is defined in Figure 9 (see De Determinator 2002 [21] for
a detailed specification of grammatical determiners).

DETE -> PN

<DETE inResult> = false

<PN head subcat> = PERSONAL
<PN head agr case> =C2

<DETE sem> = <PN sem>

Figure 9. The Grammar rule and the relevant Unification rules for the extraction of
grammatical determiners.

Figure 9 shows one of the production rules for the extraction of determiners. Also
the Unification rules are specified. The first unification rule states that the result of
this rule is not visible in the final result (i.e. can not act as a root of a parse tree). The
second and the third rule are used to select only those PN’s (pronouns) where the
head.subcat feature is equal to PERSONAL and the head.agr.case featureis equal to
C2 (genitive). All the feature information can be read from the lexicon, where all the
(grammatical) features are stored (see Section 6.1). The last Unification rule states
that the sem-feature of the DETE is equal to the sem-feature of the PN. With all these
unification rules, some grammatical properties of the different NLC’s can be stated
and used in the parsing process.

All production rules are described in XML and stored in a separate database table,
which makes the grammar easily to maintain and to access. When new grammatical
functionality is necessary for the extraction of other language constructs one can
specify new production rules and add them to the database.

The production rule depicted in Figure 9 is implemented during the first step of
automated norm extraction (Moun-Phrase Extraction, also knows as concept
extraction), because this grammatical element is always part of a noun-phrase. For
the generation of the production rules, in the second step (Verb-Phrase Extraction),
other choices have been made for storing the necessary parse information (in this
case the information for all the different categorizations specified in Chapter 5). |
have chosen to store all the necessary information of the different JLC’s
(categorizations) statically within each of the production rules'8 (see Figure 10),
although | first considered using another possible solution method for this problem
(see Chapter 11.1).

18 This seems the most efficient way to implement the Production rules for each of the different JLC’s,
because this approach reuses all functionality, which was already present in the Workbench project when |
started my thesis research.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 28

Automated Norm Extraction from Legal Texts

6.3

S->NP_1V_2(XLIST_3)V_4 XLIST_5

<S inResult> = true

<S sem type> =s dp
<S's_order> =sv

<V_2 root> = worden

<V_2 head subcat> = AUX

<V_4 root> = achten

<V_4 head subcat> = MAIN

<S head agr> = <NP_1 head agr>
<S head agr> =<V_2 head agr>
<S sem subject> =<NP_1 sem>
<S sem dp_partl> =<V_2sem>

<S sem time_period> = <XLIST_3 sem>
<S sem dp_part2> =<V_4 sem>

<S sem fiction> = <XLIST_5 sem>

Figure 10. Static storage and usage of the JLC Deeming Provision (s_order = sv)

Figure 10 shows that a special feature (sem.type = s_dp) is created to recognize
this production rule as being a JLC Deeming Provision during the parsing process.
When this rule is applicable to the legal sentence (input text), during the parsing
process, this legal sentence is recognized as being of type “Deeming Provision”.
Later, during the translation part, this JLC information can be used to generate a
translation pattern for this specific case. In the next section the complete translation
process is specified.

In Chapter 12, some optimisations on the generation and management of the
production rules will be discussed.

For now, let us look at the translation of the parsed information (by application of
the Production rules) to a computational model (expressed in UML/OCL).

Translation Patterns

The last important part of the ePOWER Workbench is the database table with all
the so called trans/ation patterns. These patterns can be used to convert the result of
the parsing process into a computational model. In case of the (E-)POWER approach
these models are built upon the UML/OCL standards (see Fowler, M., Scott, K. 2000
[9] & Warmer, J., Kleppe, A. 1999 [10]). In the initial Workbench project, Visual Basic
scripts are used to specify the conversion functionality (see Visual Basic Language
and Run-Time Reference 2004 [22]).

An example of a pattern can be found in Table 2. This pattern uses information,
which is saved during the application of the grammar rule NP => CUR NUM (see
Figure 11).

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 29

Automated Norm Extraction from Legal Texts

Type = "np_noney"

dim Result as New System.Collections.ArrayList
dim Temp as Object

Temp = Feature.Model.GetType(Feature.ltem("cur").To String +
Feature.ltem("root").ToString)

Result.Add(Temp)

return Result

Table 2. The transl/ation pattern for the type np_money.

NP => CUR NUM

<NP inResult> = true

<NP sem type> = np_money
<NUM subcat> = CARDINAL
<NP sem main> = <NUM sem>
<NP sem root> = <NUM root>
<NP sem cur> = <CUR sem>

Figure 11. The Production rule used to parse and store the information used in the np_money
transl/ation pattern to create the relevant computational model.

The translation pattern in table 2 shows that the variables curand root are used to
generate the relevant computational model. This is because these variables contain
information, which has been stored during the application of the relevant Production
rule. In Figure 11, the relevant Production rule is stated. In the RHS of this rule both
the NLC’s (CUR and NUM) are parsed and connected to the relevant sem-features in
the LHS'9 (see Figure 11, the last two Unification rules). In general for each of the
specified sem.type-features, declared in a Production rule in the LHS, a translation
pattern (type = sem.type) must be made. By this fact, there is a possibility that more
than one JLC can be recognized within the input text (legal sentence). Suppose we
want to translate the following legal sentence:

IB2002 Article 2.2 Member 3

If a Dutchman is deemed to live in the Netherlands based on the second member, the
partner and the children who are younger that 27 years old and nourished for the greater
part by him, are also deemed to live in the Netherlands.

We first have to determine which categories can be found within this sentence. By a
closer look, two main categories, namely an Explicit Condition and a Deeming
Provision, can be found.

19 In general the RHS NLC’s, which has to be used in the final translation pattern or in a higher fragment of
the derivation tree, are interlinked by the relevant LHS sem-features by Equationld’s.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 30

Automated Norm Extraction from Legal Texts

A global structure of the legal sentence shows us the existence of both JLC’s:

Entire sentence
If a Dutchman is deemed to live in the Netherlands based on the second member, the partner and the children
who are younger than 27 years old and nourished for the greater part by him, are also deemed to live in the

Netherlands.

Main sentence (Deeming Provision) Explicit Condition
the partner and the children who are younger than 27 If a Dutchman is deemed to live in the Netherlands
years old and nourished for the greater part by him, based on the second member

are also deemed to live in the Netherlands

Noun phrase Noun phrase Deeming Provision
the partner and the children who are younger than 27 a Dutchman based on a Dutchman is deemed
years old and nourished for the greater part by him the second member to live in the

Netherlands
Main term Main term
Main Term Noun phrase a Dutchman a Dutchman
partner the children who are

younger than 27 years old
and nourished for the
greater part by him

Main Term
children

For this legal sentence to be translated special translation patterns have to be
made to handle the existence of multiple JLC’s. There is a translation pattern made
for the Deeming Provision (as a stand-alone JLC, see Appendix F “type = s_dp”) and
one for the Explicit Condition (as a stand-alone JLC, see Appendix F “type = ec”) and
some additional control statements within the translation patterns to handle the
combination of both JLC’s. In this case, special additional statements20 are added
within the translation pattern of the Deeming Provision to handle the existence of an
Explicit Condition (see table 3).

Table 3 shows us which statements are necessary to handle the existence of an
Explicit Condition in combination with a Deeming Provision. First we have to check if
there is an Explicit Condition found during the parsing process (see table 3, line
number 19). If there is an Explicit Condition then we collect all the attributes within
this Explicit Condition (see table 3, line number 20/27) and add the condition
statement to the condition part of the Deeming Provision (see table 3, rule 28/33).

20 |n this thesis research | have extended the ePOWER Workbench Translator (the Production Rule set) with
functionality to handle a subset of all applicable JLC's and JLC combinations. The necessary functionality is
added by examining all the legal sentences (from a self-made testbench, categorized by JLC-name) and
their relevant JLC’s. So the ePOWER Workbench contains only functionality to recognize and translate a
subset of all possible JLC combinations. Therefore, this thesis can be seen as a first step for tackling the
main problem of automated norm extraction from legal texts.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 31

Automated Norm Extraction from Legal Texts

type = "s_dp"

dim Result as New System.Collections.ArrayList
dim EC as New System.Collections.ArrayList
dim Counter as Object

dim AttrCounter as Object

dim EcCounter as Object

dim Attr as Object

dim strCondition as String

dim strTemp as String

ONO O WNPE

9 Result = Feature.ltem("subject"). Translate(Nothing)
10 for each Counter in Result

11 strCondition ="

12 for each AttrCounter in Counter.myAttributes

13 if strCondition ="" then

14 strCondition = AttrCounter.Name

15 else

16 strCondition = strCondition + " and " + AttrCounter.Name
17 endif

18 next

19 if Feature.item("ec.type").ToString <> "" then

20 EC = Feature.ltem("ec").Translate(Nothing)

21 for each EcCounter in EC

22 for each AttrCounter in EcCounter.myAttribut es

23 if Counter.Name = EcCounter.Name then

24 strTemp = AttrCounter.Name

25 else

26 strTemp = EcCounter.Name + "." + AttrCounter.Name
27 end if

28 if strCondition = "" then

29 strCondition = strTemp

30 else

31 strCondition = strCondition + " and " + strTemp
32 end if

33 next

34 next

35 endif

36 if strCondition <> "" then
37 strCondition = strCondition + " implies "
38 endif

39 Attr = Counter.GetAttribute("Boolean”, Feature.ltem("dp_part1").ToString +
Feature.ltem("time_period").Translate(Nothing) + Feature.ltem("dp_part2").ToString +
Feature.ltem("fiction"). Translate(Nothing))

40 Counter.GetConstraint("attributelnvariant”, strCondition + Attr.Name)
41 next

42 Return Result

Table 3. The Translation Pattern for the JLC Deeming Provision, special statements to handle
the existence of an Explicit Condition are marked bold.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004

32

Automated Norm Extraction from Legal Texts

When this translation pattern, together with the translation pattern of the Explicit

Condition, is added, the following computational model will be generated:

Partner

- areAlsoDeemedToLivelnTheNetherlands : Boolean

<<Attributel nvariant>>

Dutchman.isDeemedToLivelnTheNetherlands ==> areAlsoDeemedToLivelnTheNetherlands

Children

- areYoungerThan27YearsOldAndNourishedForTheGreaterPartByHim: Boolean
- areAlsoDeemedToLivelnTheNetherlands : Boolean

<<Attributel nvariant>>

areYoungerThan27YearsOldAndNourishedForTheGreaterPartByHim AND
Dutchman.isDeemedToLivelnTheNetherlands ==> areAlsoDeemedToLivelnTheNetherlands

Dutchman

- isDeemedToLivelnTheNetherlands: Boolean

The second member

<<pack ageReference>>

Figure 12.

So, when new functionality is added to the ePOWER Workbench (in other words
adding new Production rules) new patterns have to be added or old ones have to be

adjusted.

The computational model of the law specified in IB2002 Article 2.2 Member 3

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004

33

Automated Norm Extraction from Legal Texts

The Generation of Production rules

In this chapter, a description is given of how the different production rules can be
generated by examining the different JLC’s.

Specific for my approach is the treatment of the different JLC’s. Figure 13 shows
us the global structure of a subset of the rules that are used for parsing the JLC’s.
This model is not complete but can be extended if more knowledge about how to
recognize and translate JCL’s becomes available.

Sentence

(Sentence) S -> S (PUNCT) EC
head.s_order = SV

(Sentence) S -> EC PUNCT (ADV) S
head.s_order = VS

Optional JLC's

(Explicit Condition) EC -> [Indien] NP XLIST

Main Sentence JLC'’s
(Deeming Provision) S -> NP V1 XLIST V2 XLIST

sem.s_order = SV (V1)root = worden;(V2)root = achten
sem.type = dp

(Deeming Provision) S -> V1 NP (XLIST) V2 XLIST
sem.s_order = VS (V1)root = worden;(V2)root = achten
sem.type = dp

(Definition) S -> NP V XLIST
sem.s_order = VS (V)root = zijn

sem.type = def

(Definition) S -> V NP XLIST
sem.s_order = VS (V)root = zijn
sem.type = def

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004

Figure 13. The global structure of a subset of the rules that are used for parsing the JLC’s

The above structure is divided into three parts corresponding to the general
structure of a legal sentence (see Figure 4). In this figure, a normative Sentence is
described consisting Optional JLC’s and Main Sentence JLC’s. In this global structure,
all optional JLC’s have a corresponding grammar rule and are part of a sentence.

Furthermore, a division is made in the order of the subject and verb constructs.
There are (legal) sentences with the subject followed by some kind of verb (normal
sentences) and other (legal) sentences with some verb followed by the subject
(subordinate clause). Because every sentence can contain a subordinate clause, for
every Main Sentence JLC two or more Grammar rules must be made.

The parsing engine can handle recursive rules. This is necessary because legal
sentences can contain more than one JLC. A JLC can consist of another JLC and so on
and so on.

In general, when a new JLC has been specified (by further research) one can look at
the general functionality of the JLC (optional or not optional) and add the relevant
information to the model. When the new JLC is optional, we have to add two rules

34

Automated Norm Extraction from Legal Texts

(SV/VS-form) to the Sentence part of the foregoing structure and one rule to the
Optional part. When it is not optional, we have to add two rules (SV/VS-form) to the
Main Sentence JLC’s part.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004

35

Automated Norm Extraction from Legal Texts

8 An example; parsing a JLC

In this chapter, we show how we can apply the different techniques described in
Chapters 5, 6 and 7 to obtain, for the example JLC Definition 1, the production rule (a
grammar rule and unification rules) and the translation pattern. The former is used to
recognize sentences of the given category, the latter to generate the corresponding
formal model. Note that what we describe here for this specific JLC, has been done
for each of the known JLC’s listed in Appendix A. The outcome of this process can be
found in Appendix B and E.

An example of a JLC is the Definition 1. The basic format of the JLC Definition 1 is

(see Appendix A):
<subject> [are | is] <definition> Q)

When we want to translate the following legal text

IB 2001 Art 2.1 section 2
Dutch income is income as meant in chapter 7.

a couple of subsequent actions have to be made. First, we have to determine a
production rule by examining the global structure of the JLC Definition 1. After we
have recognized a production rule, we can determine a translation pattern for the
generation of the relevant formal model. First, let us take a closer look at the
production rule of the JLC Definition 1 (see Figure 14).

S->NP_1V_2NP_3

1. <S inResult> = true
2. <V_2 root> = be
3. <V_2 head subcat> = MAIN
4. <NP_3 sem isValue> = false
5. <S head agr> = <NP_1 head agr>
6. <S head agr> =<V_2 head agr>
7. <S head> =<V_2 head>
8. <S sem subject> =<NP_1 sem>
9. <S sem direct_object> =<NP_3 sem>
10. <S sem type> =s_def

Figure 14. The Production rule for the JLC Definition 1

The above figure presents us the production rule for the JLC Definition 1. This
production rule is made by examining the global structure of the JLC Definition 1 (see
(1)). There are three NLC’s made, namely NP_1 (for the extraction of the subject), V_2
(for the recognition of the main term “is”) and NP_3 (for the recognition of the
description of the definition part of the legal sentence). In addition, a couple of
unification rules are made to be able to enforce some restrictions during recognition
part of the parsing process. | will discuss the unification rules one by one so the
global meaning of the complete production rule will become clear.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 36

Automated Norm Extraction from Legal Texts

The first unification rule can be used to depict the outcome of this rule in the
final derivation tree. When the value for the variable inResult is set to false, the
outcome of the parsing process is not depicted in the final parse tree. Mostly those
rules (with inResult = false) are part of a higher-level rule for the generation of sub
elements of the higher level construct. In our case, we do not need the result of this
rule to be visualized in the final answer. In general, when a legal sentence is
classified as being of JLC type Definition 1, we have to generate two classes (one for
the first NP and one for the second NP (the right-hand-side of the global structure of
the JLC Definition 1)) whereby the first class is a sub class of the second class (see
Figure 15).

Income* Income

- Dutch : Boolean

Figure 15. /ncome* is a sub class of the class Income (Inheritance).

When we look at the above figure we note that in our case we have to make a class
“Income*” and a class “Income”. See Section 10.2 for a detailed description of how to
handle inheritance.

Both NP’s are used in a higher level of the parse tree for the recognition of other
formal statements within each NP. So the result of this rule can be seen as an
intermediate result and thereby it is not visible in the final result.

The rules 2 and 3 (in Figure 14) are used to make some grammatical restrictions
on the recognized verb. Both rules will enforce that we recognize the word “is”,
namely by specifying that the root-feature is equal to fo be and the head.subcat-
feature is equal to main. Other grammatical forms of the verb to be are possible, but
in the example only the verb /s has to be recognized.

Unification rule 4 is a special rule for the recognition of values (words which
always represent values, like “height”, “level”, “amount”, “10” etcetera). In this case,
for the classification of the JLC Definition 1, we only want to recognize non-value
language constructs on the right-hand-side of the JLC Definition 1. When the right-
hand-side NP can be seen as a value-statement, we can apply the production rule for
the JLC Value Assignment, Change and Comparison (see Appendix A). See Section
10.1 for a more detailed description of how to take care of language constructs,
which represent values.

The unification rules 5, 6 and 7 make some restrictions on the grammatical
agreement of the first NP (NP_1) and the verb (V_2). Verb (V_2) must agree with its
subject (NP_1) in person and number (see The Natural Language Processing
Dictionary 2003 [18]).

The next two unification rules, 8 and 9, are used to store the recognized language
constructs into variables, so during the generation of the relevant formal model we
can use these variables. Note that we only need the first NP (as subject) and the
second NP (as direct_object) for the generation of the formal model. The reason that
we do parse and store the other natural language constructs is the fact that in the

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 37

Automated Norm Extraction from Legal Texts

future we have to generate OCL constraints to be able to generate code (see Liduan,
F. 2004 [31]). At this moment, we just want to visualize the result of the translation
process (at this moment by using the UML/OCL conventions).

The last unification rule is used to indicate that this rule is of JLC type Definition 1
(s_def). Later, when we want to implement a translation pattern for this production
rule we can reach the parsed information by referring to the stored variables (subject
and direct_object).

After determining of the production rule, we can specify a relevant translation
pattern. Table 4, shows us such a translation pattern, which can be used to generate
the formal model of the JLC Definition 1.

type = "s_def"
dim Result as New System.Collections.ArrayList
dim Temp as New System.Collections.ArrayList
dim Counter as Object
dim Counter2 as Object
dim Assoc as Object
dim strConstraint as String
dim boolFound as Boolean

strConstraint ="

Result = Feature.ltem("subject ").Translate(Nothing)
for each Counter in Result
Counter.Name = Counter.Name + "*"
next
Temp = Feature.ltem("direct_object ").Translate(Nothing)
for each Counter in Result
boolFound = false
for each Counter2 in Temp
if Counter.Name = Counter2.Name + "*" then
boolFound = true
end if
next
if boolFound = false then
Counter.Name = Left(Counter.Name, Len(Counter.Name) - 1)
end if
next

for each Counter in Temp
for each Assoc in Counter.myAttributes
strConstraint = strConstraint + " and " + Assoc.Name
next
for each Assoc in Counter.myAssociations
strConstraint = strConstraint + " and " + Assoc.Name + "->notEmpty"
next
if strConstraint <> "" then
strConstraint = strConstraint. SubString(5)
end if
next

for each Counter in Result
Counter.Supertype = Temp(0)
if strConstraint <> "" then
Counter.GetConstraint("Invariant”, strConstraint)
end if
next

Result.Add(Temp)
return Result

Table 4. The transl/ation pattern of the JLC Definition 1, with the parsed information marked
bold. Note that a Constraint is built and stored as a String.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 38

Automated Norm Extraction from Legal Texts

It shows us that both the NP’s (subject and direct_object) parsed by application of

the production rule are used to generate the relevant model. | will not explain the
complete meaning of each of the subsequent rules within the translation pattern. |

suppose that the reader will understand this script. Finally, the complete formal
model generated by application of the production rule and the translation pattern is

depicted in Figure 16.

Income*

Income

- Dutch : Boolean

:D_

<<application>>

<<packageReference>>
chapter 7

Figure 16. UML/OCL model describing the definition as expressed in “Dutch income is income

as meant in chapter 7.

By looking at the figure above, it becomes clear that from the legal sentence

(depicted at the beginning of this chapter) both the subject- and definition part are

translated to their corresponding (UML) classes. In this case, the definition includes a
third class: a package reference. This has been created from another JLC, but this will

not be discussed here.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004

39

Automated Norm Extraction from Legal Texts

Class-Attribute Generation

In previous chapters, top level parsing is used to recognize the relevant (natural)
language constructs (JLC’s). So, only relevant nouns (grammatical necessity) within
the legal sentence are recognized as being part of a noun-phrase. Other nouns (like
nouns within a subordinate clause) are often recognized as being part of an attribute.
For example, when we want to translate the following legal sentence

IB 2001 Art 3.56 lid 1

The taxpayer who is involved in a general transition concerning the splitting of a legal body is
deemed to have sold his stocks and claims on the splitting legal body at the moment of the
split.

the subject (one of the main terms of the JLC Deeming Provision, see Appendix A and
F “type=s_dp”) of the sentence is “the Taxpayer”, so a class-type Taxpayer is
constructed.

Taxpayer

Further, we can see that in the subordinate clause we have two subsequent
attributes, which have to be made. Both are added to the class Taxpayer.

Taxpayer

- wholsInvolvedinAGeneralTransitionConcerningTheSplittingOfALegalBody: Boolean
- isDeemedToHaveSoldHisStocksAndClaimsOnTheSplittingLegalBodyAtTheMomentOfTheSplit: Boolean

Also an “Attributelnvariant’ has to be made according to the translation pattern
(described in Appendix F “type=s_dp”) which is built upon these both attributes.

<<Attributelnvariant>>

{ Taxpayer.wholslnvolvedinAGeneralTransitionConcerningTheSplittingOfALegalBody implies
Taxpayer.isDeemedToHaveSoldHisStocksAndClaimsOnTheSplittingLegalBodyAtTheMomentOfTheSplit}

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 40

Automated Norm Extraction from Legal Texts

The complete formal model is as follows:

Taxpayer

- wholsInvolvedinAGeneralTransitionConcerningTheSplittingOfALegalBody: Boolean
- isDeemedToHaveSoldHisStocksAndClaimsOnTheSplittingLegalBodyAtTheMomentOfTheSplit: Boolean

<<Attributelnvariant>>

{ Taxpayer.wholsInvolvedinAGeneralTransitionConcerningTheSplittingOfALegalBody implies
Taxpayer.isDeemedToHaveSoldHisStocksAndClaimsOnTheSplittingLegalBodyAtTheMomentOfTheSplit}

In the previous formal model, we saw that many complicated formal attributes are
constructed. For the generation of these formal attributes special functionality has
been added to the ePOWER Workbench. The production rule of the Deeming Provision
(the JLC that is recognized in the foregoing example) can be found in Figure 17.

S->NP_1V_2 (XLIST_3)V_4 XLIST 5

<S inResult> = true

<S sem type> =s dp

<S s_order> =sv

<V_2root> = worden

<V_2 head subcat> = AUX

<V_4 root> = achten

<V_4 head subcat> = MAIN

<S head agr> = <NP_1 head agr>
<S head agr> =<V_2 head agr>
<S sem subject> =<NP_1 sem>
<S sem dp_partl> =<V_2sem>

<S sem time_period> =<XLIST_ 3 sem>
<S sem dp_part2> =<V_4 sem>

<XLIST_5 sem>

<S sem fiction>

Figure 17. The Grammar rule and Unification rules of the Deeming Provision JLC (the X-LIST
NLC’s are marked bold).

Figure 17 shows that for the recognition/generation of attributes a special
production rule?! should be added to the production rule set, namely the x-/ist rule
(see Appendix C “Production Rules for the Verb-phrase Extraction” and F
“type=x_list"). The goal of this production rule is the possibility to generate attribute-
names. From Figure 17 it becomes clear that the complete sentence part (language
construct) between and after the subsequent language constructs NP_1 (noun-

21 This rule is specified within the Grammar rule set (set of production rules), but it isn’t really a rule
specified for grammatical purpose. This rule is added for making it possible to concatenate different
language constructs (for the purpose of attribute generation).

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 41

Automated Norm Extraction from Legal Texts

phrase) V_2 (verb) and V_4 can be seen as one single attribute (X-LIST). This sentence
part can of course consist of a single word or a word-phrase, so the x-list production
rule has to handle a list of words. When we look at the specification of the production
rule x-list (see Figure 18) we can see that every word (except for all the punctuation
marks (cat-feature is PUNCT)), read from the lexicon must have the feature value cat
= X (for the generalisation of every word being an X).

XLIST -> X_1 (XLIST_2)

<XLIST inResult> = false

<XLIST sem type> = x_list

<XLIST sem hd> =<X_1sem>
<XLIST sem tl> = <XLIST_2 sem>

Figure 18. The Production rule for the X-LIST

When every word is of type X we can use it as input for the x-list production rule,
so it can be transformed to a single attribute. Initially, this functionality wasn’t
specified within the ePOWER Workbench, so some adaptations were necessary (see
Appendix B) (in Microsoft .NET 2003 [23] you can find the documentation of
Microsoft .NET). With this adaptation of the programming code, we now have the
possibility to generate attribute names. The generation/addition of the attributes is
done during the translation step of every JLC. When an attribute can be generated
from a sub construct, specified within a JLC, this can be done by application of the x-
list production rule.

A second reason for introducing such a x_list production rule is the ability to parse
natural language construct for which we do not have the legal knowledge yet. When
there is no such rule available (recognizing a sequence of words) the recognition step
will not successfully finish, because we cannot recognize the complete legal
sentence. The x_list production rule is a generic construction to deal with pieces of
text for which we have no information or have no knowledge about its internal
representation. When we introduce such a rule we are able to incrementally
implement a tool for automated norm extraction. Every time when new legal
knowledge becomes available, we can add it to the relevant JLC or add some new
JLC’s.

A disadvantage of such a production rule is the fact that the translation process
becomes ambiguous. When such a rule is applicable, a sequence of words has been
recognized. In some cases for every member of this sequence a different derivation
tree will generated. This because during the parsing process it is not possible to
determine the end of the rule. The next word or word phrase can be of another JLC
(or NLC) but can also belong to the x_list JLC itself.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 42

Automated Norm Extraction from Legal Texts

10 Special Treatment

During my thesis research there were some choices made about the treatment of
special language constructs found during examination of the different legal sentence.
Some thought gives rise to some adaptations of the relevant production rules,
translation patterns or other ePOWER Workbench parts (adding extra special features
to the relevant production rule, adding some special code fragments in the relevant
translation pattern, or adding some special records in the lexicon) to optimise the
extraction of the special language constructs.

In the first section, | will discuss how | differentiate between the JLC Definition 1
and the JLC Value Assignment, Change and Comparison. Those JLC’s are similar by
way of their similar global structure (see Appendix A). To make a distinction between
the global meaning of both categorizations some special care was necessary.

In the following section, a description is given about the choices made during the
modelling of inheritance. Moreover, the final section describes the special treatment
of fixed noun-phrases.

10.1 Values

During the implementation of the JLC’s Definition 1 and Value Assignment,
Change and Comparison some special treatment was necessary. Because both global
structures are very similar, we have to make some special choices to be able to
distinguish between both JLC’s. First, let us look at the global structure of the JLC
Definition 1:

<subject> [are]|i s] <definition>

In general, this global structure is used to recognize inheritance from a legal
sentence. This means that we have a special relation between the two class types.
The first class is specified in the first noun-phrase (subject part) and the second class
can be extracted from the last noun-phrase (definition part). The relation between
both classes is that the first class is a subclass of the second class. This means that
the first class inherits all formal attributes and methods from the second class. Within
the first class, also some extra attributes and methods can be specified. By this fact,
we can suppose that the second noun-phrase always is in the form of a class type
with some additional formal elements (like attributes, subtypes, associations and
constraints).

The global structure of the JLC Value Assignment, Change and Comparison is as
follows:

<subject> [i s|anpunts t o] <formula>

This structure can be used to recognize and extract value assignments. Hereby, the
second noun-phrase is always in the form of a value (a property which can have a
value or can be measured). This fact distinguishes the two JLC’s (the meaning of the
second noun-phrase).

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 43

Automated Norm Extraction from Legal Texts

To handle the difference in both global structures we have to make some efficient
choices. My choice was to determine during the parsing process if the language
construct to be parsed can be viewed as a value or not. When it is in the form of a
value, like “amount”, “compensation”, “wage”, “salary”, “taxes” or “interest” we can
conclude that application of the JLC Assignment, Change and Comparison is
necessary. Otherwise, the JLC Definition 1 is applied.

By adding a special feature to the relevant words in our lexicon we can during the
parsing process determine which JLC is applicable. Table 5 shows us an example of
two records in the lexicon with the extra feature (in the form of an attribute-value-

pair “isValue=true/false”) used for the value determination step.

Lexicon
head head |head head |head | head
: head.
id| sem |cat|.sub root agr. |.agr. | 04 tens | .agr. | .agr. Features
cat gen |case e per | num
4lamount [N amount [N S isValue ="true"
4article |N article [N P isValue ="false"

Table 5. 7wo records from the lexicon with the extra feature necessary to determine if this
word can be characterized as a value.

When we look at the production rules for both JLC’s (see Figure 19 and 20) the
specific Sem.isValue feature is used to handle the determination of the correct
language construct.

S->NP_1V_2NP_3

<S inResult> = true

<S sem type> =s_def
<V_2root> = zijn

<V_2 head subcat> = MAIN

<NP_3 semisValue> = false

<S head agr> = <NP_1 head agr>
<S head agr> =<V_2 head agr>
<S head> =<V_2 head>

<S sem subject> =<NP_1 sem>
<S sem direct_object> =<NP_3 sem>

Figure 19. The production rule for the JLC Definition 1, with the relevant unification rule for the
determination of a value statement marked bold.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 44

Automated Norm Extraction from Legal Texts

10.2

S->NP_1V_2(N_3) (PREP_4)NP_5

<S inResult> = true

<S sem type> =s va

<NP_1 sem isValue> =true

<V_2root> = {zijn,bedragen}
<V_2 head subcat> = MAIN

<N_3 root> = gelijk

<PREP_4 root> = aan

<NP_5 sem isValue> =true

<S sem subject> =<NP_1 sem>
<S sem formula> = <NP_1 head agr>
<S sem formula> =<V_2 head agr>
<S sem formula> =<NP_5 sem>

Figure 20. The production rule for the JLC Assignment, Change and Comparison, with the
relevant unification rule for the determination of a value statement marked bold.

When by referencing to the lexicon it appears that the language construct has the
property that it characterizes a value (so, “isValue=true”) then the JLC Assignment,
Change and Comparison is applicable. Otherwise, the JLC Definition1 applies. Our
initial problem of distinguishing both JLC’s is solved.

Sometimes it is not possible to determine if some word characterizes a value. For
example, when we want to translate the following two legal sentences

IB2001 Article 2.1 member 1
Dutch income is income as meant in chapter 7.

IB2001 Article 3.3 member 1
Taxable income is income reduced with the employee’s discount.

we are not able to distinguish both legal sentences by looking at the extra feature
(isValue) described for the word “income”. This because in the first legal sentence the
word “income” is not used as a value (so the JLC Definition 1 is applicable) and in the
second legal sentence the word is used as a value (so the JLC Assignment, Change
and Comparison is applicable). We cannot add the extra feature /sVal/ue to the word
“income” because this word can be used in both ways. In such cases the user should
choose which JLC is applicable (both derivation trees are generated during the
translation step).

Inheritance and the Generation of Class Names

In this section, a description is given on how | have handled the occurrence of
inheritance within a legal sentence. In previous sections there is mentioned that at
this moment within the ePOWER Workbench the production rule for the JLC Definition
1 can be used for the recognition of inheritance occurring in a legal sentence. For the
generation of the relevant formal model the translation pattern of the JLC Definition 1
can be found in Table 6.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 45

Automated Norm Extraction from Legal Texts

type = "s_def"
dim Result as New System.Collections.ArrayList
dim Temp as New System.Collections.ArrayList
dim Counter as Object
dim Counter2 as Object
dim Assoc as Object
dim strConstraint as String
dim boolFound as Boolean

strConstraint = ""

Result = Feature.ltem("subject").Translate(Nothing)
for each Counter in Result
Counter.Name = Counter.Name + "*"
next
Temp = Feature.ltem("direct_object").Translate(Nothing)
for each Counter in Result
boolFound = false
for each Counter2 in Temp
if Counter.Name = Counter2.Name + "*" then
boolFound = true
end if
next
if boolFound = false then
Counter.Name = Left(Counter.Name, Len(Counter.Name) - 1)
end if
next

for each Counter in Temp
for each Assoc in Counter.myAttributes
strConstraint = strConstraint + " and " + Assoc.Name
next
for each Assoc in Counter.myAssociations
strConstraint = strConstraint + " and " + Assoc.Name + "->notEmpty"
next
if strConstraint <> "" then
strConstraint = strConstraint. SubString(5)
end if
next

for each Counter in Result
Counter.Supertype = Temp(0)
if strConstraint <> " then
Counter.GetConstraint("Invariant", strConstraint)
end if
next

Result.Add(Temp)
return Result

Table 6. The translation pattern of the JLC Definition 1 with the relevant code for handling
inheritance marked in italics.

Table 6 shows us the translation pattern of the JLC Definition 1 with the relevant
code for handling inheritance marked in italics. In the specific code fragment you see
that we first translate the subject construct (the first noun-phrase specified in the
global structure of the JLC Definition 1, see Appendix A). This will result in the
generation of a collection of classes, namely Resu/t. In addition, the second noun-
phrase (direct_object specified in the global structure is translated. This will also
result in a collection of classes, namely Temp. After we have translated both
constructs, we have to add some more information necessary for modelling
inheritance. First, we traverse the complete set of classes specified in the Result
collection and add a star (*) to each of the class names (Counter.Name + “*). In the
next couple of rules in the code we traverse the other collection and check if there is
a class name in the second set which is equal to a class name in the first set. If so,

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 46

Automated Norm Extraction from Legal Texts

then we leave the Counter.Name as it is, and otherwise we cut off the star (*) from
the Conter.Name. This process is necessary to be able to model inheritance when the
class names of the super class and the sub class are the same. When this is the case
we have to add some extra information to visualize this difference in the model.
When the class names of the superclass and the subclass are different, the generation
of the class names is delegated to the translation pattern of the noun-phrases. This
seems a temporary solution, but at this moment this solutions is the best | have
found during my research. In Figure 21, a legal sentence is depicted whereby the
class name of the super class is equal to the class name of the sub class. Also the
final model is depicted, so one can understand in which form inheritance is modelled
by using our current translation engine.

IB2001 Article 2.1 member 1
Dutch income is income as meant in chapter 7.

Z

Income* Income <<packageReference>>
chapter 7

- Dutch : Boolean

<<application>>

> < _________

Figure 21. The translation of a legal sentence containing inheritance (where the class name of
the super class is equal to the class name of the sub class).

During the complete implementation of the ePOWER Workbench, some choices for
correctly modelling inheritance have been made. The simplest form of handling
inheritance was the generation of class names by concatenating all subsequent
language constructs from which the complete noun-phrase consists of (for example
“Dutch Income”, “A 24 years old Dutch student”). This is a very impractical choice
because the final class names will have a lot of overhead and the formal elements
within the noun-phrase are not properly recognized and translated.

For example, when we want to generate a class name from the following noun-
phrase

The tax on taxable income from considerable interest...

the resulting formal model for this class after translation will be as follows:

TheTaxOnTaxableIncomeFromConsiderablelnterest

When we look at the above figure we see that there are no formal elements added to
the class, because we simply have not recognized them (initially there was no
knowledge about the global (internal) structure of noun-phrases). We use the
complete noun-phrase directly as being a class name.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 47

Automated Norm Extraction from Legal Texts

Later on some functionality was added to let the user choose the best possible way
of assigning a class name. This was possible because more knowledge becomes
available about the global structure of noun-phrases. Special production rules were
made for the recognition of complete noun-phrases, so more information becomes
available during the final translation part (the generation of the formal models).
During the translation part, the user is able to point out the relevant information
necessary to construct the class name (for example the user can choose to
concatenate the whole noun-phrase (old version), or he can choose to concatenate
the adverb/preposition with the main term etcetera). This seems a better solution,
but at this moment, this functionality isn’t available anymore within the ePOWER
Workbench.

So, in my thesis research | have tried to handle the occurrence of inheritance and
the generation of class names by specifying new production rules and translation
patterns as described in the beginning of this section. This seems the best solution
possible with the current knowledge available for noun-phrases. Maybe in future
development a more efficient and transparent solution can be found for generating
class names and therewith the modelling of inheritance.

10.3 Fixed Noun Phrases

In Chapter 6 it was mentioned that all the words relevant for the Dutch language
are stored in the so called lexicon database table in the translate-nl database. When,
during the translation process, a production rule is applicable, for each subsequent
word in the legal sentence (input), a reference to this lexicon is made.

In my thesis research, | found some word-phrases (noun-phrases) which always
have a fixed structure when recognized in a legal sentence. One can think of the
word-phrases, “The Dutch Kingdom”, “Law on Income Taxes 1964” etcetera. These
noun-phrases are always present in this form in a legal sentence. Therefore, it seems
a good idea to store these complete noun-phrases as a whole in the lexicon database
table. Otherwise, special production rules have to be made to recognize these
specific noun-phrases. This seems more trouble than it is worth.

At this moment only those special production rules are made for the recognition
of these fixed noun-phrases (for making it possible to recognize the legal sentences
described in the testbench). Figure 22 shows us the production rule for the
recognition of the fixed noun-phrase “Koninkrijk der Nederlanden” 22,

22 The English word for the Dutch word “Koninkrijk der Nederlanden” is “The Dutch Kingdom”.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 48

Automated Norm Extraction from Legal Texts

NP -> NP_1 NP_2

<NP inResult> = true

<NP sem root> = Koninkrijk der Nederlanden
<NP sem type> = np

<NP_1 sem root> = koninkrijk

<NP_2 sem root> = Nederland

<NP_2 head agr case> = C2

Figure 22. The production rule for the recognition and translation of the fixed noun-phrase
‘Koningrifk der Nederlanden”.

Also, other production rules are made for the recognition of other fixed nou-
phrases, but at this moment | think the usability of those fixed noun-phrases is clear.

Maybe in the future there will be some time to examine the legal sentences,
described in the legislation, for the occurrence of those fixed noun-phrases. This will
result in a set of fixed language constructs. Herewith we will have all the knowledge
necessary to extend the lexicon with the set of fixed noun-phrases. During the
parsing process, these specific language constructs can be directly extracted from
the lexicon (as a noun). So the relevant formal elements (class name or attribute) can
simply be generated.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 49

Automated Norm Extraction from Legal Texts

11

1171.17

An Alternative Solution

In this chapter, an alternative solution to the main problem will be discussed. This
solution was found during the preliminary research (determining a global approach
for Automated Norm Extraction). All possible solutions found were considered, but
are not implemented, because there were some shortcomings in implementation or
efficiency. These shortcomings will be discussed in this chapter so it will become
clear why these approaches have not been used. Maybe some parts of these
approaches can be used in future optimisations or researches.

Dynamic JLC storage

In the previous chapters, a global solution to the main problem is discussed. This
approach makes use of the categorization of the legal sentences (see Chapter 5). By
these categorizations, subsequent language constructs are (also called as the Natural
Language Constructs, NLC’s, see Section 6.2) specified. These are, within the
translation engine, used to determine the necessary normative constructs for the
generation of the formal model. Because this process uses these subsequent
structures (in the ePOWER Workbench stored as Production rules) for the parsing
process, this approach is called a rule based approach (see Rule Based Systems 1994
[20]). In this approach, the JLC information of each of the categorizations is statically
used within each of the composed Production rules. For every JLC one or more
production rules have been made by examining the global rule based structure of the
JLC’s (see Appendix A and C for all the production rules) and by following the
regulations of the rule model (see Figure 13 in Chapter 7). This all seems an efficient
way of tackling the main problem, but the question arises if this can be done in a
more efficient way.

By examining the global structure of the different JLC’s, it may be noted that we
mainly recognize the main terms of the JLC’s to classify the legal sentence to one or
more specific JLC’s (see Figure 23 and Appendix A).

<subj ect> [wordt] <denotation of tine period> [geacht] <fiction>

. B

Deeming Provision

[1f] <subject> <feature>

Condition

<subject> [is] <definition>

Definition (type 1)

[By] <subject> [is understood] <definition>

Definition (type 2)

Figure 23. The global structure of a subset of all possible JLC’s, with the main terms marked
bold.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 50

Automated Norm Extraction from Legal Texts

By this fact we can introduce another approach, which is based upon a Unification
Algorithm and dynamic storage of the main terms of the global structure (in a
database) of each of the different JLC’s (so, this approach doesn’t make use of the
rule based structure of the different JLC’s like in the previous approach). Dynamic
storage of the JLC dependent language constructs also has the advantage that the JLC
information is easy adaptable in future development. So the JLC information becomes
easy administrable. When new JLC’s are determined (and have to be added) or current
ones have to be modified these information is easy modifiable in the ePOWER
Workbench translation engine.

The dynamic storage of the different main terms can be done by adding the JLC
type information to each of the relevant words stored in the lexicon. This is based
upon the fact that we can add extra user defined features to each word in the lexicon
table (see Table 8 and Section 6.1).

Lexicon
Id sem cat |subcat| root | Gen | Case | Mood | Tense| per | num |-
6 |deemed| V | MAIN | deem INDIC | IMPER 2 P | JLCtype
ATIVE | FECT = DP

Table 8. Dynamic storage of the JLC type information in the lexicon as extra feature

Table 8 shows us the possibility to store the JLC dependent type information for
the Deeming Provision JLC as attribute-value-pair to the Features column. Every main
term of the different JLC’s will be extended with this JLC type information in the
lexicon. In addition, words that are not part of the global structure of a JLC must have
this attribute-value-pair as extra feature within the specific column. So it becomes
possible to determine the JLC type information for each word during the unification
process.

By examining the global structures of the different JLC’'s we found that one specific
word (like “is”) is used within more than one JLC specification. So it seems necessary
to be able to store more than one JLC type by each word in the lexicon, as in Table 9.

Lexicon
id [sem|cat|subcat|root{gen|case mood Tense |per{num -
6| ? |V|MAIN| ? INDICATIVE | IMPERFECT | 2 P | JLCtype = {DP,TypeE}

Table 9. Dynamic storage of the JLC type information when more than one classification is
possible

The value of the attribute -value-pair contains all possible JLC types where a
specific word classifies to.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 51

Automated Norm Extraction from Legal Texts

11.1.1

During the parsing process, the final JLC type will be determined by examining all
words (by continuously referencing to the lexicon for each word) and unifying to the
specific JLC type(s). This unification algorithm will determine the final JLC type by
taking the intersection of all the possible different sets (attribute-value-pairs) of JLC
types of each parsed word. For example, when after the parsing process we have
recognized three main terms (words with necessary JLC information) like

“by” JLCtype={DEF2}
“is” JLCtype={DEF1,DEF2}
“understood” JLCtype={DEF2}

the complete classification process will result in the fact that the legal sentence is
classified as a Definition 2, because the intersection of {DEF2}, {DEF1,DEF2} and
{DEF2} is {DEF2} (see Appendix A). In principle, the sentence could be classified to the
JLC Definition 1, but the presence of other normative elements (“By” and
“understood”) tells us that the classification as JLC Definition 2 is the most likely one.

Excluding Invalid NLC Sequences

In the previous section an approach was discussed which makes use of a
unification algorithm for the classification of the different legal sentences to one or
more JLC types. Because this approach is not rule based, every combination of NLC’s
is possible (as long as they have the same relevant attribute-value-pair in their
feature column in the lexicon database table). For example by the above approach a

IS ...

legal sentence consisting of the subsequent words is” is also classified to the
JLC type Deeming Provision. However, this is not right. There is one NLC (natural
language construct) missing, namely the word “deemed” (main term of the Deeming
Provision JLC). To handle those wrong derivations we have to force that only one
order of NLC’s within each of the JLC’s is applicable during the classification step.

This idea is visualized in the under mentioned table.

Lexicon
Id sem |cat|{subcat| root |Gen |Case] Mood |Tense| Per Num“-
5 is V | AUX be INDICAT | PRESE | 3 S [JLCtype
IVE NT = DP;
6 deemed | V | MAIN | deem INDICAT | IMPER | 2 P |JLCtype
IVE FECT = DP;

Table 10. Ordering the subsequent NLC'’s of the JLC type Deeming Provision

Table 10 shows us the relevant NLC’s for the JLC type Deeming Provision with

within the feature column the attribute-value-pair extended with a subscript number

to force a strict order of NLC’s. Later, by the implementation of a Unification

Algorithm we have to take care of these NLC order and existence. When one NLC is

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004

52

Automated Norm Extraction from Legal Texts

11.1.2

11.2

missing or when the order of NLC’s is different from the order of NLC’s stated in our
global model of JLC’s, there is no relevant classification possible.
For example, when we have recognized the following main terms in a legal

sentence
“by” JLCtype={Def2;}
“is” JLCtype={Def1,, Def2;,DP;}
“understood” JLCtype={Def23}

we can classify this legal sentence to a Definition 2, because we can unify these three
sets of JLC types by taking the intersection (and using the predefined order of the
NLC’s). Within the JLC type information of the word “is” there is stated that this word
belongs to the JLC type Deeming Provision (DP;), but the word “deemed” (DP) is
missing, so no classification to this JLC type can be done.

Advantages/Disadvantages

The main advantage of this approach is that we can store all the JLC type information
directly within the lexicon database table. The JLC information becomes easy
administrable, extendable and transparent. When during further research (about the
categorization of legal sentences) more JLC types can be defined, we do not have to
add new production rules (rule based approach) to our translation engine, but we can
add this new information directly to the lexicon database table. Another advantage is
the fact that the parsing process becomes more efficient. The complete classification
process is done by the recognition of only the main terms of the complete JLC
structure. With this advantage, directly the main disadvantage comes across.
Because we only parse the main terms of each of the JLC’s we do not have the
extra information necessary to be able to generate complete formal models. Because
our aim was to generate formal models from legal sentences, we also need the other
JLC dependent language constructs to be able to construct the formal attributes,
relations and associations. In addition, when we look at the structure of the JLC
Definition 1 (<subject>< i s> <definition>) the main term (“is”) of the structure is
not enough to generalize to one specific JLC. It can also classify to many other types.

Splitting of Juridical Information

A more elegant way of storing the JLC type information is to store it in a separate
database. So we get two database tables connected by primary- and foreign keys (see
Data Modelling: Primary and Foreign Keys 2004 [25]). One database table with
lexical- and one with juridical information (see Figure 24).

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 53

Automated Norm Extraction from Legal Texts

Linked by the foreign key root

Lexicon JLCTypelnfo
id sem cat sl root
subcat - - sem JLCtype

31839 is \Y; be be {DEF,,DP;}
31840 was \Y; be {DP2}
31847 deem \% deem
31845 deems \Y deem
31843 deemed \/ deem

Figure 24. The storage of juridical information in a separate database table

Figure 24 shows us how the separation can be done. For every main term of the
different JLC’s, the main verb (root) of that verb is stored in a separate database. So
for every grammatical form of the main verb we can refer to the root verb stored in
the juridical database. During the parsing process, we can refer to the lexicon
database for extra lexical information used for unification (for example if a verb is a
link verb or a transitive verb etcetera).

The sem-feature is set as the primary key of the /LCTypelnfo-table, because this
value is unique. The foreign key of the lexicon table is the root-feature. The id-
feature of the lexicon table is the primary key.

By splitting up both database tables and connecting them by using the relevant
keys we get a more transparent and efficient representation of lexical and juridical
information.

11.3 Best of two worlds

Maybe in the future we can make use of the dynamic storage possibility within the
lexicon database to specify new production rules (combination of both approaches).
In the current implementation of the ePOWER Workbench there is functionality to use
the JLC type information directly within the production rules as dynamic information
(see Figure 25). We can add more unification rules to the relevant production rules of
a specific JLC to add the dynamic JLC information of the main terms. Figure 25
visualizes this idea.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 54

Automated Norm Extraction from Legal Texts

S -> NP_1 V_2 (XLIST_3) V_4 XLIST_5

<S inResult> = true

<S s_order> = sv

<V_2 features JLCtype> = DP,
<V_2 head subcat> = AUX

<V_4 features JLCtype> = DP;
<V_4 head subcat> = MAIN

<S head agr> = <NP_1 head agr>
<S head agr> = <V_2 head agr>
<S sem subject> = <NP_1 sem>
<S sem dp_partl> = <V_2 sem>
<S sem time_period> = <XLIST_3 sem>
<S sem dp_part2> = <V_4 sem>
<S sem fiction> = <XLIST_5 sem>

Figure 25. The production rule of the JLC type Deeming Provision with dynamic JLC information

The above figure shows us the adapted production rule of the Deeming Provision
where, for the main terms, special unification rules are made. The information for
these unification rules directly is derived from the lexicon database table. So, the
main term JLC information becomes variable (dynamic). When for example by future
research the Deeming Provision structure is adapted (so there are more words
possible for each of the main terms), this change can easily be made within the
lexicon database table.

For now, the functionality described in the second (non-rule based) approach can

be seen as potential functionality for future development, when more information
about the categorization of legal sentences is available.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 55

Automated Norm Extraction from Legal Texts

12 Automated Rule Management: Grammar Editor

As mentioned before the manageability of the database of Grammar Rules is not
efficient. When we want to add some new functionality to the ePOWER Workbench (the
addition of new Production rules) we have to access the Production rule database
table to make the necessary changes within the XML-script. Because working in a
database, and creating complete new XML scripts is inefficient, the idea arose to
automate this process. When a tool can administer the complete process of rule
management it becomes more efficient and well organized, and we can add some

checks to validate the input.

Because the initial ePOWER Workbench is implemented in .NET (see Microsoft .NET
2003 [23]) it seems a logical step to implement this component as a separate
component within the ePOWER Workbench (see Appendix E for the complete

programming code).

In the next section, the architecture of the tool will be discussed.

12.1 Implementing the too/

In the first place, examination of the general structure of the Grammar- and
Unification rules was necessary (the XML-script in the Production rule database
table). During this examination step | found that there were some fixed elements
within the global structure of the rules (Grammar- and Unification rules), which are
always present when a new rule is added or modified. These are overhead due to the

use of XML.

LHS

RHS

<Lhs>
<FeatureSet>
<Feature name="inResult">
<AtomicValue> true | false</AtomicValue>
</Feature >
<Feature name="cat">
<AtomicValue> name of the LHS</AtomicValue>
</Feature>
<Feature name="sem">
<ComplexValue>
(
<Feature name ="feature-name" equationld= "1">
(<ComplexValue></Complexvalue>) ?
</Feature>
)+
</ComplexValue>
</Feature>
</FeatureSet>
</Lhs>

<Rhs>
<RhsElement nothingAllowed="true | false">

<FeatureSet>
<Feature name="cat">
<AtomicValue> NLC-name</AtomicValue>
</Feature>
(
<Feature name= "feature-name" equationld= "id">
(<ComplexValue></ComplexValue>)?
</Feature>
)+
</FeatureSet>
)+
</RhsElement>
)+
</Rhs>

Table 7. The general structure of the LHS and RHS of each Production rule

Table 7 shows us the general structure of the LHS (left-hand-side) and the RHS

(right-hand-side) of each production rule. One can see that each LHS consists of a
fixed <Lhs></Lhs> construct, which consists of a fixed <FeatureSet></FeatureSet>
construct, which consists of two fixed
<Feature><AtomicValue>true/false</AtomicValue> </Feature> constructs (the first

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 56

Automated Norm Extraction from Legal Texts

one is the /nResult-feature (visible or not visible in the final derivation tree), and the
second one is the cat-feature (the name of the LHS)) and one fixed
<feature><ComplexValue></ComplexValue></Feature> construct (the sem-
feature), whereby the <ComplexValue><,/ComplexValue> consists of one or more
<feature><ComplexValue></ComplexValue></Feature> constructs, whereby the
<ComplexValue></ComplexValue> construct is optional. The RHS consists of a
fixed <Rhs></Rhs> construct, which consists of one or more
<RhsElement></RhsElement> constructs (this construct contains a nothingAllowed-
feature to indicate if this RhsElement is optional or not), which consists of one or
more <FeatureSet></FeatureSet> constructs, which consists of a fixed
<Feature><AtomicValue></AtomicValue></Feature> construct (the cat-feature, the
name of the NLC) and one or more
<Feature><ComplexValue></ComplexValue></Feature> constructs, whereby the
< ComplexValue></ComplexValue> constructs is optional.

All these fixed structures can be extracted when a tool administers the rule set, so
when Production rules have to be modified the tool will generate the fixed elements
(no overhead). The user only has to fill in the other (non-fixed or variable) elements.

After the extraction of the fixed structures the next step was finding some kind of
data structure for the storage of all the elements where all subsequent rules are built
upon (A Grammar rule consists of one or more Grammar elements?23, each of which
consisting of one or more Grammar features24) within the Production rule database
table.

The general way to do this is the usage of a class model (see Appendix E,
GrammarClassModel.cs). With a class model we can create a hierarchy within the
different structures of the production rules. For our model we have to create four
different classes within the GrammarClassmodel file: GrammarRuleCollection (see
Appendix E, line number 29/206), GrammarRule (see Appendix E, line number
211/266), GrammarElement (see Appendix E, line number 369/441) and
GrammarfFeature (see Appendix E, line number 444/560).

The first class model is the main part of the class model. This part holds the
complete Production rule collection in a .NET ArrayList [24] (see Appendix E, line
number 61). Also, functionality of adding/sorting new rules (see Appendix E, line
number 72/83) can be found in this project file. When new rules are added or rules
are modified within the model, these modifications have to be saved in the class
model. In the class model we can found the method save() (see Appendix E, line
number 88/154) which can be used to assimilate all the modifications by writing all
modified rules to the relevant database table (in other words the generation of XML
script25). Other functionality within this class is considered as irrelevant at this
moment (like validation and other event handling).

23 A Grammar element can be used as being a LHS (a single element with a name and additional Grammar
features) or a RHS (a list of Grammar elements each with a name and additional Grammar features). A
synonym for Grammar elements is NLC (Natural Language Constructs, see Section 6.2).

24 A synonym for Grammar features is Unification rules (see Section 6.2). They are used in the same way.
25 The generation of the XML script is delegated to all the subelements (bottom-up). The main class in the
class model collects the XML script from each of the Grammar Rules, the Grammar Rules generate the XML

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 57

Automated Norm Extraction from Legal Texts

The next three class model parts are the classes with the functionality of the
specific rules. Each of these classes consists of three fixed parts:

- An ArrayList with the necessary subelements
- The method for the generation of the XML script
- A HTML generator (Pretty Printer, will be explained in the next chapter)

For the first class in the class model, GrammarRule, the ArrayList can be found in
Appendix E, line number 216 (for the creation of the right-hand-side). The method
for the XML generation can be found in Appendix E, line number 234/277 and
306/330. For the second class, GrammarElement, the ArrayList can be found in
Appendix E, line number 374 (for the creation of a set of features). The method for
the XML generation can be found in Appendix E, line number 432/441. For the last
class, GrammarFeature the ArrayList is stated in Appendix E, line number 451. The
XML generation method can be found in Appendix E, line number 528/560.

After we have created a way to store all the different Production rules in a class
model the next step for the creation of the Rule Management Tool is finding a way to
visualize the content of the Production rule set (in other words the User Interface).

After an examination of the different rules | have decided to visualize the complete
rule set in some tree-like structure. The advantage of a tree structure is the well-
organized, collapsible way to store complex data. Another argument to use a tree like
structure is the presence of nesting within the rule set (as mentioned before). The
GrammarTreeMode/ class (see Appendix E) contains the functionality to generate the
tree structure from all the rules stored in the class model. Figure 26 shows us a
screenshot of the final tree view of the Production rules.

Other classes used are GrammarElementEdit.cs (trapping the mouse clicks (right-
clicks) on each GrammarElement), GrammarFeature£dit.cs (trapping the mouse clicks
(right-clicks) on each GrammarFeature) and GrammarRuleEdit.cs (trapping the mouse
clicks (right-clicks) on each GrammarRule). The programming code for the main form
is described in class GrammarForm.cs. The programming code for all these classes
can be found in Appendix E.

script by collecting it from the Grammar Element class and the Grammar Element class generates the XML
script from the Grammar Feature class.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 58

Automated Norm Extraction from Legal Texts

12.2

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004

EgEdit Grammar Rules

=101 x|

- [Application of another source] [FREP =» PREP N PREF]
B- [Applcation Provision] [S = P [ADY] PREP M]
=-LHS &

cat=5

inResult = brue
B- em

- RHS NP
= RHS W
Cpat=y

- roak = zijh

i [head

- RHS [A0]

#- RHS PREP

= RHS N

t- [Deeming Provizsion s_order=sw] [S == MP Y [SLIST] W =LIST]
t- [Deeming Provision s_aorder=vs] [S = W NP [$LIST] W =LIST]
tl- [Definition 1] [S = MP W HNF]

=1 [Definition 2 =_arder=sv] [S =» PREP NPV [A0W) Y MP)
B-LHS S

- catk=5

- inFAesult = true

= sem

- subjsct[1]

- definition[2]

-5

m

type = =_def2
- g_oOrder = v
- AHS PREF
= AHS NP
ocat=MP

- RHS W
= RHS (A40V)
ooat=ADY

- RHS
- RHS NP

. Miabimibicen D o ardar—oe 1S — W TADVT PREDR RID GATL WY RIET

Save Cancel

Print to File |

Figure 26. A screenshot of the ePOWER Workbench Grammar Edjtor tool to clarify the usage of

a tree structure to visualize the rule set.

Grammar Editor Screenshots

The combination of all the mentioned classes has resulted in a Grammar Editor
tool, which can be used to add, delete and edit functionality within the ePOWER
Workbench. The functionality of the User Interface of the Grammar Editor tool is
clarified by showing some subsequent screenshots (see Appendix D).

In the next chapter, | will clarify the implementation and usage of the Pretty Printer.

59

Automated Norm Extraction from Legal Texts

13

13.17

Pretty Printer

In Chapter 12, we discussed a tool to manage the complete Production rule set in
an efficient way. In this tool, a pretty printeris included for the purpose of presenting
a global view of the implemented Production rule set.

One of the advantages of such a pretty printer is the fact that during the
implementation process (in particular during the generation of the Translation
patterns) the possibility arises that you can easily refer to the global view of the
relevant production rule information to track down the information, which has to be
translated26.

Implementing the Pretty Printer

In the previous chapter, a detailed description is given of the complete Grammar
Editor .NET component within the ePOWER Workbench. In that chapter there is
mentioned that each of the class model classes consists of three important methods.
The first two are discussed, but the last one (the generation of the HTML of each of
the class objects) isn’t discussed already. This last part will be discussed in this
section.

The Pretty Printer, also known as the HTML generator, is built by adding extra
functionality to each of the classes of the class model (GrammarClassModel.cs, see
Appendix E). This complete process is delegated (bottom-up process) from the root
of the class model, the GrammarRuleCollection class. This class contains the method
print (see Appendix E, line number 158/206), which collects all the information from
his collection (ArrayList of GrammarRules) and prints it to a html-file (see Appendix
E, line number 190/194). Because this process is delegated, also his child nodes have
this print method. For the print method of each of the other classes in the class
model see Appendix E (GrammarRule, line number 282/306; GrammarElement, line
number 427/447; GrammarFeature, line number 507/532).

When the print method of the GrammarRuleCollection class is invoked all
information is collected and subsequently printed to a html-file (see Appendix E, line
number 197/204). The content of the html-file will also be displayed to the user.

26 Because the Translation Patterns are built upon the information parsed by the Production rules there is a
dependency between those two language dependent parts. From this view possessing a global view of the
production rules seems useful.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 60

Automated Norm Extraction from Legal Texts

™ Edit Grammar Rules 3 =10 x|

[WC =»¥Cl
- WC = W]
- [PF =: PREF FF]
- [MP =2 NP P WP
- [MP = HP COMJ MNF]
- [PF = PREF NF]
- WP = [ADJP] W]
- [MP = HP P =LIST PIJMCT]
- [MP = HP ADV [MP)=LIST PUMCT]
- WP = [ADWP] W)
- WC = WCI W]
- [WC = VLI W]
- WC =3 W]
- [MP = A
- [ADWP = ADY]
- [ADWP = PP]
- [ADVP = ADVE ADWF]
- [ADJP = ADJP ADJF]
- [ADJR =3 [ADWP] NLM]
- [ADJP =x [ADWF] ADJ]
- [ADJP = [ADYF] ADJP COMJ ADJP)
- [M = HLUM]
- [MP = CUR HUM]
~ [MP =+ [DETE] [ADJP] M [PF]]
R
- [DETE =» DET]
- [DETE => PH]
- [DETE => HUM]
- [Application of another zource] [PREF = FREF M PREF]
- [Application Provizion] [S = NP Y [A0%] PREF M]
- [Deeming Provizion s_order=sv] [5 = NP Y [<LIST]Y =LIST]
- [Deeming Provizion s_order=ws] [5 = % NP <LIST]Y =LIST] ;I

1
Save Cancel :. Print to File ||

Figure 27. A screenshot of the Rule Management tool with, for the execution of the Pretty
Printer, an extra button (“Print to File’).

In the global User Interface (GrammarForm.cs, see Appendix E) an extra button is

added to execute the Pretty Printer (see foregoing Figure 27).
In the next section, a screenshot of the output of the Pretty Printer is shown.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004

61

Automated Norm Extraction from Legal Texts

13.2 Screenshot of the Output

The screenshot below shows us the output of the Pretty Printer.

2 DATAY Workbench’, Test¥erbExtraction', Grammar.htm - Microsoft Internet Explorer

=l
File Edit \iew Fawvorites Tools ﬁ
§=Back v = T @ it | @Search (] Faworites @Media @ | %‘ ==l
Address I@ CDATAV orkbenchyTestverbExtraction’y@rammar htm j @Go | Links
@s:aarcll - I I Google |'| Altaviista ~ Ask Jeeves Althew'ebh ~ LookSmart Files - fﬁ% Customize (’§ My Button ﬁ Highligkt
The Set of Production Rules =
Mame: Marmae: Marne:
Description: Cescription: Description:
FF == PP CCOM] PP W == VC| VT == V|
a9 oy I
inResult = falze inResult = false inResult = false
cat = PP cat =W cat =W
sem comp[l] = comp[l] =
conj[1] = head[z] head[Z]
51[2] Sem sem
52[3] finit finit
type = pp_conj main[3] = main[3] =
e root[4] = root[4] =
cat = PP -)
sem[2] cat = vl cat = vl
type = pp head[Z] head[Z]
SO comp[1] = comp(1] =
cat = COMNJ mood = INDICATIVE mood = INDICATIVE
sem[1] = subcat[5] = MAIN subcat[s] = COPULA
PP sem[3] = sem[3] =
cat = PP root[4] = root[4] =
sem[3]
MName: MName: MNarme:
Drescription: Description: Drescription:
PP == PREF PP MP == NP PN WP NP == MP CONJ NP
A P AP
inResult = false inResult = true inResult = true
cat = PP cat = NP cat = NP
sem sem[5] head
main[1] modif agr
prep2] main[Z2] per =3 LI
e — BT nanl2?1 — e
[@] pore [T [[y computer

The screenshot shows us the content of the Grammar.html file, which has been

built during the execution of the Pretty Print application.

This output has become very useful during the implementation of the translation
patterns. There is a clear overview of all the stored information (the information
parsed by application of the production rules), so the Pretty Printer has resulted in a
more efficient and transparent way of implementing the translation patterns.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 62

Automated Norm Extraction from Legal Texts

14

Related Work

By taking a closer look at alternative specifications and tools used in other
projects, we can get an idea about the other possible solution methods of this
specific problem. Maybe in the future, some of these alternative specifications can
be used in the ePOWER Workbench translation engine.

Often, parsers are categorized according to the sets of languages that they can
parse. The Chomsky hierarchy (see The Free Dictionary.com 2004 [38]) distinguishes
between four types of families of languages: the regular languages, the context-free
languages, the context-sensitive languages and the recursive enumerable languages
(see Figure 28).

Grammar Languages Automaton Production
rules

Type-0 Recursively Turing machine No restrictions

enumerable
Type-1 |Context-sensitive Llnea_r-bounded non-deterministic Turing aAB — ayB
machine
Type-2 |Context-free INon-deterministic pushdown automaton ~ |A —y
. A — aB
Type-3 Regular Finite state automaton A a

Figure 28. The Chomsky Hierarchy (see The Free Dictionary.com website 2004 [38)]).

Our production rules also form a context-free grammar. However, the addition of
the different unification rules gives us additional flexibility and helps us cope with,
e.g. ambiguity. Unification in this context is similar to the use of semantic conditions
in attribute grammars (see Knuth, D., E., 1968. [35]). We are not the first to use a
formalism based on context-free grammars and attribute grammars for natural
language processing (see e.g. The AGFL-project [36]). These formalisms are also
prominent in the area of compiler construction.

The use of a lexicon is an important aspect of the Categorial Grammars (see
Houtman, J. 1994 [39] and Pearson, J. 2003 [40]). The use of a lexicon combined with
a fixed set of deduction rules makes categorial grammars easy to extend. Within this
technique, there are no production rules, such as they exist in our tool.

A totally different viewpoint can be found in the paper of Costa F., Frasconi, P.,
Lombardo, V., Soda, G. 2001 [41]. This paper describes the development of novel
algorithmic ideas for building a natural language parser by using recursive neural
networks, grounded upon the hypothesis of incrementality.

Hellwig, P. 2002 [42] discusses many implementation and algorithms for context-
free grammars (also, in combination with unification), and could be studied in the
future to improve the current implementation.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 63

Automated Norm Extraction from Legal Texts

15 Conclusion

During this thesis research, | have extended the ePOWER Workbench with the
functionality necessary for the second step towards automated norm extraction from
legal texts. This is called verb-phrase extraction. The ePOWER Workbench, as it is at
this moment, can be used to recognize and translate a subset of all possible legal
sentences described in the Dutch legislation into a formal model27.

So, during this thesis research | have given evidence that supported both
hypotheses stated in Section 3.1. My hypothesis for the recognition step of the verb-
phrase extraction was as follows:

When examining the (limited) set of predefined natural language constructs
(LC’s) defined by Emiel de Maat, special parse rules can be generated to
extract the necessary legal knowledge from the legal sentences.

My hypothesis for the translation step of the verb-phrase extraction was:

After the application of the parse rules, special translation patterns can be
applied to generate the relevant formal models (expressed in UML/OCL).

In Chapters 5, 6, and 7, | have discussed how the (limited) set of predefined
natural language constructs (see Appendix A for the complete set of global structures
defined for each of the different JLC’s), defined by De Maat 2003 [6], can be used to
generate the production rules for the recognition of all the normative elements from
the legal texts (see Appendix C for the final set of production rules made for each of
the different JLC’s). In these chapters, it was described how to generate the final
formal models by implementing the relevant translation patterns.

Therefore we can conclude that the legal sentences, although they are expressed
in natural language, provide us with enough syntactical clues (found by De Maat 2003
[6]) to identify normative elements and consequently provide us with the handles to
build an automated norm extraction tool.

As mentioned at the beginning of this thesis, the main target of the (E-)POWER
program was to generate an environment supporting the generation of knowledge
components (from normative knowledge sources represented in document form, via a
formal model to a knowledge-based component (i.e. a piece of software able to make
inferences about a certain regulatory domain)).

The ePOWER Workbench can therefore be seen as a starting point for the
implementation of normative reasoning applications (applications that have the
ability to reason about cases). It generates formal models from the normative
knowledge sources (legal sentences).

27 This is based on the current set of JLC’s (Juridical (Natural) Language Constructs), but we have no reason
to believe that different constructions would not fit in our framework.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 64

Automated Norm Extraction from Legal Texts

The next step for the generation of knowledge components from the formal
models (generated by the automated norm extraction tool), is the generation of
programming code from a well typed (a type checker) OCL expression (see the thesis
of Faridah Liduan 2004 [31], who has implemented such a code generator and type
checker). At this moment, the code generator accepts OCL expressions and generates
an intermediate language RBML (a rule-based XML document). This intermediate
language can, by further research, be used to generate the necessary code for the
implementation of a knowledge application. This will complete the (E-)POWER
approach. Of course, improvements on each subsequent step are necessary to be
able to fully rely on each of the different intermediate results.

At the end of my thesis research, the automated norm extraction tool has all the
functionality necessary to recognize and translate legal sentences to a formal model.
By introduction of this tool, a couple of advantages arise: the tool helps to reduce
modelling time and effort while inter-coder dependencies diminish. When the formal
models are made by hand (by experts), there is no guarantee that the generated
formal models are similar. Afterwards, we have to check if the formal models are
correct. When introducing an automated tool we generate the formal models
consistently.

The final norm extraction tool is still in an early stage of development and still has
to prove its benefit. | am however convinced that although | do not claim 100%
recognition, a significant reduction of knowledge analysis effort (and further
improvements in reducing inter-coder independencies) is achievable. Besides the
advantage that this tool helps us to reduce modelling time and effort, there is also
the advantage of reducing maintenance costs and total cost of ownership of the IT-
service build upon the models produced this way. But in the beginning the aim of the
(E-)POWER program was to generate a first version of a tool that supports automated
norm extraction, so my approach can be seen as a successful one.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 65

Automated Norm Extraction from Legal Texts

16

16.17

Recommendations for Further Research

In this chapter, some recommendations will be discussed for future development.
During this thesis research, | have tackled the second problem of automated norm
extraction, namely verb-phrase extraction. The ePOWER Workbench as it is today has
all the functionality to recognize and translate a subset of all possible legal sentences
as they occur in the Dutch legislation. Future development will result in more
knowledge about normative reasoning with legal sentences and thus in a more useful
tool for automated norm extraction.

Progressive Deconstructing of Abstract Language Constructs

During preliminary research done by De Maat [6], a couple of legal sentences have
been chosen from a subset of the complete legislation (the law on income taxes from
2001, IB2001). By examining this subset, De Maat has categorized these legal
sentences into a (limited) set of predefined natural language constructs (also known
as JLC’s, see Chapter 5) which can be used to define the legal sentences?38 (i.e. legal
norms).

My thesis research, extending the initial ePOWER Workbench with functionality for
verb-phrase extraction, is based upon these different categorizations?9. So, at this
moment the ePOWER Workbench is limited to recognize and translate a subset of all
possible legal sentences. In addition, when we look at the categorizations built by De
Maat some JLC's are specified in a very general, concise way. For example, when we
look at the global structure and the production rule of the JLC Deeming Provision
(see Figure 29 and 30) we can see that for the language construct other than the
main terms only the production rule X_LIST (see Chapter 9) is used for extraction.

<subject> [wor dt] <denotation of time period> [geacht] <fiction>

Figure 29. The global structure of the JLC Deeming Provision with the main terms marked bold.

When some legal sentence is recognized as being of JLC type Deeming Provision
the specific intermediate language constructs are recognized by application of the
X_LIST rule and subsequently concatenated for the generation of formal attributes.
One can understand that there is always a possibility that, within these language
constructs more relevant formal elements can be found (like classes, attributes,
relations, associations etcetera). At this moment, no further specification of the sub
constructs is available. Therefore, during my implementation, no further
categorization of the abstract language constructs (within the legal sentence) is

28 De Maat has examined a subset of all possible legal sentences occurring in the chosen law type. By this
fact, there is not enough legal knowledge to recognize and translate all possible legal sentences occurring
in the Dutch legislation. When new knowledge becomes available this can easily be added to the ePOWER
Workbench translation engine by adding new production rules and translation patterns.

29 Some categorizations (JLC’s) are adapted and some categorizations are bundled to one single JLC. These
adaptations are made because of implementation reasons. For the final set of generated production rules
and translation patterns, see Appendix C and F.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 66

Automated Norm Extraction from Legal Texts

16.2

applied. At this point, not enough knowledge is available to handle the subordinate
clauses. They are recognized in the current tool, but their relation to the main terms
(specified in the main sentence JLC’s) is not determined.

S->NP_1V_2(XLIST_3) V_4 XLIST 5
<S inResult> = true

<S sem type> =s dp

<S s_order> =sv

<V_2root> = worden

<V_2 head subcat> = AUX

<V_4 root> = achten

<V_4 head subcat> = MAIN

<S head agr> = <NP_1 head agr>
<S head agr> =<V_2 head agr>
<S sem subject> =<NP_1 sem>
<S sem dp_partl> =<V_2sem>

<S semtime_period> =<XLIST_ 3 sem>
<S sem dp_part2> =<V_4 sem>

<S sem fiction> = <XLIST_5 sem>

Figure 30. The production rule for the JLC Deeming Provision (s_order=sv), with for the
recognition of the "denotation of time period” and “fiction” constructs the NLC’s marked bold.

Later, when more knowledge about the subsequent language constructs of each of
the JLC’s becomes available, we can add new production rules (or adapt the relevant
ones) and translation patterns to the ePOWER Workbench. In Chapter 7 a detailed
description is given about how new knowledge can be added to the ePOWER
Workbench translation engine by examining the global structure of each of the
different JLC’s. In addition, by using the Grammar Editor (or Automated Rule
Management tool, see Chapter 12) new available knowledge can easily be entered
into the ePOWER Workbench translation engine.

At this moment, | have introduced the X_LIST production rule to be able to
recognize complete legal sentences. When we leave out this rule the translation
engine is not able to apply the different production rules for each of the JLC’s,
because there is no information about the deeper structure of each of the
intermediate language constructs. So, the X_LIST production rule is introduced to
finish a first tool for automated norm extraction. The tool implemented during my
thesis research can be used as starting point for further development within this field
of science.

Automated Pattern Management

Another recommendation for future development is the generation of an editing
tool to efficiently administer the set of translation patterns. At this moment, the
translation patterns are specified by Visual Basic scripts, stored in a separate
database (the pattern table in the translate-nl database, see Section 6.3).

Because these scripts are stored in a separate database table, there are a couple of
shortcomings.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 67

Automated Norm Extraction from Legal Texts

The first problem of storing programming code in a database table is the fact that
administering these scripts is very hard (a limited set of editing tools is available).

The second more important shortcoming of using a separate database for editing
the translation patterns is the fact that possible errors (syntactic- or semantic errors)
are not recognized at the end of each adjustment. Possible errors within the
translation scripts are only recognized by the direct application of them.

During the translation step (generating the formal models), the relevant scripts are
collected from the database and directly applied. At this moment the ePOWER
Workbench doesn’t have any functionality for pre-processing the scripts. When there
are some errors made during the generation of the translation pattern, the ePOWER
Workbench simply crashes, so no detailed error messages appear to the user (no
feedback). This is very inefficient because you simply do not have the exact position
from where the exception is thrown. A more practical editing tool seems necessary.

A possible solution can be found in implementing an editing tool as a separate
component of the ePOWER Workbench application. Like the tool developed to manage
the set of production rules (discussed in Chapter 12) we can also implement such a
tool in C# which can be used to edit the translation patterns in a more transparent
way. Implementing this tool in .NET (the development environment of the ePOWER
Workbench application) also has the advantage that we can add Visual Basic .NET
functionality to the editor. One can think of syntax highlighting, auto-completion and
macros. In addition, functionality can be added for pre-processing the edited scripts
before they become available in the ePOWER Workbench translation engine. With this,
better error messages can be returned. The user can detect and handle his errors in a
more reliable and transparent environment than what is available in the current
ePOWER Workbench norm extraction tool.

16.3 Transitive and Intransitive Verbs

Another recommendation for future development is the introduction of transitive-
and intransitive verbs. Transitive verbs are verbs with some kind of special property.
In the first place, a transitive verb is an action verb. Secondly, it requires a direct
object to complete its meaning in the sentence. In other words, the action of the verb
is transferred to the object directly (see the Transitive Verbs 2000 website [26]). In
the following examples (taken from the website), the usage of the transitive verb is
clarified. The transitive verb is marked bold and the direct object is underlined.

| The judge sentences the man to five years in prison.

- The subject (the judge) applies an action (sentences) to a direct object (the man).

The attorney has revealed the bad news.

- The subject (the attorney) has transferred an action (revealed) to a direct object (bad news).

The defendant could not provide an alibi.

- The subject (the defendant) will transmit an action (could provide) to a direct object (an alibi).

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 68

Automated Norm Extraction from Legal Texts

The above examples can be used to visualize the global meaning of the usage of
the properties of the transitive verbs.

Now let us look at the general usage of intransitive verbs. Intransitive verbs are the
opposite of the transitive verbs. An intransitive verb is also an action verb, but it does
not have a direct object. The action ends rather than being transferred to some
person or object, or is modified by an adverb or adverb phrase.

To determine whether a verb is intransitive you have to ask whether the action is
done in some way, in some direction or to some degree. Does anything receive the
action of the verb? If it does, then the verb is transitive and the person or thing that
receives its action is the direct object (see the Intransitive Verbs 2000 website [27]).
In the following examples (taken from the website), the usage of intransitive verbs is
clarified. The intransitive verb is marked bold and the modifier is underlined.

| The man decided against a plea bargain.

- The subject (the man) did something (decided) a particular way (against).

| He refused because of his immaturity, not his lack of contrition.

- The subject (He) did something (refused) for a particular reason (because of his immaturity).

| Alice complained bitterly.

- The subject (Alice) did something (complained) to a particular degree (bitterly).

| At the end of the Roaring '20s, the incarceration index rose slightly.

- The subject (the index) did something (rose) in a particular direction (slightly).

| When faced with the problem, the scholar paused.

- The subject (scholar) did something (paused) at a particular time (when faced with the problem).

| Earl fell.

- The subject (Earl) did something (fell) and the action did not transfer to someone or something.

The above examples can be used to visualize the global meaning of the usage of
the properties of intransitive verbs.

In our case, these special properties can be used to extend the ePOWER
Workbench norm extraction tool with the knowledge for the generation of formal
associations. One can think of the generation of a production rule of the following
form:

S->NP; VNP,

The first noun-phrase is the subject of the sentence and the second noun-phrase
is the direct-object of the legal sentence. The verb (V) is the language construct,
which we can use to extract the information about transitive- and intransitive verbs
(the existence of a transitive verb always forces a relation between the subject and
the direct-object of the legal sentence and we can generate a association between
them).

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 69

Automated Norm Extraction from Legal Texts

To be able to use this production rule some extra information has to be added to
the relevant verbs. One can think of an extra feature, which we have to add to all the
transitive verbs and intransitive verbs. This extra feature could be in the form of an
attribute-value-pair 7ransitive=true/false added to the features column of the
lexicon database table. During the application of the production rules, we now have
the possibility to refer to the lexicon to check if the recognized verb has the transitive
verb property. If so, we can generate a formal association from the extracted
language constructs.

Something we have to keep in our mind is the recognition of the language
construct “is”. This word can be used as part of the global structure of the JLC
Definition 1 (<subject>[i s]<definition> , see Appendix A) or it can be used as
part of the already mentioned global structure used for the recognition of the
transitive and intransitive verbs. Special care seems necessary.

In addition, when applying all this knowledge, during the recognition step of the
norm extraction tool, we have to check if this extra knowledge will lead to correct
formal associations. More specific research on the usage of these grammatical
properties seems necessary.

16.4 Fixed Verb-Preposition Couples

Another grammatical property that we can use for future development is the usage
of fixed verb/preposition couples (see Verb and Preposition Collocations 2002 [28]).
Table 11 shows us a subset of all the possible verb/preposition couples that
commonly appear together in the English language.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 70

Automated Norm Extraction from Legal Texts

accuse (someone) of ([doing] something) keep (something) for (someone)
add (something) to (something else)

admire (someone) for ([doing] something) matter to (someone)

agree on (topic) _)

agree with (someone) object to (something)

allow to ([do] something)

apologize to (someone) for ([doing] something)
apply to (a place) for (something)

approve of (something)

argue with (someone) about (topic)

arrive at (a building, room, site, event)

arrive in (a city, country)

ask (someone) about (someone/topic)

ask (someone) for (something)

participate in (something)

pay (price) for (something)

pray for (someone/something)

prefer (something) to (something else)
prevent (someone) from ([doing] something)
prohibit (someone) from ([doing] something)
protect (someone) from (something)

provide (someone) with (something)

recover from (something)

rely (up)on (someone/something)
remind (someone) of (something)
rescue (someone) from (something)
respond to (someone/something)

believe in (something)

belong to (someone)

blame (someone) for ([doing] something)
borrow (something) from (someone)

care about (someone/something/topic)
comment on (topic)

compare (something) to/with (something else)
complain to (someone) about (something)
concentrate on ([doing] something)
congratulate (someone) for/on ([doing] something)
consist of (some things)

consent to ([doing] something)

contribute to (something)

count on (someone) to (do something)

cover (something) with (something else)

save (someone) from (something)

search for (something)

separate (something) from (something else)
scold (someone) for ([doing] something)
shoot (someone) with (something)

smile at (someone) for ([doing] something)
speak to/with (someone) about (topic) /br> stare
at (something/someone)

stop (someone) from ([doing] something)
subscribe to (something)

substitute (something) for (something

decide on (topic) else/someone) _ .
depend on (someone) for (something) subtract (_somet_hlng) from (;omethmg else)
discuss (something) with (someone) succeed in ([doing] something)

distinguish (something) from (something else) suffer from (something)

dream about/of (someone/somethin
utfof (s S ing) take advantage of (someone/something/ situation)

escape from (somewhere) take care of (something/someone)
explain (topic) to (someone) talk to/with (someone) about (topic)
excuse (someone) for ([doing] something) thank (someone) for ([doing] something)

travel to (somewhere)

forgive (someone for ([doing] something)
vote for (someone)

get rid of (something) vouch for (someone)

graduate from (a place) _)
wait for (someone/something)

happen to (someone) wish for (something) .
help (someone) with (something) work for (company/something/someone)
hide (something) from (someone)

insist (up)on (something)
introduce (someone) to (someone else)
invite (someone) to (an event)

Table 11. A /ist of verbs and prepositions which commonly appear together in the English
language, with the relevant couples for the relevant example marked bold (see website [28]).

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 71

Automated Norm Extraction from Legal Texts

Initially we can add this knowledge to the ePOWER Workbench translation engine
for the generation of formal associations. However, | think, this will become one of
the main targets in getting around the ambiguity problem (or the PP-attachment
problem). For example, when we want to translate the following sentence

it is not allowed to shoot a man with a gun.

this sentence has two possible interpretations. In the first place, one can interpret
that it is not allowed to use a gun to shoot a man. The other can interpret that it is
not allowed to shoot a man who has a gun. The difference in interpretation lies in the
attachment of the preposition (PP-Attachment problem). Because this sentence will
result in two different derivation trees (parse trees), we call this the ambiguity
problem. In my opinion, the foregoing knowledge about the verb/preposition couples
can help to get around ambiguity in some extent. For example, when we apply this
knowledge to the foregoing example we can extract two verb/preposition couples,
which we can use to reason about the exact meaning of the complete sentence. The
first one is “allowed to” (allow to ([do] something)) and the second one is “shoot with”
(shoot (someone) with (something)). To determine the exact meaning of the above
sentence we can use the global meaning of the both verb/preposition couples. The
first couple does not give us enough information to conclude one derivation, because
the ambiguity lies in the second phrase (the “something”-part of the first couple) of
the sentence (“to shoot a man with a gun”). When we look at the global structure of
the second couple, there is stated that you have to shoot someone with something.
This can help us to conclude one derivation in the sense that in the first place we
search for the someone-part (so finding a noun or noun-phrase which holds
information about the person who will be shot) and after that we will search for the
something-part (the thing where the someone-part will be shot with). In our case, we
can use the information to conclude (forcing) that it is not allowed to shoot a man
when we make use of a gun. (Of course, in some cases both derivations make sense,
but since we work in the context of the law we do not expect ambiguity) By looking at
the verb/preposition couples, we can try to figure out what the exact meaning is of
the specific sentence. | can imagine that in my initial solution there are some
shortcomings, but future development has to prove that we can use more
grammatical knowledge about the language constructs to interpret the input
sentences in a more efficient and transparent way without having the problem of
ambiguity.

16.5 Enumerations

In the current norm extraction tool there is not enough knowledge (specification in
the form of a global structure containing enumeration statements) available about the
extraction of legal sentences which hold information in an enumerated way.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 72

Automated Norm Extraction from Legal Texts

For example, when we want to translate the following legal sentence

IB 2001 Art 2.1 1id 1

Taxpayers for the income tax are natural persons who:

a. live in the Netherlands (native taxpayers) or

b. do not live in the Netherlands but do earn Dutch income (foreign taxpayers).

the parsing process will result in the recognition of the noun-phrases, but the
translation engine doesn’t have enough information about the recognition of
enumeration statements for the recognition of the complete legal sentence. When we
look at the above legal sentence we initially can apply the JLC Definition 1
(<subject>[is|are]<definition> , see Appendix A) to recognize the sub sentence
“Taxpayers for the income tax are natural persons”. The other information is in the
form of an enumeration. Both the statements say something about the definition part
of the JLC Definition 1, namely “natural persons’, in the sentence that it adds some
additional information which will result in the fact that this legal sentence only is
applicable (restricted) to natural persons which have the further described properties
(described in the enumeration). To recognize this sentence we have to add some
more knowledge about the global structure of enumeration statements within the
current global structures of the JLC’s. Future research, about the existence and
translation of enumeration statements should yield a way of how we can handle those
statements. This can be done by detecting all possible enumeration statements used
in the source documentation.

16.6 The NLC Formula

At this moment, a concise production rule is generated for the recognition of the
NLC formula (like in the JLC Assignments, Changes and Comparison, see Appendix
A). The tool has functionality to recognize legal sentences containing the following
formula constructs:

x increased by y By using the production rule 14 (Appendix C
“Production rules for Verb-phrase Extraction”)
x decreased by y and translation pattern type="np_formula”

(Appendix F)

at most x } By using the production rule 25 (Appendix C)

at least x and translation pattern type = "np” and root in
("bedrag”, "'waarde”, "hoogte") and pp.prep =
"van" (Appendix F)

One can think of more than only these formula constructs (like “sum of xand y/,
“x divided by), etcetera), but at this moment it is only possible to recognize and
translate the former constructs to their relevant formal model elements. When by
future research more legal knowledge about the global structure of each of the
possible formula statements becomes available more production rules and translation
patterns can be made.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 73

Automated Norm Extraction from Legal Texts

16.7 Multiplicity in Associations

At this moment, the ePOWER Workbench translation engine can translate legal
sentences, containing formal associations, into their relevant formal model. However,
there is more knowledge necessary to complete the recognition of associations.
Information about the multiplicity of the association is necessary (see the UML
specification [9]). The general UML notation for an association can be found in Figure
31.

multiplicity A label multiplicity Q
role A role B

Class A Class B

Figure 31. General UML notation for associations.

Figure 31 shows us that for the correct generation of the formal association
between class A and B also information about the multiplicity of role A and role B has
to be available. Table 12 depicts all possible multiplicity indicators. On both ends of
the association, one of these indicators must be added.

Indicator | Meaning

0.1 Zero or one

1 One only

0.* Zero or more

1.* One or more

n Only n (wheren> 1)
0..n Zeroton (wheren > 1)
1.n Oneton (wheren> 1)

Table 12. Multiplicity Indicators for associations.

At this moment, associations are recognized consisting of two noun-phrases,
which are related to each other in some kind of way. The information about the
multiplicity of both the noun-phrases is not yet extracted from the legal sentence by
the current translation engine. There is no global specification about how to extract
multiplicity of associations from legal sentences yet.

My approach would be to examine the noun-phrases for the existence of some
key words that indicate a multiplicity indicator. For example when the language
constructs “many”, “a couple of”, “some”, “a set of”, etcetera can be extracted as
being part of a noun-phrase this will in most cases result in the fact that the
multiplicity indicator is of the form * One can also think of language constructs,
which can be used to recognize the other multiplicity indicators. However, at this

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 74

Automated Norm Extraction from Legal Texts

moment | think that the global meaning of the introduction of multiplicity of
associations is clear.

16.8 Alternative Storage of the Lexical Data

One of the alternative solutions for warehousing and accessibility of all the words
possible in the Dutch language (the lexicon) is the usage of the computational
morphology technique30 (see A Computational Morphology of English 2004 [29]). At
this moment for each word and word form (like “is”, “was”, “were”, “been” and
etcetera) a separate record in the database is made, because of the grammatical and
lexical difference. By making use of the computational morphology technique only
the singular form of a noun or verb is stored and in runtime the other forms can be
computed. For example, we only have to store the verb-form “ren”3! to calculate the

verb-forms “rent (hij)” “rennen (wij)”, etcetera. We leave out the “en”’-part of the
infinitive part of all the different verbs occurring in the Dutch language to calculate
all the other lexical forms of the verb.

The main advantage of such a technique is the fact that we need less storage
space, but a bit more powerful CPU. At this moment, the ePOWER Workbench
application does not make use of this technique. Maybe in the future we can add this
functionality to the lexicon (of the Dutch language) for efficiency reasons, but at this

moment this seems too much overhead.

16.9 Multiple Language Support

Finally, the ePOWER Workbench contains the information and functionality
necessary to recognize and translate a subset of the Dutch legislation. The complete
norm extraction tool as it is present in this version of the ePOWER Workbench is
limited to the recognition of the Dutch language. Because the ePOWER Workbench is
made for multiple language support it can easily be extended with the functionality
necessary for the recognition and translation of other languages (see Chapter 6 for
more detailed information about all relevant parts of the ePOWER Workbench).

At this moment the ePOWER Workbench uses only three language dependent parts
namely, a lexicon (with all the possible words possible in the specific language), a set
of Production rules (for the creation of the Grammar rules and Unification rules) and a
set of Translation patterns (for the translation of the information parsed during the
application of the Production rules). These three parts are necessary for the ePOWER
Workbench to recognize a specific language. So, when these three language
dependent parts are available for another language, the norm extraction tool can be
used as well.

30 The computational morphology technique is only applicable for the storage and accessibility of all the
possible words occurring in the Dutch language. Therefore, in this section the examples are specified in
Dutch. For the usage of the computational morphology technique for the English language | can refer to.
31 The English main verb of the Dutch verb-form “ren” is “to run”.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 75

Automated Norm Extraction from Legal Texts

16.10 Multiple Law Types Support

In the current version of the ePOWER Workbench only a subset of the possible
legal sentences described in the law on income taxes from 2001 (Wet Inkomsten
Belasting 2001, IB2001) can be recognized and translated. This because, my
approach is based on the categorization of the different legal sentences (JLC’s)
defined by De Maat 2003 [6], occurring in the already mentioned law.

Maybe by future research the set of JLC’s can be extended by determining more
knowledge about the global structure of the legal sentences described in other law

types.

Globally, this thesis research and aforegoing researches had made a step towards

formalising legal knowledge using natural language processing.

16.11 Errors and other Classification Problems

The ePOWER Workbench only gives a result if a sentence can be classified to at

least one JLC. If this is not possible, then at this moment no feedback is given to the

user. Obviously, this situation needs improving. We suggest the following
architecture for interaction with the user:

> 1 Parse Tree i: User chooses the right one

User refines the applicable produciton rule
Legal
Sentenc = 1Parse Tree — Correct
Suggest corrections

No Parse Tree — Unknown token parsed ! - >
using partial matching

Adding a new token to the

lexicon
Otherwise, al tokens are Adding/Changing a
known production rule

iving alternative
production rules by partial
matching

From this architecture, we can conclude that there are two types of errors. In the
first place, there is a possibility that the legal sentence is incorrect. On the other
hand, it is also possible that the current set of production rules and the lexicon are
incomplete.

16.12 Improvements on our Implementation

In this section, we list a number of possible improvements of the current
implementation of the ePOWER Workbench. Also, an alternative implementation
technique, Attribute Grammars, will be discussed.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004

76

Automated Norm Extraction from Legal Texts

One of the shortcomings of the current implementation is the fact that there is
more than one language32 used in the translation tool. First, the parsing process is
based on a set of Production rules. These rules are stored in a separate database
(translate-n/, see Section 6.1) and described by the XML formalism (see Section 6.2).

When the parsing process is finished, the second step is to translate the derivation
tree into a formal model. For this purpose, the translation tool makes use of the
translation patterns, which are also stored in the same database. These translation
patterns are in the form of a Visual Basic script (see Section 6.3). The rest of the
functionality (see Figure 6) is implemented in the .NET environment (by the
programming language C#). Therefore, we can conclude that there are three used,
namely C#, XML and Visual Basic.

A disadvantage of this, is the fact that during the execution of the ePOWER
Workbench tool, different languages have to be able to communicate with each other.
For example, for the extraction of the normative legal constructs (the application of
the production rules), the translation tool obtains the production rules from an XML
file. Before these rules can be used the XML file should be parsed at runtime, so
exceptions are possibly thrown during this process. No error messages appear when
the user makes some adaptations to the production rule set. This is one of the main
problems of the current version of the ePOWER Workbench. In Chapter 12 an editing
tool is described, the Grammar Editor, which can be used to edit, delete and create
production rules. The disadvantages of using the database for modification purposes
are now dealt with. The problem of determining possible errors is still there, but at
this moment the editing tool cannot compile XML script.

Almost the same problem arises during the application of the translation patterns.
These patterns are described in Visual Basic and are stored in a database. Possible
error messages only appear at runtime, and the user does not receive a clear error
message with information about the place (in the code) from where the error
originates. In addition, a lot of syntactical overhead is present when using Visual
Basic script. For every production rule a translation pattern (stored in a different
record in the database table) has been made. When some functionality (in the form of
a programming method) is applicable for more than one translation pattern, we have
to copy and paste this method in every record in the database where this
functionality can be used. Reusing programming code is impossible, and we get
duplication of effort and errors. Another disadvantage of using Visual Basic scripts is
the fact that there is too much control (it is not as declarative as one could hope). In
Section 16.2, a possible editing tool is described.

The main reason of the disadvantages mentioned above, is the fact that both these
scripts are stored in a database. In general editing a record in a database is not
efficient. There is no syntax highlighting, no auto-completion and no macros
functionality. In addition, there is no support to determine errors (typing-, syntax-
and type errors). At this moment, we have to make use of the debugging facility of
the .NET environment to be able to determine the place where from a possible error
is thrown.

32 In this chapter, the word “languages” is used. In this case, also the word phrase “programming
languages and formalisms” can be used.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 77

Automated Norm Extraction from Legal Texts

After discussing the current implementation of the ePOWER Workbench, it is time
to discuss a possible alternative implementation of the main problem. We simply
want to make use of one single programming language (if necessary using a
database) to describe the complete functionality of the ePOWER Workbench
translation tool. For example, we really want to change the specification language
used for the translation patterns into a more declarative language, like PROLOG, ML
or HASKELL (most preferable a strongly typed language).

One of the possibilities is the usage of an Attibute Grammar for natural language
processing (see Knuth, D., E., 1968 [35]). Attribute grammars are an extension of
context-free grammars as a mechanism for the semantics of a context-free language
within the syntax of the language (Mehdi Jazayeri, William F. Ogden, and William C.
Rounds 1975 [34]). Usually, this language is more declarative than Visual Basic script
and the C# language. In other words, an attribute grammar can be used to define
semantic rules for a parse tree. In the Netherlands at the University of Nijmegen a
project started called the AGFL-project (Affix Grammars over a Finite Lattice) which
goal is the development of a technology for Natural Language Processing by using
the Attribute Grammar technique (see The AGFL Grammar Work Lab 2004 [36]). This
homepage gives an exact description about how this technique can be used for
natural language purposes. A parser for the Dutch language is included as well as a
parser for some other languages. Of course, we have to add some extra functionality
to the parser to be able to translate the parsed information into a formal model. This
can be done by specifying semantic rules (with an attribute grammar).

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 78

Automated Norm Extraction from Legal Texts

References

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

Van Engers, T.M., Boekenoogen, M., 2003, Improving Legal Quality - an
application report, in Proceedings of ICAIL2003, ISBN 1-58113-747-8, ACM
Press.

ePower Workbench 2.6, Belastingdienst Utrecht, Centrum voor Proces en
Productontwikkeling (B/CPP), Utrecht, 2000

USER DOCUMENTATION ePOWER Workbench 2.6, August 2003

Organisatie van de Belastingdienst, 2004, website
http://www.belastingdienst.nl/corpinfo/inhoud/inh_org_corp.html.
E-POWER Homepage, 2004, E-POWER Consortium, website
http://www.lri.jur.uva.nl/~epower/.

De Maat, E., 2003, Natural Legal Modelling. Formalising Legal Knowledge
using Natural Language Processing, Master Thesis, Universiteit van Twente,

Department of Computer Science, Twente

Microsoft Office Word 2003 Support, Microsoft Corporation, 2004, website
http://office.microsoft.com/assistance/topcategory.aspx?
ToplevelCat=CH79001816&CTT=6&0rigin=ES790020011043.

Zwemmer, J.W., 2002, Belastingwetten 2002, SDU Uitgevers, Amersfoort,
ISBN: 9076629781

Fowler, M., Scott, K., 2000, Uml Distilled. A Brief guide to Standard Object
Modelling Language, 2nd Ed. Addison Wesley

Warmer, J., Kleppe, A., 1999, The Object Constraint Language. Precise
Modelling with UML, Addison Wesley

Van Engers, T.M., Glassée, Erwin, 2001, Facilitating the Legislation Process
Using a Shared Conceptual Model, in /EEE Intelligent Systems,
January/February 2001 p50-58.

Egberts, Niels, 2004, Proces Modellering van Temporele Aspecten in Wet- en
Regelgeving, Master Thesis, Universiteit van Utrecht, Department of
Computer Science, Utrecht

Van Gog, R., Van Engers, T.M., 2001, Modelling Legislation Using Natural
Language, Proceedings of the 2001 IEEE Systems, Man and Cybernetics
Conference.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W., 1991,
Object-Oriented Modelling and Design. Englewood Cliffs NJ, Prentice-Hall.
Frederiks, P., 1997, Object-oriented modeling based on information
grammars. Nijmegen.

Nijssen, G.M. 1989, Grondslagen van Bestuurlijke Informatiesystemen.
Slenaken. Nijssen Adviesbureau voor Informatica.

Shieber, Stuart M. An Introduction to Unification-based approaches to
grammar. Stanford, Center for the study of Language and Information, 1986.
The Natural Language Processing Dictionary, keyword “agreement’, Artificial
Intelligence Group, School of Computer Science and Engineering, University

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 79

Automated Norm Extraction from Legal Texts

[19]

[20]

[21]

[22]

(23]
[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

of NSW, Bill Wilson, 2003, website
http://www.cse.unsw.edu.au/~billw/nlpdict.html.

XML Developer Center, The Language of Information Interchange, 2004
Microsoft Corporation, website http://msdn.microsoft.com/xml/default.aspx

Rule Based Systems, alison@ 1994, website
http://www.cee.hw.ac.uk/~alison/ai3notes/section2_4_4.html.

Coppen, P.A., Haeseryn, W., De Vriend, F., De determinator, De Elektronische
ANS (Algemene Nederlandse Spraakkunst), 2004, Stichting ANS, website
http://oase.uci.kun.nl/~ans/e-ans/14/04/body.html.

Visual Basic Language and Run-Time Reference, Nedcomp Hosting, website

http://www.nedcomp.nl/support/origdocs/dotnetsdk
/vblr7net/vboriVBLangRefTopNode.htm.
.NET, 2003, Microsoft Corporation, website http://msdn.microsoft.com/.

.NET Framework Class Library ArrayList class, 2004, Microsoft Corporation,
website http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/cpref/html/frirfsystemcollectionsarraylistclasstopic.asp.

Data Modelling: Primary and Foreign keys, Information Technology Services
at The University of Texas at Austin, 2004, website
http://www.utexas.edu/its/windows/database/datamodeling/dm/keys.html.
Transitive Verbs, The Tongue Untied, A guide to grammar, punctuation and
style, 2000, Kellee Weinhold, website
http://grammar.uoregon.edu/verbs/transitive.html.

Intransitive Verbs, The Tongue Untied, A guide to grammar, punctuation and
style, 2000, Kellee Weinhold, website
http://grammar.uoregon.edu/verbs/intransitive.html.

Verb and Preposition Collocations, eslgold.com, 2002, website
http://www.eslgold.com/site.jsp?
resource=pag_stu_grammar_expl_exa_exer_hi_verb_prep.

A Computational Morphology of English, 2004, SIL International,
http://www.sil.org/pckimmo/v2/doc/englex.html.

Unification-based syntactic parser PATR, SIL International Partners in
Language Development, 2004, SIL International, website
http://www.sil.org/computing/catalog/show_software.asp?id=37.

Liduan, Faridah, 2004, Design and Implementation of a UML/OCL Compiler,
Master Thesis, University of Utrecht, Department of Computer Science,
Utrecht

KDNet Symposium: "Knowledge-Based Services for the Public Sector”, June
2004, http://symposium.kdnet.org/symposium/symposium.jsp.

Van Engers, T.M., Sayah, K., Van Gog, R., De Maat, E., Automated Norm
Extraction from Legal Texts, 2004, Proceedings KDNet Symposium
Jazayeri, M., Ogden, W., M., Rounds, W., C., The intrinsically exponential
complexity of the circularity problem for attribute grammars,
Communications of the Association for Computing Machinery, 18(12):679-
706, December 1975.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 80

Automated Norm Extraction from Legal Texts

(35]

(36]
(37]

(38]

(39]

[40]

[41]

[42]

Donald E. Knuth, D., E., Semantics of context-free languages. Mathematical
Systems Theory, 2(2):127-145, 1968.

The AGFL Grammar Work Lab, 2004, http://www.cs.kun.nl/agfl/

Van Gog, R., Production rule Set and the Translation Patterns for the Noun-
phrase Extraction, Unpublished.

The Free Dictionary.com, Chomsky Hierarchy, 2004, Farlex, Inc., website

http://encyclopedia.thefreedictionary.com/Chomsky%20hierarchy

Houtman, J., Coordination and Constituency, A Study in Categorial Grammar,
1994, p. 19-51, University of Groningen

Pearson, J., Natural Language Processing: Semantic Analysis, 2003, The
College of New Jersey, Department of Computer Science

Costa, F., Frasconi, P., Lombardo, V., Soda, G., Towards incremental parsing
of natural language using recursive neural networks, 2001, University of
Florence, Department of Systems and Computer Science

Hellwig, P., Natural Language Parsers, A Course in Cooking, 2002,
Heidelberg

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 81

Automated Norm Extraction from Legal Texts

Appendix A

In this thesis, | make use of the categorization of the different legal sentences (see
Chapter 5) as it is described in the thesis research of Emiel de Maat [6]. This
categorization specifies for each of the different legal sentence categories (also
known as JLC’s) a rule-based structure33. This rule-based structure is used to define
Production rules to recognize and extract the necessary language constructs for the
generation of the relevant formal model. In this appendix a description of the rule
based structure of each of the different JLC types is depicted as it is described in the
thesis of Emiel de Maat (with the main terms of the global structures marked bold).

Deeming Provision
<subject> [wor dt] <denotation of time period> [geacht] <fiction>

Explicit Condition

[I f] <subject><feature>
[I nsof ar] <subject><feature>

Implicit Condition (subordinate clause)

[who|which|that]<feature>

Definition
<subject> [are]|i s] <definition> (2)
[By] <subject> [is under st ood] <definition> (2)

[By] <subject> [is al so under st ood] <definition> (2 broaden)

[By] <subject> [is not understood] <definition> (2 narrow)

[As] <term> [i s consi der ed] <new_term> 3)

[As] <term> [i s al so consi der ed] <new_term> (3 broaden)
[As] <term> [i s not consi dered] <new_term> (3 narrow)
<new_term> [is set to equal wi th]<term> (4)
<new_term> [is qualified as]<new_term> 4)

33 In the thesis of Emiel de Maat, a subset of all possible legal sentence categorizations is described.
Further research on this subject is likely to lead to more knowledge about the global structure
(categorization) of legal sentences. At this moment, | have used only the currently available knowledge
about the global structure of the legal sentences.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 82

Automated Norm Extraction from Legal Texts

Application Provision

<reference> [appl i es]

<reference> [does not apply]
Value Assignment, change and comparison
<subject> [i s|anpunts t o] <formula>
<subject> [is set to]<formula>
Relations
[to apply (to)]
Scope Definitions
[For the application of] <reference><statement>
References
<term> [as meant i n] <reference>

Application of another source

[due to application of]<reference>

[based on] <reference>

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004

Automated Norm Extraction from Legal Texts

Appendix B

To be able to use the XLIST Grammar rule we have to add some extra functionality
to the ePOWER Workbench. With this extra functionality every individual word, except
words with the cat-feature is equal to PUNCT, has the X-type property. This will
result in the fact that every word or a sequence of word can be parsed when no other
specific Grammar rule is applicable (this becomes handy when a sequence of words
has to be parsed for the generation of an attribute). In the programming code the
adaptations can be found (marked bold).

Workbench.NaturalLanguage.Lexicon.Lexicon.LookupLexemes(StringCollection
lexemesToLookup, string mode, Cultureinfo culture)

public FeatureSetCollectionCollection LookupLexemes(Strin gCollection lexemesToLookup, string
mode,Culturelnfo culture)

FeatureSetCollectionCollection retVal = new FeatureSetCollectionCollection();
if (lexemesToLookup.Count > 0)

DataTable LexiconTable = this .lexiconDAC.
SelectLexiconEntriesForLexemes(lexemesTolLookup,mode ,culture).Tables[0];
FeatureSetCollection fsc = null ;
foreach (string lexeme in lexemesToLookup)
if (retValllexeme] == null) //als nog niet opgezocht... (1)
string expr = "sem="+"" + this .lexiconDAC.EscapeSingleQuotes(lexeme,'\") + "";
DataRow[] foundRows = LexiconTable.Sele ct(expr);
if (foundRows.Length!=0)
fsc = GetFeatureSetsFromRows(foundRow s);
else
fsc = ApplyLexiconAdditionRegExes(lex eme,mode,culture);
if (fsc== null)
{
if (! this .htLexiconSupplements.ContainsKey(mode+"-"+culture. Name))
this .LoadLexiconSupplements(mode,culture);
ArrayList lexiconSupplements = (ArrayList) this .htLexiconSupplements[mode+"-
"+culture.Name];
foreach (ILexiconSupplement lexiconSupplement in lexiconSupplements)
fsc = lexiconSupplement.ProcessLexeme (lexeme, mode, culture);
if (fsc!l= null) break ;
}
if (fsc == null)
fsc = new FeatureSetCollection();
foreach (FeatureCollection fc in fsc)
{
if (this .lexemeFeatureName != null)
fc.Add(lexemeFeatureName, new FeatureValue(lexeme));
ApplylncrementalRegExes(lexeme, fc, m ode, culture);

/1 START X Category
/| Deze code zorgt dat elk woord altijd ook als categorie X wordt toegevoegd.
if (".,;()?!". I ndexX (| exene) <0)
{
Feat ureCol | ection fcX = new FeatureColl ection();
fcX. Add("sent, new FeatureVal ue(l exene));
fcX Add("root", new FeatureVal ue(l exene));
fcX Add("cat", new FeatureValue("X"));
fsc. Add(fcX);

}
/1 END X Category
retVal[lexeme] = fsc;
} llend: if(retVal[lexeme] == null)
} /lend: foreach(string lexeme in lexemesToLookup)
} /lend: if(lexemesToLookup.Count > 0)
return retVal;
}

NOUVTRUWN—OLO00NCWVTRAUWN—OO0ONOWVIAUWN— OO 00NIOVIAWN— OO 0ONOWTRWN— OO 00ONOWVIA WN—

VIUTUTUTUVTUVTVTR DD OSSN IS GDW0W0W0WIWIWIWIIWIIWIINININININININININORND!

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- Auqust 2004 84

Automated Norm Extraction from Legal Texts

Appendix C

The following table contains a global view of the complete production rule set
(a description of the Grammar rules and the relevant Unification rules).

This pretty printer functionality, which we used to obtain the rules below, has
been added to the ePOWER Workbench by Ron van Gog as an extra component. It
generates a general view of the complete Production rule set by examining the
class model (see Chapter 6). Furthermore, the PC-PATR parser can use it, which is
an alternative for the parser used within the ePOWER Workbench, at this moment.
For more information about the PC-PATR parser, see Unification-based syntactic
parser PATR 2004 [30].

The rules for the noun phrase extraction are based on Ron van Gog [37]. Note
that some of the rules have been modified by the author.

Production rules for the Noun-Phrase Extraction

1

Rule{}

PP -> PP_1 CONJ_2 PP_3

<PP inResult> = false

<PP sem type> = pp_conj

<PP_1 sem type> = pp

<PP sem conj> = <CONJ_2 sem>
<PP sem sl> = <PP_1 sem>
<PP sem s2> = <PP_3 sem>

2
Rulef}
VC -> VCI_1

<VC inResult> = false

<VCI_1 head mood> = INDICATIVE
<VCI_1 head subcat> = MAIN

<VC comp> = <VCI_1 head comp>
<VC head> = <VCI_1 head>

<VC sem finit main> = <VCI_1 sem>
<VC sem finit root> = <VCI_1 root>

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

3
Rulef}
VC -> VCI_1

<VC inResult> = false

<VCI_1 head mood> = INDICATIVE
<VCI_1 head subcat> = COPULA
<VC comp> = <VCI_1 head comp>
<VC head> = <VCI_1 head>

<VC sem finit main> = <VCI_1 sem>
<VC sem finit root> = <VCI_1 root>

4

Rule{}

PP -> PREP_1 PP_2

<PP inResult> = false

<PP sem type> = pp2

<PP sem main> = <PP_2 sem>
<PP sem prep> = <PREP_1 root>

5

Rulef}

NP -> NP_1 PN_2 VP_3

<NP inResult> = true

<NP sem modif type> = bijvoeglijke_bijzin
<PN_2 head subcat> = RELATIVE

<NP sem modif main> = <VP_3 sem>
<NP sem modif pn> = <PN_2 sem>
<NP sem> = <NP_1 sem>

<NP head agr> = <NP_1 head agr>
<NP head agr> = <PN_2 head agr>
<NP head agr> = <VP_3 head agr>

6

Rule{}
NP -> NP_1 CONJ_2 NP_3

<NP inResult> = true

<NP head agr per> =3

<NP sem type> = np_conj

<NP_1 sem conj> = null

<NP sem conj> = <CONJ_2 sem>
<NP sem s1>
<NP sem s2>

<NP_1 sem>
<NP_3 sem>

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

7

Rule{}

PP -> PREP_1 NP_2

<PP inResult> = false

<PP sem type> = pp

<PP sem main> = <NP_2 sem>
<PP sem prep> = <PREP_1 root>

8

Rule{}

VP -> (ADJP_1) VC_2

<VP inResult> = false

<VP sem type> = vp

<VC_2 head subcat> = COPULA
<VP head> = <VC_2 head>
<VP sem adj> = <ADJP_1 sem>
<VP sem pred> = <VC_2 sem>

9

Rulef}

NP -> NP_1 PN_2 XLIST_3 PUNCT_4

<NP inResult> = true

<NP sem modif type> = bijvoeglijke_bijzin
<PN_2 head subcat> = RELATIVE

<NP sem modif main> = <XLIST_3 sem>
<NP sem modif pn> = <PN_2 sem>

<NP sem> = <NP_1 sem>

<NP head agr> = <NP_1 head agr>

<NP head agr> = <PN_2 head agr>

10

Rulef}

NP -> NP_1 ADV_2 (NP_3) XLIST_4 PUNCT_5
<NP inResult> = true

<NP sem modif type> = nabepaling
<ADV_2 head subcat> = RELATIVE

<NP sem modif main> = <XLIST_4 sem>
<NP sem modif adv> = <ADV_2 sem>
<NP sem modif np> = <NP_3 sem>

<NP sem> = <NP_1 sem>

<NP head agr> = <NP_1 head agr>

<NP head agr> = <ADV_2 head agr>

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

87

Automated Norm Extraction from Legal Texts

11

Rule{}

VP -> (ADVP_1) VC_2

<VP inResult> = false

<VP sem type> = vp

<VP head> = <VC_2 head>

<VP sem adv> = <ADVP_1 sem>
<VP sem pred> = <VC_2 sem>

12

Rule{}

VC -> VCI_1 VCI_2

<VC inResult> = false

<VCI_1 head mood> = INDICATIVE
<VCI_1 head subcat> = AUX

<VCI_2 head subcat> = MAIN

<VC comp> = <VCI_2 head comp>
<VC head> = <VCI_1 head>

<VC sem finit main> = <VCI_1 sem>
<VC sem finit root> = <VCI_1 root>
<VC sem hoofd main> = <VCI_2 main>
<VC sem hoofd root> = <VCI_2 root>
<VCI_1 head needs> = <VCI_2 head mood>

13

Rule{}

VC -> VCI_1 VCI_2

<VC inResult> = false

<VCI_1 head mood> = INDICATIVE
<VCI_1 head subcat> = AUX

<VCI_2 head subcat> = COPULA

<VC comp> = <VCI_2 head comp>
<VC head> = <VCI_1 head>

<VC sem finit main> = <VCI_1 sem>
<VC sem finit root> = <VCI_1 root>
<VC sem hoofd main> = <VCI_2 sem>
<VC sem hoofd root> = <VCI_2 root>
<VCI_1 head needs> = <VCI_2 head mood>

14
Rule{}
VCI -> V_1

<VClI inResult> = false
<VCl head> = <V_1 head>
<VClI root> = <V_1 root>
<VCl sem> = <V_1 sem>

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

88

Automated Norm Extraction from Legal Texts

15

Rule{}

NP -> A_1

<NP inResult> = true

<NP sem type> = np_ref

<NP sem isValue> = false
<NP sem main> = <A_1 sem>
<NP sem href> = <A_1 href>

16

Rule{}

ADVP -> ADV_1

<ADVP inResult> = false

<ADVP sem hd type> = adv

<ADVP sem type> = adv_list

<ADVP sem hd main> = <ADV_1 sem>

17

Rulef}

ADVP -> PP_1

<ADVP inResult> = false
<ADVP sem type> = adv_list
<ADVP sem hd> = <PP_1 sem>

18

Rule{}

ADVP -> ADVP_1 ADVP_2

<ADVP inResult> = false

<ADVP list> = true

<ADVP sem type> = adv_list

<ADVP_1 sem hd type> = adv
<ADVP_2 list> = false

<ADVP sem hd> = <ADVP_2 sem hd>
<ADVP sem tl> = <ADVP_1 sem>

19

Rule{}

ADJP -> ADJP_1 ADJP_2

<ADJP inResult> = false

<ADJP list> = true

<ADJP sem type> = adj_list
<ADJP_2 list> = false

<ADJP sem hd> = <ADJP_2 sem>
<ADJP sem tl> = <ADJP_1 sem>

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

20

Rule{}

ADJP -> (ADVP_1) NUM_2

<ADJP inResult> = false

<ADJP sem type> = adj

<NUM_2 head subcat> = ORDINAL

<ADJP sem adv> = <ADVP_1 sem>
<ADJP sem main> = <NUM_2 sem>
<ADJP sem root> = <NUM_2 root>

21

Rule{}

ADJP -> (ADVP_1) ADJ_2

<ADJP inResult> = false

<ADJP sem type> = adj

<ADJP sem adv> = <ADVP_1 sem>
<ADJP sem main> = <ADJ_2 sem>
<ADJP sem root> = <ADJ_2 root>

22

Rule{}

ADJP -> (ADVP_1) ADJP_2 CONJ_3 ADJP_4
<ADJP inResult> = false

<ADJP sem type> = adj_conj
<ADJP_2 list> = false

<ADJP_2 sem conj> = null
<ADJP_4 list> = false

<ADJP sem adv> = <ADVP_1 sem>
<ADJP sem conj> = <CONJ_3 sem>
<ADJP sem s1> = <ADJP_2 sem>
<ADJP sem s2> = <ADJP_4 sem>

23

Rule{}

N -> NUM_1

<N inResult> = false

<N head agr gen> = MF

<N isValue> = true

<N head agr> = <NUM_1 head agr>
<N root> = <NUM_1 root>

<N sem> = <NUM_1 sem>

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

24

Rule{}

NP -> CUR_1 NUM_2

<NP inResult> = true

<NP sem type> = np_money

<NP sem isValue> = true
<NUM_2 subcat> = CARDINAL
<NP sem main> = <NUM_2 sem>
<NP sem root> = <NUM_2 root>
<NP sem cur> = <CUR_T sem>

25

Rule{}

NP -> (DETE_1) (ADJP_2) N_3 (PP_4)
<NP inResult> = true

<NP head agr per> =3

<NP sem type> = np

<NP head> = <DETE_1 head>

<NP head> = <N_3 head>

<NP sem adj> = <ADJP_2 sem>
<NP sem det> = <DETE_1 sem>
<NP sem main> = <N_3 sem>
<NP sem ntype> = <N_3 ntype>
<NP sem pp> = <PP_4 sem>

<NP sem root> = <N_3 root>

<NP sem isValue> = <N_3 isValue>

26

Rulef}

N->V_1

<N inResult> = false

<N head agr gen> = N

<N head agr num> =S

<N ntype> =V

<N isValue> = false

<V_1 head mood> = INFINITIVE
<V_1 head subcat> = MAIN
<N root> = <V_1 root>
<N sem> = <V_1 sem>

28

Rule{}

DETE -> DET_1

<DETE inResult> = false
<DETE head> = <DET_1 head>
<DETE sem> = <DET_1 sem>

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

29

Rule{}

DETE -> PN_1

<DETE inResult> = false

<PN_1 head subcat> = {PERSONAL, RELATIVE}
<PN_1 head agr case> = C2

<DETE sem> = <PN_1 sem>

<DETE head> = <PN_1 head>

30

Rule{}

DETE -> NUM_1

<DETE inResult> = false

<NUM_T head subcat> = CARDINAL
<DETE head> = <NUM_1 head>
<DETE sem> = <NUM_1 sem>

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

Production rules for the Verb-Phrase Extraction

1

Rule{(Application of another source)}
PREP -> PREP_1 N_2 PREP_3

<PREP inResult> = true

<PREP_1 root> = {op,bij}

<N_2 root> = {grond,toepassing}
<PREP_3 root> = van

<PREP sem> = <PREP root>

<PREP sem> = <N_2 root>

2

Rule{(Application Provision)}

S -> NP_1 V_2 (ADV_3) PREP_4 N_5
<S inResult> = true

<S sem type> = s_app

<V_2 root> = zijn

<V_2 head subcat> = MAIN
<ADV_3 root> = niet

<PREP_4 root> = van

<N_5 root> = toepassing

<S sem ref> = <NP_1 sem>

<S sem adv> = <ADV_3 sem>
<NP_1 head agr> = <V_2 head agr>

3

Rule{(Deeming Provision s_order=sv)}
S -> NP_1 V_2 (XLIST_3) V_4 XLIST_5
<S inResult> = true

<S sem type> = s_dp

<S s_order> = sv

<V_2 root> = worden

<V_2 head subcat> = AUX

<V_4 root> = achten

<V_4 head subcat> = MAIN

<S head agr> = <NP_1 head agr>
<S head agr> = <V_2 head agr>

<S sem subject> = <NP_1 sem>

<S sem dp_partl> = <V_2 sem>

<S sem time_period> = <XLIST_3 sem>
<S sem dp_part2> = <V_4 sem>

<S sem fiction> = <XLIST_5 sem>

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

4

Rule{(Deeming Provision s_order=vs)}
S -> V_1 NP_2 (XLIST_3) V_4 XLIST_5
<S inResult> = false

<S sem type> = s_dp

<S s_order> = vs

<V_1 root> = worden

<V_1 head subcat> = AUX

<V_4 root> = achten

<V_4 head mood> = PARTICIPLE

<S head agr> = <V_1 head agr>

<S head agr> = <NP_2 head agr>

<S sem dp_partl> = <V_1 sem>

<S sem subject> = <NP_2 sem>

<S sem time_period> = <XLIST_3 sem>
<S sem dp_part2> = <V_4 sem>

<S sem fiction> = <XLIST_5 sem>

5

Rule{(Definition 1)}

S -> NP_1V_2NP_3

<S inResult> = true

<S sem type> = s_def

<V_2 root> = zijn

<V_2 head subcat> = MAIN
<NP_3 sem isValue> = false

<S head agr> = <NP_1 head agr>
<S head agr> = <V_2 head agr>
<S head> = <V_2 head>

<S sem subject> = <NP_1 sem>
<S sem direct_object> = <NP_3 sem>

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

6

Rule{(Definition 2 s_order=sv)}

S -> PREP_1 NP_2 V_3 (ADV_4) V_5 NP_6
<S inResult> = true

<S sem type> = s_def2

<S s_order> = sv

<PREP_1 root> = onder

<V_3 root> = worden

<V_3 head subcat> = AUX

<V_3 head agr per> =3

<ADV_4 root> = {mede, niet}
<V_5 root> = verstaan

<V_5 head mood> = PARTICIPLE
<S sem subject> = <NP_2 sem>
<S sem definition> = <NP_6 sem>
<S sem adv> = <ADV_4 sem>

7

Rule{(Definition 2 s_order=vs)}

S -> V_1 (ADV_2) PREP_3 NP_4 (ADV_5) V_6 NP_7
<S inResult> = false

<S sem type> = s_def2

<S s_order> = vs

<V_1 root> = worden

<V_1 head subcat> = AUX

<V_1 head agr per> =3

<ADV_2 root> = {mede,niet}
<PREP_3 root> = onder

<ADV_5 root> = {mede, niet}
<V_6 root> = verstaan

<V_6 head mood> = PARTICIPLE
<V_6 head agr per> =3

<S sem subject> = <NP_4 sem>
<S sem definition> = <NP_7 sem>
<S sem adv> = <ADV_2 sem>

<S sem adv> = <ADV_5 sem>

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

8

Rule{(Definition 2 s_order=vs)}

S ->V_1 (ADV_2) V_3 PREP_4 NP_5 NP_6
<S inResult> = false

<S sem type> = s_def2

<S s_order> = vs

<V_1 root> = worden

<V_1 head subcat> = AUX

<V_1 head agr per> =3

<ADV_2 root> = {mede, niet}
<V_3 root> = verstaan

<V_3 head mood> = PARTICIPLE
<V_3 head agr per> =3

<PREP_4 root> = onder

<S sem subject> = <NP_5 sem>
<S sem definition> = <NP_6 sem>
<S sem adv> = <ADV_2 sem>

9

Rule{(Definition 3 s_order=sv)}

S -> PREP_1 NP_2 V_3 (ADV_4) NP_5
<S inResult> = true

<S sem type> = s_def3

<S s_order> = sv

<PREP_1 root> = tot

<V_3 root> = behoren

<V_3 head subcat> = MAIN
<ADV_4 root> = {mede,niet}

<S sem subject> = <NP_2 sem>

<S sem adv> = <ADV_4 sem>

<S sem definition> = <NP_5 sem>
<V_3 head agr> = <NP_5 head agr>

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

10

Rule{(Definition 3 s_order=vs)}

S -> V_1 (ADV_2) PREP_3 NP_4 (ADV_5) NP_6
<S inResult> = false

<S sem type> = s_def3

<S s_order> =vs

<V_1 root> = behoren

<V_1 head subcat> = MAIN

<ADV_2 root> = {mede,niet}
<PREP_3 root> = tot

<ADV_5 root> = {mede,niet}

<S sem subject> = <NP_4 sem>

<S sem adv> = <ADV_2 sem>

<S sem adv> = <ADV_5 sem>

<S sem definition> = <NP_6 sem>
<V_1 head agr> = <NP_6 head agr>

11

Rule{(Definition 4 s_order=sv)}

S -> NP_1 V_2 (SDEF_3) V_4 X_5 NP_6
<S inResult> = true

<S sem type> = s_def4

<S s_order> = sv

<V_2 root > = worden

<V_2 head subcat> = AUX

<V_2 head agr per> =3

<V_4 root> = {gelijkstellen,aanmerken}
<V_4 head mood> = PARTICIPLE
<V_4 head subcat> = MAIN

<X_5 sem> = {met,als}

<S sem subject> = <NP_6 sem>

<S sem definition> = <NP_1 sem>
<S sem sdef> = <SDEF_3 sem>

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

12

Rule{(Definition 4 s_order=vs)}

S -> V_1 (SDEF_2) NP_3 V_4 X_5 NP_6
<S inResult> = true

<S sem type> = s_def4

<S s_order> = vs

<V_1 root > = worden

<V_1 head subcat> = AUX

<V_1 head agr per> =3

<V_4 root> = {aanmerken,gelijkstellen}
<V_4 head subcat> = MAIN

<V_4 head mood> = PARTICIPLE
<X_5 sem> = {met,als}

<S sem subject> = <NP_6 sem>

<S sem definition> = <NP_3 sem>
<S sem sdef> = <SDEF_2 sem>

13

Rule{(Explicit Condition)}

EC —> CONJ_1 NP_2 XLIST_3

<EC inResult> = false

<EC sem type> = ec

<CONJ_1 root> = {indien, voorzover}
<EC sem subject> = <NP_2 sem>
<EC sem feature> = <XLIST_3 sem>

14

Rule{(Formula)}

NP -> NP_1 V_2 PREP_3 NP_4

<NP inResult> = false

<NP sem type> = np_formula

<NP sem isValue> = true

<NP_1 sem isValue> = true

<V_2 root> = {verminderen,vermeerderen}
<V_2 head mood> = PARTICIPLE
<PREP_3 root> = met

<NP_4 sem isValue> = true

<NP sem x> = <NP_1 sem>

<NP sem y> = <NP_4 sem>

<NP sem plusminus> = <V_2 root>

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

98

Automated Norm Extraction from Legal Texts

15

Rule{(Main Sentence)}

S -> SDEF_1S_2

<S inResult> = true

<S_2 s_order> = vs

<S head agr> = <S_2 head agr>
<S sem sdef> = <SDEF_1 sem>
<Ssem> = <S5_2 sem>

16

Rule{(Main Sentence)}

S_DELETED -> S_XXX_1 (PUNCT_2) CONJ_3 XLIST_4
<S_DELETED inResult> = false

<S_XXX_1 s_order> = sv

<PUNCT_2 root> =,

<S_DELETED head agr> = <S_XXX_1 head agr>
<S_DELETED sem bijzin> = <XLIST_4 sem>
<S_DELETED sem main> = <S_XXX_1 sem>
<S_DELETED sem adv> = <CONJ_3 sem>

17

Rule{(Main sentence)}

S -> EC_1 PUNCT_2 (ADV_3) S_4
<S inResult> = true

<PUNCT_2 root> =,

<ADV_3 root> = dan

<S_4 s_order> = vs

<S head agr> = <S_4 head agr>
<S sem ec> = <EC_1 sem>
<Ssem> = <5_4 sem>

18

Rule{(Main Sentence)}

S->S_1 (PUNCT_2) EC_3

<S inResult> = true

<S_1 s_order> = sv

<PUNCT_2 root> =,

<S head agr> = <S_1 head agr>
<S sem ec> = <EC_3 sem>

<S sem> = <S_1 sem>

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

19

Rule{(References)}

PREP -> (CONJ_1) V_2 PREP_3
<CONJ_1 root> = als

<V_2 root> = bedoelen
<V_2 head mood> = PARTICIPLE
<PREP_3 root> = in

<PREP sem> = <PREP root>
<PREP sem> = <V_2 root>
20

Rule{(Relations)}
S->NP_1V_2PP_3

<S inResult> = true

<S sem type> = s_rel

<NP_1 head agr case> = C1

<V_2 root> = gelden

<PP_3 sem prep> = voor

<S sem subject> = <NP_1 sem>

<S sem pp> = <PP_3 sem>

<S sem verb> = <V_2 sem>

<NP_1 head agr> = <V_2 head agr>
21

Rule{(Scope Definition)}

SDEF -> PREP_1 (DET_2) N_3 PREP_4 NP_5
<SDEF inResult> = false

<SDEF sem type> = scopedef
<PREP_1 root> = voor

<DET_2 root> = de

<N_3 root> = toepassing

<PREP_4 root> = van

<NP_5 sem type> = np_ref

<SDEF sem ref> = <NP_5 sem>
<DET_2 head agr> = <N_3 head agr>

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 100

Automated Norm Extraction from Legal Texts

22

Rule{(Value Assignment)}

S —> NP_1 V_2 (N_3) (PREP_4) NP_5
<S inResult> = true

<S sem type> = s_va

<NP_1 sem isValue> = true

<V_2 root> = {zijn,bedragen}

<V_2 head subcat> = MAIN

<N_3 root> = gelijk

<PREP_4 root> = aan

<NP_5 sem isValue> = true

<S sem subject> = <NP_1 sem>

<S sem formula> = <NP_1 head agr>
<S sem formula> = <V_2 head agr>
<S sem formula> = <NP_5 sem>
23

Rule{(Value Assignment)}

S -> NP_1 V_2 PREP_3 NP_4 V_5

<S inResult> = true

<S sem type> = s_va

<NP_1 sem isValue> = true

<V_2 root> = worden

<V_2 head subcat> = AUX

<PREP_3 root> = op

<NP_4 sem isValue> = true

<V_5 root> = stellen

<V_5 head mood> = PARTICIPLE

<S sem subject> = <NP_1 sem>

<S sem formula> = <NP_1 head agr>
<S sem formula> = <V_2 head agr>
<S sem formula> = <NP_4 sem>
24

Rule{(Xlist)}

XLIST -> X_1 (XLIST_2)

<XLIST inResult> = false

<XLIST sem type> = x_list

<XLIST sem hd> = <X_1 sem>
<XLIST sem tI> = <XLIST_2 sem>

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 101

Automated Norm Extraction from Legal Texts

25

Rule{NP}

NP -> NP_1 NP_2

<NP inResult> = true

<NP sem root> = Koninkrijk der Nederlanden
<NP sem type> = np

<NP_1 sem root> = koninkrijk

<NP_2 sem root> = Nederland

<NP_2 head agr case> = C2

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 102

Automated Norm Extraction from Legal Texts

Appendix D

This Appendix contains some screenshots of the Automated Rule Management
tool (also known as the Grammar Editor). Within these screenshots, the access-
button (“Print to Fil€’) for the Printer is also depicted.

™ Edit Grammar Rules

- [FP => FF CONJ FF]

- [WC =2 VL)

- [WC =2 VL)

- [PP =: PREP FF]
- [MP = MNP PM WF]

- [PP => PREF NP
- [WP = [ADJPIVC]

- [WC =2 WVCIWCI]
- [WC =2 WVCIWCI]
[WCI =3 V]

[MP = A]

- [ADWVP =2 ADW]
- [ADWVP = PF]

[M =» MUM]

[M =]

- [DETE = DET]
- [DETE = PM]
[DETE =» MUM]

+

o o N B B e By B e By

- [MP =» CUR MUM]
- [MP =: [DETE] [ADJPT M [PP]]

- [MP =: MP COMJ NP

- [MP =» MP PM =LIST PUNCT]
- [MP =x MP &0 [NP]ALIST PUMCT]
- [P = [ADVPIVE]

- [ADVP = ADWP ADWE)
- [ADJP => ADJP ADJP]
- [ADJP = [ADWVF] MUM]
- [ADJP = [ADWVP)]AD]
- [ADJP = [ADVP) ADJP COMJ ADJP]

Save

[Application of another zource] [FREF => PREF M PREP
tl- [&pplication Provision] [5 => MNP [ADW]) PREP M]

-- [Deeming Prowizion s_order=sv] [S = HPY [<LIST) W XLIST]
-- [Deeming Prowision s_order=vs] [S =» % NP [<LIST) W XLIST]
- [Definition 1) [5 => NPY NP

[[Definition 2 =_order=sv] [5 => PREP NP [ADV] W NP

-- [Definition 2 5_order=vs] [S = Y [ADW] PREP MP [A0W]W MP]
- [Defimtion 2 =_order=vz] [5 =% [A0W] W PREF NP MNP

[[Definition 3 =_order=sv] [5 => PREP MPY [ADV] NP

-- [Definition 3 &_order=vs] [S =3 ¥ [A0W] PREF MNP [ADW) NP
- [Defimtion 4 =_order=zv] [S = MP W [SDEF] W = NP

I [Defimtion 4 =_order=vz] [S =% [SDEF) HP W = NP

-- [Explicit Condition] [EC =» COMJ MP =LIST]

Cancel

=101 x|

The Grammar Editor with all the Production rules (Grammar- and Unification

rules) in a tree like structure.

Print ta File

o
—

[

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

103

Automated Norm Extraction from Legal Texts

_ioi x|

=R ([=finition 2 5_order=vsz] > W [ADYVIPRER WP [A0W] W NP
El-LHS 5

pat=5

- inResult = falee

[=]- zem

- subject[1]

- definition[2]

twpe = &_def
- g_order = wg
= RHS Y
ot =
- root = worden
=~ head

M

- RHS [AD]

- cat = A0

-t = {mede, hiet}
- serm[3]

= RHS PREF

- cat = PREP

- roob = ander

=~ RHS MNP

- cat =MP

- semm1]

= RHS (Al

- cat = A0

- ront = {mede, niet)
- sem[3]

- RH5 Y

ot =Y

- roat = verstaan

- h!ead

m
|
I
o
=
T

[+ [Defirtion 2 =_order=vg] [S =+ W [A0%]W PREP MNP NF] ;I

Save Cancel Print ta File |

One of the collapsed (tree) nodes for the JLC Definition (Definition 2). By this
screenshot all the Unification rules are becoming visible, so the grammatical

meaning of each of the NLC’s (Natural Language Constructs) will become clear.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 104

Automated Norm Extraction from Legal Texts

EgEdit Grammar Rules

H

=10l |

- [MP =x MF COMJ MNP]

- [PP => PREF MNP

- WP = [ADJPIVC]

- [MP = MF PM %LIST PUMCT]

- [MP =x NP ADY [MP]=LIST PUMNCT]

- WP = [ADVP)WC)

- IWC =» WL WL

- IWC =» WL WL

- IWCI =2 W]

- [MP => A]

- [ADWE = ADW]

- [ADWE = PP

- [ADWE = ADWE ADVE]

- [ADJP =x ADJP ADUF]

- [ADJP = [ADVE] MLM]

- [ADJP = [ADWE] ADU]

- [ADJP = [ADVE] ADJF COMJ ADJF]

- [M = ML)

- [MP = CUR ML)

- [MP =: [DETE] [&DJPI M [PP]]

M =W

- [DETE == DET]

- [DETE == PM]

- [DETE =» MLIM]

- [Application of another source] [FREP = FREF M PREF]
- [Application Provizion] [S => NP W [ADV] PREP M]
 [Deeming Provizion =_order=zv] [S = MP W [HLIST] e

- LHS § ot
Delete

A ezult = true

Dl

Mew Rule

g Mew Element
- zEm

Mew Feature

#_order = gv

Ins

-RHS MNP Mowe |_||:|
-RHS Y [Mave o

- RHS [<LIST)
-RHES W
- RHS =LIST

H- [Deeming Provizion &_order=vs] [S =+ % NP [HLIST] W #LIST]

Save Cancel Pritit ko File

=l

The possibility to add/edit/delete a Production rule and the possibility to add

new NLC'’s.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

105

Automated Norm Extraction from Legal Texts

EgEdit Grammar Rules

=10 i

- [WC = WLV

- [WC = WLV

- [WCT =]

- [HP = A]

- [ADWP => ADY)

- [ADWP =: PP]

- [ADYP = ADVP ADWP]

- [ADJP =» ADJP ADUP]

- [ADJP = [ADYP] MUM]

- [ADJP = [ADWP]ADU]

- [ADJP = [ADVP)ADJP COMJ ADJP]

- [M = MUM]

- [MP =» CUR MUM]

- [MP = [DETE] [ADJPI M [PP]]

- [H =24

- [DETE = DET]

- [DETE =: PH]

- [DETE = HUM]

- [Application of anather source] [FPREP = FREF M PREP]
- [Application Provigion] [S = NP [ADW] FPREP M]

0 6 6 B

Edik
helete el

Mew Rule Ins
Mew Element

Mew Feature

+

-RHS% Move Up
-RHS [Maowe Down

- RHS =LIST

[+~ [D'eeming Provizion s_order=vs] [S => % MP [=<LIST) W =LIST]
- [Definition 1] [S = HP Y MNP

[+~ [Defintion 2 5_order=sv] [S => PREP NP [ADW]W NP

[+ [Definition 2 _order=vz] [S =+ W [A0Y] PREF MNP (A0 NF]
- [Definition 2 &_arder=vs] [S =V [ADY]W PREF NP NP]

[+ [Definition 3 2_arder=sw] [S =» PREP NP [ADW] NF]

[+ [Definition 3 z_order=vz] [S =W [ADY] FREP NP [&00] NP]

Save Cancel

The possibility to edit/delete a GrammarElement (NLC) and the possibility to

Print ta File

[

add new GrammarFeatures (Unification Rules) for each of the NLC’s.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

106

Automated Norm Extraction from Legal Texts

=k rommarrules _ioix
H- [WC =3 WL -
| E WC = VOO
H WO =3 W)
A E NP = A
H [ADVP = ADY]
& [ADVP =3 PP
-- [ADYP = ADVP ADVP]
-- [ADJP => ADJP ADJP]
-- [ADUP = [ADYP]MIM]
-- [ADJP = [ADYP]ADU]
-- [ADJP = [ADYP]ADIP COMJ ADJP]
H- M => HUM]
& [MP => CUR NUM]
-- [MP = [DETE) [ADJPIM [FPI]
B [N =]
& [DETE = DET]
& [DETE =» PN]
& [DETE =» MUM]
-- [&pplhcation of another zource] [FREP =» FREF N PREF]
-- [Applhcation Provision) [S = MPY [A0W] PREP H]
=- [Deeming Prowvizsion _order=sv] [S = MNP YW HLIST] W #LIST]
= LHS §
- inRlesult = tue
cat=5
= head
- BU gy
" =em Delete Cel
ez _order
- RHS NP Mew Rule Ins |
-AHS Y [ews Element
B AHS [<LIST [ew Feature
[+ AH5
[+ RHS =LIST Mawe e
- [Deeming Provisi Move Down [*LIST)W =LIST]
- [Defintion 1] [5 == NP W HF]
- [Definition 2 &_aorder=sw] [S => PREP NPV [A0WV] W MNP
- [Definition 2 _order=vs] [S = % [ADW] PREP MP [A0%W] W MP]
- [Definition 2 &_aorder=vs] [S =% (ADY]Y PREP NP HP)
[[Definition 3 &_order=sw] [S => PREP NP [ADW] NP LI

Save Canicel Frint ta File

The possibility to edit/delete a GrammarFeature and the possibility to add new

GrammarFeatures (Unification Rules) within a GrammarFeature.

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

107

Automated Norm Extraction from Legal Texts

WN—OLO0ONOWVTRAUWN—OO00NICWVITALWN— OO 00NV WN — OO 00N WN— OO 00NOWVIAUWN— OO 00NIOVIAWN — OO 0ONIOWVI-R WN—

NNNNOYOIOYOYOIOOYOIOYOVTNUTUTUTUTUTUTUTUTDR B A D IS AU IS N NG UL UIUWILIUWINONININONININONONIND

Appendix E

The programming code for the Automated Rule Management tool (also known
as the Grammar Editor).

Workbench.NaturalLanguage.Grammar.Editor.GrammarClassModel.cs

M I

/Il WORKBENCH n

n n

mn n
mn n
/Il © Copyright Belastingdienst (http://www.belastingd ienst.nl)///
NI i

/Il Revision information: 1
/Il $Workfile:: GrammarClassModel.cs $ /1
/Il $Revision:: 1 $ /1
/Il $Author:: Ron_van_gog, Kamal_Sayah $ /1
1" $Date:: 24/02/04 $ /1
NI I

using System;

using System.Collections;
using System.Data;

using System.Data.SqlClient;
using System.Xml;

using Belastingdienst.Utilities;

/I Het klassemodel voor het inlezen en koppelen van de productieregels aan een interne
structuur. De //productieregels kunnen gedurende he t programma worden
/I gemuteerd en later vanuit dit klassemodel worden teruggeschreven naar de database (ook de

XML //generatie wordt hier beschreven).
namespace Workbench.NaturalLanguage.Grammar.Editor
public class GrammarRuleCollection
/I Deze variabele bevat de gegevens voor de connect ie naar de benodigde database. Deze gegevens

/lworden uit de Windows-registry gehaald.
string connString =

(string)RegistryAndAppSettingsReader.GetSettingValue(@"Bel astingdienst\NLP","DbConnectionString");
/I De databaseName wordt nu keihard gekoppeld aan de Translate-NL database. Later moet er aan de
/IGrammarForm extra functionaliteit worden
/I toegevoegd, zodat de gebruiker kan kiezen tuss en verschillende talen.

public string databaseName = "Translate-nl";

/I Deze klasse zorgt voor de correcte sortering v an de knopen in de TreeStructure
public class mySort : IComparer

{
int IComparer.Compare(Object x, Objecty)

{
return ((new CaselnsensitiveComparer()).Compare(((GrammarRule) x).Name,
((GrammarRule)y).Name));

1l De collectie van alle productieregels
public ArrayList RuleCollection = new ArrayList();

public GrammarRuleCollection()
{
}
/I Deze constructor krijgt de datatable van de Gra mmarForm.GrammarForm_Load methode en vult de
/linterne
/I productieregelcollectie (en sorteert deze).
public GrammarRuleCollection(DataTable dt)

foreach (DataRow row in dt.Rows)

GrammarRule rule = new GrammarRule(row);
RuleCollection.Add(rule);

}
Sort();

/I Het toevoegen van een productieregel
public void Add(object obj)
{

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 108

Automated Norm Extraction from Legal Texts

OOOOOOOOOOOOOOOOLOOOLO 0000000000000 NINININININ

—OLOONCWT-RUWN—OLO0ONIOWVIAWN—OLO0ONIOVIRWN— OO CONCWIT-RUWN— OO 00NCWVTAUWN— OO 00NIOWVITALWN — OO 00NV WN— OO 00NOWTR WN— OO 0ONOWIA

OO VNUVNTUTUNIVTUTUTVTUTUTER D DS DU IS N OIUDUWIWI LI LIUWILININININININONINIONOND

RuleCollection.Add(obj);
Sort();
}

/I Het sorteren van de productieregels
public void Sort()

IComparer myComparer = new mySort();
RuleCollection.Sort(myComparer);
}
/I In deze methode wordt er een nieuwe connectie g emaakt met de database en wordt de complete
/l(gemuteerde) productieregelset
/I weggeschreven.
public void Save()
{
SglConnection dbConnection = null ;
SglCommand dbCommand = null ;
SqlDataAdapter dbDataAdapter = null ;
DataSet dsRules = new DataSet();
string queryString = "SELECT * FROM ProductionRules";
String fullQueryString = "use ["+databaseName+"] ; "+queryString;
try
{
dbConnection = new SglConnection(connString);
dbConnection.Open();
dbCommand = new SglCommand(fullQueryString,(SqlConnection)dbConnec tion);
dbDataAdapter = new SqglDataAdapter();
dbDataAdapter.SelectCommand = dbCommand,;
dbDataAdapter.Fill(dsRules);
DataTable tbiIRules = dsRules.Tables[0];
ArrayList deletedltems = new ArrayList();
foreach (GrammarRule rule in this .RuleCollection)
{
rule.Save(tbIRules);
/I Als een regel is verwijderd in de Form dan word t deze regel nog wel bewaard
/lin een collectie, zodat
/I deze later alsnog bij het wegschrijven kan worde n verwijderd uit de
/IRuleCollection
if (rule.isDeleted)
deletedltems.Add(rule);
}
foreach (GrammarRule rule in deletedltems)
RuleCollection.Remove(rule);
}
SglCommandBuilder builder = new SglCommandBuilder(dbDataAdapter);
dbDataAdapter.Update(dsRules);
dsRules = new DataSet();
dbDataAdapter = new SqglDataAdapter();
dbDataAdapter.SelectCommand = dbCommand,;
dbDataAdapter.Fill(dsRules);
tbIRules = dsRules.Tables[0];
/I Het eerst leegmaken en daarna opnieuw vullen van de RuleCollection
RuleCollection.Clear();
foreach (DataRow row in tbIRules.Rows)
{
GrammarRule rule = new GrammarRule(row);
RuleCollection.Add(rule);
}
Sort();
catch (System.Data.SqlClient.SglException exc)
throw ; // Er wordt een exceptie gegooid!
finally
dbConnection.Close();
}
}
/I Dez methode zorgt voor een zogenaamde Pretty Pri nt van de inhoud van de RuleCollection (in
//HTML)
public void Print(string Filename)
{

string Result="<HTML><HEAD><TITLE></TITLE><BODY><CENTER>< TABLE border=1>",
int pos=0;

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 109

Automated Norm Extraction from Legal Texts

OOOOOOOOODOOOOOOOLOLOLO 0000000000000 CACONINININININININININOIO IO IIOO)

(O0ONICWIRUWN— OO0V T-RAWN—OO0ONOVIT-RUWN— OO 00NV I-A WN— OO CON VTR LWN— OO 00NV I-A WN— OO 00NV T-RAWN— OO 00NOVT-R LWN— OO 00NIWVIA WN)

NI NN NONONNONONONONONONONONONOND!

DADADNDNDNDNDNDNNNUWOIUUIULWULWILIULWULWULINININININNINNNN

Result += "<CAPTION>Grammar
Rules</CAPTION>
";
foreach (GrammarRule rule in RuleCollection)
if (pos==0)

Result += "<TR>";

Result += "<TD valign=top>"+ rule.Print() +
"</TD>",
if (pos==2)

Result += "</TR>";
pos =0;
}

else
{
}

if (pos > 0)

pos++;

Result += "</TR>";
}
Result+="</TABLE></CENTER></BODY></HTML>";

/I Het wegschrijven naar een *.html file

System.|O.StreamWriter sw = new System.|O.StreamWriter(Filename);
sw.Write(Result);

sw.Flush();

sw.Close();

/I Het starten van een programma om de inhoud van de weggeschreven file te tonen (Internet
/[Explorer)
try
{

System.Diagnostics.Process.Start(Filename);

catch (Exception e)

{
}

throw new Exception();

}
}

/I In deze klasse worden de complete productierege Is, dus inclusief de features en de elementen
/laangemaakt. Tevens wordt er functionaliteit
/I toegevoegd zodat de regels kunnen worden vertaa Id naar het bijbehorende XML-script.
public class GrammarRule
{

public string Name;

public string Description;

public GrammarElement Lhs;

public ArrayList Rhs = new ArrayList();

public bool isDeleted = false ;

public bool isNew= false ;

public int Id;

public GrammarRule(string name)

Name = name;
Lhs = new GrammarElement("new");
Lhs.Lhs = true ;

public GrammarRule(DataRow row)
{
GrammarElement element;
Id = (int Jrow["id"];
Name = row['"Name"].ToString();
Description = row["Description"]. ToString();

/I Het XML document wordt aangemaakt en gevuld
XmlIDocument xmIDummyDoc = new XmIDocument();

/I Voor elk kind van de LHS (element => FeatureS et) wordt de bijbehorende XML
gegenereerd.
xmIDummyDoc.LoadXml(row["LHS"]. ToString());
XmINode xmIRuleLhs = xmIDummyDoc.DocumentElement |
foreach (XmINode temp in xmlRuleLhs.ChildNodes)

if (temp.NodeType == XmINodeType.Element && temp.Name .Equals("FeatureSet"))
Lhs = new GrammarElement(temp);

Lhs.Lhs = true ;
break ;

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

OOOOOOOOOOOVOOOOLOLOOLOC00000000000O00CACONININININININININNOIO IO IOYOYOYOYOV1VVUTUIUIUVTUIUIUT

NOUVTRUWN—OLO00NCWI-AUWN—OO 00N OUVTRAWN— OO 00NCWI-R LN — OO 00NV TAWN— OO 0ON VTR LN — OO 00NCWI-RA WN— OO 00NV TRAWN— OO 0ONIOWIRWN—O

LU LI I I I UWIUWIWI W UWI U UWINI NI NI NI NI NI NI NI NI NINININININININININININI NI NI NININININININININININI NN NN NN NI NN NONONONONONOND

LULLLLDLLDLLLDLLLINONINONONONONONONOND

/I Voor elk kind van de RHS (element => RHSEleme nt) wordt de bijbehorende XML
gegenereerd.
xmIDummyDoc.LoadXml(row["RHS"]. ToString());
XmINode xmIRuleRhs = xmIDummyDoc.DocumentElement ;
foreach (XmINode temp in xmIRuleRhs.ChildNodes)

if (temp.NodeType == XmINodeType.Element && temp.Name .Equals("RhsElement"))
foreach (XmINode temp2 in temp.ChildNodes)

if (temp2.NodeType == XmINodeType.Element &&
temp2.Name.Equals("FeatureSet"))

element = new GrammarElement(temp2);
element.Lhs = false ;
foreach (XmlAttribute attr in temp.Attributes)
{
if (attr.Name.Equals("nothingAllowed"))
{
element.Optional = bool .Parse(attr.Value);
break ;
}
this .Rhs.Add(element);
break ;
}
}
}
}
}
/I De Pretty Print methode
public string Print()
{
string Result="";
Result += "Name: "+ Name +"" + "
" + " Description: " + Description +
"
";
Result += Lhs.Name + " =>";
foreach (GrammarElement element in Rhs)
if (element.Optional)
{
Result +=" (" + element.Name +")";
}
else
{
Result +=" " + element.Name;
}
}
Result += "
" + Lhs.Print();
foreach (GrammarElement element in Rhs)
Result += element.Print();
}
Result += "
";
return Result;
}
/I De methode die het complete XML-script oplever d dat hoort bij de LHS van elke
productieregel

public string createLhsXml()

XmiDocument doc = new XmIDocument();

XmINode node = doc.CreateElement("Lhs");

node.AppendChild(this .Lhs.createXml(doc));
return node.OuterXml;

}

/I De methode die het complete XML-script oplever d dat hoort bij de RHS van elke
productieregel
public string createRhsXmi()

XmlIDocument doc = new XmIDocument();
XmINode node = doc.CreateElement("Rhs");
foreach (GrammarElement element in this .Rhs)
{
/I De vaste constructen in het XML-script toevo egen
XmINode temp = doc.CreateElement("RhsElement");
XmlAttribute attr = doc.CreateAttribute("nothin gAllowed");
attr.Value = element.Optional. ToString(). ToLowe rQ);
temp.Attributes.Append(attr);
temp.AppendChild(element.createXmi(doc));
node.AppendChild(temp);
}
return node.OuterXml;

}

/I Deze methode oveschrijft de gemuteerde regels in de database

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

OOOOOOOOOOOOOOOOLOLOLO 0000000000000 CACONINININININININININOOIOYOIOIOY OO IOYOYVTUVNIVNIVTUTVTIVTUTVTIVT R D A D D S N D N A WW

VTR ULWN— OO 00NV UWN— OO 00NV WN— OO 00NOWVT-R UWN— OO 00N TA WN— OO CoN VTR LWIN— OO 00NICWVT-R WN— OO 00NV WN— OO 00NV WN— OO 00

DADADNDAANANANANANANRNDANDANDADANDADNDANDNDANDNDNDSDSDSNSNOWOLWLILILILILILIILWLILWILWILWIILWILIILIILWILWILWILIUWI I I I I I I I I D U U U U U U U U U U) U L) L)) LD LI LD LW LW LW LW LW W WD)

NINININININD

public void Save(DataTable thiRules)

{
DataRow row;
/I Nieuw record in database en gegevens in recor d schrijven
/I Het id van het nieuwe record in onze class op nemen.
if (isNew)
{
row = thIRules.NewRow();
row["Name"] = Name;
row["Description"] = Description;
row["LHS"] = createLhsXml();
row["RHS"] = createRhsXml();
tbIRules.Rows.Add(row);
}
else if (isDeleted)
{
/I Record verwijderen uit database
DataRow[] rows = thIRules.Select("id="+Id.ToStr ing());
row = rows|[0];
row.Delete();
}
else
{
/I Record opzoeken in database en gegevens over schrijven
DataRow[] rows = thiRules.Select("id="+Id.ToStr ing());
row = rows|[0];
row['Name"] = Name;
row["Description"] = Description;
row["LHS"] = createLhsXml();
row["RHS"] = createRhsXml();
}
}
}
/I Deze klasse slaat alle informatie op die nodig is voor een GrammarElement (in het

klassemodel)
public class GrammarElement
{
public string _name;
public bool Optional= false ;
public bool Lhs= false ;
public ArrayList FeatureSet = new ArrayList();
public GrammarElement(string name)

_hame = name;
GrammarFeature f = new GrammarFeature(“cat");
f.Atomic = true ;

f.Fixed = true ;

f.FeatureValue = name;

FeatureSet.Add(f);

public GrammarElement(XmINode node) // Verwacht een <Feat ureSet> tag

GrammarFeature feature;
foreach (XmINode temp in node)

if (temp.NodeType == XmINodeType.Element && temp.Name .Equals("Feature"))

feature = new GrammarFeature(temp);
if (feature.Name.Equals("cat"))

{

this ._name = feature.FeatureValue;

this .FeatureSet.Add(feature);

}

public string Name

{
get

{
}

set

{

return _name;

_name = value ;
foreach (GrammarFeature f in FeatureSet)

if (f.Name.Equals("cat"))

f.FeatureValue = value ;

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

VNUNUNUNNIIVTVIVTVTVTIVTR D D DD DM DDA DADLADADADLADLADADLADLADADADLADNADADLADLADLADLADLADLADLADADLADLADADNDNNDNDNRNDNDNDNDNDNDNDNDNDNDNDNRNRNDNRANRNRNRNRNDNDADADNDNDNDDDNDRDNDNDNDDDDL

————= OO OO OO OO OOOOOOLOOLOLOLO 000000000000 COCACONINININININININNIN OO IO YOO YWVTNVTUTUIVTUTUTUVTUTDR D S DU IS U UIS I UWUWW WD WU W UWLWIWININININD
WN— OO0 TR UWN—OLO00NCWVITAWN— OO 00NIOVI-RWN — OO 00NCWT-RWN— OO 00NCWIA LWN— OO 00NIOWVIT-AWN — OO 0ONIOWVIT-R WN — OO 00N TR WN— OO 00O

/I De Pretty Print methode
public string Print()

{
string Result ="<I>" + Name + "</I>" + "
";
foreach (GrammarFeature feature in FeatureSet)
{
Result += feature.Print(1);
}
return Result;
}
/I De methode die de XMLNode retourneert van elk GrammarElement

public XmINode createXml(XmIDocument doc)

XmINode node = doc.CreateElement("FeatureSet");
foreach (object temp in this .FeatureSet)

{
node.AppendChild(((GrammarFeature)temp).createX mi(doc));
}
return node;
}
}
/I Deze klasse slaat alle informatie op die nodig is voor een GrammarFeature (in het

klassemodel)
public class GrammarFeature

{
public string Name;
public string FeatureValue;
public int Equationld = -1;
public bool Atomic = false ;
public bool Fixed = false ;
public ArrayList FeatureSet = new ArrayList();
public GrammarFeature(string name)

Name = name;
public GrammarFeature(XmINode node) // Verwacht een <Feat ure> tag

{
foreach (XmlAttribute attr in node.Attributes)

{
if (attr.Name.Equals("name"))
this .Name = attr.Value;
else if (attr.Name.Equals("equationld"))

this .Equationld = int .Parse(attr.Value);

foreach (XmINode temp in node.ChildNodes)

if (temp.NodeType == XmINodeType.Element && temp.Name .Equals("AtomicValue"))
this .Atomic = true ;
this .FeatureValue = temp.InnerText;
break ;

if (temp.NodeType == XmINodeType.Element && temp.Name .Equals("ComplexValue"))

GrammarFeature feature;

this .Atomic = false ;
foreach (XmINode temp2 in temp.ChildNodes)

if (temp2.NodeType == XmINodeType.Element &&
temp2.Name.Equals("Feature"))

feature = new GrammarFeature(temp?2);
if (feature.Name.Equals("cat"))
{

this .Name = feature.FeatureValue;

this .FeatureSet.Add(feature);
break ;

}

/I De Pretty Print methode
public string Print(int Indent)
{

string Result="";
for (int x=0;x<Indent; x++)

{
}

Result += " ";

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

uiuviul

IO YOXOXOXOYVTUTUTUTUTUTUTUTUTUTR DS DU I IS I GIUIUWI LI UIUWILWIUININININININININININ) — — —
CONOVT-RAWN—OO0ONCWI-RUWN—OLO0ONIOVTRAWN—O O 00N OWVIT-RUWN—OO00NCWIAWN—OO 00NV

Result +="" + Name + "";
if (Equationld > -1)
{ Result += "[" + Equationld.ToString() + "";
if (Atomic)
Result +=" =" + FeatureValue + "
";
else

Result += "
";
foreach (GrammarFeature feature in FeatureSet)

{
}
}

return Result;

Result += feature.Print(Indent+1);

}

/I De methode die de XMLNode retourneert van elk GrammarFeature
public XmINode createXml(XmIDocument doc)
{
XmINode node = doc.CreateElement("Feature");
XmINode temp;
XmlAttribute attr;
attr = doc.CreateAttribute("name");
attr.Value = this .Name;
node.Attributes.Append(attr);
if (this .Equationld > -1)

{
attr = doc.CreateAttribute("equationld");
attr.Value = this .Equationld.ToString(); // deze heeft standaard waa rde "false", dus
/I gewoon toString methode aanroepen voor de waarde
node.Attributes.Append(attr);

if (this .Atomic)
{
temp = doc.CreateElement("AtomicValue");
temp.InnerText = this .FeatureValue;
node.AppendChild(temp);

else

temp = doc.CreateElement("ComplexValue");
foreach (GrammarFeature feature in this .FeatureSet)

temp.AppendChild(feature.createXml(doc));
}
node.AppendChild(temp);
}

return node;

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

Workbench.NaturalLanguage.Grammar.Editor.GrammarElementEdit.cs

T T

/Il WORKBENCH

1

1"

1"

/Il © Copyright Belastingdienst (http://www.belastingd
T T

/Il Revision information:

7 $Workfile:: GrammarElementEdit.cs

/Il $Revision:: 1

/Il $Author:: Ron_van_gog, Kamal_Sayah
/Il $Date:: 24/02/04
T

I

n
n
n
ienst.nl)///
M
n
Il
il
Il
Il
i

AUWN— OO 00NIOWVTRUWN— OO 00NV TAWN— OO 00N VTR UWN— OO 00N WN— OO 00NIOUVT-RA WN— OO 00NV LN — OO 00NV TR WN— OO 00NIOUVTR WN)—

00000000 NINININININININNINOCYOYOYOYO YO YO YO YO WTUVTUVTUTUVTUVTUVTUVTUVTUTR N N N N IS UININCINCIN GO U0 U0 DD WD WD LW LDLINI NI NINONONONONONOND

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;
using System.Windows.Forms;

/I Deze klasse omschrijft de complete GrammarElemen tEdit-form
namespace Workbench.NaturalLanguage.Grammar.Editor

public class GrammarElementEdit : System.Windows.Forms.Form
{
private GrammarRule myRule;
private GrammarElement myElement;
private bool newElement;
private System.Windows.Forms.Label labell;
private System.Windows.Forms.TextBox tbName;
private System.Windows.Forms.CheckBox chOptional;
private System.Windows.Forms.Button cbOKk;
private System.Windows.Forms.Button cbCancel;
private System.Windows.Forms.Label IbCaptionEdit;
private System.Windows.Forms.Label IbCaptionNew;
private System.ComponentModel.Container components = null ;

public GrammarElementEdit()

{
i
/I Required for Windows Form Designer support
i
InitializeComponent();
1
/I TODO: Add any constructor code after Initiali zeComponent call
l
}

/Il <summary>

/Il Clean up any resources being used.

/Il </summary>

protected override void Dispose(bool disposing)

if (disposing)
if (components != null)

components.Dispose();

}

base .Dispose(disposing);

}

#region Windows Form Designer generated code
/Il <summary>
/Il Required method for Designer support - do not modi fy
/Il the contents of this method with the code editor.
/Il </summary>
private void InitializeComponent()

System.Resources.ResourceManager resources = new
System.Resources.ResourceManager(typeof (GrammarElementEdit));
this .labell = new System.Windows.Forms.Label();

this .tbName = new System.Windows.Forms.TextBox();

this .cbOptional = new System.Windows.Forms.CheckBox();
this .cbOk = new System.Windows.Forms.Button();

this .cbCancel = new System.Windows.Forms.Button();

this .IbCaptionEdit = new System.Windows.Forms.Label();
this .IbCaptionNew = new System.Windows.Forms.Label();
this .SuspendLayout();

i

/I labell

1

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

OOOOOOOOOOOOOOOLOLOLOOLOC000000000

N— OO 0ONIOWVTALWN—OO0ONIOVIT-RWN— OO 00NCWT-RUWN— OO 0ONCWVITAUWN—OO00NOVI-A WN — OO 0ONOVIT-R WN— OO 00NV TR WN— OO 00NIOWVITALWN— OO 00N

NNNOOYOIOYOYOIOYOYOYOVIUTUNTUTUTUTUTUVTUTUTR D S AU IS IS IS INODUIUWILWD LWL UILWILINININININONININONOND!

this .labell.AccessibleDescription =
resources.GetString("labell.AccessibleDescription")

this .labell.AccessibleName = resources.GetString("label 1.AccessibleName");
this .labell.Anchor =

((System.Windows.Forms.AnchorStyles)(resources.GetO bject("labell.Anchor")));

this .labell.AutoSize = ((bool)(resources.GetObject("labell.AutoSize")));

this .labell.Dock =

((System.Windows.Forms.DockStyle)(resources.GetObje ct("labell.Dock™)));

this .labell.Enabled = ((bool)(resources.GetObject("labell.Enabled")));

this .labell.Font = ((System.Drawing.Font)(resources.Get Object("labell.Font™")));
this .labell.lmage = ((System.Drawing.Image)(resources.G etObject("labell.lmage™)));
this .labell.ImageAlign =

((System.Drawing.ContentAlignment)(resources.GetObj ect("labell.ImageAlign")));
this .labell.Imagelndex = ((int)(resources.GetObject("labell.Imagelndex™)));

this .labell.lmeMode =

((System.Windows.Forms.ImeMode)(resources.GetObject ("labell.ImeMode™)));

this .labell.Location =

((System.Drawing.Point)(resources.GetObject("labell .Location")));

this .labell.Name = "labell";
this .labell.RightToLeft =

((System.Windows.Forms.RightToLeft)(resources.GetOb ject("labell.RightToLeft")));
this .labell.Size = ((System.Drawing.Size)(resources.Get Object("labell.Size")));
this .labell.Tabindex = ((int)(resources.GetObject("labell.Tabindex")));

this .labell.Text = resources.GetString("labell.Text");
this .labell.TextAlign =

((System.Drawing.ContentAlignment)(resources.GetObj ect("labell.TextAlign")));
this .labell.Visible = ((bool)(resources.GetObiject("labell.Visible")));

I

/l tbName

i

this .tbName.AccessibleDescription =

resources.GetString("tbName.AccessibleDescription™) ;

this .tbName.AccessibleName = resources.GetString("tbNam e.AccessibleName");

this .tbName.Anchor =

((System.Windows.Forms.AnchorStyles)(resources.GetO bject("tbName.Anchor")));
this .tbName.AutoSize = ((bool)(resources.GetObject("tbName.AutoSize")));

this .tbName.Backgroundimage =

((System.Drawing.Image)(resources.GetObject("tbName .Backgroundimage™)));

this .tbName.Dock =

((System.Windows.Forms.DockStyle)(resources.GetObje ct("tbName.Dock™)));

this .tbName.Enabled = ((bool)(resources.GetObject("tbName.Enabled")));

this .tbName.Font = ((System.Drawing.Font)(resources.Get Object("tbName.Font")));
this .tbName.ImeMode =

((System.Windows.Forms.ImeMode)(resources.GetObject ("tbName.ImeMode™)));

this .tbName.Location =

((System.Drawing.Point)(resources.GetObject("tbName .Location")));

this .tbName.MaxLength = ((int)(resources.GetObject("tbName.MaxLength")));

this .tbName.Multiline = ((bool)(resources.GetObject("tbName.Multiline")));

this .tbName.Name = "tbName";

this .tbName.PasswordChar = ((char)(resources.GetObject("tbName.PasswordChar")));
this .tbName.RightToLeft =

((System.Windows.Forms.RightToLeft)(resources.GetOb ject("tbName.RightToLeft")));
this .tbName.ScrollBars =

((System.Windows.Forms.ScrollBars)(resources.GetObj ect("toName.ScrollBars")));
this .tbName.Size = ((System.Drawing.Size)(resources.Get Object("tbName.Size")));
this .tbName.TablIndex = ((int)(resources.GetObject("tbName.TabIndex")));

this .tbName.Text = resources.GetString("tbName.Text");
this .tbName.TextAlign =
((System.Windows.Forms.HorizontalAlignment)(resourc es.GetObject("tbName.TextAlign")))

{his .tbName.Visible = ((bool)(resources.GetObject("tbName.Visible")));

this .tbName.WordWrap = ((bool)(resources.GetObject("tbName.WordWrap")));
i

/I cbOptional

1

this .cbOptional.AccessibleDescription =

resources.GetString("cbOptional.AccessibleDescripti on");

this .cbOptional.AccessibleName = resources.GetString("'c bOptional.AccessibleName");
this .cbOptional.Anchor =

((System.Windows.Forms.AnchorStyles)(resources.GetO bject("cbOptional.Anchor")));
this .cbOptional.Appearance =

((System.Windows.Forms.Appearance)(resources.GetObj ect("cbOptional.Appearance")));
this .cbOptional.Backgroundimage =

((System.Drawing.Image)(resources.GetObject("chOpti onal.Backgroundimage")));
this .cbOptional.CheckAlign =

((System.Drawing.ContentAlignment)(resources.GetObj ect("cbOptional.CheckAlign")));
this .cbOptional.Dock =

((System.Windows.Forms.DockStyle)(resources.GetObje ct("cbOptional.Dock")));

this .cbOptional.Enabled = ((bool)(resources.GetObject("cbOptional.Enabled")));

this .cbOptional.FlatStyle =

((System.Windows.Forms.FlatStyle)(resources.GetObje ct("cbOptional.FlatStyle™)));
this .cbOptional.Font =

((System.Drawing.Font)(resources.GetObject("cbOptio nal.Font")));

this .cbOptional.Image =

((System.Drawing.Image)(resources.GetObject("cbOpti onal.Image")));

this .cbOptional.ImageAlign =

((System.Drawing.ContentAlignment)(resources.GetObj ect("cbOptional.ImageAlign™)));
this .cbOptional.Imagelndex = ((int)(resources.GetObject("cbOptional.Imagelndex")));

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 116

Automated Norm Extraction from Legal Texts

OOOOOOOOOOOOOOOOLOLOOLO000000000000000000ONININININININ

(OCONIOWVT-RUWN— OO 0NV T-RUWN—OLO0ONIOWVITALWN—OO00NVI-RWN— OO CONOVT-R WN— OO 00N TR WN— OO 00NIOVITALWN— OO CONOVITR WN— OO 0ONOWIRh W

NI NI NN NN NN NN NN NN NONININININININININININININD

vUTNUTUNTUNIUVTUTUTUTR DS DU IS I INOGIUIUWI LU LIUWILWIUINININININONININONIND

this .cbOptional.ImeMode =

((System.Windows.Forms.ImeMode)(resources.GetObject ("cbOptional.ImeMode")));
this .cbOptional.Location =
((System.Drawing.Point)(resources.GetObject("cbOpti onal.Location")));

this .cbOptional.Name = "cbOptional";
this .cbOptional.RightToLeft =

((System.Windows.Forms.RightToLeft)(resources.GetOb ject("cbOptional.RightToLeft")));
this .cbOptional.Size =

((System.Drawing.Size)(resources.GetObject("cbOptio nal.Size")));

this .cbOptional.Tabindex = ((int)(resources.GetObject("cbOptional. Tabindex")));

this .cbOptional. Text = resources.GetString("cbOptional. Text");

this .cbOptional. TextAlign =

((System.Drawing.ContentAlignment)(resources.GetObj ect("cbOptional. TextAlign™)));
this .cbOptional.Visible = ((bool)(resources.GetObject("cbOptional.Visible™)));

I

/I cbOk

I

this .cbOk.AccessibleDescription = resources.GetString(" cbOk.AccessibleDescription");
this .cbOk.AccessibleName = resources.GetString("cbOk.Ac cessibleName");

this .cbOk.Anchor =

((System.Windows.Forms.AnchorStyles)(resources.GetO bject("cbOk.Anchor")));

this .cbOk.Backgroundimage =

((System.Drawing.Image)(resources.GetObject("cbOk.B ackgroundimage")));

this .cbOk.Dock =

((System.Windows.Forms.DockStyle)(resources.GetObje ct("cbOk.Dock™)));

this .cbOk.Enabled = ((bool)(resources.GetObject("cbOk.Enabled")));
this .cbOk.FlatStyle =

((System.Windows.Forms.FlatStyle)(resources.GetObje ct("cbOk.FlatStyle")));

this .cbOk.Font = ((System.Drawing.Font)(resources.GetOb ject("cbOk.Font")));

this .cbOk.Image = ((System.Drawing.Image)(resources.Get Object("cbOk.Image")));

this .cbOk.ImageAlign =

((System.Drawing.ContentAlignment)(resources.GetObj ect("cbOk.ImageAlign™)));

this .cbOk.Imagelndex = ((int)(resources.GetObject("cbOk.Imagelndex")));

this .cbOk.ImeMode =

((System.Windows.Forms.ImeMode)(resources.GetObject ("cbOk.ImeMode™)));

this .cbOk.Location = ((System.Drawing.Point)(resources. GetObject("cbOk.Location")));

this .cbOk.Name = "cbOk";
this .cbOk.RightToLeft =

((System.Windows.Forms.RightToLeft)(resources.GetOb ject("cbOk.RightToLeft")));
this .cbOk.Size = ((System.Drawing.Size)(resources.GetOb ject("cbOk.Size"));
this .cbOk.Tablndex = ((int)(resources.GetObject("cbOk.TabIndex")));

this .cbOk.Text = resources.GetString("cbOk.Text");
this .cbOk.TextAlign =

((System.Drawing.ContentAlignment)(resources.GetObj ect("cbOk.TextAlign")));
this .cbOk.Visible = ((bool)(resources.GetObject("cbOk.Visible")));

this .cbOk.Click += new System.EventHandler(this .cbOk_Click);

I

/I cbCancel

i
this .cbCancel.AccessibleDescription =

resources.GetString("cbCancel.AccessibleDescription ");

this .cbCancel.AccessibleName = resources.GetString("cbC ancel.AccessibleName");
this .cbCancel.Anchor =

((System.Windows.Forms.AnchorStyles)(resources.GetO bject("cbCancel.Anchor")));
this .cbCancel.Backgroundimage =

((System.Drawing.Image)(resources.GetObject("cbCanc el.Backgroundimage")));

this .cbCancel.DialogResult = System.Windows.Forms.Dialo gResult.Cancel;

this .cbCancel.Dock =

((System.Windows.Forms.DockStyle)(resources.GetObje ct("cbCancel.Dock")));

this .cbCancel.Enabled = ((bool)(resources.GetObject("cbCancel.Enabled")));

this .cbCancel.FlatStyle =

((System.Windows.Forms.FlatStyle)(resources.GetObje ct("cbCancel.FlatStyle™)));
this .cbCancel.Font = ((System.Drawing.Font)(resources.G etObject("cbCancel.Font")));
this .cbCancel.lmage =

((System.Drawing.Image)(resources.GetObject("cbCanc el.Image")));

this .cbCancel.ImageAlign =

((System.Drawing.ContentAlignment)(resources.GetObj ect("cbCancel.ImageAlign")));
this .cbCancel.Imagelndex = ((int)(resources.GetObject("cbCancel.Imagelndex")));

this .cbCancel.lmeMode =

((System.Windows.Forms.ImeMode)(resources.GetObject ("cbCancel.ImeMode")));

this .cbCancel.Location =

((System.Drawing.Point)(resources.GetObject("cbCanc el.Location")));

this .cbCancel.Name = "chCancel";
this .cbCancel.RightToLeft =

((System.Windows.Forms.RightToLeft)(resources.GetOb ject("cbCancel.RightToLeft")));
this .cbCancel.Size = ((System.Drawing.Size)(resources.G etObject("cbCancel.Size")));
this .cbCancel.TabIndex = ((int)(resources.GetObject("cbCancel.Tablindex")));

this .cbCancel.Text = resources.GetString("cbCancel. Text ")

this .cbCancel.TextAlign =

((System.Drawing.ContentAlignment)(resources.GetObj ect("cbCancel.TextAlign")));

this .cbCancel.Visible = ((bool)(resources.GetObject("cbCancel.Visible")));

this .cbCancel.Click += new System.EventHandler(this .cbCancel_Click);

i

/I IbCaptionEdit

i

this .IbCaptionEdit.AccessibleDescription =
resources.GetString("IbCaptionEdit.AccessibleDescri ption");

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

OOOOOOOOOIOOOOOOOLOOLO 0000000000000 CACONINININININININININOIO IO I IO

NOUVTRLWN—OLO00NCWVI-AUWN— OO 00NV TRAWN— OO 00NCWI-R LN — OO 00NV TAWN— OO 0ON VTR LN — OO 00NCWVI-RA WN— OO 00N OUVTRAWN— OO 0ONIOWIRWN—O

LI LI U LUI LI U U I I I LI U I I LI U U I I LD LD U I I LI U U I LI WD U) I I LD LD I I LW LI WD LI LW LD LI UWINI NV NV NI NI NNV NV NI NNV NI NI NI NINI NV NI NI NN NI NI NI NN NN NININONONININIONONONININD

DD INIANUIUUIUIUIUILILILIULINININININININININOND

this .IbCaptionEdit.AccessibleName =

resources.GetString("lbCaptionEdit.AccessibleName") ;

this .IbCaptionEdit.Anchor =

((System.Windows.Forms.AnchorStyles)(resources.GetO bject("lbCaptionEdit.Anchor")));
this .IbCaptionEdit.AutoSize =

((bool)(resources.GetObject("lbCaptionEdit.AutoSize")));

this .IbCaptionEdit.Dock =

((System.Windows.Forms.DockStyle)(resources.GetObje ct("IbCaptionEdit.Dock")));

this .IbCaptionEdit.Enabled = ((bool)(resources.GetObject("IbCaptionEdit.Enabled")));

this .IbCaptionEdit.Font =

((System.Drawing.Font)(resources.GetObject("IbCapti onEdit.Font")));

this .IbCaptionEdit.Image =

((System.Drawing.Image)(resources.GetObject("lbCapt ionEdit.Image")));

this .IbCaptionEdit.ImageAlign =

((System.Drawing.ContentAlignment)(resources.GetObj ect("IbCaptionEdit.ImageAlign")));

this .IbCaptionEdit.Imagelndex =
((int)(resources.GetObject("lbCaptionEdit.Imagelndex"))) ;
this .IbCaptionEdit.ImeMode =

((System.Windows.Forms.ImeMode)(resources.GetObject ("IbCaptionEdit.ImeMode")));
this .IbCaptionEdit.Location =
((System.Drawing.Point)(resources.GetObject("IbCapt ionEdit.Location")));

this .IbCaptionEdit.Name = "IbCaptionEdit";
this .IbCaptionEdit.RightToLeft =

((System.Windows.Forms.RightToLeft)(resources.GetOb ject("IbCaptionEdit.RightToLeft"))
)i

this .IbCaptionEdit.Size =

((System.Drawing.Size)(resources.GetObject("lbCapti onEdit.Size")));

this .IbCaptionEdit.Tabindex = ((int)(resources.GetObject("lbCaptionEdit.Tablndex")));
this .IbCaptionEdit.Text = resources.GetString("IbCaptio nEdit. Text");

this .IbCaptionEdit. TextAlign =

((System.Drawing.ContentAlignment)(resources.GetObj ect("lbCaptionEdit. TextAlign™)));
this .IbCaptionEdit.Visible = ((bool)(resources.GetObject("IbCaptionEdit.Visible™)));

i

/I IbCaptionNew

i

this .IbCaptionNew.AccessibleDescription =
resources.GetString("IbCaptionNew.AccessibleDescrip tion");
this .IbCaptionNew.AccessibleName =
resources.GetString("IbCaptionNew.AccessibleName");

this .IbCaptionNew.Anchor =

((System.Windows.Forms.AnchorStyles)(resources.GetO bject("IbCaptionNew.Anchor")));
this .IbCaptionNew.AutoSize = ((bool)(resources.GetObject("IbCaptionNew.AutoSize")));
this .IbCaptionNew.Dock =

((System.Windows.Forms.DockStyle)(resources.GetObje ct("IbCaptionNew.Dock")));

this .IbCaptionNew.Enabled = ((bool)(resources.GetObject("lbCaptionNew.Enabled")));
this .IbCaptionNew.Font =

((System.Drawing.Font)(resources.GetObject("lbCapti onNew.Font")));

this .IbCaptionNew.lmage =

((System.Drawing.Image)(resources.GetObject("IbCapt ionNew.Image")));

this .IbCaptionNew.ImageAlign =

((System.Drawing.ContentAlignment)(resources.GetObj ect("IbCaptionNew.ImageAlign")));

this .IbCaptionNew.Imagelndex =
((int)(resources.GetObject("lbCaptionNew.Imagelndex")));
this .IbCaptionNew.ImeMode =

((System.Windows.Forms.ImeMode)(resources.GetObject ("lbCaptionNew.ImeMode")));
this .IbCaptionNew.Location =
((System.Drawing.Point)(resources.GetObject("IbCapt ionNew.Location")));

this .IbCaptionNew.Name = "IbCaptionNew";
this .IbCaptionNew.RightToLeft =

((System.Windows.Forms.RightToLeft)(resources.GetOb ject("IbCaptionNew.RightToLeft")))
this .IbCaptionNew.Size =

((System.Drawing.Size)(resources.GetObject("IbCapti onNew.Size")));

this .IbCaptionNew.Tablndex = ((int)(resources.GetObject("IbCaptionNew.Tablndex")));

this .IbCaptionNew.Text = resources.GetString("lbCaption New.Text");

this .IbCaptionNew.TextAlign =

((System.Drawing.ContentAlignment)(resources.GetObj ect("lbCaptionNew.TextAlign")));
this .IbCaptionNew.Visible = ((bool)(resources.GetObject("lbCaptionNew.Visible")));

I
/I GrammarElementEdit
I

this .AcceptButton = this .cbOk;

this .AccessibleDescription = resources.GetString("$this .AccessibleDescription");
this .AccessibleName = resources.GetString("$this.Access ibleName");

this .AutoScaleBaseSize =

((System.Drawing.Size)(resources.GetObject("$this.A utoScaleBaseSize")));

this .AutoScroll = ((bool)(resources.GetObject("$this.AutoScroll")));

this .AutoScrollMargin =

((System.Drawing.Size)(resources.GetObject("$this. A utoScrollMargin™)));

this .AutoScrollMinSize =

((System.Drawing.Size)(resources.GetObject("$this. A utoScrollMinSize")));

this .Backgroundimage =

((System.Drawing.Image)(resources.GetObject("$this. Backgroundimage")));

this .CancelButton = this .cbCancel;

this .ClientSize = ((System.Drawing.Size)(resources.GetO bject("$this.ClientSize")));

this .Controls.Add(this .IbCaptionNew);
this .Controls.Add(this .IbCaptionEdit);
this .Controls.Add(this .cbCancel);

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

ADNDNDANDNDNADNDNDNDNDNDNDNRNUIOILWIUILIUIUILIUIUIUI UIUIUIUIUI U LI LI LI U U U U I U LI I U LI U LI I U LD L) LI I W) LI LW LW WD LW WD WU WU W)
— == OO0 OO OO OO OOVOOOIOLOOLOOLO 0000ICCCICOCACICONINININININININININ IO IO IO YO WVTUVTUTIVTUTUTIVTUVTR A
A ULWN—OLO0ONCWVIAUWN— OO 00NV T-RAWN—OO 0ONOVIT-RUWN—OLO00NCWVI-A WN— OO CON VTR WN— OO 0ONOWIR UWN— OO0

this .Controls.Add(this .cbOKk);

this .Controls.Add(this .cbOptional);

this .Controls.Add(this .tbName);

this .Controls.Add(this .labell);

this .Enabled = ((bool)(resources.GetObject("$this.Enabled")));

this .Font = ((System.Drawing.Font)(resources.GetObject("$this.Font")));

this .Icon = ((System.Drawing.lcon)(resources.GetObject("$this.Icon")));

this .ImeMode =

((System.Windows.Forms.ImeMode)(resources.GetObject ("$this.ImeMode")));

this .Location = ((System.Drawing.Point)(resources.GetOb ject("$this.Location")));

this .MaximumSize = ((System.Drawing.Size)(resources.Get Object("$this.MaximumSize")));
this .MinimumSize = ((System.Drawing.Size)(resources.Get Object("$this.MinimumSize")));

this .Name = "GrammarElementEdit";
this .RightToLeft =

((System.Windows.Forms.RightToLeft)(resources.GetOb ject("$this.RightToLeft")));
this .StartPosition =
((System.Windows.Forms.FormStartPosition)(resources .GetObject("$this.StartPosition"))

this .Text = resources.GetString("$this. Text");
this .ResumeLayout(false);

}

#endregion

private void cbOk_Click(object sender, System.EventArgs e)

{
if (newElement)
{
myElement = new GrammarElement(toName.Text);
myRule.Rhs.Add(myElement);
myElement.Name = tbName.Text;
myElement.Optional = cbOptional.Checked;
this .Close();
}
/I Deze methode wordt in de GrammarForm (de hoofdfo rm) aangeroepen om de uiteindelijke edit

/Ite verwerken in het klassemodel
public void DoEdit(GrammarElement item)
{
this .Text = IbCaptionEdit.Text;
this .myElement = item;
this .newElement= false ;
this .tbName.Text = item.Name;
this .cbOptional.Checked = item.Optional;
if (item.Lhs)

this .cbOptional.Enabled = false ;

this .ShowDialog();

public void DoNew(GrammarRule item)

this .Text = IbCaptionEdit.Text;
this .myRule = item;

this .newElement = true ;
this .tbName.Text ="";
this .cbOptional.Checked = false ;

this .ShowDialog();

private void cbCancel_Click(object sender, System.EventArgs e)

{
}

this .Close();

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

Automated Norm Extraction from Legal Texts

Workbench.NaturalLanguage.Grammar.Editor.GrammarFeatureEdit.cs

AUWN— OO 00NIOWVTRUWN— OO 00NV TAWN— OO 00N VTR LWN— OO 00N WN— OO 00NV TRA WN— OO 00N VTR LN — OO 00N TR WN— OO 00NIOVTR WN)—

00000000 NINININININININNINOOOYOYIOYO YO YO YO YO WTUVTUVTUTUVTUVTUVTUVTUTUTR N N N UIN IS NN CINCIN UID U U0 DD DD WD WD LW LDLINI NI NINONONONONONOND

M Hiinnn
/Il WORKBENCH
i 1
mn n
mn n
/Il © Copyright Belastingdienst (http://www.belastingd ienst.nl)///
M Hiinnn
/Il Revision information: 1
/Il $Workfile:: GrammarFeatureEdit.cs $
/Il $Revision:: 1 $ /1
/Il $Author:: Ron_van_gog, Kamal_Sayah $
/Il $Date:: 24/02/04 $ /1
M M
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using Belastingdienst.Windows;
namespace Workbench.NaturalLanguage.Grammar.Editor
/I Deze klasse omschrijft de complete GrammarFeatu reEdit-form
public class GrammarFeatureEdit : System.Windows.Forms.Form
{
private ArrayList myFeatureSet;
private GrammarFeature myFeature;
private bool newFeature;
private System.Windows.Forms.Label labell;
private System.Windows.Forms.Label label2;
private System.Windows.Forms.CheckBox cbAtomic;
private System.Windows.Forms.TextBox tbName;
private System.Windows.Forms.TextBox tbEquationld;
private System.Windows.Forms.TextBox tbValue;
private System.Windows.Forms.Label label3;
private System.Windows.Forms.Button cbCancel;
private System.Windows.Forms.Button cbOKk;
private System.Windows.Forms.Label IbCaptionNew;
private System.Windows.Forms.Label IbCaptionEdit;
/Il <summary>
/Il Required designer variable.
/Il </summary>
private System.ComponentModel.Container components = null ;
public GrammarFeatureEdit()
{
l
/I Required for Windows Form Designer support
l
InitializeComponent();
l
// TODO: Add any constructor code after Initiali zeComponent call
l
}

/Il <summary>

/Il Clean up any resources being used.

/Il </summary>

protected override void Dispose(bool disposing)

if (disposing)
if (components != null)

components.Dispose();

}

base .Dispose(disposing);

}

#region Windows Form Designer generated code
/Il <summary>
/Il Required method for Designer support - do not modi fy
/Il the contents of this method with the code editor.
/Il </summary>
private void InitializeComponent()

this .labell = new System.Windows.Forms.Label();

this .label2 = new System.Windows.Forms.Label();

this .cbAtomic = new System.Windows.Forms.CheckBox();
this .tbName = new System.Windows.Forms.TextBox();

this .tbEquationld = new System.Windows.Forms.TextBox();
this .tbValue = new System.Windows.Forms.TextBox();

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 120

Automated Norm Extraction from Legal Texts

OOOOOOOOOOOOOOLOLOLOOLOC000000000

N—OO0ONIOWVTALWN— OO 0ONIOVI-RWN— OO 00NOWT-RUWN— OO 00NCWVITAUWN—OO00NOVIA WN — OO CONIOVIT-R WN— OO 00NV TR WN— OO 00NIOWVITALWN— OO 00N

NNNOOYOIOYOYOIOYOYOYOVIUTUTUTUTUTUTUVTUTUTR D S AU IS IS IS INODUIUWILWDUIUWILIUILWILINININININONININONOND!

this .label3 = new System.Windows.Forms.Label();
this .cbCancel = new System.Windows.Forms.Button();
this .cbOk = new System.Windows.Forms.Button();
this .IbCaptionNew = new System.Windows.Forms.Label();
this .IbCaptionEdit = new System.Windows.Forms.Label();
this .SuspendLayout();

i

/I labell

i
this .labell.Location = new System.Drawing.Point(8, 16);
this .labell.Name = "labell";
this .labell.Size = new System.Drawing.Size(48, 16);

this .labell.Tabindex = 6;
this .labell.Text = "Name";
I

Il label2

I
this .label2.Location = new System.Drawing.Point(8, 40);
this .label2.Name = "label2";
this .label2.Size = new System.Drawing.Size(64, 16);

this .label2.Tabindex = 7;
this .label2.Text = "Equation Id";
l
/I cbAtomic
l
this .cbAtomic.CheckAlign = System.Drawing.ContentAlignm ent.MiddleRight;
this .cbAtomic.ImageAlign = System.Drawing.ContentAlignm ent.MiddleLeft;
this .cbAtomic.Location = new System.Drawing.Point(8, 88);
this .cbAtomic.Name = "cbAtomic";
this .cbAtomic.Size = new System.Drawing.Size(80, 24);
this .cbAtomic.Tablndex = 3;
this .cbAtomic.Text = "Atomic";
this .cbAtomic.CheckedChanged += new
System.EventHandler(this .cbAtomic_CheckedChanged);
i

/l tbName

i
this .tbName.Location = new System.Drawing.Point(72, 8);
this .tbName.Name = "tbName";
this .tbName.Size = new System.Drawing.Size(240, 20);

this .tbName.Tablndex = 0;
this .tbName.Text="";

I

/I tbEquationld

I

this .tbEquationld.Location = new System.Drawing.Point(72, 32);
this .tbEquationld.Name = "tbEquationld";
this .tbEquationld.Size = new System.Drawing.Size(240, 20);

this .tbEquationld.TabIndex = 1;
this .tbEquationld.Text ="";
I

/I tbValue

I
this .tbValue.Location = new System.Drawing.Point(72, 56);
this .tbValue.Name = "tbValue”;
this .tbValue.Size = new System.Drawing.Size(240, 20);

this .tbValue.Tablndex = 2;
this .tbValue.Text="";
I

/I label3

i
this .label3.Location = new System.Drawing.Point(8, 64);
this .label3.Name = "label3";
this .label3.Size = new System.Drawing.Size(56, 16);

this .label3.Tablndex = 8;
this .label3.Text = "Value";
I
/I cbCancel
I
this .cbCancel.DialogResult = System.Windows.Forms.Dialo gResult.Cancel;
this .cbCancel.Location = new System.Drawing.Point(168, 120);
this .cbCancel.Name = "cbCancel";
this .cbCancel.Size = new System.Drawing.Size(64, 24);
this .cbCancel.Tablndex = 5;
this .cbCancel.Text = "Cancel";

this .cbCancel.Click += new System.EventHandler(this .cbCancel_Click);
I
/I cbOk
1

this .cbOk.Location = new System.Drawing.Point(96, 120);

this .cbOk.Name = "cbOk";

this .cbOk.Size = new System.Drawing.Size(64, 24);

this .cbOk.Tablndex = 4;

this .cbOk.Text = "Ok";

this .cbOk.Click += new System.EventHandler(this .cbOk_Click);
i
/I IbCaptionNew
i

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 121

Automated Norm Extraction from Legal Texts

OOOOOOOOOOOVOOOOLOLOOLO000000000000000000ONININININININ

OLOCONCWTRUWN—OO0ONIOWVITAWN—OLOCONIOVI-RWN— OO CON WA UWN— OO 00NV TRA LWN— OO 00NIOVITAWN — OO CONOVIT-R WN— OO 00NOWVT-R WN— OO 0ONOWIAW

NI NN NN NI NN NN NN NN NONININININININININININNIND

OUVTNUTUNTUNIUVTUTUTUVTUTR A D DU IS NI N UIUWLDUIUWILIUWILWILIUWINONININONININONINOND

this .IbCaptionNew.Location = new System.Drawing.Point(192, 96);
this .IbCaptionNew.Name = "IbCaptionNew";
this .IbCaptionNew.Size = new System.Drawing.Size(120, 23);

this .IbCaptionNew.Tablndex = 10;
this .IbCaptionNew.Text = "New grammar feature";
this .IbCaptionNew.Visible = false ;

i

/I IbCaptionEdit

1

this .IbCaptionEdit.Location = new System.Drawing.Point(192, 80);
this .IbCaptionEdit.Name = "IbCaptionEdit";
this .IbCaptionEdit.Size = new System.Drawing.Size(120, 23);

this .IbCaptionEdit.Tabindex = 9;
this .IbCaptionEdit.Text = "Edit grammar feature";
this .IbCaptionEdit.Visible = false ;

I

/I GrammarFeatureEdit

I

this .AcceptButton = this .cbOk;

this .AutoScaleBaseSize = new System.Drawing.Size(5, 13);
this .CancelButton = this .cbCancel;

this .ClientSize = new System.Drawing.Size(320, 149);

this .Controls.Add(this .IbCaptionNew);
this .Controls.Add(this .IbCaptionEdit);
this .Controls.Add(this .cbCancel);

this .Controls.Add(this .cbOKk);

this .Controls.Add(this .label3);

this .Controls.Add(this .tbValue);

this .Controls.Add(this .tbEquationld);
this .Controls.Add(this .tbName);

this .Controls.Add(this .cbAtomic);

this .Controls.Add(this .label2);

this .Controls.Add(this .labell);

this .Name = "GrammarFeatureEdit";

this .StartPosition = System.Windows.Forms.FormStartPosi tion.CenterScreen;
this .Text = "GrammarFeatureEdit";

this .ResumeLayout(false);

}

#endregion
private void cbOk_Click(object sender, System.EventArgs e)

if (newFeature)
{
myFeature = new GrammarFeature(tbName.Text);
myFeatureSet.Add(myFeature);
}
myFeature.Name = toName.Text;
myFeature.Atomic = cbAtomic.Checked;
if (myFeature.Atomic)

{
}

else

myFeature.FeatureValue = tbValue.Text;

myFeature.FeatureValue = null ;
if (tbEquationld.Text.Trim().Equals("))

myFeature.Equationld = -1;

else
{
try
{
int eqld = Int32.Parse(tbEquationid.Text);
if (eqld>0)
{
myFeature.Equationld = eqld;
}
else
{
System.Windows.Forms.MessageBox.Show(this ,"Equitionld moet
groter dan 0 zijn!");
}
catch (Exception exception)
System.Windows.Forms.MessageBox.Show(this ,"U heeft geen geldig
Equitionld ingevuld!");
}
this .Close();
}
private void cbCancel_Click(object sender, System.EventArgs e)
{

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 122

Automated Norm Extraction from Legal Texts

OOOOOOOOOOOOOOOOLOOLO 0000000000000 CACONINININININININININOIO IO IO

NOUVTRUWN—OLO00NWVI-RAUWN—OO 00NV T-RAWN— OO 00NOWVI-RUWN— OO 00N WA WN— OO CON VTR WN— OO 00NOWIRWN—

UL LI LI LI LI LI DI LI LI LWILWILWILWILWILWINO NI NN NN NN NN NINONOND

NIONININININININD

this .Close();

/I Deze methode wordt in de GrammarForm (de hoofdfo rm) aangeroepen om de
/luiteindelijke edit te verwerken in het klassemode |
public void DoEdit(GrammarFeature item)
{
this .Text = IbCaptionEdit.Text;
this .myFeature = item;
this .newFeature = false ;
this .tbName.Text = item.Name;
if (item.Equationld.Equals(-1))

this .tbEquationld.Text =",
else
this .tbEquationld.Text = item.Equationld.ToString();
this .tbValue.Text = item.FeatureValue;
this .cbAtomic.Checked = item.Atomic;
if (cbAtomic.Checked)
{
}

else

{

this .tbValue.Enabled = true ;

this .tbValue.Enabled = false ;

if (item.Fixed)

{
this .tbName.Enabled = false ;
this .tbValue.Enabled = false ;
this .cbAtomic.Enabled = false ;

this .ShowDialog();

public void DoNew(ArrayList item)

this .Text = IbCaptionEdit.Text;
this .myFeatureSet = item;
this .newFeature = true ;
this .tbName.Text="";
this .tbEquationld.Text ="";
this .tbValue.Text="";
this .cbAtomic.Checked = false ;
this .tbValue.Enabled = false ;
this .ShowDialog();
}

/I Een event die zorgt voor de correcte gevolgen va n een verandering van de "atomische
/lwaarde"-check.
private void cbAtomic_CheckedChanged(object sender, System.EventArgs e)
if (cbAtomic.Checked)
this .tbValue.Enabled = true ;

else

this .tbValue.Enabled = false ;

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 123

Automated Norm Extraction from Legal Texts

Workbench.NaturalLanguage.Grammar.Editor.GrammarRuleEdit.cs

M M

/Il WORKBENCH

i 1

mn m
mn n
/Il © Copyright Belastingdienst (http://www.belastingd ienst.nl)///
M M

/Il Revision information: i
/Il $Workfile:: GrammarRuleEdit.cs $
/Il $Revision:: 1 $ /1
/Il $Author:: Ron_van_gog, Kamal_Sayah $ /1l
/Il $Date:: 24/02/04 $ /1

M

M

UTRULWN— OO 00NV UWN— OO 0ONIVTAUWN— OO 00NOVTR LWN— OO 00NOWT-RA WN— OO CoONIVTR WN— OO 00NOWVT-R LWN— OO 00NIWVTA WN— OO 00NV WN—

0000000C00COCONININININININININN OO IOYOYOXOYWNUTUTUIVTUTUTUVTUVTUTR D N N NN N IN N NUIUIUWIUIUIUWIUIUIUWILINININININININININOND!

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;
using System.Windows.Forms;

namespace Workbench.NaturalLanguage.Grammar.Editor

/Il <summary>
/Il Summary description for GrammarRuleEdit.
/Il </summary>

/I Deze klasse beschrijft de form die gebruitk wor
public class GrammarRuleEdit : System.Windows.Forms.Form

{

dt bij het editten van een GrammarRule

private ~ GrammarRuleCollection myCollection;

private GrammarRule myRule;

private bool newRule;

private System.Windows.Forms.TextBox tbName;
private System.Windows.Forms.Label labell;

private System.Windows.Forms.TextBox tbDescription;
private System.Windows.Forms.Label label2;

private System.Windows.Forms.Button cbCancel;
private System.Windows.Forms.Button cbOKk;

private System.Windows.Forms.Label IbCaptionNew;
private System.Windows.Forms.Label IbCaptionEdit;
/Il <summary>

/Il Required designer variable.

/Il </summary>

private System.ComponentModel.Container components = null ;

public GrammarRuleEdit()

{
l
/I Required for Windows Form Designer support
l
InitializeComponent();
l
/I TODO: Add any constructor code after Initiali zeComponent call
l
}

/Il <summary>

/Il Clean up any resources being used.

/Il </summary>

protected override void Dispose(bool disposing)

if (disposing)
if (components != null)

components.Dispose();

}

base .Dispose(disposing);

}

#region Windows Form Designer generated code
/Il <summary>
/Il Required method for Designer support - do not modi fy
/Il the contents of this method with the code editor.
/Il </summary>
private void InitializeComponent()

this .tbName = new System.Windows.Forms.TextBox();

this .labell = new System.Windows.Forms.Label();
this .tbDescription = new System.Windows.Forms.TextBox();
this .label2 = new System.Windows.Forms.Label();

this .cbCancel = new System.Windows.Forms.Button();
this .cbOk = new System.Windows.Forms.Button();
this .IbCaptionNew = new System.Windows.Forms.Label();

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 124

Automated Norm Extraction from Legal Texts

OOOOOOOOOOOOOOLOLOLOOLO 00000000

WN— OO0 TR UWN—OLO00NIOWVITAUWN— OO 00NOVI-RWN— OO 00N WN— OO 00NOWTA WN— OO 00NIOWVIT-AWN — OO 0ONIOWVIT-R WN — OO 00N TR WN— OO 00NOY

NNNNOYOIOYOYOIOYOYOIOYOVTNUTUTUTUTUVTUTUTUTD D DA D UIS A US UIS I IN GDUWIWD LI UIUWILIUINONININONONINONONIND

this .IbCaptionEdit = new System.Windows.Forms.Label();
this .SuspendLayout();

I

/I tbName

i
this .tbName.Location = new System.Drawing.Point(80, 8);
this .tbName.Name = "tbName";
this .tbName.Size = new System.Drawing.Size(304, 20);

this .tbName.Tablndex = 0;
this .tbName.Text ="";
I

/l'labell
i
this .labell.lmeMode = System.Windows.Forms.ImeMode.NoCo ntrol;
this .labell.Location = new System.Drawing.Point(8, 8);
this .labell.Name = "labell";
this .labell.Size = new System.Drawing.Size(40, 16);

this .labell.Tabindex = 4;
this .labell.Text = "Name";
I

/I tbDescription
l
this .tbDescription.Location = new System.Drawing.Point(80, 32);
this .tbDescription.Multiline = true ;
this .tbDescription.Name = "tbDescription";
this .tbDescription.Size = new System.Drawing.Size(304, 168);

this .tbDescription.Tabindex = 1;
this .tbDescription.Text =",
I

I/l label2
1
this .label2.ImeMode = System.Windows.Forms.ImeMode.NoCo ntrol;
this .label2.Location = new System.Drawing.Point(8, 40);
this .label2.Name = "label2";
this .label2.Size = new System.Drawing.Size(72, 16);

this .label2.Tabindex = 5;
this .label2.Text = "Description”;
I

/I cbCancel
I
this .cbCancel.DialogResult = System.Windows.Forms.Dialo gResult.Cancel;
this .cbCancel.lImeMode = System.Windows.Forms.ImeMode.No Control;
this .cbCancel.Location = new System.Drawing.Point(200, 208);
this .cbCancel.Name = "cbCancel";
this .cbCancel.Size = new System.Drawing.Size(64, 24);

this .cbCancel.Tabindex = 3;
this .cbCancel.Text = "Cancel";

this .cbCancel.Click += new System.EventHandler(this .cbCancel_Click);
I
I cbOk
l

this .cbOk.ImeMode = System.Windows.Forms.ImeMode.NoCont rol;

this .cbOk.Location = new System.Drawing.Point(128, 208);

this .cbOk.Name = "cbOk";

this .cbOk.Size = new System.Drawing.Size(64, 24);

this .cbOk.Tablndex = 2;

this .cbOk.Text = "Ok";

this .cbOKk.Click += new System.EventHandler(this .cbOk_Click);
1
/I IbCaptionNew
i

this .IbCaptionNew.ImeMode = System.Windows.Forms.ImeMod e.NoControl;
this .IbCaptionNew.Location = new System.Drawing.Point(8, 208);

this .IbCaptionNew.Name = "IbCaptionNew";

this .IbCaptionNew.Size = new System.Drawing.Size(120, 23);

this .IbCaptionNew.Tablndex = 7;
this .IbCaptionNew.Text = "New grammar rule";
this .IbCaptionNew.Visible = false ;

I

/I IbCaptionEdit

I

this .IbCaptionEdit.ImeMode = System.Windows.Forms.ImeMo de.NoControl;
this .IbCaptionEdit.Location = new System.Drawing.Point(8, 184);

this .IbCaptionEdit.Name = "IbCaptionEdit";

this .IbCaptionEdit.Size = new System.Drawing.Size(120, 23);

this .IbCaptionEdit.Tablndex = 6;
this .IbCaptionEdit. Text = "Edit grammar rule";
this .IbCaptionEdit.Visible = false ;
i
/I GrammarRuleEdit
1

this .AcceptButton = this .cbOk;

this .AutoScaleBaseSize = new System.Drawing.Size(5, 13);
this .CancelButton = this .cbCancel;

this .ClientSize = new System.Drawing.Size(392, 237);

this .Controls.Add(this .IbCaptionNew);
this .Controls.Add(this .IbCaptionEdit);
this .Controls.Add(this .cbCancel);

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 125

Automated Norm Extraction from Legal Texts

OOOOOOOOOOOOOOOOLOLOOLO 0000000000000 NINININININ

(OCONIWT-RUWN—OLO00NCWVTAUWN— OO 00NIOVTALWN— OO 0ONOWVIT-A WN— OO 00NIOWT-R UWN— OO 00NIOWIA

NININININININININININININININININININONINONONONONONONONONOND

NINININININININININD

this .Controls.Add(this .cbOKk);

this .Controls.Add(this .tbDescription);

this .Controls.Add(this .label2);

this .Controls.Add(this .tbName);

this .Controls.Add(this .labell);

this .Name = "GrammarRuleEdit";

this .StartPosition = System.Windows.Forms.FormStartPosi tion.CenterScreen;
this .Text = "GrammarRuleEdit";

this .ResumeLayout(false);

}

#endregion

/I Afhandeling van de OK-button
private void cbOk_Click(object sender, System.EventArgs e)

{
if (newRule)
myRule = new GrammarRule(tbName.Text);
myRule.isNew = true ;
myCollection.Add(myRule);
myRule.Name = tbName.Text;
myRule.Description = tbDescription.Text;
this .Close();
}
private void cbhCancel_Click(object sender, System.EventArgs e)
{
this .Close();
}

/I Het verwerken van een edit
public void DoEdit(GrammarRule item)

{
this .Text = IbCaptionEdit.Text;
this .myRule = item;
this .newRule = false ;
this .tbName.Text = item.Name;
this .tbDescription.Text = item.Description;
this .ShowDialog();

}

/I Het verwerken van een nieuwe-regel-toevoeging
public void DoNew(GrammarRuleCollection item)

this .Text = IbCaptionEdit.Text;
this .myCollection = item;

this .newRule = true ;

this .tbName.Text="";

this .tbDescription.Text = "";
this .ShowDialog();

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 126

Automated Norm Extraction from Legal Texts

Workbench.NaturalLanguage.Grammar.Editor.GrammarForm.cs

UTRLWN— OO 00NV UWN— OO 00NV TAUWN— OO 00N VTR LWN— OO 00NV WN— OO CONIUVTR WN— OO 00NOWVT-R LWN— OO 00NOWVTA WN— OO CoNIWVTIR WN—

00000000000 NININININININININNOIOYOIGYIOYO\OYOYOXOYWNUTUTUTUTUTUTVTUTUTR DN S N NN N IN N NI U W UIUWIUWININININININONINONOND

N T M

/Il WORKBENCH

1 n

mn n

mn n

/Il © Copyright Belastingdienst (http://www.belastingd ienst.nl)///
N T M

/Il Revision information: 1

/Il $Workfile:: GrammarForm.cs $ /1
/Il $Revision:: 1 $ /1
/Il $Author:: Ron_van_gog, Kamal_Sayah $ /1l

/Il $Date:: 24/02/04 $ /1
T M

using System;

using System.Xml;

using System.Data;

using System.Drawing;

using System.Collections;

using System.ComponentModel;
using System.Windows.Forms;
using Belastingdienst.Windows;

namespace Workbench.NaturalLanguage.Grammar.Editor

/Il <summary>
/Il Summary description for GrammarForm.
/Il </summary>
/I Deze klasse omschrijft het complete hoofdscherm van de Grammartool
public class GrammarForm : System.Windows.Forms.Form
{
private System.Windows.Forms.TreeNode myNode;
private GrammarTreeModel myGrammarModel;
private System.Windows.Forms.ContextMenu contextMenu1l,;
private Belastingdienst.Windows.Forms.TreeModelView gramma rTreeView;
private System.Windows.Forms.Menultem menuEdit;
private System.Windows.Forms.Menultem menuNewElement;
private System.Windows.Forms.Menultem menuNewFeature;
private System.Windows.Forms.Menultem menuDelete;
private System.Windows.Forms.Menultem menuMoveUp;
private System.Windows.Forms.Menultem menuMoveDown;
private System.Windows.Forms.Menultem menuNewRule;
private System.Windows.Forms.Menultem menultem2;
private System.Windows.Forms.Menultem menultem3;
private System.Windows.Forms.Panel panell;
private System.Windows.Forms.Button cbSave;
private System.Windows.Forms.Button cbCancel;
private Belastingdienst.Windows.Forms.MessageBox DeleteMes sageBox;
private System.Windows.Forms.Button cbPrint;
private System.Windows.Forms.SaveFileDialog PrintTo;
private Belastingdienst.Windows.Forms.MessageBox CancelMes sageBox;
/Il <summary>
/Il Required designer variable.
/Il </summary>
private System.ComponentModel.Container components = null ;

public GrammarForm()

{
i
/I Required for Windows Form Designer support
i
InitializeComponent();
i
/I TODO: Add any constructor code after Initiali zeComponent call
l
}

/Il <summary>
/Il Clean up any resources being used.
/Il </summary>
protected override void Dispose(bool disposing)
if (disposing)
if (components != null)

components.Dispose();

}

base .Dispose(disposing);

}

#region ~ Windows Form Designer generated code

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 127

Automated Norm Extraction from Legal Texts

OOOOOOOOOOOOOOLOOLOOLO 00000000

WN—OLO0ONOWT-RUWN—OLO00NCWVITAWN— OO 00NV WN— OO 0ONCWT-R WN— OO 00NCWTA LWN— OO 00NIOWVIT-AWN — OO 0ONIOVIT-R WN — OO 00N TR WN— OO 00NOY

NNNNOYOIOYOYOIOYOYOIOYOVTUNUTUTUTUTUVTUTUTUTR B DA D IS U IS N IS WD LI UIUWILIUINONININONONINONONIND

/Il <summary>

/Il Required method for Designer support - do not modi fy
/Il the contents of this method with the code editor.

/Il </summary>

private void InitializeComponent()

System.Resources.ResourceManager resources = new
System.Resources.ResourceManager(typeof (GrammarForm));
this .myGrammarModel = new
Workbench.NaturalLanguage.Grammar.Editor.GrammarTre eModel();
this .contextMenul = new System.Windows.Forms.ContextMenu();
this .menuEdit = new System.Windows.Forms.Menultem();

this .menuDelete = new System.Windows.Forms.Menultem();

this .menultem3 = new System.Windows.Forms.Menultem();

this .menuNewRule = new System.Windows.Forms.Menultem();

this .menuNewElement = new System.Windows.Forms.Menultem();
this .menuNewFeature = new System.Windows.Forms.Menultem();
this .menultem2 = new System.Windows.Forms.Menultem();

this .menuMoveUp = new System.Windows.Forms.Menultem();
this .menuMoveDown = new System.Windows.Forms.Menultem();

this .grammarTreeView = new Belastingdienst.Windows.Forms.TreeModelView();
this .panell = new System.Windows.Forms.Panel();

this .cbPrint = new System.Windows.Forms.Button();

this .cbCancel = new System.Windows.Forms.Button();

this .cbSave = new System.Windows.Forms.Button();

this .DeleteMessageBox = new Belastingdienst.Windows.Forms.MessageBox();
this .PrintTo = new System.Windows.Forms.SaveFileDialog();

this .CancelMessageBox = new Belastingdienst.Windows.Forms.MessageBox();

this .panell.SuspendLayout();
this .SuspendLayout();
1
1/l contextMenul
1
this .contextMenul.Menultems.AddRange(new System.Windows.Forms.Menultem[] {
this .menuEdit,
this .menuDelete,
this .menultem3,
this .menuNewRule,
this .menuNewElement,
this .menuNewFeature,
this .menultem2,
this .menuMoveUp,
this .menuMoveDown});
this .contextMenul.RightTolLeft =

((System.Windows.Forms.RightToLeft)(resources.GetOb ject("contextMenul.RightToLeft")))
this .contextMenul.Popup += new System.EventHandler(this .contextMenul_Popup);

I

/I menuEdit

I
this .menuEdit.Enabled = ((bool)(resources.GetObject("menuEdit.Enabled")));

this .menuEdit.Index = 0;
this .menuEdit.Shortcut =

((System.Windows.Forms.Shortcut)(resources.GetObjec t("menuEdit.Shortcut")));

this .menuEdit.ShowShortcut = ((bool)(resources.GetObject("menuEdit.ShowShortcut")));
this .menuEdit.Text = resources.GetString("menuEdit. Text ");

this .menuEdit.Visible = ((bool)(resources.GetObject("menuEdit.Visible")));

this .menuEdit.Click += new System.EventHandler(this .menuEdit_Click);

i

/I menuDelete

i

this .menuDelete.Enabled = ((bool)(resources.GetObject("menuDelete.Enabled")));
this .menuDelete.Index = 1;

this .menuDelete.Shortcut =

((System.Windows.Forms.Shortcut)(resources.GetObjec t("menuDelete.Shortcut")));
this .menuDelete.ShowShortcut =

((bool)(resources.GetObject("menuDelete.ShowShortcut")));

this .menuDelete.Text = resources.GetString("menuDelete. Text");
this .menuDelete.Visible = ((bool)(resources.GetObject("menuDelete.Visible")));
this .menuDelete.Click += new System.EventHandler(this .menuDelete_Click);

I

/I menultem3

I

this .menultem3.Enabled = ((bool)(resources.GetObject("menultem3.Enabled")));

this .menultem3.Index = 2;

this .menultem3.Shortcut =

((System.Windows.Forms.Shortcut)(resources.GetObjec t("menultem3.Shortcut")));
this .menultem3.ShowShortcut =

((bool)(resources.GetObject("menultem3.ShowShortcut")));

this .menultem3.Text = resources.GetString("menultem3.Te xt");

this .menultem3.Visible = ((bool)(resources.GetObject("menultem3.Visible")));

I

/I menuNewRule

I

this .menuNewRule.Enabled = ((bool)(resources.GetObject("menuNewRule.Enabled")));
this .menuNewRule.Index = 3;

this .menuNewRule.Shortcut =

((System.Windows.Forms.Shortcut)(resources.GetObjec t("menuNewRule.Shortcut")));

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 128

Automated Norm Extraction from Legal Texts

OOOOOOOOOOOOOOOOLOLOOLO 0000000000000 NINININININ

—OLOONOWTRUWN—OLO0ONICOWVIAWN—OLO0ONIOVI-RWN— OO CONCWI-RUWN— OO 00NV TAUWN— OO 00NIOVITALWN — OO 00NV WN— OO 00NCOWVTRWN— OO 0ONOWIA

NINONINO NI NN NINININI NN NI NININININININININININININININD

OO VNUVNTUTUNIUVTUTUTUVTUTUTR DD DU IS N ODODUWIUWI LI LIUWILININININININONINIONOND

this .menuNewRule.ShowShortcut =
((bool)(resources.GetObject("menuNewRule.ShowShortcut")))

this .menuNewRule.Text = resources.GetString("menuNewRul e.Text");
this .menuNewRule.Visible = ((bool)(resources.GetObject("menuNewRule.Visible")));
this .menuNewRule.Click += new System.EventHandler(this .menuNewRule_Click);

I

/I menuNewElement

I

this .menuNewElement.Enabled =

((bool)(resources.GetObject("menuNewElement.Enabled")));
this .menuNewElement.Index = 4;

this .menuNewElement.Shortcut =

((System.Windows.Forms.Shortcut)(resources.GetObjec t("menuNewElement.Shortcut")));
this .menuNewElement.ShowShortcut =

((bool)(resources.GetObject("menuNewElement.ShowShortcut" N

this .menuNewElement.Text = resources.GetString("menuNew Element.Text");

this .menuNewElement.Visible =

((bool)(resources.GetObject("menuNewElement.Visible")));

this .menuNewElement.Click += new System.EventHandler(this .menuNewElement_Click);
I

/I menuNewFeature

l

this .menuNewFeature.Enabled =

((bool)(resources.GetObject("menuNewFeature.Enabled")));

this .menuNewFeature.Index = 5;

this .menuNewFeature.Shortcut =

((System.Windows.Forms.Shortcut)(resources.GetObjec t("menuNewFeature.Shortcut")));
this .menuNewFeature.ShowShortcut =

((bool)(resources.GetObject("menuNewFeature.ShowShortcut")));

this .menuNewFeature.Text = resources.GetString("menuNew Feature.Text");

this .menuNewFeature.Visible =

((bool)(resources.GetObject("menuNewFeature.Visible")));

this .menuNewFeature.Click += new System.EventHandler(this .menuNewFeature_Click);
I

/I menultem2

I

this .menultem2.Enabled = ((bool)(resources.GetObject("menultem2.Enabled")));

this .menultem2.Index = 6;

this .menultem2.Shortcut =

((System.Windows.Forms.Shortcut)(resources.GetObjec t("menultem2.Shortcut")));
this .menultem2.ShowShortcut =

((bool)(resources.GetObject("menultem2.ShowShortcut")));

this .menultem2.Text = resources.GetString("menultem2.Te xt");

this .menultem2.Visible = ((bool)(resources.GetObject("menultem2.Visible")));

I

/I menuMoveUp

I

this .menuMoveUp.Enabled = ((bool)(resources.GetObject("menuMoveUp.Enabled")));
this .menuMoveUp.Index = 7;

this .menuMoveUp.Shortcut =

((System.Windows.Forms.Shortcut)(resources.GetObjec t("menuMoveUp.Shortcut")));
this .menuMoveUp.ShowShortcut =

((bool)(resources.GetObject("menuMoveUp.ShowShortcut")));

this .menuMoveUp.Text = resources.GetString("menuMoveUp. Text");
this .menuMoveUp.Visible = ((bool)(resources.GetObject("menuMoveUp.Visible")));
this .menuMoveUp.Click += new System.EventHandler(this .menuMoveUp_Click);

i

/I menuMoveDown

1

this .menuMoveDown.Enabled = ((bool)(resources.GetObject("menuMoveDown.Enabled")));
this .menuMoveDown.Index = 8;

this .menuMoveDown.Shortcut =

((System.Windows.Forms.Shortcut)(resources.GetObjec t("menuMoveDown.Shortcut")));
this .menuMoveDown.ShowShortcut =

((bool)(resources.GetObject("menuMoveDown.ShowShortcut")));

this .menuMoveDown.Text = resources.GetString("menuMoveD own.Text");

this .menuMoveDown.Visible = ((bool)(resources.GetObject("menuMoveDown.Visible")));
this .menuMoveDown.Click += new System.EventHandler(this .menuMoveDown_Click);

l

/I grammarTreeView

I

this .grammarTreeView.AccessibleDescription =
resources.GetString("grammarTreeView.AccessibleDesc ription");

this .grammarTreeView.AccessibleName =
resources.GetString("grammarTreeView.AccessibleName ")

this .grammarTreeView.Anchor =

((System.Windows.Forms.AnchorStyles)(resources.GetO bject("grammarTreeView.Anchor")));
this .grammarTreeView.Backgroundimage =
((System.Drawing.Image)(resources.GetObject("gramma rTreeView.Backgroundimage™)));
this .grammarTreeView.ContextMenu = this .contextMenul;

this .grammarTreeView.Dock =

((System.Windows.Forms.DockStyle)(resources.GetObje ct("grammarTreeView.Dock")));
this .grammarTreeView.Enabled =

((bool)(resources.GetObject("grammarTreeView.Enabled")));

this .grammarTreeView.Font =

((System.Drawing.Font)(resources.GetObject("grammar TreeView.Font")));
this .grammarTreeView.Imagelndex =
((int)(resources.GetObject("grammarTreeView.Imagelndex"));

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 129

Automated Norm Extraction from Legal Texts

OOOOOOOOOOOOOOOLOLOOLO 0000000000000 CACONINININININININININOIOICIOIOIIOOY

LI UILI I WD) U I I LD U U I LI U U I) LI WD U I LI WD U U) LI WD U W) I I LD LD I I LW U LD W LI LW LWL LWINI NV NV N NNV NV NI NI NI NI NV NI NI NN NI NI NINI NI NI NI NININONINININONONI NN NINONND

DDA NOIUIOIUIUIUILILILILINININININININININND
CONOWT-RULWN— OO CONICWI-RAUWN—OO0ONIOVTRAWN—OLO0ONOWVIT-RUWN— OO 00NV TAWN—OO 00N VTR LWN— OO 0ONCWI-A WN— OO 00NV T-RAWN— OO 00NV LN

this .grammarTreeView.ImeMode =

((System.Windows.Forms.ImeMode)(resources.GetObject ("grammarTreeView.ImeMode")));
this .grammarTreeView.Indent = ((int)(resources.GetObject("grammarTreeView.Indent")));
this .grammarTreeView.ltemHeight =

((int)(resources.GetObject("grammarTreeView.ltemHeight"));

this .grammarTreeView.Location =

((System.Drawing.Point)(resources.GetObject("gramma rTreeView.Location")));

this .grammarTreeView.Model = this .myGrammarModel;

this .grammarTreeView.Name = "grammarTreeView";
this .grammarTreeView.RightToLeft =

((System.Windows.Forms.RightToLeft)(resources.GetOb ject("grammarTreeView.RightToLeft"
N

this .grammarTreeView.Selectedimagelndex =

((int)(resources.GetObject("grammarTreeView.Selectedimag elndex")));

this .grammarTreeView.ShowRoot = false ;

this .grammarTreeView.Size =

((System.Drawing.Size)(resources.GetObject("grammar TreeView.Size")));

this .grammarTreeView.Tablndex =

((int)(resources.GetObject("grammarTreeView.Tablndex"))) ;

this .grammarTreeView.Text = resources.GetString("gramma rTreeView.Text");
this .grammarTreeView.Visible =

((bool)(resources.GetObject("grammarTreeView.Visible")));

this .grammarTreeView.MouseDown += new
System.Windows.Forms.MouseEventHandler(this .grammarTreeView_MouseDown);
I

/I panell

l

this .panell.AccessibleDescription =

resources.GetString("panell.AccessibleDescription") ;

this .panell.AccessibleName = resources.GetString("panel 1.AccessibleName");
this .panell.Anchor =

((System.Windows.Forms.AnchorStyles)(resources.GetO bject("panell.Anchor")));
this .panell.AutoScroll = ((bool)(resources.GetObject("panell.AutoScroll")));

this .panell.AutoScrollMargin =

((System.Drawing.Size)(resources.GetObject("panell. AutoScrollMargin™)));
this .panell.AutoScrolIMinSize =

((System.Drawing.Size)(resources.GetObject("panell. AutoScrollMinSize™)));
this .panell.Backgroundimage =

((System.Drawing.Image)(resources.GetObject("panell .Backgroundimage™)));
this .panell.Controls.Add(this .cbPrint);

this .panell.Controls.Add(this .cbCancel);

this .panell.Controls.Add(this .cbSave);

this .panell.Dock =

((System.Windows.Forms.DockStyle)(resources.GetObje ct("panell.Dock")));

this .panell.Enabled = ((bool)(resources.GetObject("panell.Enabled")));

this .panell.Font = ((System.Drawing.Font)(resources.Get Object("panell.Font")));
this .panell.ImeMode =

((System.Windows.Forms.ImeMode)(resources.GetObject ("panell.lmeMode")));
this .panell.Location =

((System.Drawing.Point)(resources.GetObject("panell .Location")));

this .panell.Name = "panell";
this .panell.RightToLeft =

((System.Windows.Forms.RightToLeft)(resources.GetOb ject("panell.RightToLeft")));
this .panell.Size = ((System.Drawing.Size)(resources.Get Object("panell.Size")));
this .panell.Tabindex = ((int)(resources.GetObject("panell.Tabindex")));

this .panell.Text = resources.GetString("panell.Text");

this .panell.Visible = ((bool)(resources.GetObject("panell.Visible")));

I

/I cbPrint

1
this .cbPrint.AccessibleDescription =
resources.GetString("cbPrint.AccessibleDescription”

this .cbPrint.AccessibleName = resources.GetString("cbPr int.AccessibleName");
this .cbPrint.Anchor =

((System.Windows.Forms.AnchorStyles)(resources.GetO bject("cbPrint.Anchor")));

this .cbPrint.Backgroundimage =

((System.Drawing.Image)(resources.GetObject("cbPrin t.Backgroundimage")));

this .cbPrint.Dock =

((System.Windows.Forms.DockStyle)(resources.GetObje ct("cbPrint.Dock")));

this .cbPrint.Enabled = ((bool)(resources.GetObject("cbPrint.Enabled")));

this .cbPrint.FlatStyle =

((System.Windows.Forms.FlatStyle)(resources.GetObje ct("cbPrint.FlatStyle")));

this .cbPrint.Font = ((System.Drawing.Font)(resources.Ge tObject("cbPrint.Font")));
this .cbPrint.Image = ((System.Drawing.Image)(resources. GetObject("cbPrint.Image")));
this .cbPrint.ImageAlign =

((System.Drawing.ContentAlignment)(resources.GetObj ect("cbPrint.ImageAlign™)));
this .cbPrint.Imagelndex = ((int)(resources.GetObject("cbPrint.Imagelndex")));

this .cbPrint.ImeMode =

((System.Windows.Forms.ImeMode)(resources.GetObject ("cbPrint.ImeMode")));

this .cbPrint.Location =

((System.Drawing.Point)(resources.GetObject("cbPrin t.Location")));

this .cbPrint.Name = "cbPrint";
this .cbPrint.RightToLeft =

((System.Windows.Forms.RightToLeft)(resources.GetOb ject("cbPrint.RightToLeft")));
this .cbPrint.Size = ((System.Drawing.Size)(resources.Ge tObject("cbPrint.Size")));
this .cbPrint.Tablndex = ((int)(resources.GetObject("cbPrint.Tablndex")));

this .cbPrint.Text = resources.GetString("cbPrint.Text") ;

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 130

Automated Norm Extraction from Legal Texts

OOOOOOOOOOOOOOOOLOLOOLOCO000CO0000000OCACONINININININININININIOICIOYOYOYOYOYOYOYOVLivituiivvivivT-D

QWA UWN—OLOCONIOWVTRAWN—OO00NOVTA LWN—OLO00NICWTRAWN— OO 00N VTR LWN— OO 00NOWVTR UWN— OO CONIWVTRA WN— OO 00NOWVT-R LN — OO 00NICWTRAWN—OW0

DADADNDAANANANRANRANRANRNDANDRNDANDNDANDNDNDNDANDNDNANDNDAADNDADADNDDASDSDSDDRAOWOWOLWULWULWLWLWLWIILWIILWIIUWIIUWIIUWIIUIUIUIUIUIUI I U U U U U U U I D I UJ Ud) LI LD LI WD LI LI LW LW LW LW LW LW LW

LULLLLDLDLLLILINONINONONONONONONOND

this .cbPrint.TextAlign =

((System.Drawing.ContentAlignment)(resources.GetObj ect("cbPrint. TextAlign")));
this .cbPrint.Visible = ((bool)(resources.GetObject("cbPrint.Visible)));

this .cbPrint.Click += new System.EventHandler(this .cbPrint_Click);

i

/I cbCancel

1
this .cbCancel.AccessibleDescription =

resources.GetString("cbCancel.AccessibleDescription ");

this .cbCancel.AccessibleName = resources.GetString("cbC ancel.AccessibleName");
this .cbCancel.Anchor =

((System.Windows.Forms.AnchorStyles)(resources.GetO bject("cbCancel.Anchor")));
this .cbCancel.Backgroundimage =

((System.Drawing.Image)(resources.GetObject("cbCanc el.Backgroundimage™)));

this .cbCancel.DialogResult = System.Windows.Forms.Dialo gResult.Cancel;

this .cbCancel.Dock =

((System.Windows.Forms.DockStyle)(resources.GetObje ct("cbCancel.Dock")));

this .cbCancel.Enabled = ((bool)(resources.GetObject("cbCancel.Enabled")));

this .cbCancel.FlatStyle =

((System.Windows.Forms.FlatStyle)(resources.GetObje ct("cbCancel.FlatStyle")));
this .cbCancel.Font = ((System.Drawing.Font)(resources.G etObject("cbCancel.Font")));
this .cbCancel.lmage =

((System.Drawing.Image)(resources.GetObject("cbCanc el.lmage")));

this .cbCancel.lmageAlign =

((System.Drawing.ContentAlignment)(resources.GetObj ect("cbCancel.ImageAlign")));
this .cbCancel.Imagelndex = ((int)(resources.GetObject("cbCancel.Imagelndex")));

this .cbCancel.lImeMode =

((System.Windows.Forms.ImeMode)(resources.GetObject ("cbCancel.ImeMode")));

this .cbCancel.Location =

((System.Drawing.Point)(resources.GetObject("cbCanc el.Location")));

this .cbCancel.Name = "chCancel";
this .cbCancel.RightToLeft =

((System.Windows.Forms.RightToLeft)(resources.GetOb ject("cbCancel.RightToLeft")));
this .cbCancel.Size = ((System.Drawing.Size)(resources.G etObject("cbCancel.Size")));
this .cbCancel.TabIndex = ((int)(resources.GetObject("cbCancel. Tablndex")));

this .cbCancel.Text = resources.GetString("cbCancel. Text ");

this .cbCancel.TextAlign =

((System.Drawing.ContentAlignment)(resources.GetObj ect("cbCancel.TextAlign")));

this .cbCancel.Visible = ((bool)(resources.GetObject("cbCancel.Visible")));

this .cbCancel.Click += new System.EventHandler(this .cbCancel_Click);

i

/I cbSave

i

this .cbSave.AccessibleDescription =

resources.GetString("cbSave.AccessibleDescription™) ;

this .cbSave.AccessibleName = resources.GetString("cbhSav e.AccessibleName");

this .cbSave.Anchor =

((System.Windows.Forms.AnchorStyles)(resources.GetO bject("cbSave.Anchor")));
this .cbSave.Backgroundimage =

((System.Drawing.Image)(resources.GetObject("cbSave .Backgroundimage")));
this .cbSave.Dock =

((System.Windows.Forms.DockStyle)(resources.GetObje ct("cbSave.Dock")));

this .cbSave.Enabled = ((bool)(resources.GetObject("cbSave.Enabled")));
this .cbSave.FlatStyle =

((System.Windows.Forms.FlatStyle)(resources.GetObje ct("cbSave.FlatStyle")));

this .cbSave.Font = ((System.Drawing.Font)(resources.Get Object("chSave.Font")));
this .cbSave.Image = ((System.Drawing.Image)(resources.G etObject("cbSave.Image")));
this .cbSave.ImageAlign =

((System.Drawing.ContentAlignment)(resources.GetObj ect("cbSave.lmageAlign™)));

this .cbSave.Imagelndex = ((int)(resources.GetObject("cbSave.Imagelndex")));

this .cbSave.ImeMode =

((System.Windows.Forms.ImeMode)(resources.GetObject ("cbSave.lmeMode")));

this .cbSave.Location =

((System.Drawing.Point)(resources.GetObject("cbSave .Location")));

this .cbSave.Name = "cbSave";
this .cbSave.RightToLeft =

((System.Windows.Forms.RightToLeft)(resources.GetOb ject("cbSave.RightToLeft")));
this .cbSave.Size = ((System.Drawing.Size)(resources.Get Object("cbSave.Size")));
this .cbSave.Tablndex = ((int)(resources.GetObject("cbSave.Tablndex")));

this .cbSave.Text = resources.GetString("cbSave.Text");
this .cbSave.TextAlign =

((System.Drawing.ContentAlignment)(resources.GetObj ect("cbSave.TextAlign")));
this .cbSave.Visible = ((bool)(resources.GetObject("cbSave.Visible")));
this .cbSave.Click += new System.EventHandler(this .cbSave_Click);

I
/I DeleteMessageBox
I

this .DeleteMessageBox.Buttons = System.Windows.Forms.Me ssageBoxButtons.OKCancel;
this .DeleteMessageBox.Text = resources.GetString("Delet eMessageBox.Text");

this .DeleteMessageBox.Title = resources.GetString("Dele teMessageBox.Title");

i

/I PrintTo

i

this .PrintTo.DefaultExt = "htm";

this .PrintTo.FileName = "Grammar.htm";

this .PrintTo.Filter = resources.GetString("PrintTo.Filt er');
this .PrintTo.Title = resources.GetString("PrintTo.Title ");
1

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 131

Automated Norm Extraction from Legal Texts

OOOOOOOOOOOOOOOLOLOOLO 0000000000000 CACONINININININININNIN OO IO IO OO IOYOYVTUVTVNIVTUTVIVTUTVTUVT R D A D D SN D N AN WWW

HULWN—OLO00NCWVI-RUWN—OO 00NV T-RAWN— OO 0ONIOWVI-RUWN— OO 00NV TAWN—O O 00N OVT-R LWN— OO 00NOWI-R WN— OO 00NV T-RA WN— OO 00NOWVI-R UWN— OO0

VIVTVTVTVTVTVTVIVTVTVTVTUVTVTVTUTVTVTUTUTUTUTIVTIVTVT A D D D DA DA DA DA DA A DA DADAAAAAAAAALADNNRNRNRNRNRNNNNNNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDDNDRANDNDNDANDRNDNDADNDNDADDDN

NININININD

/I CancelMessageBox
i

this .CancelMessageBox.Buttons = System.Windows.Forms.Me ssageBoxButtons.OKCancel;
this .CancelMessageBox.Text = resources.GetString("Cance IMessageBox.Text");
this .CancelMessageBox.Title = resources.GetString("Canc elMessageBox.Title");

I
/I GrammarForm
I

this .AccessibleDescription = resources.GetString("$this .AccessibleDescription");
this .AccessibleName = resources.GetString("$this.Access ibleName");

this .AutoScaleBaseSize =

((System.Drawing.Size)(resources.GetObject("$this. A utoScaleBaseSize")));

this .AutoScroll = ((bool)(resources.GetObject("$this.AutoScroll")));

this .AutoScrollMargin =

((System.Drawing.Size)(resources.GetObject("$this. A utoScrollMargin™)));

this .AutoScrollMinSize =

((System.Drawing.Size)(resources.GetObject("$this.A utoScrollMinSize")));

this .Backgroundimage =

((System.Drawing.Image)(resources.GetObject("$this. Backgroundimage")));

this .CancelButton = this .cbCancel;

this .ClientSize = ((System.Drawing.Size)(resources.GetO bject("$this.ClientSize")));

this .Controls.Add(this .grammarTreeView);
this .Controls.Add(this .panell);
this .Enabled = ((bool)(resources.GetObject("$this.Enabled")));

this .Font = ((System.Drawing.Font)(resources.GetObject("$this.Font")));

this .lcon = ((System.Drawing.Icon)(resources.GetObject("$this.lcon")));

this .ImeMode =

((System.Windows.Forms.ImeMode)(resources.GetObject ("$this.ImeMode™)));

this .Location = ((System.Drawing.Point)(resources.GetOb ject("$this.Location")));

this .MaximumSize = ((System.Drawing.Size)(resources.Get Object("$this.MaximumSize")));
this .MinimumSize = ((System.Drawing.Size)(resources.Get Object("$this.MinimumSize")));

this .Name = "GrammarForm";
this .RightToLeft =

((System.Windows.Forms.RightToLeft)(resources.GetOb ject("$this.RightToLeft")));
this .StartPosition =
((System.Windows.Forms.FormStartPosition)(resources .GetObject("$this.StartPosition"))

this .Text = resources.GetString("$this. Text");

this .Load += new System.EventHandler(this .GrammarForm_Load);
this .panell.ResumeLayout(false);

this .ResumeLayout(false);

}

#endregion
/I In deze methode worden alle productieregels zoal s ze op dat moment in de database
/laanwezig zijn
/I ingelezen en gekoppeld aan het interne klassemod el en getoond in de Grammarform (in een

/ltree structure)
private void GrammarForm_Load(object sender, System.EventArgs e)

string queryString = "SELECT * FROM ProductionRules";

string mode = "Translate";

System.Globalization.Culturelnfo culture = new

System.Globalization.Culturelnfo("nl");

DataTable ProductionRulesTable =

Workbench.NaturalLanguage.Data.NLPDataAccessHelper. GetDataSet(queryString,mode,cultur
e).Tables[0];

/I Aanmaken van de nieuwe productieregelcollectie
GrammarRuleCollection ruleCollection = new
GrammarRuleCollection(ProductionRulesTable);

this .myGrammarModel.SetRoot(ruleCollection);

this .grammarTreeView.Reset();

}
private void grammarTreeView_MouseDown(object sender, System.Windows.Forms.MouseEventArgs
e) (
) this .myNode = this .grammarTreeView.GetNodeAt(e.X, e.Y);
private void menuEdit_Click(object sender, System.EventArgs e)
{ object item= this .grammarTreeView.Nodeltem(this .myNode);
/I Als men zich bevindt op een GrammarRule dan word t de edit (form) van de

/IGrammarRule aangeroepen
if (tem is GrammarRule)

{
new GrammarRuleEdit(). DoEdit((GrammarRule)item);
this .grammarTreeView.Reset(this .myNode);
}
/I Als men zich bevindt op een GrammarElement dan w ordt de edit (form) van de

/IGrammarElement aangeroepen
else if (tem is GrammarElement)

{

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 132

Automated Norm Extraction from Legal Texts

AYOYOYOYOYO YO YO YO YO YO YO YO VTUTUTUTUTVTUVTVTIVTIVTIVTIVTIVTIVTIVTIVTIVTIVTIVTIVTIVIVIVIVIVIVIVIVIVIVIVTIVTIUVTIUVTIUVTIUTIUIUIUVIUTIUIUIUVIUVIUVIUIVIvivl
———OO0OCOOOOOOOOOOOOOLOLOOLO 0000000000 000CICOCONINININININININININOIOIC IO IOYOYOYOWTUVTUNIUTUTUTVTUTUTUVTR D D IS U US I UWI WD UWILWIUWIUWULWININININOND
N—OO0ONIOWVTALWN—OO0ONIOVIT-RUWN— OO 00NCWT-RUWN— OO 00NICWVITAUWN—OO00NOVIRA WN — OO CONIOVIT-R WN— OO 00NV TR WN— OO 00NIOWVITALWN— OO 00N

new GrammarElementEdit(). DoEdit((GrammarElement)item);
this .grammarTreeView.Reset(this .myNode.Parent);

}

/I Als men zich bevindt op een GrammarFeature dan w ordt de edit (form) van de
/IGrammarFeature aangeroepen
else if (tem is GrammarFeature)

{
new GrammarFeatureEdit(). DoEdit((GrammarFeature)item);
this .grammarTreeView.Reset(this .myNode);

}

/I Het opbouwen van het contextmenu.
private void contextMenul_Popup(object sender, System.EventArgs e)

{

object item= this .grammarTreeView.Nodeltem(this .myNode);

foreach (Menultem menultem in this .contextMenul.Menultems)

{
}

this .menuNewRule.Enabled = true ;
if (tem is GrammarRule)

menultem.Enabled = false ;

this .menuEdit.Enabled = true ;
this .menuDelete.Enabled = true ;
this .menuNewElement.Enabled = true ;

else if (tem is GrammarElement)

this .menuEdit.Enabled = true ;
this .menuNewFeature.Enabled = true ;
if (!((GrammarElement)item).Lhs)

this .menuDelete.Enabled = true ;
if (this .myNode.Index>1)
{

this .menuMoveUp.Enabled = true ;

}
if (this .myNode.Index>0 &&
this .myNode.Index< this .myNode.Parent.Nodes.Count-1)

this .menuMoveDown.Enabled = true ;

else if (tem is GrammarFeature)

this .menuEdit.Enabled = true ;
if (/((GrammarFeature)item).Atomic)

this .menuNewFeature.Enabled = true ;

}
if (!((GrammarFeature)item).Fixed) // TODO: Eigenlijk moet ook gekeken worden
/I naar alle subelementen in de boom.

{

this .menuDelete.Enabled = true ;

if (this .myNode.Index>1)
{

this .menuMoveUp.Enabled = true ;

if (this .myNode.Index>0 &&
this .myNode.Index< this .myNode.Parent.Nodes.Count-1)

{
this .menuMoveDown.Enabled = true ;
}
}
}
/I Event voor de afhandeling van de GrammarRule-c reatie
private void menuNewElement_Click(object sender, System.EventArgs e)
{
object item= this .grammarTreeView.Nodeltem(this .myNode);
if (tem is GrammarRule)
{
new GrammarElementEdit(). DoNew((GrammarRule)item);
this .grammarTreeView.Reset(this .myNode);
}
}
/I Event voor de afhandeling van de GrammarFeatur e/Element-creatie
private void menuNewFeature_Click(object sender, System.EventArgs e)
{
object item= this .grammarTreeView.Nodeltem(this .myNode);
if (tem is GrammarElement)
{

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 133

Automated Norm Extraction from Legal Texts

NI IIIITIOIIIII IO NN IO I I ITIIITIIO)

OLOLOOLOLOLOLOLOLOLO 0000 CO0000COCOCACOCONINININININININININOIOIOYO IO YO XOYOYOWTUTUTUTUTUTUTUTUTUTD DS IS SIS N I N DD U U U UL UINI NININININININININ) — et e el et
OLOCONCWTRUWN—OO0ONIOVITAWN—OLO 00NV WN— OO CON TR UWN— OO 00NV TRA LWN— OO 00NIOVITALWN — OO CONOVIT-R WN— OO 00NOWVT-R WN— OO 0ONOWIAW

new GrammarFeatureEdit(). DoNew(((GrammarElement)item). FeatureSet);
this .grammarTreeView.Reset(this .myNode);

else if (tem is GrammarFeature)

{
new GrammarFeatureEdit().DoNew(((GrammarFeature)item). FeatureSet);
this .grammarTreeView.Reset(this .myNode);

}

/I Event voor de afhandeling een delete
private void menuDelete_Click(object sender, System.EventArgs e)

{
object item= this .grammarTreeView.Nodeltem(this .myNode);
object parent = this .grammarTreeView.Nodeltem(this .myNode.Parent);
string oldText = DeleteMessageBox.Text;
string itemName ="";
if (tem is GrammarRule)

itemName = ((GrammarRule)item).Name;

else if (tem is GrammarElement)

{

itemName = ((GrammarElement)item).Name;

else if (tem is GrammarFeature)

{

itemName = ((GrammarFeature)item).Name;

DeleteMessageBox.Text = oldText.Replace("%",item Name);
DialogResult x = DeleteMessageBox.Show();
DeleteMessageBox.Text = oldText;

if (x == DialogResult.OK)

if (tem is GrammarRule)
if (((GrammarRule)item).isNew)

((GrammarRuleCollection) this .grammarTreeView.Model.Root)
.RuleCollection.Remove(item);

}
else
((GrammarRule)item).isDeleted = true ;
this .grammarTreeView.Reset();

else if (tem is GrammarElement)

((GrammarRule)parent).Rhs.Remove(item);
this .grammarTreeView.Reset(this .myNode.Parent);

else if (tem is GrammarFeature)
if (parent is GrammarElement)
((GrammarElement)parent).FeatureSet.Remove(it em);
else
((GrammarFeature)parent).FeatureSet.Remove(it em);

this .grammarTreeView.Reset(this .myNode.Parent);

}

/I Het verplaatsen van een element (naar boven)
private void menuMoveUp_Click(object sender, System.EventArgs e)
{
object item= this .grammarTreeView.Nodeltem(this .myNode);
if (item is GrammarElement)
{
GrammarRule rule =
(GrammarRule) this .grammarTreeView.Nodeltem(this .myNode.Parent);
int pos = rule.Rhs.IndexOf(item);
if (pos > 0)

rule.Rhs[pos]=rule.Rhs[pos-1];
rule.Rhs[pos-1] = item;
this .grammarTreeView.Reset(this .myNode.Parent);

}
if (tem is GrammarFeature)
GrammarElement element =

(GrammarElement) this .grammarTreeView.Nodeltem(this .myNode.Parent);
int pos = element.FeatureSet.IndexOf(item);

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 134

Automated Norm Extraction from Legal Texts

OOOOOOOOO

i i N N I N N B N N N N N B N B B N N N e N N N N N N o B e e e e N N e e N N N N N N N N N N N N N N N N N N NN BN NN N NN N NN N NN N NN N NN |

NNNNNNNINOOYOIOYOYOIOYOYOYOYWNUTUTUNIUTUTUTUTUTUTER DS UL IS INOIUDUIUWD LIUWILWILIUWILININININININONININOND
NOWIRAWN— OO 0ONOWTRUWN— OO 0ONCWTAUWN—OO00NIOVITALWN — OO CONIOWVIT-RWN— OO 00NV T-R WN— OO 00NOWVITALWN— OO 00NV WN—

element.FeatureSet[pos]= element.FeatureSet[pos -1];
element.FeatureSet[pos-1] = item;
this .grammarTreeView.Reset(this .myNode.Parent);

}

/I Het verplaatsen van een element (naar beneden)
private void menuMoveDown_Click(object sender, System.EventArgs e)
{
object item= this .grammarTreeView.Nodeltem(this .myNode);
if (tem is GrammarElement)

GrammarRule rule =
(GrammarRule) this .grammarTreeView.Nodeltem(this .myNode.Parent);
int pos = rule.Rhs.IndexOf(item);
if (pos < rule.Rhs.Count-1)
{
rule.Rhs[pos]=rule.Rhs[pos+1];
rule.Rhs[pos+1] = item;
this .grammarTreeView.Reset(this .myNode.Parent);

}

if (tem is GrammarFeature)
{
GrammarElement element =
(GrammarElement) this .grammarTreeView.Nodeltem(this .myNode.Parent);
int pos = element.FeatureSet.IndexOf(item);
element.FeatureSet[pos]=element.FeatureSet[pos+ 1];
element.FeatureSet[pos+1] = item;
this .grammarTreeView.Reset(this .myNode.Parent);

}

/I Het aanmaken van een nieuwe regel
private void menuNewRule_Click(object sender, System.EventArgs e)

{
object item= this .grammarTreeView.Model.Root;
new GrammarRuleEdit().DoNew((GrammarRuleCollection)ite m);
this .grammarTreeView.Reset();

}

private void cbhCancel_Click(object sender, System.EventArgs e)

DialogResult x = CancelMessageBox.Show();
if (x == DialogResult.OK)

((GrammarRuleCollection) this .grammarTreeView.Model.Root).Save();
this .grammarTreeView.Reset();
new Grammar().ResetProductionRules();

}
else
{
this .Close();
}
}
/1 Bij het klikken op de save-button wordt de geh ele gemuteerde

productieregelcollectie
/I weggeschreven naar de database
private void cbSave_Click(object sender, System.EventArgs e)

((GrammarRuleCollection) this .grammarTreeView.Model.Root).Save();
this .grammarTreeView.Reset();
new Grammar().ResetProductionRules();

}
private void cbPrint_Click(object sender, System.EventArgs e)
DialogResult ok = this .PrintTo.ShowDialog();
if (ok == DialogResult.OK)
((GrammarRuleCollection) this .grammarTreeView.Model.Root)
.Print(this .PrintTo.FileName);
}
}

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 135

Automated Norm Extraction from Legal Texts

Workbench.NaturalLanguage.Grammar.Editor.GrammarTreeModel.cs

T T

/Il WORKBENCH 1
1

1"

1"

/Il © Copyright Belastingdienst (http://www.belastingd
T T

/Il Revision information:

7 $Workfile:: GrammarTreeModel.cs

/Il $Revision:: 1

/Il $Author:: Ron_van_gog, Kamal_Sayah

/Il $Date:: 24/02/04
I

using System;

using System.Collections;

namespace Workbench.NaturalLanguage.Grammar.Editor

{

/Il <summary>
/Il Summary description for GrammarTreeModel.
/Il </summary>

/I Deze klasse zorgt voor de creatie van de TreeSt

GrammarRuleCollection root;

public void SetRoot(GrammarRuleCollection obj)

root = obj;

public override

{

object Root

get
{

}

return root;

}

/I Het vullen van alle kinderen van elk GrammarEl
public override

{

System.Collections.IEnumerable ChildrenOf(

I

n
n
n
ienst.nl)///
M
n
$ /1
$ /1
$ /1
$ /1
i

ructure uit het opgeslagen klassemodel
public class GrammarTreeModel : Belastingdienst.Windows.Forms.B

aseTreeModel

ement,GrammarFeature etc.
object item)

ArrayList Result =
if (tem

{

new ArrayList();

is GrammarRuleCollection)

GrammarRuleCollection ruleCollection = (Grammar

RuleCollection) item;

foreach (GrammarRule temp

in ruleCollection.RuleCollection)

UTRLWN— OO 00NV UWN—OLO00NICWVTAUWN— OO 00N VTR LWN— OO 00NOWT-R WN— OO CONIUVTR WN— OO 00NOWVT-R LWN— OO 00NOWTA WN— OO CoNIWVTIR WN—

00000000000 NININININININININNOIOYOIGYIOYOIOYOYOXOYWNUTUTUTUTUTUTUVTUVTUTR D AN N NN NN N NI U U LWUWILWININININININININONOND

if (temp.isDeleted)
Result.Add(temp);

}

else if (item

{

is GrammarRule)
GrammarRule rule = (GrammarRule) item;
Result.Add(rule.Lhs);

foreach (GrammarElement temp

{
}

else if (item

in rule.Rhs)

Result.Add(temp);

is GrammarElement)
GrammarElement element = (GrammarElement) item;
foreach (GrammarFeature temp in element.FeatureSet)

{
}

else if (item

Result.Add(temp);

is GrammarFeature)

GrammarFeature feature = (GrammarFeature) item;
foreach (GrammarFeature temp in feature.FeatureSet)

{
}
}

return Result;

Result.Add(temp);

}

/I Het genereren van de Stringrepresentaties van
public override string TextOf(object item)

{

elke element

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 136

Automated Norm Extraction from Legal Texts

OOOOOOOOOOOOOOLOOLOOLO 00000000

VTR LWN—OO00NOWI-A UWN—OO00NOUVT-RAWN— OO 00NOWVI-RUWN— OO 00NV TAWN— OO 00N OVT-R LWN— OO 00NCWI-R WN— OO 00NV T-RA WN— OO 00NIOWVIR LWN— OO 00N

NNNNNNOOYOIOYOIOIOYOYOYOVIUVTUTUIUTUTUTUTUTUTR D S U IS IS IS I DUIDUWILWD LI LIUILWILININININININONINONOND!

if (item is GrammarRuleCollection)

{

return "Rule Collection”;

else if (tem is GrammarRule)

{
string Result="";
GrammarRule rule = (GrammarRule) item;
Result = rule.Name + " [" + rule.Lhs.Name + " = >t
foreach (GrammarElement element in rule.Rhs)

if (element.Optional)

{
}
{
) }

return Result + "

Result +=" (" + element.Name +")";
else

Result +=" " + element.Name;

else if (tem is GrammarElement)
GrammarElement element = (GrammarElement) item;
string Result = element.Name;
if (element.Optional)
Result = "(" + Result +")";
if (element.Lhs)
Result = "LHS " + Result;
else
Result = "RHS " + Result;
return Result;
else if (tem is GrammarFeature)
GrammarFeature feature = (GrammarFeature) item;
string Result = feature.Name;
if (feature.Equationld > -1)
{ Result +="[" + feature.Equationld.ToString() +"1"
if (feature.Atomic)
Result +=" =" + feature.FeatureValue;

}

return Result;

}

return "???";

}

/I Het aangeven of een element een leaf is of nie t
public override bool Leaf(object item)

if (tem is GrammarRuleCollection)
{

return false ;

else if (tem is GrammarRule)

{ return false ;
’ else if (tem is GrammarElement)
{ return false ;
i else if (tem is GrammarFeature)

GrammarFeature feature = (GrammarFeature) item;
if (feature.Atomic)

{
return true ;
}
else
if (feature.FeatureSet.Count > 0)
{
return false ;
}
else
{
return true ;
}
}

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 137

Automated Norm Extraction from Legal Texts

D e ————
OCONINININ
[@Nelo N {e)]

return false ;

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 138

Automated Norm Extraction from Legal Texts

Appendix F

The following table contains a global view of the complete set of translation
patterns (written in Visual Basic). These patterns are used for the translation of
the parsed constructs into a formal model.

The patterns for the noun phrase extraction are based on Ron van Gog [37].
Note that some of the rules have been modified by the author.

Translation Patterns for Noun-phrase Extraction

Id Condition Script
type = "np" and (root | dim Result as New System.Collections.ArrayList

not in ("bedrag", dim Temp as Object
"waarde", "hoogte") or
pp-prep <> "van") Temp = Feature.Model.GetType(Feature.ltem("root"). ToString)

Feature.ltem("ad]"). Translate(Temp)
Feature.ltem("pp"). Translate(Temp)
Feature.ltem("modif"). Translate(Temp)

Result.Add(Temp)

return Result

type = "adj_list" Dim Result as New System.Collections.ArrayList
Dim Temp as Object

Dim Counter as Object

Temp = Feature.ltem("tl"). Translate(Parent)
for each Counter in Temp
Result.Add(Counter)

next

Temp = Feature.ltem("hd").Translate(Parent)
for each Counter in Temp
Result.Add(Counter)

next

return Result

type = "adj" Dim Result as New System.Collections.ArrayList
dim Current as Object

dim Temp as Object

dim Counter as Object

if Feature.ltem("adv.hd.type").ToString. ToLower = "pp"

Current = Feature.ltem("adv.hd.main"). Translate(Nothing)

for each Counter in Current

Temp = Feature.Model.GetAssociation(Parent, Counter,
Feature.ltem("adv.tl"). Translate(Parent) + Feature.ltem("root").ToString +
Feature.ltem("adv.hd.prep").ToString)

Result.Add(Temp)

next

else

Current = Parent.GetAttribute("Boolean”,

Feature.ltem("adv"). Translate(Parent) + Feature.ltem("root"). ToString)
Result.Add(Current)

end if

return Result

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

139

Automated Norm Extraction from Legal Texts

type = "pp"”

dim Result as New System.Collections.ArrayList
dim Temp as Object

dim Current as Object

dim Counter as Object

Current = Feature.ltem("main").Translate(Nothing)

for each Counter in Current

Temp = Feature.Model.GetAssociation(Parent, Counter,
Feature.ltem("prep").ToString)

Result.Add(Temp)

next

return Result

type = "adv_list"

dim Result as Object

Result = Feature.ltem(“tl"). Translate(Parent) +
Feature.ltem("hd"). Translate(Parent)

return Result

type = "adv"

dim Result as Object
Result = Feature.ltem("main").ToString
return Result

type = "np" and root in

("bedrag", "waarde",
"hoogte") and pp.prep

dim Result as New System.Collections.ArrayList
dim Temp as Object

dim Counter as Object

dim Attr as Object

Temp = Feature.ltem("pp.main").Translate(Result)

for each Counter in Temp

Attr = Counter.GetAttribute("Real", Feature.ltem("root").ToString)
Result.Add(Attr)

next

return Result

type =
"bijvoeglijke_bijzin"
and main.adv.hd.type
= "pp"

Dim Result as New System.Collections.ArrayList
dim Current as Object

dim Temp as Object

dim Counter as Object

dim Name as String

Current = Feature.ltem("main.adv.hd.main").Translate(Nothing)

Name = Feature.ltem("main.pred.finit.main").ToString

Name = Name + Feature.ltem("main.adv.tl"). Translate(Nothing)
Name = Name + Feature.ltem("main.pred.hoofd.main").ToString
Name = Name + Feature.ltem("main.adv.hd.prep").ToString

for each Counter in Current

Temp = Feature.Model.GetAssociation(Parent, Counter, Name)
Result.Add(Temp)

next

return Result

type = "np_money"

dim Result as New System.Collections.ArrayList
dim Temp as Object

Temp = Feature.Model.GetType(Feature.ltem("cur").ToString +
Feature.ltem("root"). ToString)

Result.Add(Temp)

return Result

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

140

Automated Norm Extraction from Legal Texts

type="np_conj"

dim Result as New System.Collections.ArrayList
dim Temp as Object
dim Counter as Object

Temp = Feature.ltem("s1"). Translate(Nothing)
for each Counter in Temp
Feature.ltem("modif"). Translate(Counter)
Result.Add(Counter)

next

Temp = Feature.ltem("s2"). Translate(Nothing)
for each Counter in Temp
Feature.ltem("modif"). Translate(Counter)
Result.Add(Counter)

next

return Result

type = "np_ref"

dim Result as New System.Collections.ArrayList
dim Temp as Object

Temp = Feature.Model.GetPackageReference(Feature.ltem("main"). ToString)
Result.Add(Temp)

return Result

type = "pp_conj"

dim Result as New System.Collections.ArrayList
dim Temp as Object
dim Counter as Object

Temp = Feature.ltem("s1").Translate(Parent)
for each Counter in Temp
Result.Add(Counter)

next

Temp = Feature.ltem("s2"). Translate(Parent)
for each Counter in Temp
Result.Add(Counter)

next

return Result

type = "adj_conj"

Dim Result as New System.Collections.ArrayList
Dim Temp as Object

Dim Counter as Object

Dim Adv as String

Temp = Feature.ltem("s1").Translate(Parent)
for each Counter in Temp
Result.Add(Counter)

next

Temp = Feature.ltem("s2").Translate(Parent)
for each Counter in Temp
Result.Add(Counter)

next

Adv = Feature.ltem("adv"). Translate(Nothing)

If Adv <> "" then

Adv = Adv.Substring(0,1).ToLower + Adv.Substring(1)

for each Counter in Result

Counter.Name = Adv + Counter.Name.Substring(0,1). ToUpper +
Counter.Name.Substring(1)

next

end if

return Result

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

141

Automated Norm Extraction from Legal Texts

type =
"bijvoeglijke_bijzin"
and main.adj.type =

Dim Result as New System.Collections.ArrayList
Dim Temp as Object

"adj" Temp = Feature.ltem("main.adj"). Translate(Parent)
Result.Add(Temp)
return Result

type = "pp2" dim Result as New System.Collections.ArrayList

dim Counter as Object

Result = Feature.ltem("main").Translate(Parent)

for each Counter in Result

Counter.Name = Feature.ltem("prep").ToString.ToLower +
Feature.ltem("main.prep").ToString

next

return Result

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

142

Automated Norm Extraction from Legal Texts

Translation Patterns for Verb-phrase Extraction

Id [Condition

Script

type = "s_dp"

dim Result as New System.Collections.ArrayList
dim EC as New System.Collections.ArrayList
dim Counter as Object

dim AttrCounter as Object

dim EcCounter as Object

dim Attr as Object

dim strCondition as String

dim strTemp as String

Result = Feature.ltem("subject"). Translate(Nothing)

for each Counter in Result

strCondition ="

for each AttrCounter in Counter.myAttributes

if strCondition = "" then

strCondition = AttrCounter.Name

else

strCondition = strCondition + " and " + AttrCounter.Name
end if

next

if Feature.item("ec.type").ToString <> " then
EC = Feature.ltem("ec").Translate(Nothing)

for each EcCounter in EC

for each AttrCounter in EcCounter.myAttributes
if Counter.Name = EcCounter.Name then
strTemp = AttrCounter.Name

else

strTemp = EcCounter.Name + "." + AttrCounter.Name
end if

if strCondition = " then

strCondition = strTemp

else

strCondition = strCondition + " and " + strTemp
end if

next

next

end if

if strCondition <> "" then
strCondition = strCondition + " implies "
end if

Attr = Counter.GetAttribute("Boolean”, Feature.ltem("dp_part1").ToString +
Feature.ltem("time_period").Translate(Nothing) +
Feature.ltem("dp_part2").ToString +

Feature.ltem("fiction"). Translate(Nothing))

Counter.GetConstraint("attributelnvariant”, strCondition + Attr.Name)
next

Return Result

type = "x_list"

dim Result as Object
Result = Feature.ltem("hd").ToString + Feature.ltem("tl"). Translate(Parent)
return Result

type =
"bijvoeglijke_bijzin"
and main.type =
"x_list"

Dim Result as New System.Collections.ArrayList
Dim myAttribute as Object

Dim AttrName as Object

AttrName = Feature.ltem("main").Translate(Parent)

myAttribute = Parent.GetAttribute("Boolean”, AttrName)
Result. Add(myAttribute)

return Result

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

143

Automated Norm Extraction from Legal Texts

type = "ec”

dim Result as New System.Collections.ArrayList
dim Counter as Object

Result = Feature.ltem("subject"). Translate(Nothing)
for each Counter in Result

Counter.GetAttribute("Boolean”, Feature.ltem(“feature"). Translate(Nothing))

next

Return Result

type = "s_def"

dim Result as New System.Collections.ArrayList
dim Temp as New System.Collections.ArrayList
dim Counter as Object

dim Counter2 as Object

dim Assoc as Object

dim strConstraint as String

dim boolFound as Boolean

strConstraint ="

Result = Feature.ltem("subject"). Translate(Nothing)

for each Counter in Result

Counter.Name = Counter.Name + "*"

next

Temp = Feature.ltem("direct_object"). Translate(Nothing)
for each Counter in Result

boolFound = false

for each Counter2 in Temp

if Counter.Name = Counter2.Name + "*" then

boolFound = true

end if

next

if boolFound = false then

Counter.Name = Left(Counter.Name, Len(Counter.Name) - 1)
end if

next

for each Counter in Temp

for each Assoc in Counter.myAttributes

strConstraint = strConstraint + " and " + Assoc.Name
next

for each Assoc in Counter.myAssociations
strConstraint = strConstraint + " and " + Assoc.Name + "->notEmpty"
next

if strConstraint <> "" then

strConstraint = strConstraint. SubString(5)

end if

next

for each Counter in Result

Counter.Supertype = Temp(0)

if strConstraint <> "" then
Counter.GetConstraint("Invariant", strConstraint)
end if

next

Result.Add(Temp)

return Result

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

144

Automated Norm Extraction from Legal Texts

"s_def4"

type = "s_def2" or type| dim Result as New System.Collections.ArrayList
="s_def3" or type = dim Temp as New System.Collections.ArrayList

dim SDef as New System.Collections.ArrayList
dim EC as New System.Collections.ArrayList
dim Counter as Object

dim Counter2 as Object

dim boolFound as Boolean

dim EcCounter as Object

dim AttrCounter as Object

dim SDefCounter as Object

dim Assoc as Object

dim strConstraint as String

dim strExtraConstraint as String

dim strExtraConstraint2 as String

dim strStereotype as String

dim strTypeName as String

dim strCondition as String

dim StrTemp as String

if Feature.item("ec.type").ToString <> " then
EC = Feature.ltem("ec").Translate(Nothing)

for each EcCounter in EC

for each AttrCounter in EcCounter.myAttributes
strTemp = EcCounter.Name + "." + AttrCounter.Name
if strCondition = "" then

strCondition = strTemp

else

strCondition = strCondition + " and " + strTemp
end if

next

next

end if

Result = Feature.ltem("subject"). Translate(Nothing)
for each Counter in Result

Counter.Name = Counter.Name + "*"

next

Temp = Feature.ltem("definition"). Translate(Nothing)
for each Counter in Result

boolFound = false

for each Counter2 in Temp

if Counter.Name = Counter2.Name + "*" then
boolFound = true

end if

next

if boolFound = false then

Counter.Name = Left(Counter.Name, Len(Counter.Name) - 1)
end if

next

if Feature.ltem("sdef.type").ToString <> "' then
SDef = Feature.ltem("sdef"). Translate(Nothing)
end if

Counter = Result(0)
strExtraConstraint =
for each Assoc in Counter.myAttributes

strExtraConstraint = strExtraConstraint + " and " + Assoc.Name
next

for each Assoc in Counter.myAssociations

strExtraConstraint = strExtraConstraint + " and " + Assoc.Name + "-
>notEmpty"

next

"

if Feature.ltem("adv").ToString.ToLower = "niet"
strTypeName = "not self:" + Result(0).Name
else

strTypeName = "self:" + Result(0).Name

end if

if Feature.ltem("adv").ToString. ToLower = ""
strStereotype = "typelnvariant"

else

strStereotype = "typeExtensionlnvariant"

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

145

Automated Norm Extraction from Legal Texts

end if

for each Counter in Temp

strConstraint ="

for each Assoc in Counter.myAttributes

strConstraint = strConstraint + " and " + Assoc.Name
next

for each Assoc in Counter.myAssociations
strConstraint = strConstraint + " and " + Assoc.Name + "->notEmpty"
next

if strConstraint <> "" then

strConstraint = strConstraint. SubString(5)

end if

if Feature.ltem("sdef.type").ToString <> "' then

for each SDefCounter in SDef

Feature.Model.GetAssociation(Counter, SDefCounter, "scopeDefinition")
if strConstraint <> " then

strConstraint = "applies(" + SDefCounter.Name+ ") and " + strConstraint
else

strConstraint = "applies(" + SDefCounter.Name+ ")"

end if

next

end if

if Counter.Name = Result(0).Name then
strExtraConstraint2 = "

else

strExtraConstraint2 = strExtraConstraint
end if

if strConstraint <> " then

if strCondition<> "' then

strConstraint = strCondition + " and " + strConstraint + " implies " +
strTypeName + strExtraConstraint2

else

strConstraint = strConstraint + " implies " + strTypeName +
strExtraConstraint2

end if

else

if strCondition<> "' then

strConstraint = strCondition + " implies " + strTypeName +
strExtraConstraint2

else

strConstraint = strCondition + " implies " + strTypeName +
strExtraConstraint2

end if

end if

Counter.GetConstraint(strStereotype, strConstraint)
next

return Result

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 146

Automated Norm Extraction from Legal Texts

type = "s_app"

dim Ref as New System.Collections.ArrayList
dim EC as New System.Collections.ArrayList
dim EcCounter as Object

dim AttrCounter as Object

dim strCondition as String

dim strTemp as String

dim strApplies as String

dim Temp as Object

Ref = Feature.ltem("ref"). Translate(Nothing)
strCondition ="

if Feature.item("ec.type").ToString <> "" then

EC = Feature.ltem("ec").Translate(Nothing)

for each EcCounter in EC

for each AttrCounter in EcCounter.myAttributes
strTemp = EcCounter.Name + "." + AttrCounter.Name
if strCondition = " then

strCondition = strTemp

else

strCondition = strCondition + " and " + strTemp

end if

next

Temp = Feature.Model.GetAssociation(EcCounter, Ref(0),
"VanToepassingVerklaring")

next

end if

if Feature.ltem("adv").ToString.ToLower = "niet"
strApplies = "not applies(" + Ref(0).Name +")"
else

strApplies = "applies(" + Ref(0).Name + ")

end if

if strCondition <> "" then

strCondition = strCondition + " implies " + strApplies
else

strCondition = strApplies

end if

Ref(0).GetConstraint("invariant", strCondition)

return Ref

type="s_va"

dim Result as New System.Collections.ArrayList
dim Temp as New System.Collections.ArrayList
dim Invariant as String

dim Attr as Object

dim Counter as Object

dim CounterTemp as Object

Result = Feature.ltem("subject"). Translate(Nothing)

if Feature.ltem("formula.type").ToString.ToLower <> "np_formula" then
Temp = Feature.ltem("formula"). Translate(Nothing)

if Temp(0).GetType().Name = "PType" then

Attr = Temp(0).GetAttribute("Real”, "bedrag")

else

Attr = Temp(0)

end if

Invariant = Attr.ParentType.Name + "." + Attr.Name
else

Invariant = Feature.ltem("formula”). Translate(Nothing)
end if

if Result(0).GetType().Name = "PType" then
Result(0).GetAttribute("Real", "bedrag")

Result(0).GetConstraint("invariant”, "bedrag" + " =" + Invariant)

else

Result(0).ParentType.GetConstraint("invariant”, Result(0).Name + " =" +
Invariant)

end if

return Result

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

147

Automated Norm Extraction from Legal Texts

type="np_formula" dim X as New System.Collections.ArrayList
dim Y as New System.Collections.ArrayList

dim Result as String

dim AttrX as Object

dim AttrY as Object

Result=""

X = Feature.ltem("x"). Translate(Nothing)
Y = Feature.ltem("y"). Translate(Nothing)

if X(0).GetType().Name = "PType" then
AttrX = X(0).GetAttribute("Real", "bedrag")
else

AttrX = X(0)

end if

if Y(0).GetType().Name = "PType" then
AttrY = Y(0).GetAttribute("Real", "bedrag")
else

AttrY = Y(0)

end if

if Feature.ltem("plusminus").ToString. ToLower = "vermeerderen" then
Result = AttrX.ParentType.Name + "." + AttrX.Name + " + " +
AttrY.ParentType.Name + "." + AttrY.Name

else

Result = AttrX.ParentType.Name + "." + AttrX.Name + " - " +
AttrY.ParentType.Name + "." + AttrY.Name

end if

return Result

type = "scopedef” dim Result as New System.Collections.ArrayList
Result = Feature.ltem("ref"). Translate(Nothing)

return Result

type ="s_rel" dim Result as New System.Collections.ArrayList
dim Temp as New System.Collections.ArrayList
dim AssocCounter as Object

dim Counter as Object

Result = Feature.ltem("subject"). Translate(Nothing)

for each Counter in Result

Temp = Feature.ltem("pp"). Translate(Counter)

for each AssocCounter in Temp

AssocCounter.Name = Feature.ltem("verb").ToString.ToLower +
Feature.ltem("pp.prep").ToString

next

next

return Result

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 148

Automated Norm Extraction from Legal Texts

type = "nabepaling”

Dim Result as New System.Collections.ArrayList
Dim NP as New System.Collections.ArrayList
Dim myAttribute as Object

Dim myAssoc as Object

Dim AttrName as Object

Dim Counter as Object

AttrName = Feature.ltem("main”).Translate(Parent)

if Feature.ltem("np.type").ToString =" then

myAttribute = Parent.GetAttribute("Boolean", Feature.ltem("adv").ToString +
AttrName)

Result. Add(myAttribute)

else

NP = Feature.ltem("np").Translate(Parent)

for each Counter in NP

if Counter.GetType().Name = "PType" then

myAssoc = Feature.Model.GetAssaociation(Parent, Counter, AttrName)
Result.Add(myAssoc)

end if

next

end if

return Result

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004

149

