

Kamal Sayah

Automated Norm Extraction

from Legal Texts

Master’s Thesis, Utrecht University,

Department of Computer Science.

Master’s Thesis Supervisors:

Prof.dr. T.M. van Engers

Dr. J. Hage

Utrecht, August 2004

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 2

Preface

This thesis is the final work of my study at the Institute of Information and

Computing Sciences (IICS) at the Utrecht University. During my thesis research, I

worked at the Tax Office Utrecht, Centrum voor Proces- en Productontwikkeling

(B/CPP).

First, I am very grateful to the Tax Office Utrecht, Centrum voor Proces- en

Productontwikkeling (B/CPP), for giving me the opportunity to write my thesis in a

great company in Utrecht. Of course, I would like to use this opportunity to give a

special thanks to my main advisor Prof. Dr. Tom van Engers at University of

Amsterdam, who has taught me a lot about being a participant of science. I also

would like to use this opportunity to give a special thanks to my second main advisor

Dr. Jurriaan Hage at the University of Utrecht. He has given me guidance and gave me

some critical notes on my work. In that way I kept on a straight line in my research

project.

Special thanks go out to Ron van Gog, employee at the Tax Office Utrecht (B/CPP)

who was always willing to help and assist me during my thesis research and

implementation.

I also want to thank some other people who have supported me in times of need.

First, great thanks go out to my girlfriend, parents and sister. Furthermore, I want to

thank my fellow employees and thesis students at the Tax Office Utrecht, Rob Dijers,

Philipe de Lang, Arian Jacobs, Vincent van Dijk, Niels Egberts, Wilco Niessen and

Faridah Liduan for making it possible to have a great time during my thesis research.

Parts of this master thesis have been published in an article in the proceedings of

the KDNet 2004 Conference (KDNet Symposium: "Knowledge-Based Services for the

Public Sector", [32]). This article (Van Engers, T.M., Sayah, K., Van Gog, R., De Maat,

E., [33]) will also be included in a book on that conference, yet to appear.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 3

Abstract

Within the (E-)POWER research program at the Tax Office Utrecht a new approach

for supporting the chain of processes from the creation of legal texts to the

implementation of normative (juridical) information systems has been developed.

According to this approach, creating formal knowledge models starts with the

analysis of the legal text. This process, executed by knowledge analysts, is very time

consuming. Within the (E-)POWER program, automated concept extraction techniques

and a type model generation tool have been developed to improve modelling

productivity. Formalization of the norms has thus far been a manual process. In this

thesis, a description is given of the development of a further step in overcoming the

knowledge acquisition bottleneck: a complete algorithm for automated norm analysis

from legal texts. This algorithm makes use of invariant linguistic structures at the

syntactical level that characterises specific normative expressions in natural

language.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 4

Content

PREFACE..2

ABSTRACT...3

1 INTRODUCTION...7

2 THE DUTCH TAX AND CUSTOMS ADMINISTRATION..11

2.1 EPOWER: EUROPEAN PROGRAM FOR AN ONTOLOGY BASED WORKING ENVIRONMENT FOR

REGULATIONS AND LEGISLATION..12
2.1.1 Project Description...12
2.1.2 Project Objectives...13

3 PROBLEM DESCRIPTION..14

3.1 HYPOTHESIS ..15
3.2 THE GENERAL PURPOSE ..15

4 AUTOMATED NORM EXTRACTION...18

4.1 NOUN-PHRASE EXTRACTION ...18
4.2 VERB-PHRASE EXTRACTION ..19

5 THE CATEGORIZATION OF LEGAL SENTENCES..21

5.1 PARSING NORMATIVE TEXTS...22

6 THE PARTS OF THE NORM EXTRACTION TOOL ..24

6.1 LEXICON ..25
6.2 UNIFICATION GRAMMAR ...27
6.3 TRANSLATION PATTERNS ..29

7 THE GENERATION OF PRODUCTION RULES...34

8 AN EXAMPLE; PARSING A JLC ...36

9 CLASS-ATTRIBUTE GENERATION...40

10 SPECIAL TREATMENT...43

10.1 VALUES ...43
10.2 INHERITANCE AND THE GENERATION OF CLASS NAMES..45
10.3 FIXED NOUN PHRASES...48

11 AN ALTERNATIVE SOLUTION...50

11.1 DYNAMIC JLC STORAGE..50
11.1.1 Excluding Invalid NLC Sequences..52
11.1.2 Advantages/Disadvantages ...53

11.2 SPLITTING OF JURIDICAL INFORMATION ..53
11.3 BEST OF TWO WORLDS ...54

12 AUTOMATED RULE MANAGEMENT: GRAMMAR EDITOR ..56

12.1 IMPLEMENTING THE TOOL..56
12.2 GRAMMAR EDITOR SCREENSHOTS...59

13 PRETTY PRINTER ...60

13.1 IMPLEMENTING THE PRETTY PRINTER ...60
13.2 SCREENSHOT OF THE OUTPUT..62

14 RELATED WORK ...63

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 5

15 CONCLUSION ...64

16 RECOMMENDATIONS FOR FURTHER RESEARCH...66

16.1 PROGRESSIVE DECONSTRUCTING OF ABSTRACT LANGUAGE CONSTRUCTS...66
16.2 AUTOMATED PATTERN MANAGEMENT..67
16.3 TRANSITIVE AND INTRANSITIVE VERBS...68
16.4 FIXED VERB-PREPOSITION COUPLES ...70
16.5 ENUMERATIONS...72
16.6 THE NLC FORMULA ..73
16.7 MULTIPLICITY IN ASSOCIATIONS ...74
16.8 ALTERNATIVE STORAGE OF THE LEXICAL DATA ...75
16.9 MULTIPLE LANGUAGE SUPPORT..75
16.10 MULTIPLE LAW TYPES SUPPORT ...76
16.11 ERRORS AND OTHER CLASSIFICATION PROBLEMS ...76
16.12 IMPROVEMENTS ON OUR IMPLEMENTATION...76

REFERENCES..79

APPENDIX A ..82

APPENDIX B ..84

Workbench.NaturalLanguage.Lexicon.Lexicon.LookupLexemes(StringCollection lexemesToLookup,
string mode, CultureInfo culture) ...84

APPENDIX C ..85

PRODUCTION RULES FOR THE NOUN-PHRASE EXTRACTION...85
PRODUCTION RULES FOR THE VERB-PHRASE EXTRACTION ...93

APPENDIX D ..103

APPENDIX E ..108

Workbench.NaturalLanguage.Grammar.Editor.GrammarClassModel.cs ...108
Workbench.NaturalLanguage.Grammar.Editor.GrammarElementEdit.cs...115
Workbench.NaturalLanguage.Grammar.Editor.GrammarFeatureEdit.cs ...120
Workbench.NaturalLanguage.Grammar.Editor.GrammarRuleEdit.cs...124
Workbench.NaturalLanguage.Grammar.Editor.GrammarForm.cs..127
Workbench.NaturalLanguage.Grammar.Editor.GrammarTreeModel.cs ...136

APPENDIX F ..139

TRANSLATION PATTERNS FOR NOUN-PHRASE EXTRACTION ..139
type = "np" and (root not in ("bedrag", "waarde", "hoogte") or pp.prep <> "van")...............................139
type = "adj_list" ..139
type = "adj"...139
type = "pp"..140
type = "adv_list" ...140
type = "adv" ..140
type = "np" and root in ("bedrag", "waarde", "hoogte") and pp.prep = "van"..140
type = "bijvoeglijke_bijzin" and main.adv.hd.type = "pp" ...140
type = "np_money"..140
type="np_conj" ...141
type = "np_ref" ...141
type = "pp_conj" ...141
type = "adj_conj" ..141
type = "bijvoeglijke_bijzin" and main.adj.type = "adj" ..142
type = "pp2"..142

TRANSLATION PATTERNS FOR VERB-PHRASE EXTRACTION...143
type = "s_dp" ..143
type = "x_list" ...143
type = "bijvoeglijke_bijzin" and main.type = "x_list" ..143
type = "ec" ..144

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 6

type = "s_def" ...144
type = "s_def2" or type = "s_def3" or type = "s_def4" ..145
type = "s_app" ..147
type="s_va"...147
type="np_formula" ...148
type = "scopedef" ..148
type = "s_rel" ..148
type = "nabepaling" ..149

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 7

1 Introduction

Governments and many other organisations have often to deal with many

regulations and business rules. These are often expressed in natural language and

sometimes their volume and complexity are a burden for these organisations. Many

processes are affected when new or adapted regulations have to be implemented and

both the organisations responsible for the implementation of the regulations and

their clients will benefit from a design methodology well suited for this. Within the (E-

)POWER ((European) Program for an Ontology based Working Environment for

Regulations and Legislation) research program (a project of the Tax Office Utrecht) a

first version of such methodology has been developed (see e.g. Van Engers &

Boekenoogen 2003 [1]).

The (E-)POWER approach is concentrated around the processes that are involved in

implementing normative knowledge sources, i.e. legislation, regulation or business

rules etc. This will result in operational processes, which subsequently are based on

these regulations, described in the aforementioned normative knowledge sources and

on the policy, which may be influenced by business economical considerations. These

operational processes form the implementation of a normative system (a system that

states what is prohibited, should be done or is allowed). The normative knowledge

sources themselves are created in the political arena and the process of creating such

knowledge is embedded in a social environment (see Figure 1).

Figure 1Figure 1Figure 1Figure 1. General interoperability framework for normative systems (from the presentation at

KDNet Symposium [32]).

The design methodology developed in the (E-)POWER project follows the steps

from the normative knowledge sources represented in document form, via the

Back office

Front office

Regulations/
Business rules

Services

Social
environment

Client

Level III

Level II

Level I

Processes and
Systems

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 8

generation of a relevant formal model to a knowledge-based component (i.e. a piece

of software able to make inferences about a certain regulatory domain). Figure 2

shows us the different steps followed by the (E-)POWER project.

Texts
containing

the regulations

Analysis and
Modelin g

Description in
formal logic

Control Quality Improvement

Figure 2.Figure 2.Figure 2.Figure 2. Aims of the (E-)POWER approach (from the presentation at KDNet Symposium [32]).

Each of the aforementioned steps consists of a specific approach aimed at solving

problems that come with the transformation from one form of knowledge into

another (e.g. translating a sentence in a piece of law text into a formal expression or

model containing the norm addressed in that piece of text).

As may be expected from any design methodology, these steps should be

repeatable and transparent. The formal descriptions created using the (E-)POWER

approach can be used as a basis for creating the operational processes and

supporting (knowledge-based) systems.

The first step (the generation of the formal models from normative sentences) is

also known as “automated norm extraction from legal texts”. During this thesis

research, one of the subproblems of this first step, verb-phrase extraction, will be

tackled.

This thesis is based on the preliminary research done by De Maat 2003 [6]. De

Maat has tried to formalise legal knowledge using natural language processing by

introducing a (limited) set of predefined natural language constructs (in this thesis

they are called JLC’s (Juridical (Natural) Language Constructs)), which can be used to

define a subset of all possible legal sentences. During this thesis research, this

knowledge is used for the generation of the formal models. Because the set of JLC’s

is not yet complete, this approach will also be limited. After this thesis project, the

possibility arises to extend the legal knowledge (set of JLC’s) by further examination

of the complete set of legal sentences. In the end the ePower Workbench, the relevant

project started by (E-)POWER, will have all the knowledge to translate the complete

set of legal sentences into their relevant formal model.

When using the legal knowledge (the different JLC’s) a legal sentence can be

classified to one or more JLC types. This is done by parsing according to a set of

production rules, which consist of normative elements. Considering each of the

production rules we determine which of these matches with the current sentence.

After this classification step, the relevant normative information is extracted from the

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 9

legal sentence. When a single classification is not possible, feedback has to be

provided. In case of multiple classifications (i.e. in the presence of ambiguity), the

user will be asked to make choice and in case no classification is possible then either

the legal sentence is incorrect or it cannot be classified according to the existing set

of production rules. As a result of the latter, some production rules have to be

changed or new ones have to be constructed. The user can make these relevant

changes, so afterwards this legal sentence can be recognized (see Section 16.11).

Ambiguities can be handled in various ways: the user can decide in an ad hoc way,

which classification is to be preferred, or he can decide to refine the existing

production rules to distinguish between the classifications.

The next step is the translation of the normative information into a formal model

(in this case expressed in UML/OCL). Special translation patterns are necessary.

These patterns make use of the parsed information and translate this into the formal

model. The next example illustrates this idea.

IB 2001 art 2.1 member 2.2
A Dutchman who is employed by the kingdom of the Netherlands as a diplomatic or
consular official is deemed to reside in the Netherlands during that period.

<subject> [is]<denotation of time period> [deemed]<fiction>

The above example shows us a legal sentence, which can be classified to the JLC

type Deeming Provision, by application of the relevant production rule. The

constituents in the example production rule are called normative constructs (i.e.

<subject>, [deemed]). The normative elements are those parts of the legal sentence

which match with the normative constructs (i.e. “A Dutchman who is employed by the

kingdom of the Netherlands as a diplomatic or consular official”, “deemed”). The next

step is the generation of the formal model. This is done by application of the

translation pattern for the JLC type Deeming Provision. In the example the

isDeemedTo-part of the attribute isDeemedToResideInTheNetherlandsDuringThatPeriod: Boolean seems

unnecessary because of the existing implication (see the AttributeInvariant).

Nevertheless, in our implementation the verbs are also concatenated with the other

Application of the JLC Deeming ProvisionApplication of the JLC Deeming ProvisionApplication of the JLC Deeming ProvisionApplication of the JLC Deeming Provision

Application of the Application of the Application of the Application of the TranslatiTranslatiTranslatiTranslation Pattern on Pattern on Pattern on Pattern

Dutchman

- isEmployedByTheKingdomOfTheNetherlandsAsADiplomaticOrConsularOfficial: Boolean
- isDeemedToResideInTheNetherlandsDuringThatPeriod: Boolean

<<AttributeI nvariant>>
{

isEmployedByTheKingdomOfTheNetherlandsAsADiplomaticOrConsularOfficial implies
isDeemedToResideInTheNetherlandsDuringThatPeriod

}

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 10

attribute parts. The normative information within each of the attributes are not taking

into account1 so at this moment this seems the best possible solution.

Chapter 2 gives a description of the internal organization of the Tax Office Utrecht

and the ePOWER project. Chapter 3 is used to describe the main problem and the

different hypotheses. In addition, the general purpose of automated norm extraction

from legal texts is described in this chapter. In Chapter 4, a detailed description is

given of automated norm extraction. Chapter 5, 6, 7, 8, and 9 describe which

techniques are used in this thesis project in order to implement a tool for the second

step, verb-phrase extraction, for automated norm extraction from legal texts.

Chapter 10 describes the treatment of some special normative constructs (values,

inheritance and the generation of class-names, fixed noun-phrases). In Chapter 11,

an alternative solution for the main problem is described. Chapter 12 and 13, give a

description of the implemented components added to the ePOWER Workbench for

efficiency reasons.

Also, in these chapters some optimisations (alternative solutions) and adaptations

to the preliminary research, done by other members of the (E-)POWER project, are

discussed. At the end of this thesis some recommendations for future research are

made. In addition, some related work (alternative specifications for this specific

problem) is mentioned.

1 Maybe in the nearby future some better knowledge becomes available of the normative information

within the attributes of the different JLC’s, so a more practical formal model can be constructed.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 11

2 The Dutch Tax and Customs Administration

My thesis research has been done at the Tax Office Utrecht, Centrum voor Proces- en

Productontwikkeling (B/CPP)2 as the final project of my study at the Institute of

Information and Computing Sciences (ICS) at the Utrecht University. In the next

couple of paragraphs a short description will be given about the different parts from

which the Dutch Tax and Customs Administration is composed of.

The Dutch Tax and Customs Administration is part of the Ministry of Finance, which

is subdivided in a couple of individual organisations:

- Directorate –General Dutch Tax and Customs Administration (DGBel)3

- Tax- and Customs Offices

- Facility Centres

- A Detection facility

The first organisation is the staff of the Directorate –General Dutch Tax and Customs

Administration. Together with the Internal Accountancy Directorate (IAB)4, they are

responsible for the financial accountability of the Dutch Tax and Customs

Administration. They also give advice about the different aspects of the internal

management.

All offices, so the executive facilities (like the Tax- and Customs offices), and the

DGBel (Directorate –General Dutch Tax and Customs Administration) are supported

by the different Facility Centres (technically and informally). The Facility Centres take

care of all the services and applications used to support the employees in fulfilling

their daily tasks. One can think of internal/external communication services, network

control and the development of services for supporting and improving the internal

business processes. One of the Facility Centres is the so called B/CPP (Centrum voor

Proces- and Productontwikkeling). This facility centre develops new processes and

products, which are used by the Dutch Tax and Customs Administration to pursue

their targets and strategies (initially for supporting the primary process). One can

think of the translation of the legislation to computational models (which is the

development where I am taking part of during my thesis research), designing and

modelling of the logistical process or the improvement of existing products and

processes.

All employees working at the B/CPP work, dependent on their knowledge area

(normally they are called experts in one field of science), in one of the twelve so

called domains. Every domain is managed by a domain manager. Every domain can

2 The English name for the “Centrum voor Proces- en Productontwikkeling” is “The Centre for Process and

Product Development”.

3 The Dutch name for the “Directorate –General Dutch Tax and Customs Administration” is “Directoraat-

Generaal Belastingdienst” also known as the DGBel.

4 The Dutch name for the “Internal Accountancy Directorate” is “Interne accountantsdienst belastingen” also

known as the IAB.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 12

be seen as some kind of Job Centre5 from where the employees are dispatched to

projects within their area of expertise, and beside this also fulfilling their daily tasks.

One of the domains, from where this thesis research has been started is the

Vakontwikkeling Klantbehandeling6 domain. One of the projects started by this

domain is the POWER project (Program for an Ontology based Working Environment

for Regulations and Legislation)7.

A couple of years ago the POWER project started a project called The ePOWER

Workbench (see Workbench 2.6 2000 [2], and USER DOCUMENTATION ePOWER

Workbench 2.6 [3]. The main target of this project (and of the (E-)POWER project) is

developing a tool to support one of the steps (see Chapter 1) for the generation of

knowledge components (from normative knowledge sources represented in

document form, via a formal model to a knowledge-based component (i.e. a piece of

software able to make inferences about a certain regulatory domain)). The final tool

can be seen as some starting point for the implementation of normative reasoning

applications (applications that have the ability to reason about cases). In the next

sections I will discuss the detailed aims and objectives of the (E-)POWER project (see

Organisatie van de Belastingdienst 2004 [4] for a more detailed specification of the

internal structure of the Dutch Tax and Customs Administration).

2.1 ePOWER: European Program for an Ontology based Working

Environment for Regulations and Legislation

Within this section a description is given about the (E-)POWER project. The

information is collected from the (E-)POWER web page (see E-POWER Homepage [5]).

For more information about the (E-)POWER project visit this homepage.

2.1.12.1.12.1.12.1.1 Project DeProject DeProject DeProject Descriptionscriptionscriptionscription

The E-POWER project is supposed to achieve at least the following results:

• Developing a method, and supporting tools, with which legislation can be

'translated' into formal specifications that can be used by computers.

• Developing a pension server for the (European) citizens with which they will be

able to analyse their own pension regulations.

Since the project will apply the same method to both Belgian and Dutch (pension)

legislation and regulations it will be possible to compare these two types of

legislation and analyse the differences.

One of the objectives is furthermore not only to make this domain more

transparent for the citizens but also for example for insurance companies that offer

pension arrangements. The Netherlands aim to open up their pension market to

foreign companies but these companies will have to meet requirements. The analysis

with the E-POWER method also strives to give insights into these requirements. In

5 The Dutch word for “Job Center” is “Uitzendbureau”.

6 The English word for “Vakontwikkeling Klantbehandeling” is “Development of Client Handling Processes”.

7 The Dutch abbreviation “POWER” stands for “Programma Ondersteuning Wet- en Regelgeving”.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 13

this way it should provide an instrument, which could decrease cross border

obstacles for pension providers.

The opening of the Dutch market will also expand the options for Dutch citizens.

They will be able to choose providers from different countries.

Concluding: E-POWER aims to realise a method8, but also products (e.g. E-services

such as the pension server). The applicability is not confined to just one of pension

legislation and regulations, but directed at all three.

2.1.22.1.22.1.22.1.2 Project ObjectivesProject ObjectivesProject ObjectivesProject Objectives

E-POWER will implement a knowledge management solution by providing a

method that help to improve the quality of legislation while the enforcement of law is

being facilitated.

This method will decrease the time to market new/changed legislation, facilitate

the maintenance of legislation, and it will improve the access to the governmental

body of knowledge by offering new E-services.

Furthermore, the use of this method will result in a more efficient use of scarce

knowledge resources. The E-POWER project will result in transparency of pension

arrangements for the (future) elderly citizens.

The project will offer tools that help with the harmonisation of pension

regulations. By providing easy access (using the Internet) to vital information the

project will contribute to the social inclusion of citizens. E-POWER will consequently

improve the effectiveness and efficiency of public administrations and contribute to

the completeness of the internal market.

8 When in the rest of this chapter the word “method” is used also “method and tools” can be used.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 14

3 Problem Description

In the introduction (Chapter 1) it is mentioned that the global approach of the

(E-)POWER project consists of a couple of subsequent implementation steps (from

normative knowledge sources represented in document form, via a formal model to a

knowledge-based component, see Figure 2). The first step towards the generation of

knowledge components is the generation of formal models from normative texts

(legal sentences). For the generation of these formal models a special tool has to be

developed. In Chapter 2, the relevant tool, which is part of a production environment,

is called The ePOWER Workbench9. The main problem of generating formal models

from legal sentences can be subdivided into two sub problems. The first one is the

recognition and translation of noun-phrases (concepts) from legal texts (noun-

phrase extraction), and the second one is the recognition and translation of verb-

phrases (verb-phrase extraction). When I started my thesis research the norm

extraction tool (part of the ePOWER Workbench) had all the functionality needed for

the noun-phrase extraction step.

My task was to extend the ePOWER Workbench norm extraction tool with all the

functionality necessary for the second step, verb-phrase extraction, of the generation

of formal models. Finally, the norm extraction tool will have all the necessary

functionality needed for the generation of knowledge components. Of course,

afterwards we have to check that we have preserved the intended meaning of the

initial legal sentences. This is done by inspecting (by hand and brain) the outcome of

the translation process.

A starting point for this thesis research is the availability of a subset of all legal

sentences described in the Dutch legislation in a form that they can be used by a

computer to reason about. This means that these legal texts are built upon some

kind of template (Word-documents10 subdivided in structure blocks), so they can be

used as input for the final norm extraction tool (the translation engine of the ePOWER

Workbench).

During my thesis research, I made use of the results of some research done by De

Maat 2003 [6]. De Maat has tried to formalise legal knowledge using natural language

processing by introducing a (limited) set of predefined natural language constructs

(in my thesis research known as JLC’s (Juridical Natural Language Constructs)), which

should define all possible legal sentences (i.e. legal norms). These JLC’s could

consequently be used to extend the norm extraction tool with functionality necessary

for verb-phrase-extraction. In Chapter 5, the usability of those JLC’s will become

clear.

Because, this thesis research is a continuation of the initial research done by De

Maat the extension of the ePOWER Workbench translation engine is limited to the

recognition of a subset of the complete Dutch legislation. Within this research only a

9 Another name for the ePOWER Workbench tool is the Norm Extraction Tool. Both names will appear and

be used to explain something in this thesis, so both have the same meaning.

10 Word-documents (Microsoft Office Word 2003 [7]).

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 15

single law has been partly translated into JLC’s. This is the law on income taxes from

2001 (Wet Inkomsten Belasting 2001, IB2001 [8]). Therefore, the examples used

within my thesis are similar to the examples used by De Maat. Of course, during the

test phase of my implementation some other legal sentences are used.

3.1 Hypothesis

In my thesis research the main problem is to find a way to recognize verb-phrases

and extract their normative content and then translate them into their relevant formal

models (in this case expressed in UML/OCL, see Fowler, M., Scott, K. 2000 [9] &

Warmer, J., Kleppe, A. 1999 [10]). Initially, the concept extraction tool has

functionality to extract and translate noun-phrases as mentioned in previous

sections. My task was to extend the initial ePOWER Workbench with the functionality

needed for the second step towards automated norm extraction (verb-phrase

extraction).

My thesis research is a continuation of the thesis research done by De Maat 2003

[6]. Therefore my approach is built upon the legal knowledge (the knowledge about

how legal sentences can be formalized by using natural language processing)

described in a form of a (limited) set of predefined natural language constructs

(JLC’s). By examining each of these JLC’s (the global structure of the JLC’s) I can

generate special parse rules for extracting the relevant information from the legal

sentence (the recognition step) and afterwards generating a translation pattern for

the generation of the relevant formal model (the translation step).

Thus, for the recognition step I will test the following hypothesis:

When examining the (limited) set of predefined natural language constructs

(JLC’s) defined by Emiel de Maat, special parse rules can be generated to

extract the necessary legal knowledge from the legal sentences.

And for the translation step I will test the following hypothesis:

After the application of the parse rules, special translation patterns can be

applied to generate the relevant formal models (expressed in UML/OCL).

3.2 The General Purpose

The formal models used in the (E-)POWER approach are expressed in UML/OCL

(Unified Modelling Language/Object Constraint Language, see Fowler, M., Scott, K.

2000 [9] & Warmer, J., Kleppe, A. 1999 [10]). Van Engers and Glassée 2001 [11]

describe the way legal source texts are translated into UML/OCL models. These

UML/OCL representations of the legal texts have shown to be quite suitable in

different projects. Creating these formal models however is a time consuming

activity, and has to be done by high-skilled staff (according to the (E-)POWER project

members experience it takes an experienced knowledge analyst approximately 1.5

days per A4 law text). As a regular approach to be used in large organisations the

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 16

productivity of the modelling process has to be improved since the global aims of the

(E-)POWER approach are three (see Section 2.1):

1. Reduction of implementation time (time to market)

2. Improvement of the quality of the normative knowledge (or legal quality)

3. Reduction of total cost of ownership (of the normative systems that result

from the implementation processes).

To improve the productivity of knowledge analysts in their job, in the (E-)POWER

program a research project on using natural language processing (NLP) was started to

analyse normative texts expressed in natural language and for the generation of

(parts of) the formal models that contain the normative knowledge in a form that is

suited for building knowledge-based components (programs that have the ability to

reason about cases). So, the logic that implicitly lies beneath the regulations becomes

explicit.

The fact that legislation and other normative texts are written in natural language

causes some difficulties. The most important problem is that natural language is

ambiguous, which entails that an expression in natural language can have multiple

meanings. This problem can arise both at word level, for example ‘bank’, and at

phrase or sentence level, for example ‘it is not allowed to shoot a man with a gun’11.

Another problem that arises is that natural language contains vague and unclear

notions like ‘almost’, ‘for the most part’ and typical juridical open evaluative terms

like ‘justified’ or ‘good practice’. When using legal texts (acts, norms etcetera) there

are also some anomalies.

When we look at the following characteristics of legal texts this statement

becomes clear:

- Legal texts are the explicit results of a group-dynamic process.

- They contain norms that express what is obligated, permitted and allowed.

- These norms reflect underlying preferences and value systems

- Legal texts can be perceived as specifications for normative systems.

- Legal texts are under specified.

- They suffer from anomalies: inconsistencies, circularities, open evaluative

terms and vagueness.

So, before normative reasoning (e.g. in law enforcement) can be automated,

legislation has to be translated into a language that does not have these

aforementioned problems and can be read by a computer, i.e. a formal specification

language, in our case expressed in UML/OCL. Governments can furthermore benefit

from the fact that ambiguous constructs in the law can be detected during the

translation into such a specification language. This is especially the case when the

11 This sentence has two possible interpretations. In the first place, one can interpret that it is not allowed

to use a gun to shoot a man. The other can interpret that it is not allowed to shoot a man who has a gun.

The difference in interpretation lies in the attachment of the preposition (also known as the PP-Attachment

problem).

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 17

translation is done at an early stage in the chain of processes needed to implement

new or adapted regulations. Than it is often still possible to change ambiguous

constructs, vague terms etcetera, before the law becomes enacted (since repairing

unintended meaning in a later stage is much more expensive). When changes are not

possible or desirable, one could still provide the law enforcement organizations with

non-ambiguous interpretations (which of course should be documented as additional

knowledge sources). In the ideal situation, normative texts should be

non-ambiguous.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 18

4 Automated Norm Extraction

In this chapter, the complete process of automated norm extraction is described.

Figure 3 visualizes this complete process. It shows us the general approach towards

automated norm extraction. The arrows in the figure are used to indicate the

subsequent steps for the generation of the knowledge components. The implemented

tool accepts Legal Sources12 as input for the translation step. The translation step

results in two possible models: Process models and Conceptual models. The Process

models can be transformed into Task models (for a detailed description of how to use

UML/OCL for expressing process and task knowledge, see Egberts 2004 [12]). From

both the Conceptual models and Task models, the final Knowledge components can

be generated. The dashed arrows are cyclic arrows (the model or the component

leads to a new legal source, which can be translated again).

FigFigFigFigure 3ure 3ure 3ure 3.... The general approach towards Automated Norm Extraction (from the presentation at

KDNet Symposium [32]).

For the complete automated norm extraction two different implementation steps are

used, namely noun-phrase extraction (the extraction of concepts) and verb-phrase

extraction (the extraction of meaningful coherent structures in legal sentence). Both

describe functionality, which can be used within the translation step to generate the

relevant (formal) models. Later on, we can use these specific models to generate

knowledge components, which can then be used in knowledge applications.

4.1 Noun-phrase Extraction

The first implementation step has resulted in an automated concept extractor,

which allows a computer to identify the different concepts (noun-phrases) that exist

12 The input texts are written in Microsoft Word based on a predefined template.

Legal Sources

Translation

Conceptual Models Task Models

Generate

Knowledge Components

Process Models

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 19

in a given legal sentence (see Van Gog & Van Engers 2001 [13]). This step is largely

based among others upon the Object Modelling Technique (OMT) (see Rumbaugh

1999 [14], Frederiks 1997 [15]). From a computational linguistic point of view this is

a simple method to implement. The general disadvantage of this method, however, is

that generally too many object types are introduced. This is not a problem when

using an automated concept extraction tool. Rumbaugh, not benefiting from the

availability of an automated extraction device, gives a few guidelines for reducing the

number of object elements (types, attributes, operations and roles/relations). These

guidelines aim at reducing redundant, irrelevant and vague object elements as well as

implementation constructs. Generally speaking, world knowledge is needed to

determine whether these criteria apply. Considering world knowledge however is not

desirable, because the possibility exists that extra information is introduced into the

model that we want to derive from the original legal source texts and of course we

don’t want this model to contain any knowledge that is not part of that normative

knowledge source. If the use of world knowledge can’t be avoided, that knowledge

should at least be explicated (and documented as a separate knowledge source).

One can easily understand the benefits of being able to extract the concepts that

are used in a specific piece of law text. For various reasons it is important to have

insight in the concepts that are used for legal reasoning. Legislation drafters could

use the insight in existing concepts to decide on the reuse of those concepts.

Sometimes introduction of new concepts is needed or specialization is needed for

being able to express the normative statements (e.g. expressed as an article in the

law), but if an already existing concept can be reused this will reduce the

implementation effort. Furthermore, reduction of administrative costs for citizens and

business are one of the interests for the legislator. Insight in the concepts used in a

piece of law can therefore be used to calculate administrative costs.

From a knowledge engineering perspective, the automated concept extractor has

further benefits. Not only it reduces the amount of work that knowledge analysts

normally have to do, but since automated generation of models also increases inter-

analyst independency its application results in more uniform models as well. More

uniform models are easier to understand, easier to process when creating

applications based on these models and easier to maintain.

4.2 Verb-phrase Extraction

The second step towards automated norm extraction consists of modelling

elementary sentences (later named as JLC’s) in the original normative knowledge

source, optionally using the results of the first step. This step is partly comparable

with the NIAM approach by Nijssen 1989 [16]. The disadvantage of NIAM is that the

text must be transformed into elementary sentences, which is quite labour intensive.

The modelling of elementary sentences can therefore just be used as an intermediate

step and it must always be possible to trace the final model back to the source text.

In my approach, I try to identify and model meaningful coherent structures in the

text in a pragmatic way. The tool, which has to be developed, should not be limited

to the modelling of nouns, but on the other hand it does not have to model complete

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 20

(elementary) sentences. Therefore, I concentrate on syntactic constructs (invariant

linguistic structures at the syntactical level that characterize specific normative

expressions in natural language) and translation patterns (describing how natural

language constructs should be translated into constructs in the final formal UML/OCL

model). I use standardized transformations to translate the relevant legal constructs

found in the legal sentence into a formal expression or model, thus enhancing

uniformity i.e. inter coder independency. The approach is therefore a ‘middle-out’

approach.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 21

5 The Categorization of Legal Sentences

A previous study (see De Maat 2003 [6]) leads us to the conclusion that the

sentences that occur in legal texts can be grouped in a few categories (see Figure 4):

- Nouns

- Definitions and Type extensions

- Scope Definitions

- Deeming provisions

- Application provisions

- Value assignments and changes

- Conditions

- Norms

For each category (with the exception of norms which are expressed in one or

sometimes more than one natural language sentences), there is a limited set of

possible juridical natural language constructs (so-called JLC’s) used in the sentence.

I refer to Appendix A, for the complete set of global structures belonging to each of

the predefined JLC’s.

A sentence can be classified by studying the constructs used. A description of this

classification is described by De Maat 2003 [6]13.

Globally normative sentences as they occur in legal texts, i.e. the law, consist of a

main sentence (seven possible types indicated in Figure 4 in italics) and subordinate

clauses (which add constraints). In addition, more extensions exist.

The fat boxes in Figure 4 denote elements that are always present as part of the

higher-level element, while the thin boxes are optional extensions. The simplest

form of a sentence consists of just a main sentence, which includes one or more

noun phrases that are only composed of their main term (the noun), its article and

any adjectives that are not considered part of an implicit condition. Although the

treatment of adjectives has not been described by De Maat we state that adjectives

can be treated as implicit conditions but also as part of a term.

An example is the noun phrase “taxable income”, which can be interpreted as a

single term, or as a term with a condition (the term “income” with a Boolean attribute

“taxable” and a condition “taxable = true” (in our tool the human expert can decide

what translation suites him best, but both interpretations are correct from a

modelling point of view). Sentences that are more complex are created by adding

other elements. For example, a more complex sentence can be created by adding a

condition (optional element, thin box). This condition will at least consist of an actual

condition (necessary element of condition, fat box).

13 The global structure of normative sentences (see Figure 4) is a subset of all possible existing structures

within a legal sentence. Further research is necessary to specify new structures (JLC’s) but at this moment

this can be seen as one further step towards formalizing legal sentences.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 22

reference

main term implicit condition

noun phrase

scope definition

sentence

main sentence
definition/

type extension/
value assignment/

value change/
deeming provision/

application provision
norm

actual condition application of another source

condition

Figure 4.Figure 4.Figure 4.Figure 4. The global structure of normative sentences as they occur in legal source texts

(master’s thesis De Maat 2003 [6]).The user can compose a legal sentence by looking at the

global structure. An element described in a fat box is always present as part of a higher-level

element and the thin boxes are optional extensions.

By using the set of JLC’s any legal sentence14 can be recognized and classified by

parsing the subsequent language constructs specified in each of the JLC’s (see Figure

5).

IB 2001 art 2.1 member 2.2
A Dutchman who is employed by the kingdom of the Netherlands as a diplomatic or
consular official is deemed to reside in the Netherlands during that period.

<subject> [is]<denotation of time period> [deemed]<fiction>

FigFigFigFigureureureure 5555. Example of the subsequent structures specified in the Deeming Provision JLC

After this, a translation component, which consists of a set of translation patterns,

can be used to translate the parsed information to create the relevant formal

specification language e.g. expressed in UML/OCL.

5.1 Parsing Normative Texts

Since all categories of legal sentences (see the beginning of this chapter) except

norms can be identified by their specific language constructs, a computer can test for

their presence. Consequently, automated classification (parsing) is possible.

14 Of course, I mean the legal sentences chosen and used within the preliminary research done by De Maat

2003 [6] (law on income taxes from 2001, IB2001 [8]).

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 23

Initially, I thought of making use of the possibility to specify the juridical

information for each of the different words in a lexicon table. The information is

stored in a database (easily extendable, administrable). By specifying an algorithm

(for example pattern matching) which examines the legal sentence for the occurrence

of these different juridical structures, we can classify the legal sentence into a well

known format. However, for the generation of the formal models we need other

language constructs to specify the formal attributes, relations and associations. In

addition, when we look at the structure of the JLC Definition 1 (<subject> < is>

<definition>) the main term is of the structure is not sufficient to classify to one

specific JLC. It also can generalize to other types. See Section 11.1 for a more detailed

description about this dynamic approach.

So, in order to be able to parse sentences in normative texts, the natural language

constructs or ‘patterns’ that can occur have to be described formally. I use a

unification grammar to specify the JLC’s. Shieber 1986 [17] gives a comprehensive

description of a unification grammar. Unification grammars provide us with a both

elegant and efficient description of the language constructs. Grammar rules are used

to describe the general language constructs at a syntactic level, while the unification

rules are used to enforce agreement between the constituents.

An example is that given the grammar rule S -> PRONOUN VERB, both the

sentences “you are” and “you is” are correct according to this rule, while it is clearly

true that the latter is not correct. By adding the unification constraints

PRONOUN.person = VERB.person and PRONOUN.number = VERB.number to the rule

the latter is excluded. In this example, six rules would be needed without unification,

namely one rule for each combination of person and number.

Generally parsing of natural language is problematic because often natural

languages are highly ambiguous and the meaning of concepts can only be

understood looking at their context (see Van Engers & Glassée 2001 [11]). A legal

source should be syntactically unambiguous, so ambiguity should not be a major

problem in our case. Although we cannot guaranty that the legal text is hundred

percent unambiguous, we can assume that syntactical ambiguity is unintended.

Therefore, the parsing process is supervised, so when a syntactical ambiguity is

encountered, all the different alternatives (i.e. the parse trees) will be presented to

the user who subsequently can select the most appropriate one. When such

ambiguous translations are possible, feedback to the legislation drafter or legal

experts is desired, because ambiguity is something we definitely want to avoid.

Finally, it is not necessary to recognize the entire sentence; it is sufficient to parse

the top levels. This is because (in the (E-)POWER project) parts of the sentences are

kept in one piece. For example, a deeming statement has the following pattern:

“noun-phrase [wordt] time-period [geacht] fiction”. When building a model of this

text, the entire fiction and time-period language constructs (the largest part of the

sentence) are often kept in one piece (in almost every case these pieces are translated

to OCL attributes by simply concatenating each word). For the generation of class-

attributes see Chapter 9.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 24

6 The Parts of the Norm Extraction tool

The norm extraction tool (as it is present in the beginning of my thesis research)

consists of a parser, a lexicon (containing Dutch words and their optional juridical

terms), a grammar (containing normal Dutch and specific juridical language

patterns), a ‘lexicon supplementor’ which tries to identify the grammatical category

of an unknown word (e.g. a set of digits will be identified as a number, furthermore a

combination of nouns that individually are part of the lexicon are considered to be a

noun as a whole) and a model generator (also known as the set of translation

patterns) which translates the parsed source text into formal model components. A

modelling interface (the Translate wizard, see Figure 6) is added to assist the

knowledge engineer to adapt the generated model to suit his needs.

The norm extraction tool is used to generate the domain ontology (or conceptual

model) consisting of types, attributes and relationships, expressed in UML.

Van Gog & Van Engers 2001 [13] describe the concept extraction approach. Since

in the end the ambition of this research is to support the formalization of the

normative content of legal text, we have to go a step further than just concept

extraction.

First, let us take a closer look to each of the different language dependent parts of

the ePOWER Workbench, which are stored in the translate-nl15 database.

15 Unfortunately, the existing norm extraction tool (the Workbench) only consists of the Dutch language

dependent parts. Because these parts are stored in separate database tables one can imagine that adding

more language support is trivial.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 25

Figure 6Figure 6Figure 6Figure 6.... The global model of the ePOWER Workbench. The ePOWER Workbench is composed of

different functionalities that are connected to a central repository (Van Engers, T.M., Sayah, K.,

Van Gog, R., De Maat, E. 2004 [33]).The relevant elements for this thesis project are dotted.

The other parts are just to visualize the complete Workbench Project, so no further description

is given.

6.1 Lexicon

The lexicon is the most standard part of the ePOWER Workbench, because this part

is filled with information, which is derived from different language institutes.

Globally, the lexicon is a description of all possible words and word shapes with their

lexical meaning.

Id Sem cat head.
subcat Root

head.
agr.
gen

head.
agr.
case

head.
mood

head.
Tense

head.
agr.
Per

head.
agr.
num

6 deemed V MAIN to
deem

 INDICA
TIVE

PAST 2 P

Table 1Table 1Table 1Table 1.... A record from the lexicon database table.

Table 1 presents an example of a record corresponding to the word ‘deemed’ as it

is stored in the lexicon table. The table consists of a couple of columns, each

representing some grammatical meaning, also called features.

parsings

Legal text
(Word)

Parser

Translate
Engine

Unification
Grammar

Lexicon Lexicon
Supplementor

Translate
Wizard

Workbench
Repository

Component
Generator

Knowledge-
based

Component

Proces-
Model

Translate

Lexicon
Reader

Workbench
Explorer

Word
Import

unknown
word

tokens tokens
sentence

Import/Export Metalex
Export

 Case tool Legal text
(Metalex)

Repository
SQL-server

partial
model article

Patterns
USER

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 26

Figure 7 presents a global tree structure of the features, which are stored in the

lexicon table. These features can be used during the parsing process for the selection

and extraction of the correct grammatical language constructs from the legal text.

Later on, within the description of the Unification Grammar (see Section 6.2) it will

become clear how this stored feature-set can be extended by describing new features

(Grammar rules) within each production rule.

FigureFigureFigureFigure 7 7 7 7. . . . Global Tree structure of the stored features.

We consider in sequence the columns of Table 1, each of which represents a

feature. Id (the foreign key) is necessary for making the record reachable from other

sources within the ePOWER Workbench. The sem feature is the exact shape of the

word as it occurs in the legal sentence. The cat feature states the grammatical

category the word belongs to. The word used in the example has value V, which

means that this is a verb. Other values are N, for nouns, PUNCT (lithographic

punctuations like : ; ‘ ”] [() { } . ,), CUR is a value to indicate a currency symbol like

€, PREP, for the indication of language prepositions and some more.

The head.subcat feature is a subdivision of the cat feature. For example the subcat

feature value for the cat feature V is MAIN indicates that this verb is a main verb.

Other values for the subcat-feature of a verb are AUX (auxiliary) and COP (copula).

Values for the subcat-feature for the cat-feature NUM are ORD (ordinal) and CARD

(cardinal). Other cat feature values and subcat feature values also exist, but at this

moment I think the global idea is clear.

The example shows that to deem is indicated as the root of the main verb. This

root feature information is used in the final translator. The next couple of features

are sub features of the head feature. This feature is subdivided into four general sub

features namely subcat, agr, mood and tense. The first was described earlier. The agr

feature (for a description of how to use the grammatical agreement within Natural

Language Parsing see The Natural Language Processing Dictionary 2003 [18]) is also

subdivided into four sub-sub-features, namely gen (gender), case (e.g. object,

subject), per (person), and num (number, e.g. singular and plural). These features

give value to each of the grammatical agreements of the specific word in the legal

sentence. The mood and the tense features of the head feature give a grammatical

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 27

meaning to verbs. E.g. values for the mood feature are INDICATIVE, INFINITIVE and

PARTICIPLE. For the tense feature some values are PRESENT, PAST and IMPERFECT. All

these head features are language dependent, so other values of the sub and sub-

sub-features are possible. The features feature offers the possibility to extend the

generic features with additional ones when necessary.

With all these grammatical information stored in one database table all necessary

information becomes easily administrable and accessible.

6.2 Unification Grammar

In my approach (verb-phrase extraction), I also make use of the unification

grammar16 for parsing. This Unification Grammar is stored within the translate-nl

database as a separate database table (ProductionRules table). Each record of this

database is filled with information necessary for each of the specific Production rules

(specified in XML, XML Developer Centre 2004 [19]). Each of these production rules

declares some kind of grammatical part of the language used. Because, one of the

building blocks of a Unification Grammar is Production rules we call this approach a

rule based approach (see Rule Based Systems 1994 [20]).

In Figure 8, the general form of a Production rule is depicted.

 LHS LHS LHS LHS RHSRHSRHSRHS

 NLC ---->>>> (NLC)+ Grammar RuleGrammar RuleGrammar RuleGrammar Rule

 (<Feature-Name> = <Feature-Value>)+ Unification rules (Features)Unification rules (Features)Unification rules (Features)Unification rules (Features)

Figure 8Figure 8Figure 8Figure 8.... General form of a Production rule.

In general, a production rule consists of a Grammar rule (in EBNF) and one or more

Unification rules. A grammar rule consists of a left-hand-side (LHS) and a right-

hand-side (RHS)17. The RHS consist of one or more optional Natural Language

Constructs (NLC’s) and the LHS in general is the name of the production rule. Because

the LHS is also a NLC, recursive grammars are possible. The Unification rules

belonging to a Grammar rule each consist of a Feature-Name/Feature-Value pair.

16 The Unification Grammar used within the Workbench consists of a set of Production rules. These

production rules consist of one grammar rule, each consisting of one or more unification rules.

17 When in this thesis the words “LHS”and “RHS” are used also the words “left-hand-side” and “right-hand-

side” can be used.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 28

An example of a production rule which can be used to parse determiners like your,

his, my, her, our and so on is defined in Figure 9 (see De Determinator 2002 [21] for

a detailed specification of grammatical determiners).

DETE -> PN

<DETE inResult> = false
<PN head subcat> = PERSONAL
<PN head agr case> = C2
<DETE sem> = <PN sem>
 Figure 9Figure 9Figure 9Figure 9.... The Grammar rule and the relevant Unification rules for the extraction of

grammatical determiners.

Figure 9 shows one of the production rules for the extraction of determiners. Also

the Unification rules are specified. The first unification rule states that the result of

this rule is not visible in the final result (i.e. can not act as a root of a parse tree). The

second and the third rule are used to select only those PN’s (pronouns) where the

head.subcat feature is equal to PERSONAL and the head.agr.case feature is equal to

C2 (genitive). All the feature information can be read from the lexicon, where all the

(grammatical) features are stored (see Section 6.1). The last Unification rule states

that the sem-feature of the DETE is equal to the sem-feature of the PN. With all these

unification rules, some grammatical properties of the different NLC’s can be stated

and used in the parsing process.

All production rules are described in XML and stored in a separate database table,

which makes the grammar easily to maintain and to access. When new grammatical

functionality is necessary for the extraction of other language constructs one can

specify new production rules and add them to the database.

The production rule depicted in Figure 9 is implemented during the first step of

automated norm extraction (Noun-Phrase Extraction, also knows as concept

extraction), because this grammatical element is always part of a noun-phrase. For

the generation of the production rules, in the second step (Verb-Phrase Extraction),

other choices have been made for storing the necessary parse information (in this

case the information for all the different categorizations specified in Chapter 5). I

have chosen to store all the necessary information of the different JLC’s

(categorizations) statically within each of the production rules18 (see Figure 10),

although I first considered using another possible solution method for this problem

(see Chapter 11.1).

18 This seems the most efficient way to implement the Production rules for each of the different JLC’s,

because this approach reuses all functionality, which was already present in the Workbench project when I

started my thesis research.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 29

S -> NP_1 V_2 (XLIST_3) V_4 XLIST_5

<S inResult> = true
<S sem type> = s_dp
<S s_order> = sv
<V_2 root> = worden
<V_2 head subcat> = AUX
<V_4 root> = achten
<V_4 head subcat> = MAIN
<S head agr> = <NP_1 head agr>
<S head agr> = <V_2 head agr>
<S sem subject> = <NP_1 sem>
<S sem dp_part1> = <V_2 sem>
<S sem time_period> = <XLIST_3 sem>
<S sem dp_part2> = <V_4 sem>
<S sem fiction> = <XLIST_5 sem>
FigureFigureFigureFigure 10 10 10 10.... Static storage and usage of the JLC Deeming Provision (s_order = sv)

Figure 10 shows that a special feature (sem.type = s_dp) is created to recognize

this production rule as being a JLC Deeming Provision during the parsing process.

When this rule is applicable to the legal sentence (input text), during the parsing

process, this legal sentence is recognized as being of type “Deeming Provision”.

Later, during the translation part, this JLC information can be used to generate a

translation pattern for this specific case. In the next section the complete translation

process is specified.

 In Chapter 12, some optimisations on the generation and management of the

production rules will be discussed.

For now, let us look at the translation of the parsed information (by application of

the Production rules) to a computational model (expressed in UML/OCL).

6.3 Translation Patterns

The last important part of the ePOWER Workbench is the database table with all

the so called translation patterns. These patterns can be used to convert the result of

the parsing process into a computational model. In case of the (E-)POWER approach

these models are built upon the UML/OCL standards (see Fowler, M., Scott, K. 2000

[9] & Warmer, J., Kleppe, A. 1999 [10]). In the initial Workbench project, Visual Basic

scripts are used to specify the conversion functionality (see Visual Basic Language

and Run-Time Reference 2004 [22]).

An example of a pattern can be found in Table 2. This pattern uses information,

which is saved during the application of the grammar rule NP => CUR NUM (see

Figure 11).

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 30

Type = "np_money"

dim Result as New System.Collections.ArrayList
dim Temp as Object

Temp = Feature.Model.GetType(Feature.Item("cur").To String +
Feature.Item("root").ToString)

Result.Add(Temp)

return Result

Table 2Table 2Table 2Table 2.... The translation pattern for the type np_money.

NP => CUR NUM

<NP inResult> = true
<NP sem type> = np_money
<NUM subcat> = CARDINAL
<NP sem main> = <NUM sem>
<NP sem root> = <NUM root>
<NP sem cur> = <CUR sem>

Figure 1Figure 1Figure 1Figure 11111.... The Production rule used to parse and store the information used in the np_money

translation pattern to create the relevant computational model.

The translation pattern in table 2 shows that the variables cur and root are used to

generate the relevant computational model. This is because these variables contain

information, which has been stored during the application of the relevant Production

rule. In Figure 11, the relevant Production rule is stated. In the RHS of this rule both

the NLC’s (CUR and NUM) are parsed and connected to the relevant sem-features in

the LHS19 (see Figure 11, the last two Unification rules). In general for each of the

specified sem.type-features, declared in a Production rule in the LHS, a translation

pattern (type = sem.type) must be made. By this fact, there is a possibility that more

than one JLC can be recognized within the input text (legal sentence). Suppose we

want to translate the following legal sentence:

IB2002 Article 2.2 Member 3
If a Dutchman is deemed to live in the Netherlands based on the second member, the
partner and the children who are younger that 27 years old and nourished for the greater
part by him, are also deemed to live in the Netherlands.

We first have to determine which categories can be found within this sentence. By a

closer look, two main categories, namely an Explicit Condition and a Deeming

Provision, can be found.

19 In general the RHS NLC’s, which has to be used in the final translation pattern or in a higher fragment of

the derivation tree, are interlinked by the relevant LHS sem-features by EquationId’s.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 31

A global structure of the legal sentence shows us the existence of both JLC’s:

For this legal sentence to be translated special translation patterns have to be

made to handle the existence of multiple JLC’s. There is a translation pattern made

for the Deeming Provision (as a stand-alone JLC, see Appendix F “type = s_dp”) and

one for the Explicit Condition (as a stand-alone JLC, see Appendix F “type = ec”) and

some additional control statements within the translation patterns to handle the

combination of both JLC’s. In this case, special additional statements20 are added

within the translation pattern of the Deeming Provision to handle the existence of an

Explicit Condition (see table 3).

Table 3 shows us which statements are necessary to handle the existence of an

Explicit Condition in combination with a Deeming Provision. First we have to check if

there is an Explicit Condition found during the parsing process (see table 3, line

number 19). If there is an Explicit Condition then we collect all the attributes within

this Explicit Condition (see table 3, line number 20/27) and add the condition

statement to the condition part of the Deeming Provision (see table 3, rule 28/33).

20 In this thesis research I have extended the ePOWER Workbench Translator (the Production Rule set) with

functionality to handle a subset of all applicable JLC’s and JLC combinations. The necessary functionality is

added by examining all the legal sentences (from a self-made testbench, categorized by JLC-name) and

their relevant JLC’s. So the ePOWER Workbench contains only functionality to recognize and translate a

subset of all possible JLC combinations. Therefore, this thesis can be seen as a first step for tackling the

main problem of automated norm extraction from legal texts.

Entire sentence
If a Dutchman is deemed to live in the Netherlands based on the second member, the partner and the children
who are younger than 27 years old and nourished for the greater part by him, are also deemed to live in the
Netherlands.

Main sentence (Deeming Provision)
the partner and the children who are younger than 27
years old and nourished for the greater part by him,
are also deemed to live in the Netherlands

Explicit Condition
If a Dutchman is deemed to live in the Netherlands
based on the second member

Noun phrase
a Dutchman based on
the second member

Main term
a Dutchman

Noun phrase
the partner and the children who are younger than 27
years old and nourished for the greater part by him

Main Term
partner

Noun phrase
the children who are
younger than 27 years old
and nourished for the
greater part by him

Main Term
children

Deeming Provision
a Dutchman is deemed
to live in the
Netherlands

Main term
a Dutchman

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 32

type = "s_dp"

1 dim Result as New System.Collections.ArrayList
2 dim EC as New System.Collections.ArrayList
3 dim Counter as Object
4 dim AttrCounter as Object
5 dim EcCounter as Object
6 dim Attr as Object
7 dim strCondition as String
8 dim strTemp as String

9 Result = Feature.Item("subject").Translate(Nothing)
10 for each Counter in Result
11 strCondition = ""
12 for each AttrCounter in Counter.myAttributes
13 if strCondition = "" then
14 strCondition = AttrCounter.Name
15 else
16 strCondition = strCondition + " and " + AttrCounter.Name
17 end if
18 next

19 if Feature.item("ec.type").ToString <> "" then
20 EC = Feature.Item("ec").Translate(Nothing)
21 for each EcCounter in EC
22 for each AttrCounter in EcCounter.myAttribut es
23 if Counter.Name = EcCounter.Name then
24 strTemp = AttrCounter.Name
25 else
26 strTemp = EcCounter.Name + "." + AttrCounter.Name
27 end if
28 if strCondition = "" then
29 strCondition = strTemp
30 else
31 strCondition = strCondition + " and " + strTemp
32 end if
33 next
34 next
35 end if

36 if strCondition <> "" then
37 strCondition = strCondition + " implies "
38 end if

39 Attr = Counter.GetAttribute("Boolean", Feature.Item("dp_part1").ToString +
Feature.Item("time_period").Translate(Nothing) + Feature.Item("dp_part2").ToString +
Feature.Item("fiction").Translate(Nothing))

40 Counter.GetConstraint("attributeInvariant", strCondition + Attr.Name)
41 next

42 Return Result

TableTableTableTable 3 3 3 3.... The Translation Pattern for the JLC Deeming Provision; special statements to handle

the existence of an Explicit Condition are marked bold.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 33

When this translation pattern, together with the translation pattern of the Explicit

Condition, is added, the following computational model will be generated:

FigureFigureFigureFigure 12 12 12 12.... The computational model of the law specified in IB2002 Article 2.2 Member 3

So, when new functionality is added to the ePOWER Workbench (in other words

adding new Production rules) new patterns have to be added or old ones have to be

adjusted.

Dutchman

- isDeemedToLiveInTheNetherlands: Boolean

Partner

- areAlsoDeemedToLiveInTheNetherlands : Boolean

<<AttributeI nvariant>>
{

Dutchman.isDeemedToLiveInTheNetherlands ==> areAlsoDeemedToLiveInTheNetherlands
}

Children

- areYoungerThan27YearsOldAndNourishedForTheGreaterPartByHim: Boolean
- areAlsoDeemedToLiveInTheNetherlands : Boolean

<<pack ageReference>>
The second member

<<AttributeI nvariant>>
{

areYoungerThan27YearsOldAndNourishedForTheGreaterPartByHim AND
Dutchman.isDeemedToLiveInTheNetherlands ==> areAlsoDeemedToLiveInTheNetherlands

}

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 34

7 The Generation of Production rules

In this chapter, a description is given of how the different production rules can be

generated by examining the different JLC’s.

Specific for my approach is the treatment of the different JLC’s. Figure 13 shows

us the global structure of a subset of the rules that are used for parsing the JLC’s.

This model is not complete but can be extended if more knowledge about how to

recognize and translate JCL’s becomes available.

Sentence
(Sentence) S -> S (PUNCT) EC
 head.s_order = SV
(Sentence) S -> EC PUNCT (ADV) S
 head.s_order = VS
Optional JLC’s
(Explicit Condition) EC -> [Indien] NP XLIST

Main Sentence JLC’s
(Deeming Provision) S -> NP V1 XLIST V2 XLIST
 sem.s_order = SV (V1)root = worden;(V2)root = achten
 sem.type = dp
(Deeming Provision) S -> V1 NP (XLIST) V2 XLIST
 sem.s_order = VS (V1)root = worden;(V2)root = achten
 sem.type = dp
(Definition) S -> NP V XLIST
 sem.s_order = VS (V)root = zijn
 sem.type = def
(Definition) S -> V NP XLIST
 sem.s_order = VS (V)root = zijn
 sem.type = def

FigFigFigFigure 13.ure 13.ure 13.ure 13. The global structure of a subset of the rules that are used for parsing the JLC’s

The above structure is divided into three parts corresponding to the general

structure of a legal sentence (see Figure 4). In this figure, a normative Sentence is

described consisting Optional JLC’s and Main Sentence JLC’s. In this global structure,

all optional JLC’s have a corresponding grammar rule and are part of a sentence.

Furthermore, a division is made in the order of the subject and verb constructs.

There are (legal) sentences with the subject followed by some kind of verb (normal

sentences) and other (legal) sentences with some verb followed by the subject

(subordinate clause). Because every sentence can contain a subordinate clause, for

every Main Sentence JLC two or more Grammar rules must be made.

The parsing engine can handle recursive rules. This is necessary because legal

sentences can contain more than one JLC. A JLC can consist of another JLC and so on

and so on.

In general, when a new JLC has been specified (by further research) one can look at

the general functionality of the JLC (optional or not optional) and add the relevant

information to the model. When the new JLC is optional, we have to add two rules

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 35

(SV/VS-form) to the Sentence part of the foregoing structure and one rule to the

Optional part. When it is not optional, we have to add two rules (SV/VS-form) to the

Main Sentence JLC’s part.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 36

8 An example; parsing a JLC

In this chapter, we show how we can apply the different techniques described in

Chapters 5, 6 and 7 to obtain, for the example JLC Definition 1, the production rule (a

grammar rule and unification rules) and the translation pattern. The former is used to

recognize sentences of the given category, the latter to generate the corresponding

formal model. Note that what we describe here for this specific JLC, has been done

for each of the known JLC’s listed in Appendix A. The outcome of this process can be

found in Appendix B and E.

An example of a JLC is the Definition 1. The basic format of the JLC Definition 1 is

(see Appendix A):
<subject> [are | is] <definition> (1)

When we want to translate the following legal text

IB 2001 Art 2.1 section 2
Dutch income is income as meant in chapter 7.

a couple of subsequent actions have to be made. First, we have to determine a

production rule by examining the global structure of the JLC Definition 1. After we

have recognized a production rule, we can determine a translation pattern for the

generation of the relevant formal model. First, let us take a closer look at the

production rule of the JLC Definition 1 (see Figure 14).

S -> NP_1 V_2 NP_3

 1. <S inResult> = true
 2. <V_2 root> = be
 3. <V_2 head subcat> = MAIN
 4. <NP_3 sem isValue> = false
 5. <S head agr> = <NP_1 head agr>
 6. <S head agr> = <V_2 head agr>
 7. <S head> = <V_2 head>
 8. <S sem subject> = <NP_1 sem>
 9. <S sem direct_object> = <NP_3 sem>
10. <S sem type> = s_def

FigureFigureFigureFigure 14. 14. 14. 14. The Production rule for the JLC Definition 1

The above figure presents us the production rule for the JLC Definition 1. This

production rule is made by examining the global structure of the JLC Definition 1 (see

(1)). There are three NLC’s made, namely NP_1 (for the extraction of the subject), V_2

(for the recognition of the main term “is”) and NP_3 (for the recognition of the

description of the definition part of the legal sentence). In addition, a couple of

unification rules are made to be able to enforce some restrictions during recognition

part of the parsing process. I will discuss the unification rules one by one so the

global meaning of the complete production rule will become clear.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 37

The first unification rule can be used to depict the outcome of this rule in the

final derivation tree. When the value for the variable inResult is set to false, the

outcome of the parsing process is not depicted in the final parse tree. Mostly those

rules (with inResult = false) are part of a higher-level rule for the generation of sub

elements of the higher level construct. In our case, we do not need the result of this

rule to be visualized in the final answer. In general, when a legal sentence is

classified as being of JLC type Definition 1, we have to generate two classes (one for

the first NP and one for the second NP (the right-hand-side of the global structure of

the JLC Definition 1)) whereby the first class is a sub class of the second class (see

Figure 15).

FigureFigureFigureFigure 15. 15. 15. 15. Income* is a sub class of the class Income (Inheritance).

When we look at the above figure we note that in our case we have to make a class

“Income*” and a class “Income”. See Section 10.2 for a detailed description of how to

handle inheritance.

Both NP’s are used in a higher level of the parse tree for the recognition of other

formal statements within each NP. So the result of this rule can be seen as an

intermediate result and thereby it is not visible in the final result.

The rules 2 and 3 (in Figure 14) are used to make some grammatical restrictions

on the recognized verb. Both rules will enforce that we recognize the word “is”,

namely by specifying that the root-feature is equal to to be and the head.subcat-

feature is equal to main. Other grammatical forms of the verb to be are possible, but

in the example only the verb is has to be recognized.

Unification rule 4 is a special rule for the recognition of values (words which

always represent values, like “height”, “level”, “amount”, “10” etcetera). In this case,

for the classification of the JLC Definition 1, we only want to recognize non-value

language constructs on the right-hand-side of the JLC Definition 1. When the right-

hand-side NP can be seen as a value-statement, we can apply the production rule for

the JLC Value Assignment, Change and Comparison (see Appendix A). See Section

10.1 for a more detailed description of how to take care of language constructs,

which represent values.

The unification rules 5, 6 and 7 make some restrictions on the grammatical

agreement of the first NP (NP_1) and the verb (V_2). Verb (V_2) must agree with its

subject (NP_1) in person and number (see The Natural Language Processing

Dictionary 2003 [18]).

The next two unification rules, 8 and 9, are used to store the recognized language

constructs into variables, so during the generation of the relevant formal model we

can use these variables. Note that we only need the first NP (as subject) and the

second NP (as direct_object) for the generation of the formal model. The reason that

we do parse and store the other natural language constructs is the fact that in the

Income*

- Dutch : Boolean

Income

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 38

future we have to generate OCL constraints to be able to generate code (see Liduan,

F. 2004 [31]). At this moment, we just want to visualize the result of the translation

process (at this moment by using the UML/OCL conventions).

The last unification rule is used to indicate that this rule is of JLC type Definition 1

(s_def). Later, when we want to implement a translation pattern for this production

rule we can reach the parsed information by referring to the stored variables (subject

and direct_object).

After determining of the production rule, we can specify a relevant translation

pattern. Table 4, shows us such a translation pattern, which can be used to generate

the formal model of the JLC Definition 1.

type = "s_def"

dim Result as New System.Collections.ArrayList
dim Temp as New System.Collections.ArrayList
dim Counter as Object
dim Counter2 as Object
dim Assoc as Object
dim strConstraint as String
dim boolFound as Boolean

strConstraint = ""

Result = Feature.Item("subject ").Translate(Nothing)
for each Counter in Result
 Counter.Name = Counter.Name + "*"
next
Temp = Feature.Item("direct_object ").Translate(Nothing)
for each Counter in Result
 boolFound = false
 for each Counter2 in Temp
 if Counter.Name = Counter2.Name + "*" then
 boolFound = true
 end if
 next
 if boolFound = false then
 Counter.Name = Left(Counter.Name, Len(Counter.Name) - 1)
 end if
next

for each Counter in Temp
 for each Assoc in Counter.myAttributes
 strConstraint = strConstraint + " and " + Assoc.Name
 next
 for each Assoc in Counter.myAssociations
 strConstraint = strConstraint + " and " + Assoc.Name + "->notEmpty"
 next
 if strConstraint <> "" then
 strConstraint = strConstraint.SubString(5)
 end if
next

for each Counter in Result
 Counter.Supertype = Temp(0)
 if strConstraint <> "" then
 Counter.GetConstraint("Invariant", strConstraint)
 end if
next

Result.Add(Temp)
return Result

Table 4Table 4Table 4Table 4.... The translation pattern of the JLC Definition 1, with the parsed information marked

bold. Note that a Constraint is built and stored as a String.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 39

It shows us that both the NP’s (subject and direct_object) parsed by application of

the production rule are used to generate the relevant model. I will not explain the

complete meaning of each of the subsequent rules within the translation pattern. I

suppose that the reader will understand this script. Finally, the complete formal

model generated by application of the production rule and the translation pattern is

depicted in Figure 16.

FigFigFigFigureureureure 16161616.... UML/OCL model describing the definition as expressed in “Dutch income is income

as meant in chapter 7”.

By looking at the figure above, it becomes clear that from the legal sentence

(depicted at the beginning of this chapter) both the subject- and definition part are

translated to their corresponding (UML) classes. In this case, the definition includes a

third class: a package reference. This has been created from another JLC, but this will

not be discussed here.

- D utch : Boolean

Income* Income <<packageReference>>
chapter 7

<<application>>

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 40

9 Class-Attribute Generation

In previous chapters, top level parsing is used to recognize the relevant (natural)

language constructs (JLC’s). So, only relevant nouns (grammatical necessity) within

the legal sentence are recognized as being part of a noun-phrase. Other nouns (like

nouns within a subordinate clause) are often recognized as being part of an attribute.

For example, when we want to translate the following legal sentence

IB 2001 Art 3.56 lid 1
The taxpayer who is involved in a general transition concerning the splitting of a legal body is
deemed to have sold his stocks and claims on the splitting legal body at the moment of the
split.

the subject (one of the main terms of the JLC Deeming Provision, see Appendix A and

F “type=s_dp”) of the sentence is “the Taxpayer”, so a class-type Taxpayer is

constructed.

Further, we can see that in the subordinate clause we have two subsequent

attributes, which have to be made. Both are added to the class Taxpayer.

Also an “AttributeInvariant” has to be made according to the translation pattern

(described in Appendix F “type=s_dp”) which is built upon these both attributes.

Taxpayer

- whoIsInvolvedInAGeneralTransitionConcerningTheSplittingOfALegalBody: Boolean
- isDeemedToHaveSoldHisStocksAndClaimsOnTheSplittingLegalBodyAtTheMomentOfTheSplit: Boolean

<<AttributeInvariant>>

{ Taxpayer.whoIsInvolvedInAGeneralTransitionConcerningTheSplittingOfALegalBody implies
Taxpayer.isDeemedToHaveSoldHisStocksAndClaimsOnTheSplittingLegalBodyAtTheMomentOfTheSplit}

Taxpayer

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 41

The complete formal model is as follows:

In the previous formal model, we saw that many complicated formal attributes are

constructed. For the generation of these formal attributes special functionality has

been added to the ePOWER Workbench. The production rule of the Deeming Provision

(the JLC that is recognized in the foregoing example) can be found in Figure 17.

S -> NP_1 V_2 (XLIST_3) V_4 XLIST_5

<S inResult> = true
<S sem type> = s_dp
<S s_order> = sv
<V_2 root> = worden
<V_2 head subcat> = AUX
<V_4 root> = achten
<V_4 head subcat> = MAIN
<S head agr> = <NP_1 head agr>
<S head agr> = <V_2 head agr>
<S sem subject> = <NP_1 sem>
<S sem dp_part1> = <V_2 sem>
<S sem time_period> = <XLIST_3 sem>
<S sem dp_part2> = <V_4 sem>
<S sem fiction> = <XLIST_5 sem>

FigureFigureFigureFigure 17171717.... The Grammar rule and Unification rules of the Deeming Provision JLC (the X-LIST

NLC’s are marked bold).

Figure 17 shows that for the recognition/generation of attributes a special

production rule21 should be added to the production rule set, namely the x-list rule

(see Appendix C “Production Rules for the Verb-phrase Extraction” and F

“type=x_list”). The goal of this production rule is the possibility to generate attribute-

names. From Figure 17 it becomes clear that the complete sentence part (language

construct) between and after the subsequent language constructs NP_1 (noun-

21 This rule is specified within the Grammar rule set (set of production rules), but it isn’t really a rule

specified for grammatical purpose. This rule is added for making it possible to concatenate different

language constructs (for the purpose of attribute generation).

Taxpayer

- whoIsInvolvedInAGeneralTransitionConcerningTheSplittingOfALegalBody: Boolean
- isDeemedToHaveSoldHisStocksAndClaimsOnTheSplittingLegalBodyAtTheMomentOfTheSplit: Boolean

<<AttributeInvariant>>

{ Taxpayer.whoIsInvolvedInAGeneralTransitionConcerningTheSplittingOfALegalBody implies
Taxpayer.isDeemedToHaveSoldHisStocksAndClaimsOnTheSplittingLegalBodyAtTheMomentOfTheSplit}

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 42

phrase) V_2 (verb) and V_4 can be seen as one single attribute (X-LIST). This sentence

part can of course consist of a single word or a word-phrase, so the x-list production

rule has to handle a list of words. When we look at the specification of the production

rule x-list (see Figure 18) we can see that every word (except for all the punctuation

marks (cat-feature is PUNCT)), read from the lexicon must have the feature value cat

= X (for the generalisation of every word being an X).

XLIST -> X_1 (XLIST_2)
<XLIST inResult> = false
<XLIST sem type> = x_list
<XLIST sem hd> = <X_1 sem>
<XLIST sem tl> = <XLIST_2 sem>

Figure Figure Figure Figure 18.18.18.18. The Production rule for the X-LIST

When every word is of type X we can use it as input for the x-list production rule,

so it can be transformed to a single attribute. Initially, this functionality wasn’t

specified within the ePOWER Workbench, so some adaptations were necessary (see

Appendix B) (in Microsoft .NET 2003 [23] you can find the documentation of

Microsoft .NET). With this adaptation of the programming code, we now have the

possibility to generate attribute names. The generation/addition of the attributes is

done during the translation step of every JLC. When an attribute can be generated

from a sub construct, specified within a JLC, this can be done by application of the x-

list production rule.

A second reason for introducing such a x_list production rule is the ability to parse

natural language construct for which we do not have the legal knowledge yet. When

there is no such rule available (recognizing a sequence of words) the recognition step

will not successfully finish, because we cannot recognize the complete legal

sentence. The x_list production rule is a generic construction to deal with pieces of

text for which we have no information or have no knowledge about its internal

representation. When we introduce such a rule we are able to incrementally

implement a tool for automated norm extraction. Every time when new legal

knowledge becomes available, we can add it to the relevant JLC or add some new

JLC’s.

A disadvantage of such a production rule is the fact that the translation process

becomes ambiguous. When such a rule is applicable, a sequence of words has been

recognized. In some cases for every member of this sequence a different derivation

tree will generated. This because during the parsing process it is not possible to

determine the end of the rule. The next word or word phrase can be of another JLC

(or NLC) but can also belong to the x_list JLC itself.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 43

10 Special Treatment

During my thesis research there were some choices made about the treatment of

special language constructs found during examination of the different legal sentence.

Some thought gives rise to some adaptations of the relevant production rules,

translation patterns or other ePOWER Workbench parts (adding extra special features

to the relevant production rule, adding some special code fragments in the relevant

translation pattern, or adding some special records in the lexicon) to optimise the

extraction of the special language constructs.

In the first section, I will discuss how I differentiate between the JLC Definition 1

and the JLC Value Assignment, Change and Comparison. Those JLC’s are similar by

way of their similar global structure (see Appendix A). To make a distinction between

the global meaning of both categorizations some special care was necessary.

In the following section, a description is given about the choices made during the

modelling of inheritance. Moreover, the final section describes the special treatment

of fixed noun-phrases.

10.1 Values

During the implementation of the JLC’s Definition 1 and Value Assignment,

Change and Comparison some special treatment was necessary. Because both global

structures are very similar, we have to make some special choices to be able to

distinguish between both JLC’s. First, let us look at the global structure of the JLC

Definition 1:

<subject> [are|is]<definition>

In general, this global structure is used to recognize inheritance from a legal

sentence. This means that we have a special relation between the two class types.

The first class is specified in the first noun-phrase (subject part) and the second class

can be extracted from the last noun-phrase (definition part). The relation between

both classes is that the first class is a subclass of the second class. This means that

the first class inherits all formal attributes and methods from the second class. Within

the first class, also some extra attributes and methods can be specified. By this fact,

we can suppose that the second noun-phrase always is in the form of a class type

with some additional formal elements (like attributes, subtypes, associations and

constraints).

The global structure of the JLC Value Assignment, Change and Comparison is as

follows:

<subject> [is|amounts to]<formula>

This structure can be used to recognize and extract value assignments. Hereby, the

second noun-phrase is always in the form of a value (a property which can have a

value or can be measured). This fact distinguishes the two JLC’s (the meaning of the

second noun-phrase).

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 44

To handle the difference in both global structures we have to make some efficient

choices. My choice was to determine during the parsing process if the language

construct to be parsed can be viewed as a value or not. When it is in the form of a

value, like “amount”, “compensation”, “wage”, “salary”, “taxes” or “interest” we can

conclude that application of the JLC Assignment, Change and Comparison is

necessary. Otherwise, the JLC Definition 1 is applied.

By adding a special feature to the relevant words in our lexicon we can during the

parsing process determine which JLC is applicable. Table 5 shows us an example of

two records in the lexicon with the extra feature (in the form of an attribute-value-

pair “isValue=true/false”) used for the value determination step.

Lexicon

id sem cat
head
.sub
cat

root
head
.agr.
gen

head
.agr.
case

head.
mood

head
.tens

e

head
.agr.
per

head
.agr.
num

Features

4 amount N amount N S isValue ="true"

4 article N article N P isValue ="false"

Table 5.Table 5.Table 5.Table 5. Two records from the lexicon with the extra feature necessary to determine if this

word can be characterized as a value.

When we look at the production rules for both JLC’s (see Figure 19 and 20) the

specific Sem.isValue feature is used to handle the determination of the correct

language construct.

S -> NP_1 V_2 NP_3

<S inResult> = true
<S sem type> = s_def
<V_2 root> = zijn
<V_2 head subcat> = MAIN
<NP_3 sem isValue> = false
<S head agr> = <NP_1 head agr>
<S head agr> = <V_2 head agr>
<S head> = <V_2 head>
<S sem subject> = <NP_1 sem>
<S sem direct_object> = <NP_3 sem>

FigureFigureFigureFigure 19. 19. 19. 19. The production rule for the JLC Definition 1, with the relevant unification rule for the

determination of a value statement marked bold.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 45

S -> NP_1 V_2 (N_3) (PREP_4) NP_5

<S inResult> = true
<S sem type> = s_va
<NP_1 sem isValue> = true
<V_2 root> = {zijn,bedragen}
<V_2 head subcat> = MAIN
<N_3 root> = gelijk
<PREP_4 root> = aan
<NP_5 sem isValue> = true
<S sem subject> = <NP_1 sem>
<S sem formula> = <NP_1 head agr>
<S sem formula> = <V_2 head agr>
<S sem formula> = <NP_5 sem>

FigureFigureFigureFigure 20. 20. 20. 20. The production rule for the JLC Assignment, Change and Comparison, with the

relevant unification rule for the determination of a value statement marked bold.

When by referencing to the lexicon it appears that the language construct has the

property that it characterizes a value (so, “isValue=true”) then the JLC Assignment,

Change and Comparison is applicable. Otherwise, the JLC Definition1 applies. Our

initial problem of distinguishing both JLC’s is solved.

Sometimes it is not possible to determine if some word characterizes a value. For

example, when we want to translate the following two legal sentences

IB2001 Article 2.1 member 1
Dutch income is income as meant in chapter 7.

IB2001 Article 3.3 member 1
Taxable income is income reduced with the employee’s discount.

we are not able to distinguish both legal sentences by looking at the extra feature

(isValue) described for the word “income”. This because in the first legal sentence the

word “income” is not used as a value (so the JLC Definition 1 is applicable) and in the

second legal sentence the word is used as a value (so the JLC Assignment, Change

and Comparison is applicable). We cannot add the extra feature isValue to the word

“income” because this word can be used in both ways. In such cases the user should

choose which JLC is applicable (both derivation trees are generated during the

translation step).

10.2 Inheritance and the Generation of Class Names

In this section, a description is given on how I have handled the occurrence of

inheritance within a legal sentence. In previous sections there is mentioned that at

this moment within the ePOWER Workbench the production rule for the JLC Definition

1 can be used for the recognition of inheritance occurring in a legal sentence. For the

generation of the relevant formal model the translation pattern of the JLC Definition 1

can be found in Table 6.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 46

type = "s_def"

dim Result as New System.Collections.ArrayList
dim Temp as New System.Collections.ArrayList
dim Counter as Object
dim Counter2 as Object
dim Assoc as Object
dim strConstraint as String
dim boolFound as Boolean

strConstraint = ""

Result = Feature.Item("subject").Translate(Nothing)
for each Counter in Result
 Counter.Name = Counter.Name + "*"
next
Temp = Feature.Item("direct_object").Translate(Nothing)
for each Counter in Result
 boolFound = false
 for each Counter2 in Temp
 if Counter.Name = Counter2.Name + "*" then
 boolFound = true
 end if
 next
 if boolFound = false then
 Counter.Name = Left(Counter.Name, Len(Counter.Name) - 1)
 end if
next

for each Counter in Temp
 for each Assoc in Counter.myAttributes
 strConstraint = strConstraint + " and " + Assoc.Name
 next
 for each Assoc in Counter.myAssociations
 strConstraint = strConstraint + " and " + Assoc.Name + "->notEmpty"
 next
 if strConstraint <> "" then
 strConstraint = strConstraint.SubString(5)
 end if
next

for each Counter in Result
 Counter.Supertype = Temp(0)
 if strConstraint <> "" then
 Counter.GetConstraint("Invariant", strConstraint)
 end if
next

Result.Add(Temp)
return Result

Table 6.Table 6.Table 6.Table 6. The translation pattern of the JLC Definition 1 with the relevant code for handling

inheritance marked in italics.

Table 6 shows us the translation pattern of the JLC Definition 1 with the relevant

code for handling inheritance marked in italics. In the specific code fragment you see

that we first translate the subject construct (the first noun-phrase specified in the

global structure of the JLC Definition 1, see Appendix A). This will result in the

generation of a collection of classes, namely Result. In addition, the second noun-

phrase (direct_object) specified in the global structure is translated. This will also

result in a collection of classes, namely Temp. After we have translated both

constructs, we have to add some more information necessary for modelling

inheritance. First, we traverse the complete set of classes specified in the Result

collection and add a star (*) to each of the class names (Counter.Name + “*”). In the

next couple of rules in the code we traverse the other collection and check if there is

a class name in the second set which is equal to a class name in the first set. If so,

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 47

then we leave the Counter.Name as it is, and otherwise we cut off the star (*) from

the Conter.Name. This process is necessary to be able to model inheritance when the

class names of the super class and the sub class are the same. When this is the case

we have to add some extra information to visualize this difference in the model.

When the class names of the superclass and the subclass are different, the generation

of the class names is delegated to the translation pattern of the noun-phrases. This

seems a temporary solution, but at this moment this solutions is the best I have

found during my research. In Figure 21, a legal sentence is depicted whereby the

class name of the super class is equal to the class name of the sub class. Also the

final model is depicted, so one can understand in which form inheritance is modelled

by using our current translation engine.

IB2001 Article 2.1 member 1
Dutch income is income as meant in chapter 7.

FigureFigureFigureFigure 21. 21. 21. 21. The translation of a legal sentence containing inheritance (where the class name of

the super class is equal to the class name of the sub class).

During the complete implementation of the ePOWER Workbench, some choices for

correctly modelling inheritance have been made. The simplest form of handling

inheritance was the generation of class names by concatenating all subsequent

language constructs from which the complete noun-phrase consists of (for example

“Dutch Income”, “A 24 years old Dutch student”). This is a very impractical choice

because the final class names will have a lot of overhead and the formal elements

within the noun-phrase are not properly recognized and translated.

For example, when we want to generate a class name from the following noun-

phrase

The tax on taxable income from considerable interest…

the resulting formal model for this class after translation will be as follows:

When we look at the above figure we see that there are no formal elements added to

the class, because we simply have not recognized them (initially there was no

knowledge about the global (internal) structure of noun-phrases). We use the

complete noun-phrase directly as being a class name.

-

Income* Income <<packageReference>>
chapter 7

<<application>>
Dutch : Boolean

TheTaxOnTaxableIncomeFromConsiderableInterest

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 48

Later on some functionality was added to let the user choose the best possible way

of assigning a class name. This was possible because more knowledge becomes

available about the global structure of noun-phrases. Special production rules were

made for the recognition of complete noun-phrases, so more information becomes

available during the final translation part (the generation of the formal models).

During the translation part, the user is able to point out the relevant information

necessary to construct the class name (for example the user can choose to

concatenate the whole noun-phrase (old version), or he can choose to concatenate

the adverb/preposition with the main term etcetera). This seems a better solution,

but at this moment, this functionality isn’t available anymore within the ePOWER

Workbench.

So, in my thesis research I have tried to handle the occurrence of inheritance and

the generation of class names by specifying new production rules and translation

patterns as described in the beginning of this section. This seems the best solution

possible with the current knowledge available for noun-phrases. Maybe in future

development a more efficient and transparent solution can be found for generating

class names and therewith the modelling of inheritance.

10.3 Fixed Noun Phrases

In Chapter 6 it was mentioned that all the words relevant for the Dutch language

are stored in the so called lexicon database table in the translate-nl database. When,

during the translation process, a production rule is applicable, for each subsequent

word in the legal sentence (input), a reference to this lexicon is made.

In my thesis research, I found some word-phrases (noun-phrases) which always

have a fixed structure when recognized in a legal sentence. One can think of the

word-phrases, “The Dutch Kingdom”, “Law on Income Taxes 1964” etcetera. These

noun-phrases are always present in this form in a legal sentence. Therefore, it seems

a good idea to store these complete noun-phrases as a whole in the lexicon database

table. Otherwise, special production rules have to be made to recognize these

specific noun-phrases. This seems more trouble than it is worth.

At this moment only those special production rules are made for the recognition

of these fixed noun-phrases (for making it possible to recognize the legal sentences

described in the testbench). Figure 22 shows us the production rule for the

recognition of the fixed noun-phrase “Koninkrijk der Nederlanden” 22.

22 The English word for the Dutch word “Koninkrijk der Nederlanden” is “The Dutch Kingdom”.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 49

NP NP NP NP ----> NP_1 NP_2> NP_1 NP_2> NP_1 NP_2> NP_1 NP_2

<NP inResult> = true

<NP sem root> = Koninkrijk der Nederlanden

<NP sem type> = np

<NP_1 sem root> = koninkrijk

<NP_2 sem root> = Nederland

<NP_2 head agr case> = C2

FigureFigureFigureFigure 22. 22. 22. 22. The production rule for the recognition and translation of the fixed noun-phrase

“Koningrijk der Nederlanden”.

Also, other production rules are made for the recognition of other fixed nou-

phrases, but at this moment I think the usability of those fixed noun-phrases is clear.

Maybe in the future there will be some time to examine the legal sentences,

described in the legislation, for the occurrence of those fixed noun-phrases. This will

result in a set of fixed language constructs. Herewith we will have all the knowledge

necessary to extend the lexicon with the set of fixed noun-phrases. During the

parsing process, these specific language constructs can be directly extracted from

the lexicon (as a noun). So the relevant formal elements (class name or attribute) can

simply be generated.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 50

11 An Alternative Solution

In this chapter, an alternative solution to the main problem will be discussed. This

solution was found during the preliminary research (determining a global approach

for Automated Norm Extraction). All possible solutions found were considered, but

are not implemented, because there were some shortcomings in implementation or

efficiency. These shortcomings will be discussed in this chapter so it will become

clear why these approaches have not been used. Maybe some parts of these

approaches can be used in future optimisations or researches.

11.1 Dynamic JLC storage

In the previous chapters, a global solution to the main problem is discussed. This

approach makes use of the categorization of the legal sentences (see Chapter 5). By

these categorizations, subsequent language constructs are (also called as the Natural

Language Constructs, NLC’s, see Section 6.2) specified. These are, within the

translation engine, used to determine the necessary normative constructs for the

generation of the formal model. Because this process uses these subsequent

structures (in the ePOWER Workbench stored as Production rules) for the parsing

process, this approach is called a rule based approach (see Rule Based Systems 1994

[20]). In this approach, the JLC information of each of the categorizations is statically

used within each of the composed Production rules. For every JLC one or more

production rules have been made by examining the global rule based structure of the

JLC’s (see Appendix A and C for all the production rules) and by following the

regulations of the rule model (see Figure 13 in Chapter 7). This all seems an efficient

way of tackling the main problem, but the question arises if this can be done in a

more efficient way.

By examining the global structure of the different JLC’s, it may be noted that we

mainly recognize the main terms of the JLC’s to classify the legal sentence to one or

more specific JLC’s (see Figure 23 and Appendix A).

<subject> [wordt] <denotation of time period> [geacht] <fiction>

Deeming Provision

[If] <subject> <feature>

Condition

<subject> [is] <definition>

Definition (type 1)

[By] <subject> [is understood] <definition>

Definition (type 2)

Figure 23Figure 23Figure 23Figure 23.... The global structure of a subset of all possible JLC’s, with the main terms marked

bold.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 51

By this fact we can introduce another approach, which is based upon a Unification

Algorithm and dynamic storage of the main terms of the global structure (in a

database) of each of the different JLC’s (so, this approach doesn’t make use of the

rule based structure of the different JLC’s like in the previous approach). Dynamic

storage of the JLC dependent language constructs also has the advantage that the JLC

information is easy adaptable in future development. So the JLC information becomes

easy administrable. When new JLC’s are determined (and have to be added) or current

ones have to be modified these information is easy modifiable in the ePOWER

Workbench translation engine.

The dynamic storage of the different main terms can be done by adding the JLC

type information to each of the relevant words stored in the lexicon. This is based

upon the fact that we can add extra user defined features to each word in the lexicon

table (see Table 8 and Section 6.1).

LexiconLexiconLexiconLexicon

IdIdIdId semsemsemsem catcatcatcat subcatsubcatsubcatsubcat rootrootrootroot GenGenGenGen CaseCaseCaseCase MoodMoodMoodMood TenseTenseTenseTense perperperper numnumnumnum FeaturesFeaturesFeaturesFeatures

6 deemdeemdeemdeemedededed V MAIN deemdeemdeemdeem INDIC

ATIVE

IMPER

FECT

2 P JLCtype JLCtype JLCtype JLCtype

= DP= DP= DP= DP

TabTabTabTable 8.le 8.le 8.le 8. Dynamic storage of the JLC type information in the lexicon as extra feature

Table 8 shows us the possibility to store the JLC dependent type information for

the Deeming Provision JLC as attribute-value-pair to the Features column. Every main

term of the different JLC’s will be extended with this JLC type information in the

lexicon. In addition, words that are not part of the global structure of a JLC must have

this attribute-value-pair as extra feature within the specific column. So it becomes

possible to determine the JLC type information for each word during the unification

process.

By examining the global structures of the different JLC’s we found that one specific

word (like “is”) is used within more than one JLC specification. So it seems necessary

to be able to store more than one JLC type by each word in the lexicon, as in Table 9.

LexiconLexiconLexiconLexicon

idididid semsemsemsem catcatcatcat subcatsubcatsubcatsubcat rootrootrootroot gengengengen casecasecasecase moodmoodmoodmood TenseTenseTenseTense perperperper numnumnumnum FeaturesFeaturesFeaturesFeatures

6 ???? V MAIN ???? INDICATIVE IMPERFECT 2 P JLCtJLCtJLCtJLCtype = {DP,TypeE}ype = {DP,TypeE}ype = {DP,TypeE}ype = {DP,TypeE}

Table 9.Table 9.Table 9.Table 9. Dynamic storage of the JLC type information when more than one classification is

possible

The value of the attribute –value-pair contains all possible JLC types where a

specific word classifies to.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 52

During the parsing process, the final JLC type will be determined by examining all

words (by continuously referencing to the lexicon for each word) and unifying to the

specific JLC type(s). This unification algorithm will determine the final JLC type by

taking the intersection of all the possible different sets (attribute-value-pairs) of JLC

types of each parsed word. For example, when after the parsing process we have

recognized three main terms (words with necessary JLC information) like

“by” JLCtype={DEF2}

“is” JLCtype={DEF1,DEF2}

“understood” JLCtype={DEF2}

 the complete classification process will result in the fact that the legal sentence is

classified as a Definition 2, because the intersection of {DEF2}, {DEF1,DEF2} and

{DEF2} is {DEF2} (see Appendix A). In principle, the sentence could be classified to the

JLC Definition 1, but the presence of other normative elements (“By” and

“understood”) tells us that the classification as JLC Definition 2 is the most likely one.

11.1.1 Excluding Invalid NLC Sequences

In the previous section an approach was discussed which makes use of a

unification algorithm for the classification of the different legal sentences to one or

more JLC types. Because this approach is not rule based, every combination of NLC’s

is possible (as long as they have the same relevant attribute-value-pair in their

feature column in the lexicon database table). For example by the above approach a

legal sentence consisting of the subsequent words “is”…“is” is also classified to the

JLC type Deeming Provision. However, this is not right. There is one NLC (natural

language construct) missing, namely the word “deemed” (main term of the Deeming

Provision JLC). To handle those wrong derivations we have to force that only one

order of NLC’s within each of the JLC’s is applicable during the classification step.

This idea is visualized in the under mentioned table.

LexiconLexiconLexiconLexicon

IdIdIdId semsemsemsem catcatcatcat subcatsubcatsubcatsubcat rootrootrootroot GenGenGenGen CaseCaseCaseCase MoodMoodMoodMood TenseTenseTenseTense PerPerPerPer NNNNumumumum FeaturesFeaturesFeaturesFeatures

5 isisisis V AUX bebebebe INDICAT

IVE

PRESE

NT

3 S JLCtype

= DP1111

6 deemeddeemeddeemeddeemed V MAIN deemdeemdeemdeem INDICAT

IVE

IMPER

FECT

2 P JLCtype

= DP2222

Table 10.Table 10.Table 10.Table 10. Ordering the subsequent NLC’s of the JLC type Deeming Provision

Table 10 shows us the relevant NLC’s for the JLC type Deeming Provision with

within the feature column the attribute-value-pair extended with a subscript number

to force a strict order of NLC’s. Later, by the implementation of a Unification

Algorithm we have to take care of these NLC order and existence. When one NLC is

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 53

missing or when the order of NLC’s is different from the order of NLC’s stated in our

global model of JLC’s, there is no relevant classification possible.

For example, when we have recognized the following main terms in a legal

sentence

“by” JLCtype={Def21111}

“is” JLCtype={Def11111, Def22222,DP1111}

“understood” JLCtype={Def23333}

we can classify this legal sentence to a Definition 2, because we can unify these three

sets of JLC types by taking the intersection (and using the predefined order of the

NLC’s). Within the JLC type information of the word “is” there is stated that this word

belongs to the JLC type Deeming Provision (DP1111), but the word “deemed” (DP2222) is

missing, so no classification to this JLC type can be done.

11.1.2 Advantages/Disadvantages

The main advantage of this approach is that we can store all the JLC type information

directly within the lexicon database table. The JLC information becomes easy

administrable, extendable and transparent. When during further research (about the

categorization of legal sentences) more JLC types can be defined, we do not have to

add new production rules (rule based approach) to our translation engine, but we can

add this new information directly to the lexicon database table. Another advantage is

the fact that the parsing process becomes more efficient. The complete classification

process is done by the recognition of only the main terms of the complete JLC

structure. With this advantage, directly the main disadvantage comes across.

 Because we only parse the main terms of each of the JLC’s we do not have the

extra information necessary to be able to generate complete formal models. Because

our aim was to generate formal models from legal sentences, we also need the other

JLC dependent language constructs to be able to construct the formal attributes,

relations and associations. In addition, when we look at the structure of the JLC

Definition 1 (<subject> < is> <definition>) the main term (“is”) of the structure is

not enough to generalize to one specific JLC. It can also classify to many other types.

11.2 Splitting of Juridical Information

A more elegant way of storing the JLC type information is to store it in a separate

database. So we get two database tables connected by primary- and foreign keys (see

Data Modelling: Primary and Foreign Keys 2004 [25]). One database table with

lexical- and one with juridical information (see Figure 24).

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 54

 Linked by the foreign key root

Lexicon

id sem cat head.
subcat

root ………… …………

31839 is V … be … …

31840 was V … be … …

31847 deem V … deem … …

31845 deems V … deem … …

31843 deemed V … deem … …

Figure 24Figure 24Figure 24Figure 24.... The storage of juridical information in a separate database table

Figure 24 shows us how the separation can be done. For every main term of the

different JLC’s, the main verb (root) of that verb is stored in a separate database. So

for every grammatical form of the main verb we can refer to the root verb stored in

the juridical database. During the parsing process, we can refer to the lexicon

database for extra lexical information used for unification (for example if a verb is a

link verb or a transitive verb etcetera).

The sem-feature is set as the primary key of the JLCTypeInfo-table, because this

value is unique. The foreign key of the lexicon table is the root-feature. The id-

feature of the lexicon table is the primary key.

 By splitting up both database tables and connecting them by using the relevant

keys we get a more transparent and efficient representation of lexical and juridical

information.

11.3 Best of two worlds

Maybe in the future we can make use of the dynamic storage possibility within the

lexicon database to specify new production rules (combination of both approaches).

In the current implementation of the ePOWER Workbench there is functionality to use

the JLC type information directly within the production rules as dynamic information

(see Figure 25). We can add more unification rules to the relevant production rules of

a specific JLC to add the dynamic JLC information of the main terms. Figure 25

visualizes this idea.

JLCTypeInfo

sem JLCtyJLCtyJLCtyJLCtypepepepe

be {DEF1,DP1}

{DP2}

… …

… …

… …

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 55

S S S S ----> > > > NP_1 V_2V_2V_2V_2 (XLIST_3) V_4 V_4 V_4 V_4 XLIST_5

<S inResult> = true

<S s_order> = sv

<V_2 features JLCtype> = DP<V_2 features JLCtype> = DP<V_2 features JLCtype> = DP<V_2 features JLCtype> = DP1 1 1 1

<V_2 head subcat> = AUX

<V_4 features JLCtype> = DP<V_4 features JLCtype> = DP<V_4 features JLCtype> = DP<V_4 features JLCtype> = DP2222

<V_4 head subcat> = MAIN

<S head agr> = <NP_1 head agr>

<S head agr> = <V_2 head agr>

<S sem subject> = <NP_1 sem>

<S sem dp_part1> = <V_2 sem>

<S sem time_period> = <XLIST_3 sem>

<S sem dp_part2> = <V_4 sem>

<S sem fiction> = <XLIST_5 sem>

Figure 25Figure 25Figure 25Figure 25.... The production rule of the JLC type Deeming Provision with dynamic JLC information

The above figure shows us the adapted production rule of the Deeming Provision

where, for the main terms, special unification rules are made. The information for

these unification rules directly is derived from the lexicon database table. So, the

main term JLC information becomes variable (dynamic). When for example by future

research the Deeming Provision structure is adapted (so there are more words

possible for each of the main terms), this change can easily be made within the

lexicon database table.

For now, the functionality described in the second (non-rule based) approach can

be seen as potential functionality for future development, when more information

about the categorization of legal sentences is available.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 56

12 Automated Rule Management: Grammar Editor

As mentioned before the manageability of the database of Grammar Rules is not

efficient. When we want to add some new functionality to the ePOWER Workbench (the

addition of new Production rules) we have to access the Production rule database

table to make the necessary changes within the XML-script. Because working in a

database, and creating complete new XML scripts is inefficient, the idea arose to

automate this process. When a tool can administer the complete process of rule

management it becomes more efficient and well organized, and we can add some

checks to validate the input.

Because the initial ePOWER Workbench is implemented in .NET (see Microsoft .NET

2003 [23]) it seems a logical step to implement this component as a separate

component within the ePOWER Workbench (see Appendix E for the complete

programming code).

In the next section, the architecture of the tool will be discussed.

12.1 Implementing the tool

In the first place, examination of the general structure of the Grammar- and

Unification rules was necessary (the XML-script in the Production rule database

table). During this examination step I found that there were some fixed elements

within the global structure of the rules (Grammar- and Unification rules), which are

always present when a new rule is added or modified. These are overhead due to the

use of XML.

LHS RHS

<Lhs>
 <FeatureSet>
 <Feature name="inResult">
 <AtomicValue> true | false</AtomicValue>
 </Feature >
 <Feature name="cat">
 <AtomicValue> name of the LHS</AtomicValue>
 </Feature>
 <Feature name="sem">
 <ComplexValue>
 (
 <Feature name =”feature-name" equationId= "1">
 (<ComplexValue></Complexvalue>) ?
 </Feature>
)+
 </ComplexValue>
 </Feature>
 </FeatureSet>
</Lhs>

<Rhs>
 (
 <RhsElement nothingAllowed= "true | false">
 (
 <FeatureSet>
 <Feature name="cat">
 <AtomicValue> NLC-name</AtomicValue>
 </Feature>
 (
 <Feature name= ”feature-name" equationId= "id">
 (<ComplexValue></ComplexValue>)?
 </Feature>
)+
 </FeatureSet>
)+
 </RhsElement>
)+
</Rhs>

Table 7Table 7Table 7Table 7.... The general structure of the LHS and RHS of each Production rule

Table 7 shows us the general structure of the LHS (left-hand-side) and the RHS

(right-hand-side) of each production rule. One can see that each LHS consists of a

fixed <Lhs></Lhs> construct, which consists of a fixed <FeatureSet></FeatureSet>

construct, which consists of two fixed

<Feature><AtomicValue>true|false</AtomicValue></Feature> constructs (the first

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 57

one is the inResult-feature (visible or not visible in the final derivation tree), and the

second one is the cat-feature (the name of the LHS)) and one fixed

<feature><ComplexValue></ComplexValue></Feature> construct (the sem-

feature), whereby the <ComplexValue></ComplexValue> consists of one or more

<feature><ComplexValue></ComplexValue></Feature> constructs, whereby the

<ComplexValue></ComplexValue> construct is optional. The RHS consists of a

fixed <Rhs></Rhs> construct, which consists of one or more

<RhsElement></RhsElement> constructs (this construct contains a nothingAllowed-

feature to indicate if this RhsElement is optional or not), which consists of one or

more <FeatureSet></FeatureSet> constructs, which consists of a fixed

<Feature><AtomicValue></AtomicValue></Feature> construct (the cat-feature, the

name of the NLC) and one or more

<Feature><ComplexValue></ComplexValue></Feature> constructs, whereby the

<ComplexValue></ComplexValue> constructs is optional.

All these fixed structures can be extracted when a tool administers the rule set, so

when Production rules have to be modified the tool will generate the fixed elements

(no overhead). The user only has to fill in the other (non-fixed or variable) elements.

After the extraction of the fixed structures the next step was finding some kind of

data structure for the storage of all the elements where all subsequent rules are built

upon (A Grammar rule consists of one or more Grammar elements23, each of which

consisting of one or more Grammar features24) within the Production rule database

table.

The general way to do this is the usage of a class model (see Appendix E,

GrammarClassModel.cs). With a class model we can create a hierarchy within the

different structures of the production rules. For our model we have to create four

different classes within the GrammarClassmodel file: GrammarRuleCollection (see

Appendix E, line number 29/206), GrammarRule (see Appendix E, line number

211/266), GrammarElement (see Appendix E, line number 369/441) and

GrammarFeature (see Appendix E, line number 444/560).

The first class model is the main part of the class model. This part holds the

complete Production rule collection in a .NET ArrayList [24] (see Appendix E, line

number 61). Also, functionality of adding/sorting new rules (see Appendix E, line

number 72/83) can be found in this project file. When new rules are added or rules

are modified within the model, these modifications have to be saved in the class

model. In the class model we can found the method save() (see Appendix E, line

number 88/154) which can be used to assimilate all the modifications by writing all

modified rules to the relevant database table (in other words the generation of XML

script25). Other functionality within this class is considered as irrelevant at this

moment (like validation and other event handling).

23 A Grammar element can be used as being a LHS (a single element with a name and additional Grammar

features) or a RHS (a list of Grammar elements each with a name and additional Grammar features). A

synonym for Grammar elements is NLC (Natural Language Constructs, see Section 6.2).

24 A synonym for Grammar features is Unification rules (see Section 6.2). They are used in the same way.

25 The generation of the XML script is delegated to all the subelements (bottom-up). The main class in the

class model collects the XML script from each of the Grammar Rules, the Grammar Rules generate the XML

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 58

The next three class model parts are the classes with the functionality of the

specific rules. Each of these classes consists of three fixed parts:

- An ArrayList with the necessary subelements

- The method for the generation of the XML script

- A HTML generator (Pretty Printer, will be explained in the next chapter)

 For the first class in the class model, GrammarRule, the ArrayList can be found in

Appendix E, line number 216 (for the creation of the right-hand-side). The method

for the XML generation can be found in Appendix E, line number 234/277 and

306/330. For the second class, GrammarElement, the ArrayList can be found in

Appendix E, line number 374 (for the creation of a set of features). The method for

the XML generation can be found in Appendix E, line number 432/441. For the last

class, GrammarFeature the ArrayList is stated in Appendix E, line number 451. The

XML generation method can be found in Appendix E, line number 528/560.

After we have created a way to store all the different Production rules in a class

model the next step for the creation of the Rule Management Tool is finding a way to

visualize the content of the Production rule set (in other words the User Interface).

After an examination of the different rules I have decided to visualize the complete

rule set in some tree-like structure. The advantage of a tree structure is the well-

organized, collapsible way to store complex data. Another argument to use a tree like

structure is the presence of nesting within the rule set (as mentioned before). The

GrammarTreeModel class (see Appendix E) contains the functionality to generate the

tree structure from all the rules stored in the class model. Figure 26 shows us a

screenshot of the final tree view of the Production rules.

Other classes used are GrammarElementEdit.cs (trapping the mouse clicks (right-

clicks) on each GrammarElement), GrammarFeatureEdit.cs (trapping the mouse clicks

(right-clicks) on each GrammarFeature) and GrammarRuleEdit.cs (trapping the mouse

clicks (right-clicks) on each GrammarRule). The programming code for the main form

is described in class GrammarForm.cs. The programming code for all these classes

can be found in Appendix E.

script by collecting it from the Grammar Element class and the Grammar Element class generates the XML

script from the Grammar Feature class.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 59

FigureFigureFigureFigure 26 26 26 26.... A screenshot of the ePOWER Workbench Grammar Editor tool to clarify the usage of

a tree structure to visualize the rule set.

12.2 Grammar Editor Screenshots

The combination of all the mentioned classes has resulted in a Grammar Editor

tool, which can be used to add, delete and edit functionality within the ePOWER

Workbench. The functionality of the User Interface of the Grammar Editor tool is

clarified by showing some subsequent screenshots (see Appendix D).

In the next chapter, I will clarify the implementation and usage of the Pretty Printer.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 60

13 Pretty Printer

In Chapter 12, we discussed a tool to manage the complete Production rule set in

an efficient way. In this tool, a pretty printer is included for the purpose of presenting

a global view of the implemented Production rule set.

One of the advantages of such a pretty printer is the fact that during the

implementation process (in particular during the generation of the Translation

patterns) the possibility arises that you can easily refer to the global view of the

relevant production rule information to track down the information, which has to be

translated26.

13.1 Implementing the Pretty Printer

In the previous chapter, a detailed description is given of the complete Grammar

Editor .NET component within the ePOWER Workbench. In that chapter there is

mentioned that each of the class model classes consists of three important methods.

The first two are discussed, but the last one (the generation of the HTML of each of

the class objects) isn’t discussed already. This last part will be discussed in this

section.

The Pretty Printer, also known as the HTML generator, is built by adding extra

functionality to each of the classes of the class model (GrammarClassModel.cs, see

Appendix E). This complete process is delegated (bottom-up process) from the root

of the class model, the GrammarRuleCollection class. This class contains the method

print (see Appendix E, line number 158/206), which collects all the information from

his collection (ArrayList of GrammarRules) and prints it to a html-file (see Appendix

E, line number 190/194). Because this process is delegated, also his child nodes have

this print method. For the print method of each of the other classes in the class

model see Appendix E (GrammarRule, line number 282/306; GrammarElement, line

number 427/447; GrammarFeature, line number 507/532).

 When the print method of the GrammarRuleCollection class is invoked all

information is collected and subsequently printed to a html-file (see Appendix E, line

number 197/204). The content of the html-file will also be displayed to the user.

26 Because the Translation Patterns are built upon the information parsed by the Production rules there is a

dependency between those two language dependent parts. From this view possessing a global view of the

production rules seems useful.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 61

FigureFigureFigureFigure 27 27 27 27.... A screenshot of the Rule Management tool with, for the execution of the Pretty

Printer, an extra button (“Print to File”).

In the global User Interface (GrammarForm.cs, see Appendix E) an extra button is

added to execute the Pretty Printer (see foregoing Figure 27).

In the next section, a screenshot of the output of the Pretty Printer is shown.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 62

13.2 Screenshot of the Output

The screenshot below shows us the output of the Pretty Printer.

The screenshot shows us the content of the Grammar.html file, which has been

built during the execution of the Pretty Print application.

This output has become very useful during the implementation of the translation

patterns. There is a clear overview of all the stored information (the information

parsed by application of the production rules), so the Pretty Printer has resulted in a

more efficient and transparent way of implementing the translation patterns.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 63

14 Related Work

By taking a closer look at alternative specifications and tools used in other

projects, we can get an idea about the other possible solution methods of this

specific problem. Maybe in the future, some of these alternative specifications can

be used in the ePOWER Workbench translation engine.

Often, parsers are categorized according to the sets of languages that they can

parse. The Chomsky hierarchy (see The Free Dictionary.com 2004 [38]) distinguishes

between four types of families of languages: the regular languages, the context-free

languages, the context-sensitive languages and the recursive enumerable languages

(see Figure 28).

Grammar Languages Automaton Production
rules

Type-0 Recursively
enumerable

Turing machine No restrictions

Type-1 Context-sensitive Linear-bounded non-deterministic Turing
machine

α A
β
 → α γ β

Type-2 Context-free Non-deterministic pushdown automaton A → γ

Type-3 Regular Finite state automaton
A → aB
A → a

Figure 28.Figure 28.Figure 28.Figure 28. The Chomsky Hierarchy (see The Free Dictionary.com website 2004 [38]).

Our production rules also form a context-free grammar. However, the addition of

the different unification rules gives us additional flexibility and helps us cope with,

e.g. ambiguity. Unification in this context is similar to the use of semantic conditions

in attribute grammars (see Knuth, D., E., 1968. [35]). We are not the first to use a

formalism based on context-free grammars and attribute grammars for natural

language processing (see e.g. The AGFL-project [36]). These formalisms are also

prominent in the area of compiler construction.

The use of a lexicon is an important aspect of the Categorial Grammars (see

Houtman, J. 1994 [39] and Pearson, J. 2003 [40]). The use of a lexicon combined with

a fixed set of deduction rules makes categorial grammars easy to extend. Within this

technique, there are no production rules, such as they exist in our tool.

A totally different viewpoint can be found in the paper of Costa F., Frasconi, P.,

Lombardo, V., Soda, G. 2001 [41]. This paper describes the development of novel

algorithmic ideas for building a natural language parser by using recursive neural

networks, grounded upon the hypothesis of incrementality.

Hellwig, P. 2002 [42] discusses many implementation and algorithms for context-

free grammars (also, in combination with unification), and could be studied in the

future to improve the current implementation.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 64

15 Conclusion

During this thesis research, I have extended the ePOWER Workbench with the

functionality necessary for the second step towards automated norm extraction from

legal texts. This is called verb-phrase extraction. The ePOWER Workbench, as it is at

this moment, can be used to recognize and translate a subset of all possible legal

sentences described in the Dutch legislation into a formal model27.

So, during this thesis research I have given evidence that supported both

hypotheses stated in Section 3.1. My hypothesis for the recognition step of the verb-

phrase extraction was as follows:

When examining the (limited) set of predefined natural language constructs

(JLC’s) defined by Emiel de Maat, special parse rules can be generated to

extract the necessary legal knowledge from the legal sentences.

My hypothesis for the translation step of the verb-phrase extraction was:

After the application of the parse rules, special translation patterns can be

applied to generate the relevant formal models (expressed in UML/OCL).

In Chapters 5, 6, and 7, I have discussed how the (limited) set of predefined

natural language constructs (see Appendix A for the complete set of global structures

defined for each of the different JLC’s), defined by De Maat 2003 [6], can be used to

generate the production rules for the recognition of all the normative elements from

the legal texts (see Appendix C for the final set of production rules made for each of

the different JLC’s). In these chapters, it was described how to generate the final

formal models by implementing the relevant translation patterns.

Therefore we can conclude that the legal sentences, although they are expressed

in natural language, provide us with enough syntactical clues (found by De Maat 2003

[6]) to identify normative elements and consequently provide us with the handles to

build an automated norm extraction tool.

As mentioned at the beginning of this thesis, the main target of the (E-)POWER

program was to generate an environment supporting the generation of knowledge

components (from normative knowledge sources represented in document form, via a

formal model to a knowledge-based component (i.e. a piece of software able to make

inferences about a certain regulatory domain)).

The ePOWER Workbench can therefore be seen as a starting point for the

implementation of normative reasoning applications (applications that have the

ability to reason about cases). It generates formal models from the normative

knowledge sources (legal sentences).

27 This is based on the current set of JLC’s (Juridical (Natural) Language Constructs), but we have no reason

to believe that different constructions would not fit in our framework.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 65

The next step for the generation of knowledge components from the formal

models (generated by the automated norm extraction tool), is the generation of

programming code from a well typed (a type checker) OCL expression (see the thesis

of Faridah Liduan 2004 [31], who has implemented such a code generator and type

checker). At this moment, the code generator accepts OCL expressions and generates

an intermediate language RBML (a rule-based XML document). This intermediate

language can, by further research, be used to generate the necessary code for the

implementation of a knowledge application. This will complete the (E-)POWER

approach. Of course, improvements on each subsequent step are necessary to be

able to fully rely on each of the different intermediate results.

At the end of my thesis research, the automated norm extraction tool has all the

functionality necessary to recognize and translate legal sentences to a formal model.

By introduction of this tool, a couple of advantages arise: the tool helps to reduce

modelling time and effort while inter-coder dependencies diminish. When the formal

models are made by hand (by experts), there is no guarantee that the generated

formal models are similar. Afterwards, we have to check if the formal models are

correct. When introducing an automated tool we generate the formal models

consistently.

The final norm extraction tool is still in an early stage of development and still has

to prove its benefit. I am however convinced that although I do not claim 100%

recognition, a significant reduction of knowledge analysis effort (and further

improvements in reducing inter-coder independencies) is achievable. Besides the

advantage that this tool helps us to reduce modelling time and effort, there is also

the advantage of reducing maintenance costs and total cost of ownership of the IT-

service build upon the models produced this way. But in the beginning the aim of the

(E-)POWER program was to generate a first version of a tool that supports automated

norm extraction, so my approach can be seen as a successful one.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 66

16 Recommendations for Further Research

In this chapter, some recommendations will be discussed for future development.

During this thesis research, I have tackled the second problem of automated norm

extraction, namely verb-phrase extraction. The ePOWER Workbench as it is today has

all the functionality to recognize and translate a subset of all possible legal sentences

as they occur in the Dutch legislation. Future development will result in more

knowledge about normative reasoning with legal sentences and thus in a more useful

tool for automated norm extraction.

16.1 Progressive Deconstructing of Abstract Language Constructs

During preliminary research done by De Maat [6], a couple of legal sentences have

been chosen from a subset of the complete legislation (the law on income taxes from

2001, IB2001). By examining this subset, De Maat has categorized these legal

sentences into a (limited) set of predefined natural language constructs (also known

as JLC’s, see Chapter 5) which can be used to define the legal sentences28 (i.e. legal

norms).

My thesis research, extending the initial ePOWER Workbench with functionality for

verb-phrase extraction, is based upon these different categorizations29. So, at this

moment the ePOWER Workbench is limited to recognize and translate a subset of all

possible legal sentences. In addition, when we look at the categorizations built by De

Maat some JLC’s are specified in a very general, concise way. For example, when we

look at the global structure and the production rule of the JLC Deeming Provision

(see Figure 29 and 30) we can see that for the language construct other than the

main terms only the production rule X_LIST (see Chapter 9) is used for extraction.

<subject> [wordt]<denotation of time period> [geacht]<fiction>

FigureFigureFigureFigure 29 29 29 29.... The global structure of the JLC Deeming Provision with the main terms marked bold.

When some legal sentence is recognized as being of JLC type Deeming Provision

the specific intermediate language constructs are recognized by application of the

X_LIST rule and subsequently concatenated for the generation of formal attributes.

One can understand that there is always a possibility that, within these language

constructs more relevant formal elements can be found (like classes, attributes,

relations, associations etcetera). At this moment, no further specification of the sub

constructs is available. Therefore, during my implementation, no further

categorization of the abstract language constructs (within the legal sentence) is

28 De Maat has examined a subset of all possible legal sentences occurring in the chosen law type. By this

fact, there is not enough legal knowledge to recognize and translate all possible legal sentences occurring

in the Dutch legislation. When new knowledge becomes available this can easily be added to the ePOWER

Workbench translation engine by adding new production rules and translation patterns.

29 Some categorizations (JLC’s) are adapted and some categorizations are bundled to one single JLC. These

adaptations are made because of implementation reasons. For the final set of generated production rules

and translation patterns, see Appendix C and F.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 67

applied. At this point, not enough knowledge is available to handle the subordinate

clauses. They are recognized in the current tool, but their relation to the main terms

(specified in the main sentence JLC’s) is not determined.

S -> NP_1 V_2 (XLIST_3) V_4 XLIST_5
<S inResult> = true
<S sem type> = s_dp
<S s_order> = sv
<V_2 root> = worden
<V_2 head subcat> = AUX
<V_4 root> = achten
<V_4 head subcat> = MAIN
<S head agr> = <NP_1 head agr>
<S head agr> = <V_2 head agr>
<S sem subject> = <NP_1 sem>
<S sem dp_part1> = <V_2 sem>
<S sem time_period> = <XLIST_3 sem>
<S sem dp_part2> = <V_4 sem>
<S sem fiction> = <XLIST_5 sem>

FigureFigureFigureFigure 30 30 30 30.... The production rule for the JLC Deeming Provision (s_order=sv), with for the

recognition of the "denotation of time period” and “fiction” constructs the NLC’s marked bold.

Later, when more knowledge about the subsequent language constructs of each of

the JLC’s becomes available, we can add new production rules (or adapt the relevant

ones) and translation patterns to the ePOWER Workbench. In Chapter 7 a detailed

description is given about how new knowledge can be added to the ePOWER

Workbench translation engine by examining the global structure of each of the

different JLC’s. In addition, by using the Grammar Editor (or Automated Rule

Management tool, see Chapter 12) new available knowledge can easily be entered

into the ePOWER Workbench translation engine.

At this moment, I have introduced the X_LIST production rule to be able to

recognize complete legal sentences. When we leave out this rule the translation

engine is not able to apply the different production rules for each of the JLC’s,

because there is no information about the deeper structure of each of the

intermediate language constructs. So, the X_LIST production rule is introduced to

finish a first tool for automated norm extraction. The tool implemented during my

thesis research can be used as starting point for further development within this field

of science.

16.2 Automated Pattern Management

Another recommendation for future development is the generation of an editing

tool to efficiently administer the set of translation patterns. At this moment, the

translation patterns are specified by Visual Basic scripts, stored in a separate

database (the pattern table in the translate-nl database, see Section 6.3).

Because these scripts are stored in a separate database table, there are a couple of

shortcomings.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 68

The first problem of storing programming code in a database table is the fact that

administering these scripts is very hard (a limited set of editing tools is available).

The second more important shortcoming of using a separate database for editing

the translation patterns is the fact that possible errors (syntactic- or semantic errors)

are not recognized at the end of each adjustment. Possible errors within the

translation scripts are only recognized by the direct application of them.

During the translation step (generating the formal models), the relevant scripts are

collected from the database and directly applied. At this moment the ePOWER

Workbench doesn’t have any functionality for pre-processing the scripts. When there

are some errors made during the generation of the translation pattern, the ePOWER

Workbench simply crashes, so no detailed error messages appear to the user (no

feedback). This is very inefficient because you simply do not have the exact position

from where the exception is thrown. A more practical editing tool seems necessary.

A possible solution can be found in implementing an editing tool as a separate

component of the ePOWER Workbench application. Like the tool developed to manage

the set of production rules (discussed in Chapter 12) we can also implement such a

tool in C# which can be used to edit the translation patterns in a more transparent

way. Implementing this tool in .NET (the development environment of the ePOWER

Workbench application) also has the advantage that we can add Visual Basic .NET

functionality to the editor. One can think of syntax highlighting, auto-completion and

macros. In addition, functionality can be added for pre-processing the edited scripts

before they become available in the ePOWER Workbench translation engine. With this,

better error messages can be returned. The user can detect and handle his errors in a

more reliable and transparent environment than what is available in the current

ePOWER Workbench norm extraction tool.

16.3 Transitive and Intransitive Verbs

Another recommendation for future development is the introduction of transitive-

and intransitive verbs. Transitive verbs are verbs with some kind of special property.

In the first place, a transitive verb is an action verb. Secondly, it requires a direct

object to complete its meaning in the sentence. In other words, the action of the verb

is transferred to the object directly (see the Transitive Verbs 2000 website [26]). In

the following examples (taken from the website), the usage of the transitive verb is

clarified. The transitive verb is marked bold and the direct object is underlined.

The judge sentences the man to five years in prison.

- The subject (the judge) applies an action (sentences) to a direct object (the man).

The attorney has revealed the bad news.

- The subject (the attorney) has transferred an action (revealed) to a direct object (bad news).

The defendant could not provide an alibi.

- The subject (the defendant) will transmit an action (could provide) to a direct object (an alibi).

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 69

The above examples can be used to visualize the global meaning of the usage of

the properties of the transitive verbs.

Now let us look at the general usage of intransitive verbs. Intransitive verbs are the

opposite of the transitive verbs. An intransitive verb is also an action verb, but it does

not have a direct object. The action ends rather than being transferred to some

person or object, or is modified by an adverb or adverb phrase.

To determine whether a verb is intransitive you have to ask whether the action is

done in some way, in some direction or to some degree. Does anything receive the

action of the verb? If it does, then the verb is transitive and the person or thing that

receives its action is the direct object (see the Intransitive Verbs 2000 website [27]).

In the following examples (taken from the website), the usage of intransitive verbs is

clarified. The intransitive verb is marked bold and the modifier is underlined.

The man decided against a plea bargain.

- The subject (the man) did something (decided) a particular way (against).

He refused because of his immaturity, not his lack of contrition.

- The subject (He) did something (refused) for a particular reason (because of his immaturity).

Alice complained bitterly.

- The subject (Alice) did something (complained) to a particular degree (bitterly).

At the end of the Roaring '20s, the incarceration index rose slightly.

- The subject (the index) did something (rose) in a particular direction (slightly).

When faced with the problem, the scholar paused.

- The subject (scholar) did something (paused) at a particular time (when faced with the problem).

Earl fell.

- The subject (Earl) did something (fell) and the action did not transfer to someone or something.

The above examples can be used to visualize the global meaning of the usage of

the properties of intransitive verbs.

In our case, these special properties can be used to extend the ePOWER

Workbench norm extraction tool with the knowledge for the generation of formal

associations. One can think of the generation of a production rule of the following

form:

S-> NP 1 V NP 2

The first noun-phrase is the subject of the sentence and the second noun-phrase

is the direct-object of the legal sentence. The verb (V) is the language construct,

which we can use to extract the information about transitive- and intransitive verbs

(the existence of a transitive verb always forces a relation between the subject and

the direct-object of the legal sentence and we can generate a association between

them).

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 70

To be able to use this production rule some extra information has to be added to

the relevant verbs. One can think of an extra feature, which we have to add to all the

transitive verbs and intransitive verbs. This extra feature could be in the form of an

attribute-value-pair Transitive=true/false added to the features column of the

lexicon database table. During the application of the production rules, we now have

the possibility to refer to the lexicon to check if the recognized verb has the transitive

verb property. If so, we can generate a formal association from the extracted

language constructs.

Something we have to keep in our mind is the recognition of the language

construct “is”. This word can be used as part of the global structure of the JLC

Definition 1 (<subject>[is]<definition> , see Appendix A) or it can be used as

part of the already mentioned global structure used for the recognition of the

transitive and intransitive verbs. Special care seems necessary.

In addition, when applying all this knowledge, during the recognition step of the

norm extraction tool, we have to check if this extra knowledge will lead to correct

formal associations. More specific research on the usage of these grammatical

properties seems necessary.

16.4 Fixed Verb-Preposition Couples

Another grammatical property that we can use for future development is the usage

of fixed verb/preposition couples (see Verb and Preposition Collocations 2002 [28]).

Table 11 shows us a subset of all the possible verb/preposition couples that

commonly appear together in the English language.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 71

accuse (someone) of ([doing] something)
add (something) to (something else)
admire (someone) for ([doing] something)
agree on (topic)
agree with (someone)
allow to ([do] something)
apologize to (someone) for ([doing] something)
apply to (a place) for (something)
approve of (something)
argue with (someone) about (topic)
arrive at (a building, room, site, event)
arrive in (a city, country)
ask (someone) about (someone/topic)
ask (someone) for (something)

believe in (something)
belong to (someone)
blame (someone) for ([doing] something)
borrow (something) from (someone)

care about (someone/something/topic)
comment on (topic)
compare (something) to/with (something else)
complain to (someone) about (something)
concentrate on ([doing] something)
congratulate (someone) for/on ([doing] something)
consist of (some things)
consent to ([doing] something)
contribute to (something)
count on (someone) to (do something)
cover (something) with (something else)

decide on (topic)
depend on (someone) for (something)
discuss (something) with (someone)
distinguish (something) from (something else)
dream about/of (someone/something)

escape from (somewhere)
explain (topic) to (someone)
excuse (someone) for ([doing] something)

forgive (someone for ([doing] something)

get rid of (something)
graduate from (a place)

happen to (someone)
help (someone) with (something)
hide (something) from (someone)

insist (up)on (something)
introduce (someone) to (someone else)
invite (someone) to (an event)

keep (something) for (someone)

matter to (someone)

object to (something)

participate in (something)
pay (price) for (something)
pray for (someone/something)
prefer (something) to (something else)
prevent (someone) from ([doing] something)
prohibit (someone) from ([doing] something)
protect (someone) from (something)
provide (someone) with (something)

recover from (something)
rely (up)on (someone/something)
remind (someone) of (something)
rescue (someone) from (something)
respond to (someone/something)

save (someone) from (something)
search for (something)
separate (something) from (something else)
scold (someone) for ([doing] something)
shoot (someone) with (something)
smile at (someone) for ([doing] something)
speak to/with (someone) about (topic) /br> stare
at (something/someone)
stop (someone) from ([doing] something)
subscribe to (something)
substitute (something) for (something
else/someone)
subtract (something) from (something else)
succeed in ([doing] something)
suffer from (something)

take advantage of (someone/something/ situation)
take care of (something/someone)
talk to/with (someone) about (topic)
thank (someone) for ([doing] something)
travel to (somewhere)

vote for (someone)
vouch for (someone)

wait for (someone/something)
wish for (something)
work for (company/something/someone)

TableTableTableTable 11. 11. 11. 11. A list of verbs and prepositions which commonly appear together in the English

language, with the relevant couples for the relevant example marked bold (see website [28]).

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 72

Initially we can add this knowledge to the ePOWER Workbench translation engine

for the generation of formal associations. However, I think, this will become one of

the main targets in getting around the ambiguity problem (or the PP-attachment

problem). For example, when we want to translate the following sentence

it is not allowed to shoot a man with a gun.

this sentence has two possible interpretations. In the first place, one can interpret

that it is not allowed to use a gun to shoot a man. The other can interpret that it is

not allowed to shoot a man who has a gun. The difference in interpretation lies in the

attachment of the preposition (PP-Attachment problem). Because this sentence will

result in two different derivation trees (parse trees), we call this the ambiguity

problem. In my opinion, the foregoing knowledge about the verb/preposition couples

can help to get around ambiguity in some extent. For example, when we apply this

knowledge to the foregoing example we can extract two verb/preposition couples,

which we can use to reason about the exact meaning of the complete sentence. The

first one is “allowed to” (allow to ([do] something)) and the second one is “shoot with”

(shoot (someone) with (something)). To determine the exact meaning of the above

sentence we can use the global meaning of the both verb/preposition couples. The

first couple does not give us enough information to conclude one derivation, because

the ambiguity lies in the second phrase (the “something”-part of the first couple) of

the sentence (“to shoot a man with a gun”). When we look at the global structure of

the second couple, there is stated that you have to shoot someone with something.

This can help us to conclude one derivation in the sense that in the first place we

search for the someone-part (so finding a noun or noun-phrase which holds

information about the person who will be shot) and after that we will search for the

something-part (the thing where the someone-part will be shot with). In our case, we

can use the information to conclude (forcing) that it is not allowed to shoot a man

when we make use of a gun. (Of course, in some cases both derivations make sense,

but since we work in the context of the law we do not expect ambiguity) By looking at

the verb/preposition couples, we can try to figure out what the exact meaning is of

the specific sentence. I can imagine that in my initial solution there are some

shortcomings, but future development has to prove that we can use more

grammatical knowledge about the language constructs to interpret the input

sentences in a more efficient and transparent way without having the problem of

ambiguity.

16.5 Enumerations

In the current norm extraction tool there is not enough knowledge (specification in

the form of a global structure containing enumeration statements) available about the

extraction of legal sentences which hold information in an enumerated way.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 73

For example, when we want to translate the following legal sentence

IB 2001 Art 2.1 lid 1
Taxpayers for the income tax are natural persons who:
a. live in the Netherlands (native taxpayers) or
b. do not live in the Netherlands but do earn Dutch income (foreign taxpayers).

the parsing process will result in the recognition of the noun-phrases, but the

translation engine doesn’t have enough information about the recognition of

enumeration statements for the recognition of the complete legal sentence. When we

look at the above legal sentence we initially can apply the JLC Definition 1

(<subject>[is|are]<definition> , see Appendix A) to recognize the sub sentence

“Taxpayers for the income tax areareareare natural persons”. The other information is in the

form of an enumeration. Both the statements say something about the definition part

of the JLC Definition 1, namely “natural persons”, in the sentence that it adds some

additional information which will result in the fact that this legal sentence only is

applicable (restricted) to natural persons which have the further described properties

(described in the enumeration). To recognize this sentence we have to add some

more knowledge about the global structure of enumeration statements within the

current global structures of the JLC’s. Future research, about the existence and

translation of enumeration statements should yield a way of how we can handle those

statements. This can be done by detecting all possible enumeration statements used

in the source documentation.

16.6 The NLC Formula

At this moment, a concise production rule is generated for the recognition of the

NLC formula (like in the JLC Assignments, Changes and Comparison, see Appendix

A). The tool has functionality to recognize legal sentences containing the following

formula constructs:

x increased by y By using the production rule 14 (Appendix C

“Production rules for Verb-phrase Extraction”)

x decreased by y and translation pattern type="np_formula"

(Appendix F)

at most x By using the production rule 25 (Appendix C)

at least x and translation pattern type = "np" and root in

("bedrag", "waarde", "hoogte") and pp.prep =

"van" (Appendix F)

One can think of more than only these formula constructs (like “sum of x and y”,

“x divided by y”, etcetera), but at this moment it is only possible to recognize and

translate the former constructs to their relevant formal model elements. When by

future research more legal knowledge about the global structure of each of the

possible formula statements becomes available more production rules and translation

patterns can be made.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 74

16.7 Multiplicity in Associations

At this moment, the ePOWER Workbench translation engine can translate legal

sentences, containing formal associations, into their relevant formal model. However,

there is more knowledge necessary to complete the recognition of associations.

Information about the multiplicity of the association is necessary (see the UML

specification [9]). The general UML notation for an association can be found in Figure

31.

FigureFigureFigureFigure 3 3 3 31111. General UML notation for associations.

Figure 31 shows us that for the correct generation of the formal association

between class A and B also information about the multiplicity of role A and role B has

to be available. Table 12 depicts all possible multiplicity indicators. On both ends of

the association, one of these indicators must be added.

Indicator Meaning

0..1 Zero or one

1 One only

0..* Zero or more

1..* One or more

n Only n (where n > 1)

0..n Zero to n (where n > 1)

1..n One to n (where n > 1)

Table Table Table Table 12121212. Multiplicity Indicators for associations.

At this moment, associations are recognized consisting of two noun-phrases,

which are related to each other in some kind of way. The information about the

multiplicity of both the noun-phrases is not yet extracted from the legal sentence by

the current translation engine. There is no global specification about how to extract

multiplicity of associations from legal sentences yet.

My approach would be to examine the noun-phrases for the existence of some

key words that indicate a multiplicity indicator. For example when the language

constructs “many”, “a couple of”, “some”, “a set of”, etcetera can be extracted as

being part of a noun-phrase this will in most cases result in the fact that the

multiplicity indicator is of the form *. One can also think of language constructs,

which can be used to recognize the other multiplicity indicators. However, at this

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 75

moment I think that the global meaning of the introduction of multiplicity of

associations is clear.

16.8 Alternative Storage of the Lexical Data

One of the alternative solutions for warehousing and accessibility of all the words

possible in the Dutch language (the lexicon) is the usage of the computational

morphology technique30 (see A Computational Morphology of English 2004 [29]). At

this moment for each word and word form (like “is”, “was”, “were”, “been” and

etcetera) a separate record in the database is made, because of the grammatical and

lexical difference. By making use of the computational morphology technique only

the singular form of a noun or verb is stored and in runtime the other forms can be

computed. For example, we only have to store the verb-form “ren”31 to calculate the

verb-forms “rent (hij)” “rennen (wij)”, etcetera. We leave out the “en”-part of the

infinitive part of all the different verbs occurring in the Dutch language to calculate

all the other lexical forms of the verb.

The main advantage of such a technique is the fact that we need less storage

space, but a bit more powerful CPU. At this moment, the ePOWER Workbench

application does not make use of this technique. Maybe in the future we can add this

functionality to the lexicon (of the Dutch language) for efficiency reasons, but at this

moment this seems too much overhead.

16.9 Multiple Language Support

Finally, the ePOWER Workbench contains the information and functionality

necessary to recognize and translate a subset of the Dutch legislation. The complete

norm extraction tool as it is present in this version of the ePOWER Workbench is

limited to the recognition of the Dutch language. Because the ePOWER Workbench is

made for multiple language support it can easily be extended with the functionality

necessary for the recognition and translation of other languages (see Chapter 6 for

more detailed information about all relevant parts of the ePOWER Workbench).

At this moment the ePOWER Workbench uses only three language dependent parts

namely, a lexicon (with all the possible words possible in the specific language), a set

of Production rules (for the creation of the Grammar rules and Unification rules) and a

set of Translation patterns (for the translation of the information parsed during the

application of the Production rules). These three parts are necessary for the ePOWER

Workbench to recognize a specific language. So, when these three language

dependent parts are available for another language, the norm extraction tool can be

used as well.

30 The computational morphology technique is only applicable for the storage and accessibility of all the

possible words occurring in the Dutch language. Therefore, in this section the examples are specified in

Dutch. For the usage of the computational morphology technique for the English language I can refer to.

31 The English main verb of the Dutch verb-form “ren” is “to run”.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 76

16.10 Multiple Law Types Support

In the current version of the ePOWER Workbench only a subset of the possible

legal sentences described in the law on income taxes from 2001 (Wet Inkomsten

Belasting 2001, IB2001) can be recognized and translated. This because, my

approach is based on the categorization of the different legal sentences (JLC’s)

defined by De Maat 2003 [6], occurring in the already mentioned law.

Maybe by future research the set of JLC’s can be extended by determining more

knowledge about the global structure of the legal sentences described in other law

types.

Globally, this thesis research and aforegoing researches had made a step towards

formalising legal knowledge using natural language processing.

16.11 Errors and other Classification Problems

The ePOWER Workbench only gives a result if a sentence can be classified to at

least one JLC. If this is not possible, then at this moment no feedback is given to the

user. Obviously, this situation needs improving. We suggest the following

architecture for interaction with the user:

From this architecture, we can conclude that there are two types of errors. In the

first place, there is a possibility that the legal sentence is incorrect. On the other

hand, it is also possible that the current set of production rules and the lexicon are

incomplete.

16.12 Improvements on our Implementation

In this section, we list a number of possible improvements of the current

implementation of the ePOWER Workbench. Also, an alternative implementation

technique, Attribute Grammars, will be discussed.

Legal
Sentence

> 1 Parse Tree User chooses the right one

User refines the applicable produciton rule

= 1 Parse Tree Correct

No Parse Tree Unknown token parsed Suggest corrections
using partial matching

Adding a new token to the
lexicon

Otherwise, all tokens are
known

Giving alternative
production rules by partial
matching

Adding/Changing a
production rule

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 77

One of the shortcomings of the current implementation is the fact that there is

more than one language32 used in the translation tool. First, the parsing process is

based on a set of Production rules. These rules are stored in a separate database

(translate-nl, see Section 6.1) and described by the XML formalism (see Section 6.2).

When the parsing process is finished, the second step is to translate the derivation

tree into a formal model. For this purpose, the translation tool makes use of the

translation patterns, which are also stored in the same database. These translation

patterns are in the form of a Visual Basic script (see Section 6.3). The rest of the

functionality (see Figure 6) is implemented in the .NET environment (by the

programming language C#). Therefore, we can conclude that there are three used,

namely C#, XML and Visual Basic.

A disadvantage of this, is the fact that during the execution of the ePOWER

Workbench tool, different languages have to be able to communicate with each other.

For example, for the extraction of the normative legal constructs (the application of

the production rules), the translation tool obtains the production rules from an XML

file. Before these rules can be used the XML file should be parsed at runtime, so

exceptions are possibly thrown during this process. No error messages appear when

the user makes some adaptations to the production rule set. This is one of the main

problems of the current version of the ePOWER Workbench. In Chapter 12 an editing

tool is described, the Grammar Editor, which can be used to edit, delete and create

production rules. The disadvantages of using the database for modification purposes

are now dealt with. The problem of determining possible errors is still there, but at

this moment the editing tool cannot compile XML script.

Almost the same problem arises during the application of the translation patterns.

These patterns are described in Visual Basic and are stored in a database. Possible

error messages only appear at runtime, and the user does not receive a clear error

message with information about the place (in the code) from where the error

originates. In addition, a lot of syntactical overhead is present when using Visual

Basic script. For every production rule a translation pattern (stored in a different

record in the database table) has been made. When some functionality (in the form of

a programming method) is applicable for more than one translation pattern, we have

to copy and paste this method in every record in the database where this

functionality can be used. Reusing programming code is impossible, and we get

duplication of effort and errors. Another disadvantage of using Visual Basic scripts is

the fact that there is too much control (it is not as declarative as one could hope). In

Section 16.2, a possible editing tool is described.

The main reason of the disadvantages mentioned above, is the fact that both these

scripts are stored in a database. In general editing a record in a database is not

efficient. There is no syntax highlighting, no auto-completion and no macros

functionality. In addition, there is no support to determine errors (typing-, syntax-

and type errors). At this moment, we have to make use of the debugging facility of

the .NET environment to be able to determine the place where from a possible error

is thrown.

32 In this chapter, the word “languages” is used. In this case, also the word phrase “programming

languages and formalisms” can be used.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 78

After discussing the current implementation of the ePOWER Workbench, it is time

to discuss a possible alternative implementation of the main problem. We simply

want to make use of one single programming language (if necessary using a

database) to describe the complete functionality of the ePOWER Workbench

translation tool. For example, we really want to change the specification language

used for the translation patterns into a more declarative language, like PROLOG, ML

or HASKELL (most preferable a strongly typed language).

One of the possibilities is the usage of an Attibute Grammar for natural language

processing (see Knuth, D., E., 1968 [35]). Attribute grammars are an extension of

context-free grammars as a mechanism for the semantics of a context-free language

within the syntax of the language (Mehdi Jazayeri, William F. Ogden, and William C.

Rounds 1975 [34]). Usually, this language is more declarative than Visual Basic script

and the C# language. In other words, an attribute grammar can be used to define

semantic rules for a parse tree. In the Netherlands at the University of Nijmegen a

project started called the AGFL-project (Affix Grammars over a Finite Lattice) which

goal is the development of a technology for Natural Language Processing by using

the Attribute Grammar technique (see The AGFL Grammar Work Lab 2004 [36]). This

homepage gives an exact description about how this technique can be used for

natural language purposes. A parser for the Dutch language is included as well as a

parser for some other languages. Of course, we have to add some extra functionality

to the parser to be able to translate the parsed information into a formal model. This

can be done by specifying semantic rules (with an attribute grammar).

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 79

References

[1] Van Engers, T.M., Boekenoogen, M., 2003, Improving Legal Quality - an

application report, in Proceedings of ICAIL2003, ISBN 1-58113-747-8, ACM

Press.

[2] ePower Workbench 2.6, Belastingdienst Utrecht, Centrum voor Proces en

Productontwikkeling (B/CPP), Utrecht, 2000

[3] USER DOCUMENTATION ePOWER Workbench 2.6, August 2003

[4] Organisatie van de Belastingdienst, 2004, website

http://www.belastingdienst.nl/corpinfo/inhoud/inh_org_corp.html.

[5] E-POWER Homepage, 2004, E-POWER Consortium, website

http://www.lri.jur.uva.nl/~epower/.

[6] De Maat, E., 2003, Natural Legal Modelling. Formalising Legal Knowledge

using Natural Language Processing, Master Thesis, Universiteit van Twente,

Department of Computer Science, Twente

[7] Microsoft Office Word 2003 Support, Microsoft Corporation, 2004, website

http://office.microsoft.com/assistance/topcategory.aspx?

TopLevelCat=CH79001816&CTT=6&Origin=ES790020011043.

[8] Zwemmer, J.W., 2002, Belastingwetten 2002, SDU Uitgevers, Amersfoort,

ISBN: 9076629781

[9] Fowler, M., Scott, K., 2000, Uml Distilled. A Brief guide to Standard Object

Modelling Language, 2nd Ed. Addison Wesley

[10] Warmer, J., Kleppe, A., 1999, The Object Constraint Language. Precise

Modelling with UML, Addison Wesley

[11] Van Engers, T.M., Glassée, Erwin, 2001, Facilitating the Legislation Process

Using a Shared Conceptual Model, in IEEE Intelligent Systems,

January/February 2001 p50-58.

[12] Egberts, Niels, 2004, Proces Modellering van Temporele Aspecten in Wet- en

Regelgeving, , , , Master Thesis, Universiteit van Utrecht, Department of

Computer Science, Utrecht

[13] Van Gog, R., Van Engers, T.M., 2001, Modelling Legislation Using Natural

Language, Proceedings of the 2001 IEEE Systems, Man and Cybernetics

Conference.

[14] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W., 1991,

Object-Oriented Modelling and Design. Englewood Cliffs NJ, Prentice-Hall.

[15] Frederiks, P., 1997, Object-oriented modeling based on information

grammars. Nijmegen.

[16] Nijssen, G.M. 1989, Grondslagen van Bestuurlijke Informatiesystemen.

Slenaken. Nijssen Adviesbureau voor Informatica.

[17] Shieber, Stuart M. An Introduction to Unification-based approaches to

grammar. Stanford, Center for the study of Language and Information, 1986.

[18] The Natural Language Processing Dictionary, keyword “agreement”, Artificial

Intelligence Group, School of Computer Science and Engineering, University

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 80

of NSW, Bill Wilson, 2003, website

http://www.cse.unsw.edu.au/~billw/nlpdict.html.

[19] XML Developer Center, The Language of Information Interchange, 2004

Microsoft Corporation, website http://msdn.microsoft.com/xml/default.aspx

[20] Rule Based Systems, alison@ 1994, website

http://www.cee.hw.ac.uk/~alison/ai3notes/section2_4_4.html.

[21] Coppen, P.A., Haeseryn, W., De Vriend, F., De determinator, De Elektronische

ANS (Algemene Nederlandse Spraakkunst), 2004, Stichting ANS, website

http://oase.uci.kun.nl/~ans/e-ans/14/04/body.html.

[22] Visual Basic Language and Run-Time Reference, Nedcomp Hosting, website

http://www.nedcomp.nl/support/origdocs/dotnetsdk

/vblr7net/vboriVBLangRefTopNode.htm.

[23] .NET, 2003, Microsoft Corporation, website http://msdn.microsoft.com/.

[24] .NET Framework Class Library ArrayList class, 2004, Microsoft Corporation,

website http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/cpref/html/frlrfsystemcollectionsarraylistclasstopic.asp.

[25] Data Modelling: Primary and Foreign keys, Information Technology Services

at The University of Texas at Austin, 2004, website

http://www.utexas.edu/its/windows/database/datamodeling/dm/keys.html.

[26] Transitive Verbs, The Tongue Untied, A guide to grammar, punctuation and

style, 2000, Kellee Weinhold, website

http://grammar.uoregon.edu/verbs/transitive.html.

[27] Intransitive Verbs, The Tongue Untied, A guide to grammar, punctuation and

style, 2000, Kellee Weinhold, website

http://grammar.uoregon.edu/verbs/intransitive.html.

[28] Verb and Preposition Collocations, eslgold.com, 2002, website

http://www.eslgold.com/site.jsp?

resource=pag_stu_grammar_expl_exa_exer_hi_verb_prep.

[29] A Computational Morphology of English, 2004, SIL International,

http://www.sil.org/pckimmo/v2/doc/englex.html.

[30] Unification-based syntactic parser PATR, SIL International Partners in

Language Development, 2004, SIL International, website

http://www.sil.org/computing/catalog/show_software.asp?id=37.

[31] Liduan, Faridah, 2004, Design and Implementation of a UML/OCL Compiler,

Master Thesis, University of Utrecht, Department of Computer Science,

Utrecht

[32] KDNet Symposium: "Knowledge-Based Services for the Public Sector", June

2004, http://symposium.kdnet.org/symposium/symposium.jsp.

[33] Van Engers, T.M., Sayah, K., Van Gog, R., De Maat, E., Automated Norm

Extraction from Legal Texts, 2004, Proceedings KDNet Symposium

[34] Jazayeri, M., Ogden, W., M., Rounds, W., C., The intrinsically exponential

complexity of the circularity problem for attribute grammars,

Communications of the Association for Computing Machinery, 18(12):679-

706, December 1975.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 81

[35] Donald E. Knuth, D., E., Semantics of context-free languages. Mathematical

Systems Theory, 2(2):127-145, 1968.

[36] The AGFL Grammar Work Lab, 2004, http://www.cs.kun.nl/agfl/

[37] Van Gog, R., Production rule Set and the Translation Patterns for the Noun-

phrase Extraction, Unpublished.

[38] The Free Dictionary.com, Chomsky Hierarchy, 2004, Farlex, Inc., website

http://encyclopedia.thefreedictionary.com/Chomsky%20hierarchy

[39] Houtman, J., Coordination and Constituency, A Study in Categorial Grammar,

1994, p. 19-51, University of Groningen

[40] Pearson, J., Natural Language Processing: Semantic Analysis, 2003, The

College of New Jersey, Department of Computer Science

[41] Costa, F., Frasconi, P., Lombardo, V., Soda, G., Towards incremental parsing

of natural language using recursive neural networks, 2001, University of

Florence, Department of Systems and Computer Science

[42] Hellwig, P., Natural Language Parsers, A Course in Cooking, 2002,

Heidelberg

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 82

Appendix A

In this thesis, I make use of the categorization of the different legal sentences (see

Chapter 5) as it is described in the thesis research of Emiel de Maat [6]. This

categorization specifies for each of the different legal sentence categories (also

known as JLC’s) a rule-based structure33. This rule-based structure is used to define

Production rules to recognize and extract the necessary language constructs for the

generation of the relevant formal model. In this appendix a description of the rule

based structure of each of the different JLC types is depicted as it is described in the

thesis of Emiel de Maat (with the main terms of the global structures marked bold).

Deeming ProvisionDeeming ProvisionDeeming ProvisionDeeming Provision

<subject> [wordt]<denotation of time period> [geacht]<fiction>

Explicit Explicit Explicit Explicit ConditionConditionConditionCondition

 [If]<subject><feature>
 [Insofar]<subject><feature>

Implicit ConditionImplicit ConditionImplicit ConditionImplicit Condition (subordinate clause) (subordinate clause) (subordinate clause) (subordinate clause)

 [who|which|that][who|which|that][who|which|that][who|which|that]<feature>

DefinitionDefinitionDefinitionDefinition

 <subject> [are|is]<definition> (1)

 [By]<subject> [is understood]<definition> (2)

 [By]<subject> [is also understood]<definition> (2 broaden)

 [By]<subject> [is not understood]<definition> (2 narrow)

[As]<term> [is considered]<new_term> (3)

[As]<term> [is also considered]<new_term> (3 broaden)

 [As]<term> [is not considered]<new_term> (3 narrow)

 <new_term> [is set to equal with]<term> (4)

 <new_term> [is qualified as]<new_term> (4)

33 In the thesis of Emiel de Maat, a subset of all possible legal sentence categorizations is described.

Further research on this subject is likely to lead to more knowledge about the global structure

(categorization) of legal sentences. At this moment, I have used only the currently available knowledge

about the global structure of the legal sentences.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 83

Application ProvisionApplication ProvisionApplication ProvisionApplication Provision

 <reference> [applies]

 <reference> [does not apply]

Value AssignmentValue AssignmentValue AssignmentValue Assignment, change and comparison, change and comparison, change and comparison, change and comparison

 <subject> [is|amounts to]<formula>

 <subject> [is set to]<formula>

RelationsRelationsRelationsRelations

 [to apply (to)]

Scope DefinitionsScope DefinitionsScope DefinitionsScope Definitions

 [For the application of]<reference><statement>

ReferReferReferReferencesencesencesences

 <term> [as meant in]<reference>

Application of another sourceApplication of another sourceApplication of another sourceApplication of another source

 [due to application of]<reference>

 [based on]<reference>

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 84

Appendix B

To be able to use the XLIST Grammar rule we have to add some extra functionality

to the ePOWER Workbench. With this extra functionality every individual word, except

words with the cat-feature is equal to PUNCT, has the X-type property. This will

result in the fact that every word or a sequence of word can be parsed when no other

specific Grammar rule is applicable (this becomes handy when a sequence of words

has to be parsed for the generation of an attribute). In the programming code the

adaptations can be found (marked bold).

Workbench.NaturalLanguage.Lexicon.Lexicon.Workbench.NaturalLanguage.Lexicon.Lexicon.Workbench.NaturalLanguage.Lexicon.Lexicon.Workbench.NaturalLanguage.Lexicon.Lexicon.LookupLexemesLookupLexemesLookupLexemesLookupLexemes(StringCollection (StringCollection (StringCollection (StringCollection

lexelexelexelexemesToLookup, string mode, CultureInfo culture)mesToLookup, string mode, CultureInfo culture)mesToLookup, string mode, CultureInfo culture)mesToLookup, string mode, CultureInfo culture)

public FeatureSetCollectionCollection LookupLexemes(Strin gCollection lexemesToLookup, string 1
mode,CultureInfo culture) 2
{ 3
 FeatureSetCollectionCollection retVal = new FeatureSetCollectionCollection(); 4
 if (lexemesToLookup.Count > 0) 5
 { 6
 DataTable LexiconTable = this .lexiconDAC. 7

SelectLexiconEntriesForLexemes(lexemesToLookup,mode ,culture).Tables[0]; 8
 FeatureSetCollection fsc = null ; 9
 10
 foreach (string lexeme in lexemesToLookup) 11
 { 12
 if (retVal[lexeme] == null) //als nog niet opgezocht... (!) 13
 { 14

 string expr = "sem=" + "'" + this .lexiconDAC.EscapeSingleQuotes(lexeme,'\'') + "'"; 15
 DataRow[] foundRows = LexiconTable.Sele ct(expr); 16
 if (foundRows.Length!=0) 17
 fsc = GetFeatureSetsFromRows(foundRow s); 18
 else 19
 fsc = ApplyLexiconAdditionRegExes(lex eme,mode,culture); 20
 if (fsc == null) 21
 { 22
 if (! this .htLexiconSupplements.ContainsKey(mode+"-"+culture. Name)) 23
 this .LoadLexiconSupplements(mode,culture); 24

ArrayList lexiconSupplements = (ArrayList) this .htLexiconSupplements[mode+"-25
"+culture.Name]; 26

 foreach (ILexiconSupplement lexiconSupplement in lexiconSupplements) 27
 { 28
 fsc = lexiconSupplement.ProcessLexeme (lexeme, mode, culture); 29
 if (fsc!= null) break ; 30
 } 31
 } 32
 if (fsc == null) 33
 fsc = new FeatureSetCollection(); 34
 foreach (FeatureCollection fc in fsc) 35
 { 36
 if (this .lexemeFeatureName != null) 37
 fc.Add(lexemeFeatureName, new FeatureValue(lexeme)); 38
 ApplyIncrementalRegExes(lexeme, fc, m ode, culture); 39
 } 40
 // START X Category 41
 // Deze code zorgt dat elk woord altijd ook als categorie X wordt toegevoegd. 42
 if (".,;()?!".IndexOf(lexeme)<0) 43
 { 44
 FeatureCollection fcX = new FeatureCollection(); 45
 fcX.Add("sem", new FeatureValue(lexeme)); 46
 fcX.Add("root", new FeatureValue(lexeme)); 47
 fcX.Add("cat", new FeatureValue("X")); 48
 fsc.Add(fcX); 49

 } 50
 // END X Category 51
 retVal[lexeme] = fsc; 52
 } //end: if(retVal[lexeme] == null) 53
 } //end: foreach(string lexeme in lexemesToLookup) 54
 } //end: if(lexemesToLookup.Count > 0) 55
 return retVal; 56
 }57

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 85

Appendix C

The following table contains a global view of the complete production rule set

(a description of the Grammar rules and the relevant Unification rules).

This pretty printer functionality, which we used to obtain the rules below, has

been added to the ePOWER Workbench by Ron van Gog as an extra component. It

generates a general view of the complete Production rule set by examining the

class model (see Chapter 6). Furthermore, the PC-PATR parser can use it, which is

an alternative for the parser used within the ePOWER Workbench, at this moment.

For more information about the PC-PATR parser, see Unification-based syntactic

parser PATR 2004 [30].

The rules for the noun phrase extraction are based on Ron van Gog [37]. Note

that some of the rules have been modified by the author.

Production rules for the Noun-Phrase Extraction

1111

Rule{}

PP PP PP PP ----> PP_1 CONJ_2 PP_3> PP_1 CONJ_2 PP_3> PP_1 CONJ_2 PP_3> PP_1 CONJ_2 PP_3

<PP inResult> = false

<PP sem type> = pp_conj

<PP_1 sem type> = pp

<PP sem conj> = <CONJ_2 sem>

<PP sem s1> = <PP_1 sem>

<PP sem s2> = <PP_3 sem>

2222

Rule{}

VC VC VC VC ----> VCI_1> VCI_1> VCI_1> VCI_1

<VC inResult> = false

<VCI_1 head mood> = INDICATIVE

<VCI_1 head subcat> = MAIN

<VC comp> = <VCI_1 head comp>

<VC head> = <VCI_1 head>

<VC sem finit main> = <VCI_1 sem>

<VC sem finit root> = <VCI_1 root>

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 86

3333

Rule{}

VC VC VC VC ----> VCI_1> VCI_1> VCI_1> VCI_1

<VC inResult> = false

<VCI_1 head mood> = INDICATIVE

<VCI_1 head subcat> = COPULA

<VC comp> = <VCI_1 head comp>

<VC head> = <VCI_1 head>

<VC sem finit main> = <VCI_1 sem>

<VC sem finit root> = <VCI_1 root>

4444

Rule{}

PP PP PP PP ----> PREP_1 PP_2> PREP_1 PP_2> PREP_1 PP_2> PREP_1 PP_2

<PP inResult> = false

<PP sem type> = pp2

<PP sem main> = <PP_2 sem>

<PP sem prep> = <PREP_1 root>

5555

Rule{}

NP NP NP NP ----> NP_1 PN_2 VP_3> NP_1 PN_2 VP_3> NP_1 PN_2 VP_3> NP_1 PN_2 VP_3

<NP inResult> = true

<NP sem modif type> = bijvoeglijke_bijzin

<PN_2 head subcat> = RELATIVE

<NP sem modif main> = <VP_3 sem>

<NP sem modif pn> = <PN_2 sem>

<NP sem> = <NP_1 sem>

<NP head agr> = <NP_1 head agr>

<NP head agr> = <PN_2 head agr>

<NP head agr> = <VP_3 head agr>

6666

Rule{}

NP NP NP NP ----> NP_1 CONJ_2 NP_3> NP_1 CONJ_2 NP_3> NP_1 CONJ_2 NP_3> NP_1 CONJ_2 NP_3

<NP inResult> = true

<NP head agr per> = 3

<NP sem type> = np_conj

<NP_1 sem conj> = null

<NP sem conj> = <CONJ_2 sem>

<NP sem s1> = <NP_1 sem>

<NP sem s2> = <NP_3 sem>

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 87

7777

Rule{}

PP PP PP PP ----> PREP_1 NP_2> PREP_1 NP_2> PREP_1 NP_2> PREP_1 NP_2

<PP inResult> = false

<PP sem type> = pp

<PP sem main> = <NP_2 sem>

<PP sem prep> = <PREP_1 root>

8888

Rule{}

VP VP VP VP ----> (ADJP_1) VC_2> (ADJP_1) VC_2> (ADJP_1) VC_2> (ADJP_1) VC_2

<VP inResult> = false

<VP sem type> = vp

<VC_2 head subcat> = COPULA

<VP head> = <VC_2 head>

<VP sem adj> = <ADJP_1 sem>

<VP sem pred> = <VC_2 sem>

9999

Rule{}

NP NP NP NP ----> NP_1 PN_2 XLIST_3 PUNCT_4> NP_1 PN_2 XLIST_3 PUNCT_4> NP_1 PN_2 XLIST_3 PUNCT_4> NP_1 PN_2 XLIST_3 PUNCT_4

<NP inResult> = true

<NP sem modif type> = bijvoeglijke_bijzin

<PN_2 head subcat> = RELATIVE

<NP sem modif main> = <XLIST_3 sem>

<NP sem modif pn> = <PN_2 sem>

<NP sem> = <NP_1 sem>

<NP head agr> = <NP_1 head agr>

<NP head agr> = <PN_2 head agr>

10101010

Rule{}

NP NP NP NP ----> NP_1 ADV_2 (NP_3) XLIST_4 PU> NP_1 ADV_2 (NP_3) XLIST_4 PU> NP_1 ADV_2 (NP_3) XLIST_4 PU> NP_1 ADV_2 (NP_3) XLIST_4 PUNCT_5NCT_5NCT_5NCT_5

<NP inResult> = true

<NP sem modif type> = nabepaling

<ADV_2 head subcat> = RELATIVE

<NP sem modif main> = <XLIST_4 sem>

<NP sem modif adv> = <ADV_2 sem>

<NP sem modif np> = <NP_3 sem>

<NP sem> = <NP_1 sem>

<NP head agr> = <NP_1 head agr>

<NP head agr> = <ADV_2 head agr>

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 88

11111111

Rule{}

VP VP VP VP ----> (ADVP_1) VC_2> (ADVP_1) VC_2> (ADVP_1) VC_2> (ADVP_1) VC_2

<VP inResult> = false

<VP sem type> = vp

<VP head> = <VC_2 head>

<VP sem adv> = <ADVP_1 sem>

<VP sem pred> = <VC_2 sem>

12121212

Rule{}

VC VC VC VC ----> VCI_1 VCI_2> VCI_1 VCI_2> VCI_1 VCI_2> VCI_1 VCI_2

<VC inResult> = false

<VCI_1 head mood> = INDICATIVE

<VCI_1 head subcat> = AUX

<VCI_2 head subcat> = MAIN

<VC comp> = <VCI_2 head comp>

<VC head> = <VCI_1 head>

<VC sem finit main> = <VCI_1 sem>

<VC sem finit root> = <VCI_1 root>

<VC sem hoofd main> = <VCI_2 main>

<VC sem hoofd root> = <VCI_2 root>

<VCI_1 head needs> = <VCI_2 head mood>

13131313

Rule{}

VC VC VC VC ----> VCI_1 VCI_2> VCI_1 VCI_2> VCI_1 VCI_2> VCI_1 VCI_2

<VC inResult> = false

<VCI_1 head mood> = INDICATIVE

<VCI_1 head subcat> = AUX

<VCI_2 head subcat> = COPULA

<VC comp> = <VCI_2 head comp>

<VC head> = <VCI_1 head>

<VC sem finit main> = <VCI_1 sem>

<VC sem finit root> = <VCI_1 root>

<VC sem hoofd main> = <VCI_2 sem>

<VC sem hoofd root> = <VCI_2 root>

<VCI_1 head needs> = <VCI_2 head mood>

14141414

Rule{}

VCI VCI VCI VCI ----> V_1> V_1> V_1> V_1

<VCI inResult> = false

<VCI head> = <V_1 head>

<VCI root> = <V_1 root>

<VCI sem> = <V_1 sem>

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 89

15151515

Rule{}

NP NP NP NP ----> A_1> A_1> A_1> A_1

<NP inResult> = true

<NP sem type> = np_ref

<NP sem isValue> = false

<NP sem main> = <A_1 sem>

<NP sem href> = <A_1 href>

16161616

Rule{}

ADVP ADVP ADVP ADVP ----> ADV_1> ADV_1> ADV_1> ADV_1

<ADVP inResult> = false

<ADVP sem hd type> = adv

<ADVP sem type> = adv_list

<ADVP sem hd main> = <ADV_1 sem>

17171717

Rule{}

ADVP ADVP ADVP ADVP ----> PP_1> PP_1> PP_1> PP_1

<ADVP inResult> = false

<ADVP sem type> = adv_list

<ADVP sem hd> = <PP_1 sem>

18181818

Rule{}

ADVP ADVP ADVP ADVP ----> ADVP_1 ADVP_2> ADVP_1 ADVP_2> ADVP_1 ADVP_2> ADVP_1 ADVP_2

<ADVP inResult> = false

<ADVP list> = true

<ADVP sem type> = adv_list

<ADVP_1 sem hd type> = adv

<ADVP_2 list> = false

<ADVP sem hd> = <ADVP_2 sem hd>

<ADVP sem tl> = <ADVP_1 sem>

19191919

Rule{}

ADJP ADJP ADJP ADJP ----> ADJP_1 ADJP_2> ADJP_1 ADJP_2> ADJP_1 ADJP_2> ADJP_1 ADJP_2

<ADJP inResult> = false

<ADJP list> = true

<ADJP sem type> = adj_list

<ADJP_2 list> = false

<ADJP sem hd> = <ADJP_2 sem>

<ADJP sem tl> = <ADJP_1 sem>

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 90

20202020

Rule{}

ADJP ADJP ADJP ADJP ----> (ADVP_1) NUM_2> (ADVP_1) NUM_2> (ADVP_1) NUM_2> (ADVP_1) NUM_2

<ADJP inResult> = false

<ADJP sem type> = adj

<NUM_2 head subcat> = ORDINAL

<ADJP sem adv> = <ADVP_1 sem>

<ADJP sem main> = <NUM_2 sem>

<ADJP sem root> = <NUM_2 root>

21212121

Rule{}

ADJP ADJP ADJP ADJP ----> (ADVP_1) AD> (ADVP_1) AD> (ADVP_1) AD> (ADVP_1) ADJ_2J_2J_2J_2

<ADJP inResult> = false

<ADJP sem type> = adj

<ADJP sem adv> = <ADVP_1 sem>

<ADJP sem main> = <ADJ_2 sem>

<ADJP sem root> = <ADJ_2 root>

22222222

Rule{}

ADJP ADJP ADJP ADJP ----> (ADVP_1) ADJP_2 CONJ_3 ADJP_4> (ADVP_1) ADJP_2 CONJ_3 ADJP_4> (ADVP_1) ADJP_2 CONJ_3 ADJP_4> (ADVP_1) ADJP_2 CONJ_3 ADJP_4

<ADJP inResult> = false

<ADJP sem type> = adj_conj

<ADJP_2 list> = false

<ADJP_2 sem conj> = null

<ADJP_4 list> = false

<ADJP sem adv> = <ADVP_1 sem>

<ADJP sem conj> = <CONJ_3 sem>

<ADJP sem s1> = <ADJP_2 sem>

<ADJP sem s2> = <ADJP_4 sem>

23232323

Rule{}

N N N N ----> NUM_1> NUM_1> NUM_1> NUM_1

<N inResult> = false

<N head agr gen> = MF

<N isValue> = true

<N head agr> = <NUM_1 head agr>

<N root> = <NUM_1 root>

<N sem> = <NUM_1 sem>

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 91

24242424

Rule{}

NP NP NP NP ----> CUR_1 NUM_2> CUR_1 NUM_2> CUR_1 NUM_2> CUR_1 NUM_2

<NP inResult> = true

<NP sem type> = np_money

<NP sem isValue> = true

<NUM_2 subcat> = CARDINAL

<NP sem main> = <NUM_2 sem>

<NP sem root> = <NUM_2 root>

<NP sem cur> = <CUR_1 sem>

25252525

Rule{}

NP NP NP NP ----> (DETE_1) (ADJP_2) N_3 (PP_4)> (DETE_1) (ADJP_2) N_3 (PP_4)> (DETE_1) (ADJP_2) N_3 (PP_4)> (DETE_1) (ADJP_2) N_3 (PP_4)

<NP inResult> = true

<NP head agr per> = 3

<NP sem type> = np

<NP head> = <DETE_1 head>

<NP head> = <N_3 head>

<NP sem adj> = <ADJP_2 sem>

<NP sem det> = <DETE_1 sem>

<NP sem main> = <N_3 sem>

<NP sem ntype> = <N_3 ntype>

<NP sem pp> = <PP_4 sem>

<NP sem root> = <N_3 root>

<NP sem isValue> = <N_3 isValue>

26262626

Rule{}

N N N N ----> V_1> V_1> V_1> V_1

<N inResult> = false

<N head agr gen> = N

<N head agr num> = S

<N ntype> = V

<N isValue> = false

<V_1 head mood> = INFINITIVE

<V_1 head subcat> = MAIN

<N root> = <V_1 root>

<N sem> = <V_1 sem>

28282828

Rule{}

DETE DETE DETE DETE ----> DET_1> DET_1> DET_1> DET_1

<DETE inResult> = false

<DETE head> = <DET_1 head>

<DETE sem> = <DET_1 sem>

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 92

29292929

Rule{}

DETE DETE DETE DETE ----> PN_1> PN_1> PN_1> PN_1

<DETE inResult> = false

<PN_1 head subcat> = {PERSONAL, RELATIVE}

<PN_1 head agr case> = C2

<DETE sem> = <PN_1 sem>

<DETE head> = <PN_1 head>

33330000

Rule{}

DETE DETE DETE DETE ----> NUM_1> NUM_1> NUM_1> NUM_1

<DETE inResult> = false

<NUM_1 head subcat> = CARDINAL

<DETE head> = <NUM_1 head>

<DETE sem> = <NUM_1 sem>

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 93

Production rules for the Verb-Phrase Extraction

1111

Rule{(Application of another source)}

PREP PREP PREP PREP ----> PREP_1 N_2 PREP_3> PREP_1 N_2 PREP_3> PREP_1 N_2 PREP_3> PREP_1 N_2 PREP_3

<PREP inResult> = true

<PREP_1 root> = {op,bij}

<N_2 root> = {grond,toepassing}

<PREP_3 root> = van

<PREP sem> = <PREP root>

<PREP sem> = <N_2 root>

2222

Rule{(Application Provision)}

S S S S ----> NP_1 V_2 (ADV_3) PREP_4 N_5> NP_1 V_2 (ADV_3) PREP_4 N_5> NP_1 V_2 (ADV_3) PREP_4 N_5> NP_1 V_2 (ADV_3) PREP_4 N_5

<S inResult> = true

<S sem type> = s_app

<V_2 root> = zijn

<V_2 head subcat> = MAIN

<ADV_3 root> = niet

<PREP_4 root> = van

<N_5 root> = toepassing

<S sem ref> = <NP_1 sem>

<S sem adv> = <ADV_3 sem>

<NP_1 head agr> = <V_2 head agr>

3333

Rule{(Deeming Provision s_order=sv)}

S S S S ----> NP_1 V_2 (XLIST_3) V_4 XLIST_5> NP_1 V_2 (XLIST_3) V_4 XLIST_5> NP_1 V_2 (XLIST_3) V_4 XLIST_5> NP_1 V_2 (XLIST_3) V_4 XLIST_5

<S inResult> = true

<S sem type> = s_dp

<S s_order> = sv

<V_2 root> = worden

<V_2 head subcat> = AUX

<V_4 root> = achten

<V_4 head subcat> = MAIN

<S head agr> = <NP_1 head agr>

<S head agr> = <V_2 head agr>

<S sem subject> = <NP_1 sem>

<S sem dp_part1> = <V_2 sem>

<S sem time_period> = <XLIST_3 sem>

<S sem dp_part2> = <V_4 sem>

<S sem fiction> = <XLIST_5 sem>

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 94

4444

Rule{(Deeming Provision s_order=vs)}

S S S S ----> V_1 NP_2 (XLIST_3) V_4 XLIST_5> V_1 NP_2 (XLIST_3) V_4 XLIST_5> V_1 NP_2 (XLIST_3) V_4 XLIST_5> V_1 NP_2 (XLIST_3) V_4 XLIST_5

<S inResult> = false

<S sem type> = s_dp

<S s_order> = vs

<V_1 root> = worden

<V_1 head subcat> = AUX

<V_4 root> = achten

<V_4 head mood> = PARTICIPLE

<S head agr> = <V_1 head agr>

<S head agr> = <NP_2 head agr>

<S sem dp_part1> = <V_1 sem>

<S sem subject> = <NP_2 sem>

<S sem time_period> = <XLIST_3 sem>

<S sem dp_part2> = <V_4 sem>

<S sem fiction> = <XLIST_5 sem>

5555

Rule{(Definition 1)}

S S S S ----> NP_1 V_2 NP_3> NP_1 V_2 NP_3> NP_1 V_2 NP_3> NP_1 V_2 NP_3

<S inResult> = true

<S sem type> = s_def

<V_2 root> = zijn

<V_2 head subcat> = MAIN

<NP_3 sem isValue> = false

<S head agr> = <NP_1 head agr>

<S head agr> = <V_2 head agr>

<S head> = <V_2 head>

<S sem subject> = <NP_1 sem>

<S sem direct_object> = <NP_3 sem>

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 95

6666

Rule{(Definition 2 s_order=sv)}

S S S S ----> PREP_1 NP> PREP_1 NP> PREP_1 NP> PREP_1 NP_2 V_3 (ADV_4) V_5 NP_6_2 V_3 (ADV_4) V_5 NP_6_2 V_3 (ADV_4) V_5 NP_6_2 V_3 (ADV_4) V_5 NP_6

<S inResult> = true

<S sem type> = s_def2

<S s_order> = sv

<PREP_1 root> = onder

<V_3 root> = worden

<V_3 head subcat> = AUX

<V_3 head agr per> = 3

<ADV_4 root> = {mede, niet}

<V_5 root> = verstaan

<V_5 head mood> = PARTICIPLE

<S sem subject> = <NP_2 sem>

<S sem definition> = <NP_6 sem>

<S sem adv> = <ADV_4 sem>

7777

Rule{(Definition 2 s_order=vs)}

S S S S ----> V_1 (ADV_2) PREP_3 NP_4 (ADV_5) V_6 NP_7> V_1 (ADV_2) PREP_3 NP_4 (ADV_5) V_6 NP_7> V_1 (ADV_2) PREP_3 NP_4 (ADV_5) V_6 NP_7> V_1 (ADV_2) PREP_3 NP_4 (ADV_5) V_6 NP_7

<S inResult> = false

<S sem type> = s_def2

<S s_order> = vs

<V_1 root> = worden

<V_1 head subcat> = AUX

<V_1 head agr per> = 3

<ADV_2 root> = {mede,niet}

<PREP_3 root> = onder

<ADV_5 root> = {mede, niet}

<V_6 root> = verstaan

<V_6 head mood> = PARTICIPLE

<V_6 head agr per> = 3

<S sem subject> = <NP_4 sem>

<S sem definition> = <NP_7 sem>

<S sem adv> = <ADV_2 sem>

<S sem adv> = <ADV_5 sem>

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 96

8888

Rule{(Definition 2 s_order=vs)}

S S S S ----> V_1 (ADV_2) V_3 PREP_4 NP_5 NP_6> V_1 (ADV_2) V_3 PREP_4 NP_5 NP_6> V_1 (ADV_2) V_3 PREP_4 NP_5 NP_6> V_1 (ADV_2) V_3 PREP_4 NP_5 NP_6

<S inResult> = false

<S sem type> = s_def2

<S s_order> = vs

<V_1 root> = worden

<V_1 head subcat> = AUX

<V_1 head agr per> = 3

<ADV_2 root> = {mede, niet}

<V_3 root> = verstaan

<V_3 head mood> = PARTICIPLE

<V_3 head agr per> = 3

<PREP_4 root> = onder

<S sem subject> = <NP_5 sem>

<S sem definition> = <NP_6 sem>

<S sem adv> = <ADV_2 sem>

9999

Rule{(Definition 3 s_order=sv)}

S S S S ----> PREP_1 NP_2 V_> PREP_1 NP_2 V_> PREP_1 NP_2 V_> PREP_1 NP_2 V_3 (ADV_4) NP_53 (ADV_4) NP_53 (ADV_4) NP_53 (ADV_4) NP_5

<S inResult> = true

<S sem type> = s_def3

<S s_order> = sv

<PREP_1 root> = tot

<V_3 root> = behoren

<V_3 head subcat> = MAIN

<ADV_4 root> = {mede,niet}

<S sem subject> = <NP_2 sem>

<S sem adv> = <ADV_4 sem>

<S sem definition> = <NP_5 sem>

<V_3 head agr> = <NP_5 head agr>

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 97

10101010

Rule{(Definition 3 s_order=vs)}

S S S S ----> V_1 (ADV_2) PREP_3 NP_4 (ADV_5) NP_6> V_1 (ADV_2) PREP_3 NP_4 (ADV_5) NP_6> V_1 (ADV_2) PREP_3 NP_4 (ADV_5) NP_6> V_1 (ADV_2) PREP_3 NP_4 (ADV_5) NP_6

<S inResult> = false

<S sem type> = s_def3

<S s_order> = vs

<V_1 root> = behoren

<V_1 head subcat> = MAIN

<ADV_2 root> = {mede,niet}

<PREP_3 root> = tot

<ADV_5 root> = {mede,niet}

<S sem subject> = <NP_4 sem>

<S sem adv> = <ADV_2 sem>

<S sem adv> = <ADV_5 sem>

<S sem definition> = <NP_6 sem>

<V_1 head agr> = <NP_6 head agr>

11111111

Rule{(Definition 4 s_order=sv)}

S S S S ----> NP_1 V_2 (SDEF_3) V_4 X_5 NP_6> NP_1 V_2 (SDEF_3) V_4 X_5 NP_6> NP_1 V_2 (SDEF_3) V_4 X_5 NP_6> NP_1 V_2 (SDEF_3) V_4 X_5 NP_6

<S inResult> = true

<S sem type> = s_def4

<S s_order> = sv

<V_2 root > = worden

<V_2 head subcat> = AUX

<V_2 head agr per> = 3

<V_4 root> = {gelijkstellen,aanmerken}

<V_4 head mood> = PARTICIPLE

<V_4 head subcat> = MAIN

<X_5 sem> = {met,als}

<S sem subject> = <NP_6 sem>

<S sem definition> = <NP_1 sem>

<S sem sdef> = <SDEF_3 sem>

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 98

12121212

Rule{(Definition 4 s_order=vs)}

S S S S ----> V_1 (SDEF_2) NP_3 V_4 X_5 NP_6> V_1 (SDEF_2) NP_3 V_4 X_5 NP_6> V_1 (SDEF_2) NP_3 V_4 X_5 NP_6> V_1 (SDEF_2) NP_3 V_4 X_5 NP_6

<S inResult> = true

<S sem type> = s_def4

<S s_order> = vs

<V_1 root > = worden

<V_1 head subcat> = AUX

<V_1 head agr per> = 3

<V_4 root> = {aanmerken,gelijkstellen}

<V_4 head subcat> = MAIN

<V_4 head mood> = PARTICIPLE

<X_5 sem> = {met,als}

<S sem subject> = <NP_6 sem>

<S sem definition> = <NP_3 sem>

<S sem sdef> = <SDEF_2 sem>

13131313

Rule{(Explicit Condition)}

EC EC EC EC ----> CONJ_1 NP_2 XLIST_3> CONJ_1 NP_2 XLIST_3> CONJ_1 NP_2 XLIST_3> CONJ_1 NP_2 XLIST_3

<EC inResult> = false

<EC sem type> = ec

<CONJ_1 root> = {indien, voorzover}

<EC sem subject> = <NP_2 sem>

<EC sem feature> = <XLIST_3 sem>

14141414

Rule{(Formula)}

NP NP NP NP ----> NP_1 V_2 PREP_3 NP_4> NP_1 V_2 PREP_3 NP_4> NP_1 V_2 PREP_3 NP_4> NP_1 V_2 PREP_3 NP_4

<NP inResult> = false

<NP sem type> = np_formula

<NP sem isValue> = true

<NP_1 sem isValue> = true

<V_2 root> = {verminderen,vermeerderen}

<V_2 head mood> = PARTICIPLE

<PREP_3 root> = met

<NP_4 sem isValue> = true

<NP sem x> = <NP_1 sem>

<NP sem y> = <NP_4 sem>

<NP sem plusminus> = <V_2 root>

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 99

15151515

Rule{(Main Sentence)}

S S S S ----> SDEF_1 S_2> SDEF_1 S_2> SDEF_1 S_2> SDEF_1 S_2

<S inResult> = true

<S_2 s_order> = vs

<S head agr> = <S_2 head agr>

<S sem sdef> = <SDEF_1 sem>

<S sem> = <S_2 sem>

16161616

Rule{(Main Sentence)}

S_DELETED S_DELETED S_DELETED S_DELETED ----> S_XXX_1 (PUNCT_2) CONJ_3 XLIST_4> S_XXX_1 (PUNCT_2) CONJ_3 XLIST_4> S_XXX_1 (PUNCT_2) CONJ_3 XLIST_4> S_XXX_1 (PUNCT_2) CONJ_3 XLIST_4

<S_DELETED inResult> = false

<S_XXX_1 s_order> = sv

<PUNCT_2 root> = ,

<S_DELETED head agr> = <S_XXX_1 head agr>

<S_DELETED sem bijzin> = <XLIST_4 sem>

<S_DELETED sem main> = <S_XXX_1 sem>

<S_DELETED sem adv> = <CONJ_3 sem>

17171717

Rule{(Main sentence)}

S S S S ----> EC_1 PUNCT_2 (ADV_3) S_4> EC_1 PUNCT_2 (ADV_3) S_4> EC_1 PUNCT_2 (ADV_3) S_4> EC_1 PUNCT_2 (ADV_3) S_4

<S inResult> = true

<PUNCT_2 root> = ,

<ADV_3 root> = dan

<S_4 s_order> = vs

<S head agr> = <S_4 head agr>

<S sem ec> = <EC_1 sem>

<S sem> = <S_4 sem>

18181818

Rule{(Main Sentence)}

S S S S ----> S_1 (PUNCT_2) EC_3> S_1 (PUNCT_2) EC_3> S_1 (PUNCT_2) EC_3> S_1 (PUNCT_2) EC_3

<S inResult> = true

<S_1 s_order> = sv

<PUNCT_2 root> = ,

<S head agr> = <S_1 head agr>

<S sem ec> = <EC_3 sem>

<S sem> = <S_1 sem>

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 100

19191919

Rule{(References)}

PREP PREP PREP PREP ----> (CONJ_1) V_2 PREP_3> (CONJ_1) V_2 PREP_3> (CONJ_1) V_2 PREP_3> (CONJ_1) V_2 PREP_3

<CONJ_1 root> = als

<V_2 root> = bedoelen

<V_2 head mood> = PARTICIPLE

<PREP_3 root> = in

<PREP sem> = <PREP root>

<PREP sem> = <V_2 root>

20202020

Rule{(Relations)}

S S S S ----> NP_1 V_2 PP_3> NP_1 V_2 PP_3> NP_1 V_2 PP_3> NP_1 V_2 PP_3

<S inResult> = true

<S sem type> = s_rel

<NP_1 head agr case> = C1

<V_2 root> = gelden

<PP_3 sem prep> = voor

<S sem subject> = <NP_1 sem>

<S sem pp> = <PP_3 sem>

<S sem verb> = <V_2 sem>

<NP_1 head agr> = <V_2 head agr>

21212121

Rule{(Scope Definition)}

SDEF SDEF SDEF SDEF ----> PREP_1 (DET_2) N_3 PREP_4 NP_5> PREP_1 (DET_2) N_3 PREP_4 NP_5> PREP_1 (DET_2) N_3 PREP_4 NP_5> PREP_1 (DET_2) N_3 PREP_4 NP_5

<SDEF inResult> = false

<SDEF sem type> = scopedef

<PREP_1 root> = voor

<DET_2 root> = de

<N_3 root> = toepassing

<PREP_4 root> = van

<NP_5 sem type> = np_ref

<SDEF sem ref> = <NP_5 sem>

<DET_2 head agr> = <N_3 head agr>

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 101

22222222

Rule{(Value Assignment)}

S S S S ----> NP_1 V_2 (N_3) (PREP_4) NP_5> NP_1 V_2 (N_3) (PREP_4) NP_5> NP_1 V_2 (N_3) (PREP_4) NP_5> NP_1 V_2 (N_3) (PREP_4) NP_5

<S inResult> = true

<S sem type> = s_va

<NP_1 sem isValue> = true

<V_2 root> = {zijn,bedragen}

<V_2 head subcat> = MAIN

<N_3 root> = gelijk

<PREP_4 root> = aan

<NP_5 sem isValue> = true

<S sem subject> = <NP_1 sem>

<S sem formula> = <NP_1 head agr>

<S sem formula> = <V_2 head agr>

<S sem formula> = <NP_5 sem>

23232323

Rule{(Value Assignment)}

S S S S ----> NP_1 V_2 PREP_3 NP_4 V_5> NP_1 V_2 PREP_3 NP_4 V_5> NP_1 V_2 PREP_3 NP_4 V_5> NP_1 V_2 PREP_3 NP_4 V_5

<S inResult> = true

<S sem type> = s_va

<NP_1 sem isValue> = true

<V_2 root> = worden

<V_2 head subcat> = AUX

<PREP_3 root> = op

<NP_4 sem isValue> = true

<V_5 root> = stellen

<V_5 head mood> = PARTICIPLE

<S sem subject> = <NP_1 sem>

<S sem formula> = <NP_1 head agr>

<S sem formula> = <V_2 head agr>

<S sem formula> = <NP_4 sem>

24242424

Rule{(Xlist)}

XLIST XLIST XLIST XLIST ----> X_1 (XLIST_2)> X_1 (XLIST_2)> X_1 (XLIST_2)> X_1 (XLIST_2)

<XLIST inResult> = false

<XLIST sem type> = x_list

<XLIST sem hd> = <X_1 sem>

<XLIST sem tl> = <XLIST_2 sem>

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 102

22225555

Rule{NP}

NP NP NP NP ----> NP_1 NP_2> NP_1 NP_2> NP_1 NP_2> NP_1 NP_2

<NP inResult> = true

<NP sem root> = Koninkrijk der Nederlanden

<NP sem type> = np

<NP_1 sem root> = koninkrijk

<NP_2 sem root> = Nederland

<NP_2 head agr case> = C2

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 103

Appendix D

This Appendix contains some screenshots of the Automated Rule Management

tool (also known as the Grammar Editor). Within these screenshots, the access-

button (“Print to File”) for the Printer is also depicted.

The Grammar Editor with all the Production rules (Grammar- and Unification

rules) in a tree like structure.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 104

One of the collapsed (tree) nodes for the JLC Definition (Definition 2). By this

screenshot all the Unification rules are becoming visible, so the grammatical

meaning of each of the NLC’s (Natural Language Constructs) will become clear.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 105

The possibility to add/edit/delete a Production rule and the possibility to add

new NLC’s.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 106

The possibility to edit/delete a GrammarElement (NLC) and the possibility to

add new GrammarFeatures (Unification Rules) for each of the NLC’s.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 107

The possibility to edit/delete a GrammarFeature and the possibility to add new

GrammarFeatures (Unification Rules) within a GrammarFeature.

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 108

Appendix E

The programming code for the Automated Rule Management tool (also known

as the Grammar Editor).

Workbench.NaturalLanguage.Grammar.Editor.GrammarClassModel.Workbench.NaturalLanguage.Grammar.Editor.GrammarClassModel.Workbench.NaturalLanguage.Grammar.Editor.GrammarClassModel.Workbench.NaturalLanguage.Grammar.Editor.GrammarClassModel.cscscscs

/// /////////////// 1
/// WORKBENCH /// 2
/// /// 3
/// /// 4
/// /// 5
/// © Copyright Belastingdienst (http://www.belastingd ienst.nl)/// 6
/// /////////////// 7
/// Revision information: /// 8
/// $Workfile:: GrammarClassModel.cs $ /// 9
/// $Revision:: 1 $ /// 10
/// $Author:: Ron_van_gog, Kamal_Sayah $ /// 11
/// $Date:: 24/02/04 $ /// 12
/// /////////////// 13
 14
using System; 15
using System.Collections; 16
using System.Data; 17
using System.Data.SqlClient; 18
using System.Xml; 19
using Belastingdienst.Utilities; 20
 21
// Het klassemodel voor het inlezen en koppelen van de productieregels aan een interne 22
structuur. De //productieregels kunnen gedurende he t programma worden 23
// gemuteerd en later vanuit dit klassemodel worden teruggeschreven naar de database (ook de 24
XML //generatie wordt hier beschreven). 25
 26
namespace Workbench.NaturalLanguage.Grammar.Editor 27
{ 28
 public class GrammarRuleCollection 29
 { 30

// Deze variabele bevat de gegevens voor de connect ie naar de benodigde database. Deze gegevens 31
//worden uit de Windows-registry gehaald. 32
string connString = 33
(string)RegistryAndAppSettingsReader.GetSettingValue(@"Bel astingdienst\NLP","DbConnectionString"); 34

 35
 // De databaseName wordt nu keihard gekoppeld aan de Translate-NL database. Later moet er aan de 36

//GrammarForm extra functionaliteit worden 37
 // toegevoegd, zodat de gebruiker kan kiezen tuss en verschillende talen. 38
 public string databaseName = "Translate-nl"; 39
 40
 // Deze klasse zorgt voor de correcte sortering v an de knopen in de TreeStructure 41
 public class mySort : IComparer 42
 { 43
 int IComparer.Compare(Object x, Object y) 44
 { 45

return ((new CaseInsensitiveComparer()).Compare(((GrammarRule) x).Name, 46
((GrammarRule)y).Name)); 47

 } 48
 } 49
 50

 // De collectie van alle productieregels 51
 public ArrayList RuleCollection = new ArrayList(); 52
 53
 public GrammarRuleCollection() 54
 { 55
 } 56
 57

 // Deze constructor krijgt de datatable van de Gra mmarForm.GrammarForm_Load methode en vult de 58
//interne 59

 // productieregelcollectie (en sorteert deze). 60
 public GrammarRuleCollection(DataTable dt) 61
 { 62
 foreach (DataRow row in dt.Rows) 63
 { 64
 GrammarRule rule = new GrammarRule(row); 65
 RuleCollection.Add(rule); 66
 } 67
 Sort(); 68
 } 69
 70
 // Het toevoegen van een productieregel 71
 public void Add(object obj) 72
 { 73

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 109

 RuleCollection.Add(obj); 74
 Sort(); 75
 } 76
 77
 // Het sorteren van de productieregels 78
 public void Sort() 79
 { 80
 IComparer myComparer = new mySort(); 81
 RuleCollection.Sort(myComparer); 82
 } 83
 84

 // In deze methode wordt er een nieuwe connectie g emaakt met de database en wordt de complete 85
//(gemuteerde) productieregelset 86
// weggeschreven. 87

 public void Save() 88
 { 89
 SqlConnection dbConnection = null ; 90
 SqlCommand dbCommand = null ; 91
 SqlDataAdapter dbDataAdapter = null ; 92
 93
 DataSet dsRules = new DataSet(); 94
 string queryString = "SELECT * FROM ProductionRules"; 95
 String fullQueryString = "use ["+databaseName+"] ; "+queryString; 96
 97
 try 98
 { 99
 dbConnection = new SqlConnection(connString); 100
 dbConnection.Open(); 101
 dbCommand = new SqlCommand(fullQueryString,(SqlConnection)dbConnec tion); 102
 dbDataAdapter = new SqlDataAdapter(); 103
 dbDataAdapter.SelectCommand = dbCommand; 104
 dbDataAdapter.Fill(dsRules); 105
 DataTable tblRules = dsRules.Tables[0]; 106
 107
 ArrayList deletedItems = new ArrayList(); 108
 foreach (GrammarRule rule in this .RuleCollection) 109
 { 110
 rule.Save(tblRules); 111
 112

 // Als een regel is verwijderd in de Form dan word t deze regel nog wel bewaard 113
//in een collectie, zodat 114
// deze later alsnog bij het wegschrijven kan worde n verwijderd uit de 115
//RuleCollection 116

 if (rule.isDeleted) 117
 { 118
 deletedItems.Add(rule); 119
 } 120
 } 121
 foreach (GrammarRule rule in deletedItems) 122
 { 123
 RuleCollection.Remove(rule); 124
 } 125
 126
 SqlCommandBuilder builder = new SqlCommandBuilder(dbDataAdapter); 127
 dbDataAdapter.Update(dsRules); 128
 129
 dsRules = new DataSet(); 130
 dbDataAdapter = new SqlDataAdapter(); 131
 dbDataAdapter.SelectCommand = dbCommand; 132
 dbDataAdapter.Fill(dsRules); 133
 tblRules = dsRules.Tables[0]; 134
 135
 // Het eerst leegmaken en daarna opnieuw vullen van de RuleCollection 136
 RuleCollection.Clear(); 137
 foreach (DataRow row in tblRules.Rows) 138
 { 139
 GrammarRule rule = new GrammarRule(row); 140
 RuleCollection.Add(rule); 141
 } 142
 Sort(); 143
 144
 } 145
 catch (System.Data.SqlClient.SqlException exc) 146
 { 147
 throw ; // Er wordt een exceptie gegooid! 148
 } 149
 finally 150
 { 151
 dbConnection.Close(); 152
 } 153
 } 154
 155

// Dez methode zorgt voor een zogenaamde Pretty Pri nt van de inhoud van de RuleCollection (in 156
//HTML) 157

 public void Print(string Filename) 158
 { 159
 string Result="<HTML><HEAD><TITLE></TITLE><BODY><CENTER>< TABLE border=1>"; 160
 int pos = 0; 161

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 110

 162
Result += "<CAPTION>Grammar 163
Rules</CAPTION>
"; 164

 foreach (GrammarRule rule in RuleCollection) 165
 { 166
 if (pos == 0) 167
 { 168
 Result += "<TR>"; 169
 } 170

 Result += "<TD valign=top>"+ rule.Print() + 171
"</TD>"; 172

 if (pos == 2) 173
 { 174
 Result += "</TR>"; 175
 pos = 0; 176
 } 177
 else 178
 { 179
 pos++; 180
 } 181
 } 182
 if (pos > 0) 183
 { 184
 Result += "</TR>"; 185
 } 186
 Result+="</TABLE></CENTER></BODY></HTML>"; 187
 188
 // Het wegschrijven naar een *.html file 189
 System.IO.StreamWriter sw = new System.IO.StreamWriter(Filename); 190
 sw.Write(Result); 191
 sw.Flush(); 192
 sw.Close(); 193
 194

 // Het starten van een programma om de inhoud van de weggeschreven file te tonen (Internet 195
//Explorer) 196

 try 197
 { 198
 System.Diagnostics.Process.Start(Filename); 199
 } 200
 catch (Exception e) 201
 { 202
 throw new Exception(); 203
 } 204
 } 205
 } 206
 207
 // In deze klasse worden de complete productierege ls, dus inclusief de features en de elementen 208

//aangemaakt. Tevens wordt er functionaliteit 209
 // toegevoegd zodat de regels kunnen worden vertaa ld naar het bijbehorende XML-script. 210
 public class GrammarRule 211
 { 212
 public string Name; 213
 public string Description; 214
 public GrammarElement Lhs; 215
 public ArrayList Rhs = new ArrayList(); 216
 public bool isDeleted = false ; 217
 public bool isNew = false ; 218
 public int Id; 219
 220
 public GrammarRule(string name) 221
 { 222
 Name = name; 223
 Lhs = new GrammarElement("new"); 224
 Lhs.Lhs = true ; 225
 } 226
 public GrammarRule(DataRow row) 227
 { 228
 GrammarElement element; 229
 Id = (int)row["id"]; 230
 Name = row["Name"].ToString(); 231
 Description = row["Description"].ToString(); 232
 233
 // Het XML document wordt aangemaakt en gevuld 234
 XmlDocument xmlDummyDoc = new XmlDocument(); 235
 236

 // Voor elk kind van de LHS (element => FeatureS et) wordt de bijbehorende XML 237
gegenereerd. 238

 xmlDummyDoc.LoadXml(row["LHS"].ToString()); 239
 XmlNode xmlRuleLhs = xmlDummyDoc.DocumentElement ; 240
 foreach (XmlNode temp in xmlRuleLhs.ChildNodes) 241
 { 242
 if (temp.NodeType == XmlNodeType.Element && temp.Name .Equals("FeatureSet")) 243
 { 244
 Lhs = new GrammarElement(temp); 245
 Lhs.Lhs = true ; 246
 break ; 247
 } 248
 } 249

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 111

 // Voor elk kind van de RHS (element => RHSEleme nt) wordt de bijbehorende XML 250
gegenereerd. 251

 xmlDummyDoc.LoadXml(row["RHS"].ToString()); 252
 XmlNode xmlRuleRhs = xmlDummyDoc.DocumentElement ; 253
 foreach (XmlNode temp in xmlRuleRhs.ChildNodes) 254
 { 255
 if (temp.NodeType == XmlNodeType.Element && temp.Name .Equals("RhsElement")) 256
 { 257
 foreach (XmlNode temp2 in temp.ChildNodes) 258
 { 259

if (temp2.NodeType == XmlNodeType.Element && 260
temp2.Name.Equals("FeatureSet")) 261

 { 262
 element = new GrammarElement(temp2); 263
 element.Lhs = false ; 264
 foreach (XmlAttribute attr in temp.Attributes) 265
 { 266
 if (attr.Name.Equals("nothingAllowed")) 267
 { 268
 element.Optional = bool .Parse(attr.Value); 269
 break ; 270
 } 271
 } 272
 this .Rhs.Add(element); 273
 break ; 274
 } 275
 } 276
 } 277
 } 278
 } 279
 280
 // De Pretty Print methode 281
 public string Print() 282
 { 283
 string Result = ""; 284
 Result += "Name: "+ Name +"" + "
" + " Description: " + Description + 285

"
"; 286
 Result += Lhs.Name + " =>"; 287
 foreach (GrammarElement element in Rhs) 288
 { 289
 if (element.Optional) 290
 { 291
 Result += " (" + element.Name + ")"; 292
 } 293
 else 294
 { 295
 Result += " " + element.Name; 296
 } 297
 } 298
 Result += "
" + Lhs.Print(); 299
 foreach (GrammarElement element in Rhs) 300
 { 301
 Result += element.Print(); 302
 } 303
 Result += "
"; 304
 return Result; 305
 } 306
 307
 // De methode die het complete XML-script oplever d dat hoort bij de LHS van elke 308

productieregel 309
 public string createLhsXml() 310
 { 311
 XmlDocument doc = new XmlDocument(); 312
 XmlNode node = doc.CreateElement("Lhs"); 313
 node.AppendChild(this .Lhs.createXml(doc)); 314
 return node.OuterXml; 315
 } 316
 317
 // De methode die het complete XML-script oplever d dat hoort bij de RHS van elke 318

productieregel 319
 public string createRhsXml() 320
 { 321
 XmlDocument doc = new XmlDocument(); 322
 XmlNode node = doc.CreateElement("Rhs"); 323
 foreach (GrammarElement element in this .Rhs) 324
 { 325
 // De vaste constructen in het XML-script toevo egen 326
 XmlNode temp = doc.CreateElement("RhsElement"); 327
 XmlAttribute attr = doc.CreateAttribute("nothin gAllowed"); 328
 attr.Value = element.Optional.ToString().ToLowe r(); 329
 temp.Attributes.Append(attr); 330
 temp.AppendChild(element.createXml(doc)); 331
 node.AppendChild(temp); 332
 } 333
 return node.OuterXml; 334
 } 335
 336
 // Deze methode oveschrijft de gemuteerde regels in de database 337

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 112

 public void Save(DataTable tblRules) 338
 { 339
 DataRow row; 340
 341
 // Nieuw record in database en gegevens in recor d schrijven 342
 // Het id van het nieuwe record in onze class op nemen. 343
 if (isNew) 344
 { 345
 row = tblRules.NewRow(); 346
 row["Name"] = Name; 347
 row["Description"] = Description; 348
 row["LHS"] = createLhsXml(); 349
 row["RHS"] = createRhsXml(); 350
 tblRules.Rows.Add(row); 351
 } 352
 else if (isDeleted) 353
 { 354
 // Record verwijderen uit database 355
 DataRow[] rows = tblRules.Select("id="+Id.ToStr ing()); 356
 row = rows[0]; 357
 row.Delete(); 358
 } 359
 else 360
 { 361
 // Record opzoeken in database en gegevens over schrijven 362
 DataRow[] rows = tblRules.Select("id="+Id.ToStr ing()); 363
 row = rows[0]; 364
 row["Name"] = Name; 365
 row["Description"] = Description; 366
 row["LHS"] = createLhsXml(); 367
 row["RHS"] = createRhsXml(); 368
 } 369
 } 370
 } 371
 372
 // Deze klasse slaat alle informatie op die nodig is voor een GrammarElement (in het 373

klassemodel) 374
 public class GrammarElement 375
 { 376
 public string _name; 377
 public bool Optional= false ; 378
 public bool Lhs= false ; 379
 public ArrayList FeatureSet = new ArrayList(); 380
 public GrammarElement(string name) 381
 { 382
 _name = name; 383
 GrammarFeature f = new GrammarFeature("cat"); 384
 f.Atomic = true ; 385
 f.Fixed = true ; 386
 f.FeatureValue = name; 387
 FeatureSet.Add(f); 388
 } 389
 public GrammarElement(XmlNode node) // Verwacht een <Feat ureSet> tag 390
 { 391
 GrammarFeature feature; 392
 foreach (XmlNode temp in node) 393
 { 394
 if (temp.NodeType == XmlNodeType.Element && temp.Name .Equals("Feature")) 395
 { 396
 feature = new GrammarFeature(temp); 397
 if (feature.Name.Equals("cat")) 398
 { 399
 this ._name = feature.FeatureValue; 400
 } 401
 this .FeatureSet.Add(feature); 402
 } 403
 } 404
 } 405
 406
 public string Name 407
 { 408
 get 409
 { 410
 return _name; 411
 } 412
 set 413
 { 414
 _name = value ; 415
 foreach (GrammarFeature f in FeatureSet) 416
 { 417
 if (f.Name.Equals("cat")) 418
 { 419
 f.FeatureValue = value ; 420
 } 421
 } 422
 } 423
 } 424
 425

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 113

 // De Pretty Print methode 426
 public string Print() 427
 { 428
 string Result = "<I>" + Name + "</I>" + "
"; 429
 foreach (GrammarFeature feature in FeatureSet) 430
 { 431
 Result += feature.Print(1); 432
 } 433
 return Result; 434
 } 435
 436
 // De methode die de XMLNode retourneert van elk GrammarElement 437
 public XmlNode createXml(XmlDocument doc) 438
 { 439
 XmlNode node = doc.CreateElement("FeatureSet"); 440
 foreach (object temp in this .FeatureSet) 441
 { 442
 node.AppendChild(((GrammarFeature)temp).createX ml(doc)); 443
 } 444
 return node; 445
 } 446
 } 447
 448
 // Deze klasse slaat alle informatie op die nodig is voor een GrammarFeature (in het 449

klassemodel) 450
 public class GrammarFeature 451
 { 452
 public string Name; 453
 public string FeatureValue; 454
 public int EquationId = -1; 455
 public bool Atomic = false ; 456
 public bool Fixed = false ; 457
 public ArrayList FeatureSet = new ArrayList(); 458
 public GrammarFeature(string name) 459
 { 460
 Name = name; 461
 } 462
 public GrammarFeature(XmlNode node) // Verwacht een <Feat ure> tag 463
 { 464
 foreach (XmlAttribute attr in node.Attributes) 465
 { 466
 if (attr.Name.Equals("name")) 467
 { 468
 this .Name = attr.Value; 469
 } 470
 else if (attr.Name.Equals("equationId")) 471
 { 472
 this .EquationId = int .Parse(attr.Value); 473
 } 474
 } 475
 foreach (XmlNode temp in node.ChildNodes) 476
 { 477
 if (temp.NodeType == XmlNodeType.Element && temp.Name .Equals("AtomicValue")) 478
 { 479
 this .Atomic = true ; 480
 this .FeatureValue = temp.InnerText; 481
 break ; 482
 } 483
 if (temp.NodeType == XmlNodeType.Element && temp.Name .Equals("ComplexValue")) 484
 { 485
 GrammarFeature feature; 486
 this .Atomic = false ; 487
 foreach (XmlNode temp2 in temp.ChildNodes) 488
 { 489

if (temp2.NodeType == XmlNodeType.Element && 490
temp2.Name.Equals("Feature")) 491

 { 492
 feature = new GrammarFeature(temp2); 493
 if (feature.Name.Equals("cat")) 494
 { 495
 this .Name = feature.FeatureValue; 496
 } 497
 this .FeatureSet.Add(feature); 498
 } 499
 } 500
 break ; 501
 } 502
 } 503
 } 504
 505
 // De Pretty Print methode 506
 public string Print(int Indent) 507
 { 508
 string Result = ""; 509
 for (int x = 0; x < Indent ; x++) 510
 { 511
 Result += " "; 512
 } 513

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 114

 Result += "" + Name + ""; 514
 if (EquationId > -1) 515
 { 516
 Result += "[" + EquationId.ToString() + "]"; 517
 } 518
 if (Atomic) 519
 { 520
 Result += " = " + FeatureValue + "
"; 521
 } 522
 else 523
 { 524
 Result += "
"; 525
 foreach (GrammarFeature feature in FeatureSet) 526
 { 527
 Result += feature.Print(Indent+1); 528
 } 529
 } 530
 return Result; 531
 } 532
 533
 // De methode die de XMLNode retourneert van elk GrammarFeature 534
 public XmlNode createXml(XmlDocument doc) 535
 { 536
 XmlNode node = doc.CreateElement("Feature"); 537
 XmlNode temp; 538
 XmlAttribute attr; 539
 attr = doc.CreateAttribute("name"); 540
 attr.Value = this .Name; 541
 node.Attributes.Append(attr); 542
 if (this .EquationId > -1) 543
 { 544
 attr = doc.CreateAttribute("equationId"); 545

 attr.Value = this .EquationId.ToString(); // deze heeft standaard waa rde "false", dus 546
// gewoon toString methode aanroepen voor de waarde 547

 node.Attributes.Append(attr); 548
 } 549
 if (this .Atomic) 550
 { 551
 temp = doc.CreateElement("AtomicValue"); 552
 temp.InnerText = this .FeatureValue; 553
 node.AppendChild(temp); 554
 } 555
 else 556
 { 557
 temp = doc.CreateElement("ComplexValue"); 558
 foreach (GrammarFeature feature in this .FeatureSet) 559
 { 560
 temp.AppendChild(feature.createXml(doc)); 561
 } 562
 node.AppendChild(temp); 563
 } 564
 return node; 565
 } 566

 } 567
} 568

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 115

Workbench.NaturalLanguage.Grammar.Editor.GrammarElementEdit.csWorkbench.NaturalLanguage.Grammar.Editor.GrammarElementEdit.csWorkbench.NaturalLanguage.Grammar.Editor.GrammarElementEdit.csWorkbench.NaturalLanguage.Grammar.Editor.GrammarElementEdit.cs

/// /////////////// 1
/// WORKBENCH /// 2
/// /// 3
/// /// 4
/// /// 5
/// © Copyright Belastingdienst (http://www.belastingd ienst.nl)/// 6
/// /////////////// 7
/// Revision information: /// 8
/// $Workfile:: GrammarElementEdit.cs $/// 9
/// $Revision:: 1 $/// 10
/// $Author:: Ron_van_gog, Kamal_Sayah $/// 11
/// $Date:: 24/02/04 $/// 12
/// /////////////// 13
using System; 14
using System.Drawing; 15
using System.Collections; 16
using System.ComponentModel; 17
using System.Windows.Forms; 18
 19
// Deze klasse omschrijft de complete GrammarElemen tEdit-form 20
 21
namespace Workbench.NaturalLanguage.Grammar.Editor 22
{ 23
 public class GrammarElementEdit : System.Windows.Forms.Form 24
 { 25
 private GrammarRule myRule; 26
 private GrammarElement myElement; 27
 private bool newElement; 28
 private System.Windows.Forms.Label label1; 29
 private System.Windows.Forms.TextBox tbName; 30
 private System.Windows.Forms.CheckBox cbOptional; 31
 private System.Windows.Forms.Button cbOk; 32
 private System.Windows.Forms.Button cbCancel; 33
 private System.Windows.Forms.Label lbCaptionEdit; 34
 private System.Windows.Forms.Label lbCaptionNew; 35
 private System.ComponentModel.Container components = null ; 36
 37
 public GrammarElementEdit() 38
 { 39
 // 40
 // Required for Windows Form Designer support 41
 // 42
 InitializeComponent(); 43
 44
 // 45
 // TODO: Add any constructor code after Initiali zeComponent call 46
 // 47
 } 48
 49
 /// <summary> 50
 /// Clean up any resources being used. 51
 /// </summary> 52
 protected override void Dispose(bool disposing) 53
 { 54
 if (disposing) 55
 { 56
 if (components != null) 57
 { 58
 components.Dispose(); 59
 } 60
 } 61
 base .Dispose(disposing); 62
 } 63
 64
 #region Windows Form Designer generated code 65
 /// <summary> 66
 /// Required method for Designer support - do not modi fy 67
 /// the contents of this method with the code editor. 68
 /// </summary> 69
 private void InitializeComponent() 70
 { 71

System.Resources.ResourceManager resources = new 72
System.Resources.ResourceManager(typeof (GrammarElementEdit)); 73
this .label1 = new System.Windows.Forms.Label(); 74
this .tbName = new System.Windows.Forms.TextBox(); 75
this .cbOptional = new System.Windows.Forms.CheckBox(); 76
this .cbOk = new System.Windows.Forms.Button(); 77
this .cbCancel = new System.Windows.Forms.Button(); 78
this .lbCaptionEdit = new System.Windows.Forms.Label(); 79
this .lbCaptionNew = new System.Windows.Forms.Label(); 80
this .SuspendLayout(); 81
// 82
// label1 83
// 84

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 116

this .label1.AccessibleDescription = 85
resources.GetString("label1.AccessibleDescription") ; 86
this .label1.AccessibleName = resources.GetString("label 1.AccessibleName"); 87
this .label1.Anchor = 88
((System.Windows.Forms.AnchorStyles)(resources.GetO bject("label1.Anchor"))); 89
this .label1.AutoSize = ((bool)(resources.GetObject("label1.AutoSize"))); 90
this .label1.Dock = 91
((System.Windows.Forms.DockStyle)(resources.GetObje ct("label1.Dock"))); 92
this .label1.Enabled = ((bool)(resources.GetObject("label1.Enabled"))); 93
this .label1.Font = ((System.Drawing.Font)(resources.Get Object("label1.Font"))); 94
this .label1.Image = ((System.Drawing.Image)(resources.G etObject("label1.Image"))); 95
this .label1.ImageAlign = 96
((System.Drawing.ContentAlignment)(resources.GetObj ect("label1.ImageAlign"))); 97
this .label1.ImageIndex = ((int)(resources.GetObject("label1.ImageIndex"))); 98
this .label1.ImeMode = 99
((System.Windows.Forms.ImeMode)(resources.GetObject ("label1.ImeMode"))); 100
this .label1.Location = 101
((System.Drawing.Point)(resources.GetObject("label1 .Location"))); 102
this .label1.Name = "label1"; 103
this .label1.RightToLeft = 104
((System.Windows.Forms.RightToLeft)(resources.GetOb ject("label1.RightToLeft"))); 105
this .label1.Size = ((System.Drawing.Size)(resources.Get Object("label1.Size"))); 106
this .label1.TabIndex = ((int)(resources.GetObject("label1.TabIndex"))); 107
this .label1.Text = resources.GetString("label1.Text"); 108
this .label1.TextAlign = 109
((System.Drawing.ContentAlignment)(resources.GetObj ect("label1.TextAlign"))); 110
this .label1.Visible = ((bool)(resources.GetObject("label1.Visible"))); 111
// 112
// tbName 113
// 114
this .tbName.AccessibleDescription = 115
resources.GetString("tbName.AccessibleDescription") ; 116
this .tbName.AccessibleName = resources.GetString("tbNam e.AccessibleName"); 117
this .tbName.Anchor = 118
((System.Windows.Forms.AnchorStyles)(resources.GetO bject("tbName.Anchor"))); 119
this .tbName.AutoSize = ((bool)(resources.GetObject("tbName.AutoSize"))); 120
this .tbName.BackgroundImage = 121
((System.Drawing.Image)(resources.GetObject("tbName .BackgroundImage"))); 122
this .tbName.Dock = 123
((System.Windows.Forms.DockStyle)(resources.GetObje ct("tbName.Dock"))); 124
this .tbName.Enabled = ((bool)(resources.GetObject("tbName.Enabled"))); 125
this .tbName.Font = ((System.Drawing.Font)(resources.Get Object("tbName.Font"))); 126
this .tbName.ImeMode = 127
((System.Windows.Forms.ImeMode)(resources.GetObject ("tbName.ImeMode"))); 128
this .tbName.Location = 129
((System.Drawing.Point)(resources.GetObject("tbName .Location"))); 130
this .tbName.MaxLength = ((int)(resources.GetObject("tbName.MaxLength"))); 131
this .tbName.Multiline = ((bool)(resources.GetObject("tbName.Multiline"))); 132
this .tbName.Name = "tbName"; 133
this .tbName.PasswordChar = ((char)(resources.GetObject("tbName.PasswordChar"))); 134
this .tbName.RightToLeft = 135
((System.Windows.Forms.RightToLeft)(resources.GetOb ject("tbName.RightToLeft"))); 136
this .tbName.ScrollBars = 137
((System.Windows.Forms.ScrollBars)(resources.GetObj ect("tbName.ScrollBars"))); 138
this .tbName.Size = ((System.Drawing.Size)(resources.Get Object("tbName.Size"))); 139
this .tbName.TabIndex = ((int)(resources.GetObject("tbName.TabIndex"))); 140
this .tbName.Text = resources.GetString("tbName.Text"); 141
this .tbName.TextAlign = 142
((System.Windows.Forms.HorizontalAlignment)(resourc es.GetObject("tbName.TextAlign")))143
; 144
this .tbName.Visible = ((bool)(resources.GetObject("tbName.Visible"))); 145
this .tbName.WordWrap = ((bool)(resources.GetObject("tbName.WordWrap"))); 146
// 147
// cbOptional 148
// 149
this .cbOptional.AccessibleDescription = 150
resources.GetString("cbOptional.AccessibleDescripti on"); 151
this .cbOptional.AccessibleName = resources.GetString("c bOptional.AccessibleName"); 152
this .cbOptional.Anchor = 153
((System.Windows.Forms.AnchorStyles)(resources.GetO bject("cbOptional.Anchor"))); 154
this .cbOptional.Appearance = 155
((System.Windows.Forms.Appearance)(resources.GetObj ect("cbOptional.Appearance"))); 156
this .cbOptional.BackgroundImage = 157
((System.Drawing.Image)(resources.GetObject("cbOpti onal.BackgroundImage"))); 158
this .cbOptional.CheckAlign = 159
((System.Drawing.ContentAlignment)(resources.GetObj ect("cbOptional.CheckAlign"))); 160
this .cbOptional.Dock = 161
((System.Windows.Forms.DockStyle)(resources.GetObje ct("cbOptional.Dock"))); 162
this .cbOptional.Enabled = ((bool)(resources.GetObject("cbOptional.Enabled"))); 163
this .cbOptional.FlatStyle = 164
((System.Windows.Forms.FlatStyle)(resources.GetObje ct("cbOptional.FlatStyle"))); 165
this .cbOptional.Font = 166
((System.Drawing.Font)(resources.GetObject("cbOptio nal.Font"))); 167
this .cbOptional.Image = 168
((System.Drawing.Image)(resources.GetObject("cbOpti onal.Image"))); 169
this .cbOptional.ImageAlign = 170
((System.Drawing.ContentAlignment)(resources.GetObj ect("cbOptional.ImageAlign"))); 171
this .cbOptional.ImageIndex = ((int)(resources.GetObject("cbOptional.ImageIndex"))); 172

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 117

this .cbOptional.ImeMode = 173
((System.Windows.Forms.ImeMode)(resources.GetObject ("cbOptional.ImeMode"))); 174
this .cbOptional.Location = 175
((System.Drawing.Point)(resources.GetObject("cbOpti onal.Location"))); 176
this .cbOptional.Name = "cbOptional"; 177
this .cbOptional.RightToLeft = 178
((System.Windows.Forms.RightToLeft)(resources.GetOb ject("cbOptional.RightToLeft"))); 179
this .cbOptional.Size = 180
((System.Drawing.Size)(resources.GetObject("cbOptio nal.Size"))); 181
this .cbOptional.TabIndex = ((int)(resources.GetObject("cbOptional.TabIndex"))); 182
this .cbOptional.Text = resources.GetString("cbOptional. Text"); 183
this .cbOptional.TextAlign = 184
((System.Drawing.ContentAlignment)(resources.GetObj ect("cbOptional.TextAlign"))); 185
this .cbOptional.Visible = ((bool)(resources.GetObject("cbOptional.Visible"))); 186
// 187
// cbOk 188
// 189
this .cbOk.AccessibleDescription = resources.GetString(" cbOk.AccessibleDescription"); 190
this .cbOk.AccessibleName = resources.GetString("cbOk.Ac cessibleName"); 191
this .cbOk.Anchor = 192
((System.Windows.Forms.AnchorStyles)(resources.GetO bject("cbOk.Anchor"))); 193
this .cbOk.BackgroundImage = 194
((System.Drawing.Image)(resources.GetObject("cbOk.B ackgroundImage"))); 195
this .cbOk.Dock = 196
((System.Windows.Forms.DockStyle)(resources.GetObje ct("cbOk.Dock"))); 197
this .cbOk.Enabled = ((bool)(resources.GetObject("cbOk.Enabled"))); 198
this .cbOk.FlatStyle = 199
((System.Windows.Forms.FlatStyle)(resources.GetObje ct("cbOk.FlatStyle"))); 200
this .cbOk.Font = ((System.Drawing.Font)(resources.GetOb ject("cbOk.Font"))); 201
this .cbOk.Image = ((System.Drawing.Image)(resources.Get Object("cbOk.Image"))); 202
this .cbOk.ImageAlign = 203
((System.Drawing.ContentAlignment)(resources.GetObj ect("cbOk.ImageAlign"))); 204
this .cbOk.ImageIndex = ((int)(resources.GetObject("cbOk.ImageIndex"))); 205
this .cbOk.ImeMode = 206
((System.Windows.Forms.ImeMode)(resources.GetObject ("cbOk.ImeMode"))); 207
this .cbOk.Location = ((System.Drawing.Point)(resources. GetObject("cbOk.Location"))); 208
this .cbOk.Name = "cbOk"; 209
this .cbOk.RightToLeft = 210
((System.Windows.Forms.RightToLeft)(resources.GetOb ject("cbOk.RightToLeft"))); 211
this .cbOk.Size = ((System.Drawing.Size)(resources.GetOb ject("cbOk.Size"))); 212
this .cbOk.TabIndex = ((int)(resources.GetObject("cbOk.TabIndex"))); 213
this .cbOk.Text = resources.GetString("cbOk.Text"); 214
this .cbOk.TextAlign = 215
((System.Drawing.ContentAlignment)(resources.GetObj ect("cbOk.TextAlign"))); 216
this .cbOk.Visible = ((bool)(resources.GetObject("cbOk.Visible"))); 217
this .cbOk.Click += new System.EventHandler(this .cbOk_Click); 218
// 219
// cbCancel 220
// 221
this .cbCancel.AccessibleDescription = 222
resources.GetString("cbCancel.AccessibleDescription "); 223
this .cbCancel.AccessibleName = resources.GetString("cbC ancel.AccessibleName"); 224
this .cbCancel.Anchor = 225
((System.Windows.Forms.AnchorStyles)(resources.GetO bject("cbCancel.Anchor"))); 226
this .cbCancel.BackgroundImage = 227
((System.Drawing.Image)(resources.GetObject("cbCanc el.BackgroundImage"))); 228
this .cbCancel.DialogResult = System.Windows.Forms.Dialo gResult.Cancel; 229
this .cbCancel.Dock = 230
((System.Windows.Forms.DockStyle)(resources.GetObje ct("cbCancel.Dock"))); 231
this .cbCancel.Enabled = ((bool)(resources.GetObject("cbCancel.Enabled"))); 232
this .cbCancel.FlatStyle = 233
((System.Windows.Forms.FlatStyle)(resources.GetObje ct("cbCancel.FlatStyle"))); 234
this .cbCancel.Font = ((System.Drawing.Font)(resources.G etObject("cbCancel.Font"))); 235
this .cbCancel.Image = 236
((System.Drawing.Image)(resources.GetObject("cbCanc el.Image"))); 237
this .cbCancel.ImageAlign = 238
((System.Drawing.ContentAlignment)(resources.GetObj ect("cbCancel.ImageAlign"))); 239
this .cbCancel.ImageIndex = ((int)(resources.GetObject("cbCancel.ImageIndex"))); 240
this .cbCancel.ImeMode = 241
((System.Windows.Forms.ImeMode)(resources.GetObject ("cbCancel.ImeMode"))); 242
this .cbCancel.Location = 243
((System.Drawing.Point)(resources.GetObject("cbCanc el.Location"))); 244
this .cbCancel.Name = "cbCancel"; 245
this .cbCancel.RightToLeft = 246
((System.Windows.Forms.RightToLeft)(resources.GetOb ject("cbCancel.RightToLeft"))); 247
this .cbCancel.Size = ((System.Drawing.Size)(resources.G etObject("cbCancel.Size"))); 248
this .cbCancel.TabIndex = ((int)(resources.GetObject("cbCancel.TabIndex"))); 249
this .cbCancel.Text = resources.GetString("cbCancel.Text "); 250
this .cbCancel.TextAlign = 251
((System.Drawing.ContentAlignment)(resources.GetObj ect("cbCancel.TextAlign"))); 252
this .cbCancel.Visible = ((bool)(resources.GetObject("cbCancel.Visible"))); 253
this .cbCancel.Click += new System.EventHandler(this .cbCancel_Click); 254
// 255
// lbCaptionEdit 256
// 257
this .lbCaptionEdit.AccessibleDescription = 258
resources.GetString("lbCaptionEdit.AccessibleDescri ption"); 259

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 118

this .lbCaptionEdit.AccessibleName = 260
resources.GetString("lbCaptionEdit.AccessibleName") ; 261
this .lbCaptionEdit.Anchor = 262
((System.Windows.Forms.AnchorStyles)(resources.GetO bject("lbCaptionEdit.Anchor"))); 263
this .lbCaptionEdit.AutoSize = 264
((bool)(resources.GetObject("lbCaptionEdit.AutoSize"))); 265
this .lbCaptionEdit.Dock = 266
((System.Windows.Forms.DockStyle)(resources.GetObje ct("lbCaptionEdit.Dock"))); 267
this .lbCaptionEdit.Enabled = ((bool)(resources.GetObject("lbCaptionEdit.Enabled"))); 268
this .lbCaptionEdit.Font = 269
((System.Drawing.Font)(resources.GetObject("lbCapti onEdit.Font"))); 270
this .lbCaptionEdit.Image = 271
((System.Drawing.Image)(resources.GetObject("lbCapt ionEdit.Image"))); 272
this .lbCaptionEdit.ImageAlign = 273
((System.Drawing.ContentAlignment)(resources.GetObj ect("lbCaptionEdit.ImageAlign"))); 274
this .lbCaptionEdit.ImageIndex = 275
((int)(resources.GetObject("lbCaptionEdit.ImageIndex"))) ; 276
this .lbCaptionEdit.ImeMode = 277
((System.Windows.Forms.ImeMode)(resources.GetObject ("lbCaptionEdit.ImeMode"))); 278
this .lbCaptionEdit.Location = 279
((System.Drawing.Point)(resources.GetObject("lbCapt ionEdit.Location"))); 280
this .lbCaptionEdit.Name = "lbCaptionEdit"; 281
this .lbCaptionEdit.RightToLeft = 282
((System.Windows.Forms.RightToLeft)(resources.GetOb ject("lbCaptionEdit.RightToLeft"))283
); 284
this .lbCaptionEdit.Size = 285
((System.Drawing.Size)(resources.GetObject("lbCapti onEdit.Size"))); 286
this .lbCaptionEdit.TabIndex = ((int)(resources.GetObject("lbCaptionEdit.TabIndex"))); 287
this .lbCaptionEdit.Text = resources.GetString("lbCaptio nEdit.Text"); 288
this .lbCaptionEdit.TextAlign = 289
((System.Drawing.ContentAlignment)(resources.GetObj ect("lbCaptionEdit.TextAlign"))); 290
this .lbCaptionEdit.Visible = ((bool)(resources.GetObject("lbCaptionEdit.Visible"))); 291
// 292
// lbCaptionNew 293
// 294
this .lbCaptionNew.AccessibleDescription = 295
resources.GetString("lbCaptionNew.AccessibleDescrip tion"); 296
this .lbCaptionNew.AccessibleName = 297
resources.GetString("lbCaptionNew.AccessibleName"); 298
this .lbCaptionNew.Anchor = 299
((System.Windows.Forms.AnchorStyles)(resources.GetO bject("lbCaptionNew.Anchor"))); 300
this .lbCaptionNew.AutoSize = ((bool)(resources.GetObject("lbCaptionNew.AutoSize"))); 301
this .lbCaptionNew.Dock = 302
((System.Windows.Forms.DockStyle)(resources.GetObje ct("lbCaptionNew.Dock"))); 303
this .lbCaptionNew.Enabled = ((bool)(resources.GetObject("lbCaptionNew.Enabled"))); 304
this .lbCaptionNew.Font = 305
((System.Drawing.Font)(resources.GetObject("lbCapti onNew.Font"))); 306
this .lbCaptionNew.Image = 307
((System.Drawing.Image)(resources.GetObject("lbCapt ionNew.Image"))); 308
this .lbCaptionNew.ImageAlign = 309
((System.Drawing.ContentAlignment)(resources.GetObj ect("lbCaptionNew.ImageAlign"))); 310
this .lbCaptionNew.ImageIndex = 311
((int)(resources.GetObject("lbCaptionNew.ImageIndex"))); 312
this .lbCaptionNew.ImeMode = 313
((System.Windows.Forms.ImeMode)(resources.GetObject ("lbCaptionNew.ImeMode"))); 314
this .lbCaptionNew.Location = 315
((System.Drawing.Point)(resources.GetObject("lbCapt ionNew.Location"))); 316
this .lbCaptionNew.Name = "lbCaptionNew"; 317
this .lbCaptionNew.RightToLeft = 318
((System.Windows.Forms.RightToLeft)(resources.GetOb ject("lbCaptionNew.RightToLeft")))319
; 320
this .lbCaptionNew.Size = 321
((System.Drawing.Size)(resources.GetObject("lbCapti onNew.Size"))); 322
this .lbCaptionNew.TabIndex = ((int)(resources.GetObject("lbCaptionNew.TabIndex"))); 323
this .lbCaptionNew.Text = resources.GetString("lbCaption New.Text"); 324
this .lbCaptionNew.TextAlign = 325
((System.Drawing.ContentAlignment)(resources.GetObj ect("lbCaptionNew.TextAlign"))); 326
this .lbCaptionNew.Visible = ((bool)(resources.GetObject("lbCaptionNew.Visible"))); 327
// 328
// GrammarElementEdit 329
// 330
this .AcceptButton = this .cbOk; 331
this .AccessibleDescription = resources.GetString("$this .AccessibleDescription"); 332
this .AccessibleName = resources.GetString("$this.Access ibleName"); 333
this .AutoScaleBaseSize = 334
((System.Drawing.Size)(resources.GetObject("$this.A utoScaleBaseSize"))); 335
this .AutoScroll = ((bool)(resources.GetObject("$this.AutoScroll"))); 336
this .AutoScrollMargin = 337
((System.Drawing.Size)(resources.GetObject("$this.A utoScrollMargin"))); 338
this .AutoScrollMinSize = 339
((System.Drawing.Size)(resources.GetObject("$this.A utoScrollMinSize"))); 340
this .BackgroundImage = 341
((System.Drawing.Image)(resources.GetObject("$this. BackgroundImage"))); 342
this .CancelButton = this .cbCancel; 343
this .ClientSize = ((System.Drawing.Size)(resources.GetO bject("$this.ClientSize"))); 344
this .Controls.Add(this .lbCaptionNew); 345
this .Controls.Add(this .lbCaptionEdit); 346
this .Controls.Add(this .cbCancel); 347

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 119

this .Controls.Add(this .cbOk); 348
this .Controls.Add(this .cbOptional); 349
this .Controls.Add(this .tbName); 350
this .Controls.Add(this .label1); 351
this .Enabled = ((bool)(resources.GetObject("$this.Enabled"))); 352
this .Font = ((System.Drawing.Font)(resources.GetObject("$this.Font"))); 353
this .Icon = ((System.Drawing.Icon)(resources.GetObject("$this.Icon"))); 354
this .ImeMode = 355
((System.Windows.Forms.ImeMode)(resources.GetObject ("$this.ImeMode"))); 356
this .Location = ((System.Drawing.Point)(resources.GetOb ject("$this.Location"))); 357
this .MaximumSize = ((System.Drawing.Size)(resources.Get Object("$this.MaximumSize"))); 358
this .MinimumSize = ((System.Drawing.Size)(resources.Get Object("$this.MinimumSize"))); 359
this .Name = "GrammarElementEdit"; 360
this .RightToLeft = 361
((System.Windows.Forms.RightToLeft)(resources.GetOb ject("$this.RightToLeft"))); 362
this .StartPosition = 363
((System.Windows.Forms.FormStartPosition)(resources .GetObject("$this.StartPosition"))364
); 365
this .Text = resources.GetString("$this.Text"); 366
this .ResumeLayout(false); 367

 368
 } 369
 #endregion 370
 371
 private void cbOk_Click(object sender, System.EventArgs e) 372
 { 373
 if (newElement) 374
 { 375
 myElement = new GrammarElement(tbName.Text); 376
 myRule.Rhs.Add(myElement); 377
 } 378
 myElement.Name = tbName.Text; 379
 myElement.Optional = cbOptional.Checked; 380
 this .Close(); 381
 } 382
 383

// Deze methode wordt in de GrammarForm (de hoofdfo rm) aangeroepen om de uiteindelijke edit 384
//te verwerken in het klassemodel 385

 public void DoEdit(GrammarElement item) 386
 { 387
 this .Text = lbCaptionEdit.Text; 388
 this .myElement = item; 389
 this .newElement = false ; 390
 this .tbName.Text = item.Name; 391
 this .cbOptional.Checked = item.Optional; 392
 if (item.Lhs) 393
 { 394
 this .cbOptional.Enabled = false ; 395
 } 396
 this .ShowDialog(); 397
 } 398
 399
 public void DoNew(GrammarRule item) 400
 { 401
 this .Text = lbCaptionEdit.Text; 402
 this .myRule = item; 403
 this .newElement = true ; 404
 this .tbName.Text = ""; 405
 this .cbOptional.Checked = false ; 406
 this .ShowDialog(); 407
 } 408
 private void cbCancel_Click(object sender, System.EventArgs e) 409
 { 410
 this .Close(); 411
 } 412
 } 413
} 414

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 120

Workbench.NaturalLanguage.Grammar.Editor.GrammarFeatureEdit.csWorkbench.NaturalLanguage.Grammar.Editor.GrammarFeatureEdit.csWorkbench.NaturalLanguage.Grammar.Editor.GrammarFeatureEdit.csWorkbench.NaturalLanguage.Grammar.Editor.GrammarFeatureEdit.cs

/// /////////////// 1
/// WORKBENCH /// 2
/// /// 3
/// /// 4
/// /// 5
/// © Copyright Belastingdienst (http://www.belastingd ienst.nl)/// 6
/// /////////////// 7
/// Revision information: /// 8
/// $Workfile:: GrammarFeatureEdit.cs $ /// 9
/// $Revision:: 1 $ /// 10
/// $Author:: Ron_van_gog, Kamal_Sayah $ /// 11
/// $Date:: 24/02/04 $ /// 12
/// /////////////// 13
using System; 14
using System.Drawing; 15
using System.Collections; 16
using System.ComponentModel; 17
using System.Windows.Forms; 18
using Belastingdienst.Windows; 19
 20
namespace Workbench.NaturalLanguage.Grammar.Editor 21
{ 22
 // Deze klasse omschrijft de complete GrammarFeatu reEdit-form 23
 public class GrammarFeatureEdit : System.Windows.Forms.Form 24
 { 25
 private ArrayList myFeatureSet; 26
 private GrammarFeature myFeature; 27
 private bool newFeature; 28
 private System.Windows.Forms.Label label1; 29
 private System.Windows.Forms.Label label2; 30
 private System.Windows.Forms.CheckBox cbAtomic; 31
 private System.Windows.Forms.TextBox tbName; 32
 private System.Windows.Forms.TextBox tbEquationId; 33
 private System.Windows.Forms.TextBox tbValue; 34
 private System.Windows.Forms.Label label3; 35
 private System.Windows.Forms.Button cbCancel; 36
 private System.Windows.Forms.Button cbOk; 37
 private System.Windows.Forms.Label lbCaptionNew; 38
 private System.Windows.Forms.Label lbCaptionEdit; 39
 /// <summary> 40
 /// Required designer variable. 41
 /// </summary> 42
 private System.ComponentModel.Container components = null ; 43
 44
 public GrammarFeatureEdit() 45
 { 46
 // 47
 // Required for Windows Form Designer support 48
 // 49
 InitializeComponent(); 50
 51
 // 52
 // TODO: Add any constructor code after Initiali zeComponent call 53
 // 54
 } 55
 56
 /// <summary> 57
 /// Clean up any resources being used. 58
 /// </summary> 59
 protected override void Dispose(bool disposing) 60
 { 61
 if (disposing) 62
 { 63
 if (components != null) 64
 { 65
 components.Dispose(); 66
 } 67
 } 68
 base .Dispose(disposing); 69
 } 70
 71
 #region Windows Form Designer generated code 72
 /// <summary> 73
 /// Required method for Designer support - do not modi fy 74
 /// the contents of this method with the code editor. 75
 /// </summary> 76
 private void InitializeComponent() 77
 { 78
 this .label1 = new System.Windows.Forms.Label(); 79
 this .label2 = new System.Windows.Forms.Label(); 80
 this .cbAtomic = new System.Windows.Forms.CheckBox(); 81
 this .tbName = new System.Windows.Forms.TextBox(); 82
 this .tbEquationId = new System.Windows.Forms.TextBox(); 83
 this .tbValue = new System.Windows.Forms.TextBox(); 84

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 121

 this .label3 = new System.Windows.Forms.Label(); 85
 this .cbCancel = new System.Windows.Forms.Button(); 86
 this .cbOk = new System.Windows.Forms.Button(); 87
 this .lbCaptionNew = new System.Windows.Forms.Label(); 88
 this .lbCaptionEdit = new System.Windows.Forms.Label(); 89
 this .SuspendLayout(); 90
 // 91
 // label1 92
 // 93
 this .label1.Location = new System.Drawing.Point(8, 16); 94
 this .label1.Name = "label1"; 95
 this .label1.Size = new System.Drawing.Size(48, 16); 96
 this .label1.TabIndex = 6; 97
 this .label1.Text = "Name"; 98
 // 99
 // label2 100
 // 101
 this .label2.Location = new System.Drawing.Point(8, 40); 102
 this .label2.Name = "label2"; 103
 this .label2.Size = new System.Drawing.Size(64, 16); 104
 this .label2.TabIndex = 7; 105
 this .label2.Text = "Equation Id"; 106
 // 107
 // cbAtomic 108
 // 109
 this .cbAtomic.CheckAlign = System.Drawing.ContentAlignm ent.MiddleRight; 110
 this .cbAtomic.ImageAlign = System.Drawing.ContentAlignm ent.MiddleLeft; 111
 this .cbAtomic.Location = new System.Drawing.Point(8, 88); 112
 this .cbAtomic.Name = "cbAtomic"; 113
 this .cbAtomic.Size = new System.Drawing.Size(80, 24); 114
 this .cbAtomic.TabIndex = 3; 115
 this .cbAtomic.Text = "Atomic"; 116

this .cbAtomic.CheckedChanged += new 117
System.EventHandler(this .cbAtomic_CheckedChanged); 118

 // 119
 // tbName 120
 // 121
 this .tbName.Location = new System.Drawing.Point(72, 8); 122
 this .tbName.Name = "tbName"; 123
 this .tbName.Size = new System.Drawing.Size(240, 20); 124
 this .tbName.TabIndex = 0; 125
 this .tbName.Text = ""; 126
 // 127
 // tbEquationId 128
 // 129
 this .tbEquationId.Location = new System.Drawing.Point(72, 32); 130
 this .tbEquationId.Name = "tbEquationId"; 131
 this .tbEquationId.Size = new System.Drawing.Size(240, 20); 132
 this .tbEquationId.TabIndex = 1; 133
 this .tbEquationId.Text = ""; 134
 // 135
 // tbValue 136
 // 137
 this .tbValue.Location = new System.Drawing.Point(72, 56); 138
 this .tbValue.Name = "tbValue"; 139
 this .tbValue.Size = new System.Drawing.Size(240, 20); 140
 this .tbValue.TabIndex = 2; 141
 this .tbValue.Text = ""; 142
 // 143
 // label3 144
 // 145
 this .label3.Location = new System.Drawing.Point(8, 64); 146
 this .label3.Name = "label3"; 147
 this .label3.Size = new System.Drawing.Size(56, 16); 148
 this .label3.TabIndex = 8; 149
 this .label3.Text = "Value"; 150
 // 151
 // cbCancel 152
 // 153
 this .cbCancel.DialogResult = System.Windows.Forms.Dialo gResult.Cancel; 154
 this .cbCancel.Location = new System.Drawing.Point(168, 120); 155
 this .cbCancel.Name = "cbCancel"; 156
 this .cbCancel.Size = new System.Drawing.Size(64, 24); 157
 this .cbCancel.TabIndex = 5; 158
 this .cbCancel.Text = "Cancel"; 159
 this .cbCancel.Click += new System.EventHandler(this .cbCancel_Click); 160
 // 161
 // cbOk 162
 // 163
 this .cbOk.Location = new System.Drawing.Point(96, 120); 164
 this .cbOk.Name = "cbOk"; 165
 this .cbOk.Size = new System.Drawing.Size(64, 24); 166
 this .cbOk.TabIndex = 4; 167
 this .cbOk.Text = "Ok"; 168
 this .cbOk.Click += new System.EventHandler(this .cbOk_Click); 169
 // 170
 // lbCaptionNew 171
 // 172

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 122

 this .lbCaptionNew.Location = new System.Drawing.Point(192, 96); 173
 this .lbCaptionNew.Name = "lbCaptionNew"; 174
 this .lbCaptionNew.Size = new System.Drawing.Size(120, 23); 175
 this .lbCaptionNew.TabIndex = 10; 176
 this .lbCaptionNew.Text = "New grammar feature"; 177
 this .lbCaptionNew.Visible = false ; 178
 // 179
 // lbCaptionEdit 180
 // 181
 this .lbCaptionEdit.Location = new System.Drawing.Point(192, 80); 182
 this .lbCaptionEdit.Name = "lbCaptionEdit"; 183
 this .lbCaptionEdit.Size = new System.Drawing.Size(120, 23); 184
 this .lbCaptionEdit.TabIndex = 9; 185
 this .lbCaptionEdit.Text = "Edit grammar feature"; 186
 this .lbCaptionEdit.Visible = false ; 187
 // 188
 // GrammarFeatureEdit 189
 // 190
 this .AcceptButton = this .cbOk; 191
 this .AutoScaleBaseSize = new System.Drawing.Size(5, 13); 192
 this .CancelButton = this .cbCancel; 193
 this .ClientSize = new System.Drawing.Size(320, 149); 194
 this .Controls.Add(this .lbCaptionNew); 195
 this .Controls.Add(this .lbCaptionEdit); 196
 this .Controls.Add(this .cbCancel); 197
 this .Controls.Add(this .cbOk); 198
 this .Controls.Add(this .label3); 199
 this .Controls.Add(this .tbValue); 200
 this .Controls.Add(this .tbEquationId); 201
 this .Controls.Add(this .tbName); 202
 this .Controls.Add(this .cbAtomic); 203
 this .Controls.Add(this .label2); 204
 this .Controls.Add(this .label1); 205
 this .Name = "GrammarFeatureEdit"; 206
 this .StartPosition = System.Windows.Forms.FormStartPosi tion.CenterScreen; 207
 this .Text = "GrammarFeatureEdit"; 208
 this .ResumeLayout(false); 209
 210
 } 211
 #endregion 212
 213
 private void cbOk_Click(object sender, System.EventArgs e) 214
 { 215
 if (newFeature) 216
 { 217
 myFeature = new GrammarFeature(tbName.Text); 218
 myFeatureSet.Add(myFeature); 219
 } 220
 myFeature.Name = tbName.Text; 221
 myFeature.Atomic = cbAtomic.Checked; 222
 if (myFeature.Atomic) 223
 { 224
 myFeature.FeatureValue = tbValue.Text; 225
 } 226
 else 227
 { 228
 myFeature.FeatureValue = null ; 229
 } 230
 if (tbEquationId.Text.Trim().Equals("")) 231
 { 232
 myFeature.EquationId = -1; 233
 } 234
 else 235
 { 236
 try 237
 { 238
 int eqId = Int32.Parse(tbEquationId.Text); 239
 if (eqId > 0) 240
 { 241
 myFeature.EquationId = eqId; 242
 } 243
 else 244
 { 245

System.Windows.Forms.MessageBox.Show(this ,"EquitionId moet 246
groter dan 0 zijn!"); 247

 } 248
 } 249
 catch (Exception exception) 250
 { 251

System.Windows.Forms.MessageBox.Show(this ,"U heeft geen geldig 252
EquitionId ingevuld!"); 253

 } 254
 } 255
 this .Close(); 256
 } 257
 258
 private void cbCancel_Click(object sender, System.EventArgs e) 259
 { 260

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 123

 this .Close(); 261
 } 262
 263

// Deze methode wordt in de GrammarForm (de hoofdfo rm) aangeroepen om de 264
//uiteindelijke edit te verwerken in het klassemode l 265

 public void DoEdit(GrammarFeature item) 266
 { 267
 this .Text = lbCaptionEdit.Text; 268
 this .myFeature = item; 269
 this .newFeature = false ; 270
 this .tbName.Text = item.Name; 271
 if (item.EquationId.Equals(-1)) 272
 { 273
 this .tbEquationId.Text = ""; 274
 } 275
 else 276
 { 277
 this .tbEquationId.Text = item.EquationId.ToString(); 278
 } 279
 this .tbValue.Text = item.FeatureValue; 280
 this .cbAtomic.Checked = item.Atomic; 281
 if (cbAtomic.Checked) 282
 { 283
 this .tbValue.Enabled = true ; 284
 } 285
 else 286
 { 287
 this .tbValue.Enabled = false ; 288
 } 289
 if (item.Fixed) 290
 { 291
 this .tbName.Enabled = false ; 292
 this .tbValue.Enabled = false ; 293
 this .cbAtomic.Enabled = false ; 294
 } 295
 this .ShowDialog(); 296
 } 297
 298
 public void DoNew(ArrayList item) 299
 { 300
 this .Text = lbCaptionEdit.Text; 301
 this .myFeatureSet = item; 302
 this .newFeature = true ; 303
 this .tbName.Text = ""; 304
 this .tbEquationId.Text = ""; 305
 this .tbValue.Text = ""; 306
 this .cbAtomic.Checked = false ; 307
 this .tbValue.Enabled = false ; 308
 this .ShowDialog(); 309
 } 310
 311

// Een event die zorgt voor de correcte gevolgen va n een verandering van de "atomische 312
//waarde"-check. 313

 private void cbAtomic_CheckedChanged(object sender, System.EventArgs e) 314
 { 315
 if (cbAtomic.Checked) 316
 { 317
 this .tbValue.Enabled = true ; 318
 } 319
 else 320
 { 321
 this .tbValue.Enabled = false ; 322
 } 323
 } 324
 } 325
} 326
 327

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 124

Workbench.NaturalLanguage.Grammar.Editor.GrammarRuleEdit.csWorkbench.NaturalLanguage.Grammar.Editor.GrammarRuleEdit.csWorkbench.NaturalLanguage.Grammar.Editor.GrammarRuleEdit.csWorkbench.NaturalLanguage.Grammar.Editor.GrammarRuleEdit.cs

/// /////////////// 1
/// WORKBENCH /// 2
/// /// 3
/// /// 4
/// /// 5
/// © Copyright Belastingdienst (http://www.belastingd ienst.nl)/// 6
/// /////////////// 7
/// Revision information: /// 8
/// $Workfile:: GrammarRuleEdit.cs $ /// 9
/// $Revision:: 1 $ /// 10
/// $Author:: Ron_van_gog, Kamal_Sayah $ /// 11
/// $Date:: 24/02/04 $ /// 12
/// /////////////// 13
using System; 14
using System.Drawing; 15
using System.Collections; 16
using System.ComponentModel; 17
using System.Windows.Forms; 18
 19
namespace Workbench.NaturalLanguage.Grammar.Editor 20
{ 21
 /// <summary> 22
 /// Summary description for GrammarRuleEdit. 23
 /// </summary> 24
 25
 // Deze klasse beschrijft de form die gebruitk wor dt bij het editten van een GrammarRule 26
 public class GrammarRuleEdit : System.Windows.Forms.Form 27
 { 28
 private GrammarRuleCollection myCollection; 29
 private GrammarRule myRule; 30
 private bool newRule; 31
 private System.Windows.Forms.TextBox tbName; 32
 private System.Windows.Forms.Label label1; 33
 private System.Windows.Forms.TextBox tbDescription; 34
 private System.Windows.Forms.Label label2; 35
 private System.Windows.Forms.Button cbCancel; 36
 private System.Windows.Forms.Button cbOk; 37
 private System.Windows.Forms.Label lbCaptionNew; 38
 private System.Windows.Forms.Label lbCaptionEdit; 39
 /// <summary> 40
 /// Required designer variable. 41
 /// </summary> 42
 private System.ComponentModel.Container components = null ; 43
 44
 public GrammarRuleEdit() 45
 { 46
 // 47
 // Required for Windows Form Designer support 48
 // 49
 InitializeComponent(); 50
 51
 // 52
 // TODO: Add any constructor code after Initiali zeComponent call 53
 // 54
 } 55
 56
 /// <summary> 57
 /// Clean up any resources being used. 58
 /// </summary> 59
 protected override void Dispose(bool disposing) 60
 { 61
 if (disposing) 62
 { 63
 if (components != null) 64
 { 65
 components.Dispose(); 66
 } 67
 } 68
 base .Dispose(disposing); 69
 } 70
 71
 #region Windows Form Designer generated code 72
 /// <summary> 73
 /// Required method for Designer support - do not modi fy 74
 /// the contents of this method with the code editor. 75
 /// </summary> 76
 private void InitializeComponent() 77
 { 78
 this .tbName = new System.Windows.Forms.TextBox(); 79
 this .label1 = new System.Windows.Forms.Label(); 80
 this .tbDescription = new System.Windows.Forms.TextBox(); 81
 this .label2 = new System.Windows.Forms.Label(); 82
 this .cbCancel = new System.Windows.Forms.Button(); 83
 this .cbOk = new System.Windows.Forms.Button(); 84
 this .lbCaptionNew = new System.Windows.Forms.Label(); 85

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 125

 this .lbCaptionEdit = new System.Windows.Forms.Label(); 86
 this .SuspendLayout(); 87
 // 88
 // tbName 89
 // 90
 this .tbName.Location = new System.Drawing.Point(80, 8); 91
 this .tbName.Name = "tbName"; 92
 this .tbName.Size = new System.Drawing.Size(304, 20); 93
 this .tbName.TabIndex = 0; 94
 this .tbName.Text = ""; 95
 // 96
 // label1 97
 // 98
 this .label1.ImeMode = System.Windows.Forms.ImeMode.NoCo ntrol; 99
 this .label1.Location = new System.Drawing.Point(8, 8); 100
 this .label1.Name = "label1"; 101
 this .label1.Size = new System.Drawing.Size(40, 16); 102
 this .label1.TabIndex = 4; 103
 this .label1.Text = "Name"; 104
 // 105
 // tbDescription 106
 // 107
 this .tbDescription.Location = new System.Drawing.Point(80, 32); 108
 this .tbDescription.Multiline = true ; 109
 this .tbDescription.Name = "tbDescription"; 110
 this .tbDescription.Size = new System.Drawing.Size(304, 168); 111
 this .tbDescription.TabIndex = 1; 112
 this .tbDescription.Text = ""; 113
 // 114
 // label2 115
 // 116
 this .label2.ImeMode = System.Windows.Forms.ImeMode.NoCo ntrol; 117
 this .label2.Location = new System.Drawing.Point(8, 40); 118
 this .label2.Name = "label2"; 119
 this .label2.Size = new System.Drawing.Size(72, 16); 120
 this .label2.TabIndex = 5; 121
 this .label2.Text = "Description"; 122
 // 123
 // cbCancel 124
 // 125
 this .cbCancel.DialogResult = System.Windows.Forms.Dialo gResult.Cancel; 126
 this .cbCancel.ImeMode = System.Windows.Forms.ImeMode.No Control; 127
 this .cbCancel.Location = new System.Drawing.Point(200, 208); 128
 this .cbCancel.Name = "cbCancel"; 129
 this .cbCancel.Size = new System.Drawing.Size(64, 24); 130
 this .cbCancel.TabIndex = 3; 131
 this .cbCancel.Text = "Cancel"; 132
 this .cbCancel.Click += new System.EventHandler(this .cbCancel_Click); 133
 // 134
 // cbOk 135
 // 136
 this .cbOk.ImeMode = System.Windows.Forms.ImeMode.NoCont rol; 137
 this .cbOk.Location = new System.Drawing.Point(128, 208); 138
 this .cbOk.Name = "cbOk"; 139
 this .cbOk.Size = new System.Drawing.Size(64, 24); 140
 this .cbOk.TabIndex = 2; 141
 this .cbOk.Text = "Ok"; 142
 this .cbOk.Click += new System.EventHandler(this .cbOk_Click); 143
 // 144
 // lbCaptionNew 145
 // 146
 this .lbCaptionNew.ImeMode = System.Windows.Forms.ImeMod e.NoControl; 147
 this .lbCaptionNew.Location = new System.Drawing.Point(8, 208); 148
 this .lbCaptionNew.Name = "lbCaptionNew"; 149
 this .lbCaptionNew.Size = new System.Drawing.Size(120, 23); 150
 this .lbCaptionNew.TabIndex = 7; 151
 this .lbCaptionNew.Text = "New grammar rule"; 152
 this .lbCaptionNew.Visible = false ; 153
 // 154
 // lbCaptionEdit 155
 // 156
 this .lbCaptionEdit.ImeMode = System.Windows.Forms.ImeMo de.NoControl; 157
 this .lbCaptionEdit.Location = new System.Drawing.Point(8, 184); 158
 this .lbCaptionEdit.Name = "lbCaptionEdit"; 159
 this .lbCaptionEdit.Size = new System.Drawing.Size(120, 23); 160
 this .lbCaptionEdit.TabIndex = 6; 161
 this .lbCaptionEdit.Text = "Edit grammar rule"; 162
 this .lbCaptionEdit.Visible = false ; 163
 // 164
 // GrammarRuleEdit 165
 // 166
 this .AcceptButton = this .cbOk; 167
 this .AutoScaleBaseSize = new System.Drawing.Size(5, 13); 168
 this .CancelButton = this .cbCancel; 169
 this .ClientSize = new System.Drawing.Size(392, 237); 170
 this .Controls.Add(this .lbCaptionNew); 171
 this .Controls.Add(this .lbCaptionEdit); 172
 this .Controls.Add(this .cbCancel); 173

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 126

 this .Controls.Add(this .cbOk); 174
 this .Controls.Add(this .tbDescription); 175
 this .Controls.Add(this .label2); 176
 this .Controls.Add(this .tbName); 177
 this .Controls.Add(this .label1); 178
 this .Name = "GrammarRuleEdit"; 179
 this .StartPosition = System.Windows.Forms.FormStartPosi tion.CenterScreen; 180
 this .Text = "GrammarRuleEdit"; 181
 this .ResumeLayout(false); 182
 183
 } 184
 #endregion 185
 186
 // Afhandeling van de OK-button 187
 private void cbOk_Click(object sender, System.EventArgs e) 188
 { 189
 if (newRule) 190
 { 191
 myRule = new GrammarRule(tbName.Text); 192
 myRule.isNew = true ; 193
 myCollection.Add(myRule); 194
 } 195
 myRule.Name = tbName.Text; 196
 myRule.Description = tbDescription.Text; 197
 this .Close(); 198
 } 199
 200
 private void cbCancel_Click(object sender, System.EventArgs e) 201
 { 202
 this .Close(); 203
 } 204
 205
 // Het verwerken van een edit 206
 public void DoEdit(GrammarRule item) 207
 { 208
 this .Text = lbCaptionEdit.Text; 209
 this .myRule = item; 210
 this .newRule = false ; 211
 this .tbName.Text = item.Name; 212
 this .tbDescription.Text = item.Description; 213
 this .ShowDialog(); 214
 } 215
 216
 // Het verwerken van een nieuwe-regel-toevoeging 217
 public void DoNew(GrammarRuleCollection item) 218
 { 219
 this .Text = lbCaptionEdit.Text; 220
 this .myCollection = item; 221
 this .newRule = true ; 222
 this .tbName.Text = ""; 223
 this .tbDescription.Text = ""; 224
 this .ShowDialog(); 225
 } 226
 227
 } 228
} 229

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 127

Workbench.NaturalLanguWorkbench.NaturalLanguWorkbench.NaturalLanguWorkbench.NaturalLanguage.Grammar.Editor.GrammarForm.csage.Grammar.Editor.GrammarForm.csage.Grammar.Editor.GrammarForm.csage.Grammar.Editor.GrammarForm.cs

/// /////////////// 1
/// WORKBENCH /// 2
/// /// 3
/// /// 4
/// /// 5
/// © Copyright Belastingdienst (http://www.belastingd ienst.nl)/// 6
/// /////////////// 7
/// Revision information: /// 8
/// $Workfile:: GrammarForm.cs $ /// 9
/// $Revision:: 1 $ /// 10
/// $Author:: Ron_van_gog, Kamal_Sayah $ /// 11
/// $Date:: 24/02/04 $ /// 12
/// /////////////// 13
 14
using System; 15
using System.Xml; 16
using System.Data; 17
using System.Drawing; 18
using System.Collections; 19
using System.ComponentModel; 20
using System.Windows.Forms; 21
using Belastingdienst.Windows; 22
 23
namespace Workbench.NaturalLanguage.Grammar.Editor 24
{ 25
 /// <summary> 26
 /// Summary description for GrammarForm. 27
 /// </summary> 28
 29
 // Deze klasse omschrijft het complete hoofdscherm van de Grammartool 30
 public class GrammarForm : System.Windows.Forms.Form 31
 { 32
 private System.Windows.Forms.TreeNode myNode; 33
 private GrammarTreeModel myGrammarModel; 34
 private System.Windows.Forms.ContextMenu contextMenu1; 35
 private Belastingdienst.Windows.Forms.TreeModelView gramma rTreeView; 36
 private System.Windows.Forms.MenuItem menuEdit; 37
 private System.Windows.Forms.MenuItem menuNewElement; 38
 private System.Windows.Forms.MenuItem menuNewFeature; 39
 private System.Windows.Forms.MenuItem menuDelete; 40
 private System.Windows.Forms.MenuItem menuMoveUp; 41
 private System.Windows.Forms.MenuItem menuMoveDown; 42
 private System.Windows.Forms.MenuItem menuNewRule; 43
 private System.Windows.Forms.MenuItem menuItem2; 44
 private System.Windows.Forms.MenuItem menuItem3; 45
 private System.Windows.Forms.Panel panel1; 46
 private System.Windows.Forms.Button cbSave; 47
 private System.Windows.Forms.Button cbCancel; 48
 private Belastingdienst.Windows.Forms.MessageBox DeleteMes sageBox; 49
 private System.Windows.Forms.Button cbPrint; 50
 private System.Windows.Forms.SaveFileDialog PrintTo; 51
 private Belastingdienst.Windows.Forms.MessageBox CancelMes sageBox; 52
 /// <summary> 53
 /// Required designer variable. 54
 /// </summary> 55
 private System.ComponentModel.Container components = null ; 56
 57
 public GrammarForm() 58
 { 59
 // 60
 // Required for Windows Form Designer support 61
 // 62
 InitializeComponent(); 63
 64
 // 65
 // TODO: Add any constructor code after Initiali zeComponent call 66
 // 67
 } 68
 69
 /// <summary> 70
 /// Clean up any resources being used. 71
 /// </summary> 72
 protected override void Dispose(bool disposing) 73
 { 74
 if (disposing) 75
 { 76
 if (components != null) 77
 { 78
 components.Dispose(); 79
 } 80
 } 81
 base .Dispose(disposing); 82
 } 83
 84
 #region Windows Form Designer generated code 85

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 128

 /// <summary> 86
 /// Required method for Designer support - do not modi fy 87
 /// the contents of this method with the code editor. 88
 /// </summary> 89
 private void InitializeComponent() 90
 { 91

System.Resources.ResourceManager resources = new 92
System.Resources.ResourceManager(typeof (GrammarForm)); 93
this .myGrammarModel = new 94
Workbench.NaturalLanguage.Grammar.Editor.GrammarTre eModel(); 95

 this .contextMenu1 = new System.Windows.Forms.ContextMenu(); 96
 this .menuEdit = new System.Windows.Forms.MenuItem(); 97
 this .menuDelete = new System.Windows.Forms.MenuItem(); 98
 this .menuItem3 = new System.Windows.Forms.MenuItem(); 99
 this .menuNewRule = new System.Windows.Forms.MenuItem(); 100
 this .menuNewElement = new System.Windows.Forms.MenuItem(); 101
 this .menuNewFeature = new System.Windows.Forms.MenuItem(); 102
 this .menuItem2 = new System.Windows.Forms.MenuItem(); 103
 this .menuMoveUp = new System.Windows.Forms.MenuItem(); 104
 this .menuMoveDown = new System.Windows.Forms.MenuItem(); 105
 this .grammarTreeView = new Belastingdienst.Windows.Forms.TreeModelView(); 106
 this .panel1 = new System.Windows.Forms.Panel(); 107
 this .cbPrint = new System.Windows.Forms.Button(); 108
 this .cbCancel = new System.Windows.Forms.Button(); 109
 this .cbSave = new System.Windows.Forms.Button(); 110
 this .DeleteMessageBox = new Belastingdienst.Windows.Forms.MessageBox(); 111
 this .PrintTo = new System.Windows.Forms.SaveFileDialog(); 112
 this .CancelMessageBox = new Belastingdienst.Windows.Forms.MessageBox(); 113
 this .panel1.SuspendLayout(); 114
 this .SuspendLayout(); 115
 // 116
 // contextMenu1 117
 // 118
 this .contextMenu1.MenuItems.AddRange(new System.Windows.Forms.MenuItem[] { 119

this .menuEdit, 120
this .menuDelete, 121
this .menuItem3, 122
this .menuNewRule, 123
this .menuNewElement, 124
this .menuNewFeature, 125
this .menuItem2, 126
this .menuMoveUp, 127
this .menuMoveDown}); 128
this .contextMenu1.RightToLeft = 129
((System.Windows.Forms.RightToLeft)(resources.GetOb ject("contextMenu1.RightToLeft")))130
; 131

 this .contextMenu1.Popup += new System.EventHandler(this .contextMenu1_Popup); 132
 // 133
 // menuEdit 134
 // 135
 this .menuEdit.Enabled = ((bool)(resources.GetObject("menuEdit.Enabled"))); 136
 this .menuEdit.Index = 0; 137

this .menuEdit.Shortcut = 138
((System.Windows.Forms.Shortcut)(resources.GetObjec t("menuEdit.Shortcut"))); 139
this .menuEdit.ShowShortcut = ((bool)(resources.GetObject("menuEdit.ShowShortcut"))); 140
this .menuEdit.Text = resources.GetString("menuEdit.Text "); 141
this .menuEdit.Visible = ((bool)(resources.GetObject("menuEdit.Visible"))); 142
this .menuEdit.Click += new System.EventHandler(this .menuEdit_Click); 143
// 144
// menuDelete 145
// 146
this .menuDelete.Enabled = ((bool)(resources.GetObject("menuDelete.Enabled"))); 147
this .menuDelete.Index = 1; 148
this .menuDelete.Shortcut = 149
((System.Windows.Forms.Shortcut)(resources.GetObjec t("menuDelete.Shortcut"))); 150
this .menuDelete.ShowShortcut = 151
((bool)(resources.GetObject("menuDelete.ShowShortcut"))); 152
this .menuDelete.Text = resources.GetString("menuDelete. Text"); 153
this .menuDelete.Visible = ((bool)(resources.GetObject("menuDelete.Visible"))); 154
this .menuDelete.Click += new System.EventHandler(this .menuDelete_Click); 155
// 156
// menuItem3 157
// 158
this .menuItem3.Enabled = ((bool)(resources.GetObject("menuItem3.Enabled"))); 159
this .menuItem3.Index = 2; 160
this .menuItem3.Shortcut = 161
((System.Windows.Forms.Shortcut)(resources.GetObjec t("menuItem3.Shortcut"))); 162
this .menuItem3.ShowShortcut = 163
((bool)(resources.GetObject("menuItem3.ShowShortcut"))); 164
this .menuItem3.Text = resources.GetString("menuItem3.Te xt"); 165
this .menuItem3.Visible = ((bool)(resources.GetObject("menuItem3.Visible"))); 166
// 167
// menuNewRule 168
// 169
this .menuNewRule.Enabled = ((bool)(resources.GetObject("menuNewRule.Enabled"))); 170
this .menuNewRule.Index = 3; 171
this .menuNewRule.Shortcut = 172
((System.Windows.Forms.Shortcut)(resources.GetObjec t("menuNewRule.Shortcut"))); 173

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 129

this .menuNewRule.ShowShortcut = 174
((bool)(resources.GetObject("menuNewRule.ShowShortcut"))) ; 175
this .menuNewRule.Text = resources.GetString("menuNewRul e.Text"); 176
this .menuNewRule.Visible = ((bool)(resources.GetObject("menuNewRule.Visible"))); 177
this .menuNewRule.Click += new System.EventHandler(this .menuNewRule_Click); 178
// 179
// menuNewElement 180
// 181
this .menuNewElement.Enabled = 182
((bool)(resources.GetObject("menuNewElement.Enabled"))); 183
this .menuNewElement.Index = 4; 184
this .menuNewElement.Shortcut = 185
((System.Windows.Forms.Shortcut)(resources.GetObjec t("menuNewElement.Shortcut"))); 186
this .menuNewElement.ShowShortcut = 187
((bool)(resources.GetObject("menuNewElement.ShowShortcut"))); 188
this .menuNewElement.Text = resources.GetString("menuNew Element.Text"); 189
this .menuNewElement.Visible = 190
((bool)(resources.GetObject("menuNewElement.Visible"))); 191
this .menuNewElement.Click += new System.EventHandler(this .menuNewElement_Click); 192
// 193
// menuNewFeature 194
// 195
this .menuNewFeature.Enabled = 196
((bool)(resources.GetObject("menuNewFeature.Enabled"))); 197
this .menuNewFeature.Index = 5; 198
this .menuNewFeature.Shortcut = 199
((System.Windows.Forms.Shortcut)(resources.GetObjec t("menuNewFeature.Shortcut"))); 200
this .menuNewFeature.ShowShortcut = 201
((bool)(resources.GetObject("menuNewFeature.ShowShortcut"))); 202
this .menuNewFeature.Text = resources.GetString("menuNew Feature.Text"); 203
this .menuNewFeature.Visible = 204
((bool)(resources.GetObject("menuNewFeature.Visible"))); 205
this .menuNewFeature.Click += new System.EventHandler(this .menuNewFeature_Click); 206
// 207
// menuItem2 208
// 209
this .menuItem2.Enabled = ((bool)(resources.GetObject("menuItem2.Enabled"))); 210
this .menuItem2.Index = 6; 211
this .menuItem2.Shortcut = 212
((System.Windows.Forms.Shortcut)(resources.GetObjec t("menuItem2.Shortcut"))); 213
this .menuItem2.ShowShortcut = 214
((bool)(resources.GetObject("menuItem2.ShowShortcut"))); 215
this .menuItem2.Text = resources.GetString("menuItem2.Te xt"); 216
this .menuItem2.Visible = ((bool)(resources.GetObject("menuItem2.Visible"))); 217
// 218
// menuMoveUp 219
// 220
this .menuMoveUp.Enabled = ((bool)(resources.GetObject("menuMoveUp.Enabled"))); 221
this .menuMoveUp.Index = 7; 222
this .menuMoveUp.Shortcut = 223
((System.Windows.Forms.Shortcut)(resources.GetObjec t("menuMoveUp.Shortcut"))); 224
this .menuMoveUp.ShowShortcut = 225
((bool)(resources.GetObject("menuMoveUp.ShowShortcut"))); 226
this .menuMoveUp.Text = resources.GetString("menuMoveUp. Text"); 227
this .menuMoveUp.Visible = ((bool)(resources.GetObject("menuMoveUp.Visible"))); 228
this .menuMoveUp.Click += new System.EventHandler(this .menuMoveUp_Click); 229
// 230
// menuMoveDown 231
// 232
this .menuMoveDown.Enabled = ((bool)(resources.GetObject("menuMoveDown.Enabled"))); 233
this .menuMoveDown.Index = 8; 234
this .menuMoveDown.Shortcut = 235
((System.Windows.Forms.Shortcut)(resources.GetObjec t("menuMoveDown.Shortcut"))); 236
this .menuMoveDown.ShowShortcut = 237
((bool)(resources.GetObject("menuMoveDown.ShowShortcut"))); 238
this .menuMoveDown.Text = resources.GetString("menuMoveD own.Text"); 239
this .menuMoveDown.Visible = ((bool)(resources.GetObject("menuMoveDown.Visible"))); 240
this .menuMoveDown.Click += new System.EventHandler(this .menuMoveDown_Click); 241
// 242
// grammarTreeView 243
// 244
this .grammarTreeView.AccessibleDescription = 245
resources.GetString("grammarTreeView.AccessibleDesc ription"); 246
this .grammarTreeView.AccessibleName = 247
resources.GetString("grammarTreeView.AccessibleName "); 248
this .grammarTreeView.Anchor = 249
((System.Windows.Forms.AnchorStyles)(resources.GetO bject("grammarTreeView.Anchor"))); 250
this .grammarTreeView.BackgroundImage = 251
((System.Drawing.Image)(resources.GetObject("gramma rTreeView.BackgroundImage"))); 252
this .grammarTreeView.ContextMenu = this .contextMenu1; 253
this .grammarTreeView.Dock = 254
((System.Windows.Forms.DockStyle)(resources.GetObje ct("grammarTreeView.Dock"))); 255
this .grammarTreeView.Enabled = 256
((bool)(resources.GetObject("grammarTreeView.Enabled"))); 257
this .grammarTreeView.Font = 258
((System.Drawing.Font)(resources.GetObject("grammar TreeView.Font"))); 259
this .grammarTreeView.ImageIndex = 260
((int)(resources.GetObject("grammarTreeView.ImageIndex"))); 261

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 130

this .grammarTreeView.ImeMode = 262
((System.Windows.Forms.ImeMode)(resources.GetObject ("grammarTreeView.ImeMode"))); 263
this .grammarTreeView.Indent = ((int)(resources.GetObject("grammarTreeView.Indent"))); 264
this .grammarTreeView.ItemHeight = 265
((int)(resources.GetObject("grammarTreeView.ItemHeight"))); 266
this .grammarTreeView.Location = 267
((System.Drawing.Point)(resources.GetObject("gramma rTreeView.Location"))); 268
this .grammarTreeView.Model = this .myGrammarModel; 269
this .grammarTreeView.Name = "grammarTreeView"; 270
this .grammarTreeView.RightToLeft = 271
((System.Windows.Forms.RightToLeft)(resources.GetOb ject("grammarTreeView.RightToLeft"272
))); 273
this .grammarTreeView.SelectedImageIndex = 274
((int)(resources.GetObject("grammarTreeView.SelectedImag eIndex"))); 275
this .grammarTreeView.ShowRoot = false ; 276
this .grammarTreeView.Size = 277
((System.Drawing.Size)(resources.GetObject("grammar TreeView.Size"))); 278
this .grammarTreeView.TabIndex = 279
((int)(resources.GetObject("grammarTreeView.TabIndex"))) ; 280
this .grammarTreeView.Text = resources.GetString("gramma rTreeView.Text"); 281
this .grammarTreeView.Visible = 282
((bool)(resources.GetObject("grammarTreeView.Visible"))); 283
this .grammarTreeView.MouseDown += new 284
System.Windows.Forms.MouseEventHandler(this .grammarTreeView_MouseDown); 285
// 286
// panel1 287
// 288
this .panel1.AccessibleDescription = 289
resources.GetString("panel1.AccessibleDescription") ; 290
this .panel1.AccessibleName = resources.GetString("panel 1.AccessibleName"); 291
this .panel1.Anchor = 292
((System.Windows.Forms.AnchorStyles)(resources.GetO bject("panel1.Anchor"))); 293
this .panel1.AutoScroll = ((bool)(resources.GetObject("panel1.AutoScroll"))); 294
this .panel1.AutoScrollMargin = 295
((System.Drawing.Size)(resources.GetObject("panel1. AutoScrollMargin"))); 296
this .panel1.AutoScrollMinSize = 297
((System.Drawing.Size)(resources.GetObject("panel1. AutoScrollMinSize"))); 298
this .panel1.BackgroundImage = 299
((System.Drawing.Image)(resources.GetObject("panel1 .BackgroundImage"))); 300
this .panel1.Controls.Add(this .cbPrint); 301
this .panel1.Controls.Add(this .cbCancel); 302
this .panel1.Controls.Add(this .cbSave); 303
this .panel1.Dock = 304
((System.Windows.Forms.DockStyle)(resources.GetObje ct("panel1.Dock"))); 305
this .panel1.Enabled = ((bool)(resources.GetObject("panel1.Enabled"))); 306
this .panel1.Font = ((System.Drawing.Font)(resources.Get Object("panel1.Font"))); 307
this .panel1.ImeMode = 308
((System.Windows.Forms.ImeMode)(resources.GetObject ("panel1.ImeMode"))); 309
this .panel1.Location = 310
((System.Drawing.Point)(resources.GetObject("panel1 .Location"))); 311
this .panel1.Name = "panel1"; 312
this .panel1.RightToLeft = 313
((System.Windows.Forms.RightToLeft)(resources.GetOb ject("panel1.RightToLeft"))); 314
this .panel1.Size = ((System.Drawing.Size)(resources.Get Object("panel1.Size"))); 315
this .panel1.TabIndex = ((int)(resources.GetObject("panel1.TabIndex"))); 316
this .panel1.Text = resources.GetString("panel1.Text"); 317
this .panel1.Visible = ((bool)(resources.GetObject("panel1.Visible"))); 318
// 319
// cbPrint 320
// 321
this .cbPrint.AccessibleDescription = 322
resources.GetString("cbPrint.AccessibleDescription"); 323
this .cbPrint.AccessibleName = resources.GetString("cbPr int.AccessibleName"); 324
this .cbPrint.Anchor = 325
((System.Windows.Forms.AnchorStyles)(resources.GetO bject("cbPrint.Anchor"))); 326
this .cbPrint.BackgroundImage = 327
((System.Drawing.Image)(resources.GetObject("cbPrin t.BackgroundImage"))); 328
this .cbPrint.Dock = 329
((System.Windows.Forms.DockStyle)(resources.GetObje ct("cbPrint.Dock"))); 330
this .cbPrint.Enabled = ((bool)(resources.GetObject("cbPrint.Enabled"))); 331
this .cbPrint.FlatStyle = 332
((System.Windows.Forms.FlatStyle)(resources.GetObje ct("cbPrint.FlatStyle"))); 333
this .cbPrint.Font = ((System.Drawing.Font)(resources.Ge tObject("cbPrint.Font"))); 334
this .cbPrint.Image = ((System.Drawing.Image)(resources. GetObject("cbPrint.Image"))); 335
this .cbPrint.ImageAlign = 336
((System.Drawing.ContentAlignment)(resources.GetObj ect("cbPrint.ImageAlign"))); 337
this .cbPrint.ImageIndex = ((int)(resources.GetObject("cbPrint.ImageIndex"))); 338
this .cbPrint.ImeMode = 339
((System.Windows.Forms.ImeMode)(resources.GetObject ("cbPrint.ImeMode"))); 340
this .cbPrint.Location = 341
((System.Drawing.Point)(resources.GetObject("cbPrin t.Location"))); 342
this .cbPrint.Name = "cbPrint"; 343
this .cbPrint.RightToLeft = 344
((System.Windows.Forms.RightToLeft)(resources.GetOb ject("cbPrint.RightToLeft"))); 345
this .cbPrint.Size = ((System.Drawing.Size)(resources.Ge tObject("cbPrint.Size"))); 346
this .cbPrint.TabIndex = ((int)(resources.GetObject("cbPrint.TabIndex"))); 347
this .cbPrint.Text = resources.GetString("cbPrint.Text") ; 348

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 131

this .cbPrint.TextAlign = 349
((System.Drawing.ContentAlignment)(resources.GetObj ect("cbPrint.TextAlign"))); 350
this .cbPrint.Visible = ((bool)(resources.GetObject("cbPrint.Visible"))); 351
this .cbPrint.Click += new System.EventHandler(this .cbPrint_Click); 352
// 353
// cbCancel 354
// 355
this .cbCancel.AccessibleDescription = 356
resources.GetString("cbCancel.AccessibleDescription "); 357
this .cbCancel.AccessibleName = resources.GetString("cbC ancel.AccessibleName"); 358
this .cbCancel.Anchor = 359
((System.Windows.Forms.AnchorStyles)(resources.GetO bject("cbCancel.Anchor"))); 360
this .cbCancel.BackgroundImage = 361
((System.Drawing.Image)(resources.GetObject("cbCanc el.BackgroundImage"))); 362
this .cbCancel.DialogResult = System.Windows.Forms.Dialo gResult.Cancel; 363
this .cbCancel.Dock = 364
((System.Windows.Forms.DockStyle)(resources.GetObje ct("cbCancel.Dock"))); 365
this .cbCancel.Enabled = ((bool)(resources.GetObject("cbCancel.Enabled"))); 366
this .cbCancel.FlatStyle = 367
((System.Windows.Forms.FlatStyle)(resources.GetObje ct("cbCancel.FlatStyle"))); 368
this .cbCancel.Font = ((System.Drawing.Font)(resources.G etObject("cbCancel.Font"))); 369
this .cbCancel.Image = 370
((System.Drawing.Image)(resources.GetObject("cbCanc el.Image"))); 371
this .cbCancel.ImageAlign = 372
((System.Drawing.ContentAlignment)(resources.GetObj ect("cbCancel.ImageAlign"))); 373
this .cbCancel.ImageIndex = ((int)(resources.GetObject("cbCancel.ImageIndex"))); 374
this .cbCancel.ImeMode = 375
((System.Windows.Forms.ImeMode)(resources.GetObject ("cbCancel.ImeMode"))); 376
this .cbCancel.Location = 377
((System.Drawing.Point)(resources.GetObject("cbCanc el.Location"))); 378
this .cbCancel.Name = "cbCancel"; 379
this .cbCancel.RightToLeft = 380
((System.Windows.Forms.RightToLeft)(resources.GetOb ject("cbCancel.RightToLeft"))); 381
this .cbCancel.Size = ((System.Drawing.Size)(resources.G etObject("cbCancel.Size"))); 382
this .cbCancel.TabIndex = ((int)(resources.GetObject("cbCancel.TabIndex"))); 383
this .cbCancel.Text = resources.GetString("cbCancel.Text "); 384
this .cbCancel.TextAlign = 385
((System.Drawing.ContentAlignment)(resources.GetObj ect("cbCancel.TextAlign"))); 386
this .cbCancel.Visible = ((bool)(resources.GetObject("cbCancel.Visible"))); 387
this .cbCancel.Click += new System.EventHandler(this .cbCancel_Click); 388
// 389
// cbSave 390
// 391
this .cbSave.AccessibleDescription = 392
resources.GetString("cbSave.AccessibleDescription") ; 393
this .cbSave.AccessibleName = resources.GetString("cbSav e.AccessibleName"); 394
this .cbSave.Anchor = 395
((System.Windows.Forms.AnchorStyles)(resources.GetO bject("cbSave.Anchor"))); 396
this .cbSave.BackgroundImage = 397
((System.Drawing.Image)(resources.GetObject("cbSave .BackgroundImage"))); 398
this .cbSave.Dock = 399
((System.Windows.Forms.DockStyle)(resources.GetObje ct("cbSave.Dock"))); 400
this .cbSave.Enabled = ((bool)(resources.GetObject("cbSave.Enabled"))); 401
this .cbSave.FlatStyle = 402
((System.Windows.Forms.FlatStyle)(resources.GetObje ct("cbSave.FlatStyle"))); 403
this .cbSave.Font = ((System.Drawing.Font)(resources.Get Object("cbSave.Font"))); 404
this .cbSave.Image = ((System.Drawing.Image)(resources.G etObject("cbSave.Image"))); 405
this .cbSave.ImageAlign = 406
((System.Drawing.ContentAlignment)(resources.GetObj ect("cbSave.ImageAlign"))); 407
this .cbSave.ImageIndex = ((int)(resources.GetObject("cbSave.ImageIndex"))); 408
this .cbSave.ImeMode = 409
((System.Windows.Forms.ImeMode)(resources.GetObject ("cbSave.ImeMode"))); 410
this .cbSave.Location = 411
((System.Drawing.Point)(resources.GetObject("cbSave .Location"))); 412
this .cbSave.Name = "cbSave"; 413
this .cbSave.RightToLeft = 414
((System.Windows.Forms.RightToLeft)(resources.GetOb ject("cbSave.RightToLeft"))); 415
this .cbSave.Size = ((System.Drawing.Size)(resources.Get Object("cbSave.Size"))); 416
this .cbSave.TabIndex = ((int)(resources.GetObject("cbSave.TabIndex"))); 417
this .cbSave.Text = resources.GetString("cbSave.Text"); 418
this .cbSave.TextAlign = 419
((System.Drawing.ContentAlignment)(resources.GetObj ect("cbSave.TextAlign"))); 420
this .cbSave.Visible = ((bool)(resources.GetObject("cbSave.Visible"))); 421
this .cbSave.Click += new System.EventHandler(this .cbSave_Click); 422
// 423
// DeleteMessageBox 424
// 425
this .DeleteMessageBox.Buttons = System.Windows.Forms.Me ssageBoxButtons.OKCancel; 426
this .DeleteMessageBox.Text = resources.GetString("Delet eMessageBox.Text"); 427
this .DeleteMessageBox.Title = resources.GetString("Dele teMessageBox.Title"); 428
// 429
// PrintTo 430
// 431
this .PrintTo.DefaultExt = "htm"; 432
this .PrintTo.FileName = "Grammar.htm"; 433
this .PrintTo.Filter = resources.GetString("PrintTo.Filt er"); 434
this .PrintTo.Title = resources.GetString("PrintTo.Title "); 435
// 436

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 132

// CancelMessageBox 437
// 438
this .CancelMessageBox.Buttons = System.Windows.Forms.Me ssageBoxButtons.OKCancel; 439
this .CancelMessageBox.Text = resources.GetString("Cance lMessageBox.Text"); 440
this .CancelMessageBox.Title = resources.GetString("Canc elMessageBox.Title"); 441
// 442
// GrammarForm 443
// 444
this .AccessibleDescription = resources.GetString("$this .AccessibleDescription"); 445
this .AccessibleName = resources.GetString("$this.Access ibleName"); 446
this .AutoScaleBaseSize = 447
((System.Drawing.Size)(resources.GetObject("$this.A utoScaleBaseSize"))); 448
this .AutoScroll = ((bool)(resources.GetObject("$this.AutoScroll"))); 449
this .AutoScrollMargin = 450
((System.Drawing.Size)(resources.GetObject("$this.A utoScrollMargin"))); 451
this .AutoScrollMinSize = 452
((System.Drawing.Size)(resources.GetObject("$this.A utoScrollMinSize"))); 453
this .BackgroundImage = 454
((System.Drawing.Image)(resources.GetObject("$this. BackgroundImage"))); 455
this .CancelButton = this .cbCancel; 456
this .ClientSize = ((System.Drawing.Size)(resources.GetO bject("$this.ClientSize"))); 457
this .Controls.Add(this .grammarTreeView); 458
this .Controls.Add(this .panel1); 459
this .Enabled = ((bool)(resources.GetObject("$this.Enabled"))); 460
this .Font = ((System.Drawing.Font)(resources.GetObject("$this.Font"))); 461
this .Icon = ((System.Drawing.Icon)(resources.GetObject("$this.Icon"))); 462
this .ImeMode = 463
((System.Windows.Forms.ImeMode)(resources.GetObject ("$this.ImeMode"))); 464
this .Location = ((System.Drawing.Point)(resources.GetOb ject("$this.Location"))); 465
this .MaximumSize = ((System.Drawing.Size)(resources.Get Object("$this.MaximumSize"))); 466
this .MinimumSize = ((System.Drawing.Size)(resources.Get Object("$this.MinimumSize"))); 467
this .Name = "GrammarForm"; 468
this .RightToLeft = 469
((System.Windows.Forms.RightToLeft)(resources.GetOb ject("$this.RightToLeft"))); 470
this .StartPosition = 471
((System.Windows.Forms.FormStartPosition)(resources .GetObject("$this.StartPosition"))472
); 473
this .Text = resources.GetString("$this.Text"); 474
this .Load += new System.EventHandler(this .GrammarForm_Load); 475
this .panel1.ResumeLayout(false); 476
this .ResumeLayout(false); 477

 478
 } 479
 #endregion 480
 481

// In deze methode worden alle productieregels zoal s ze op dat moment in de database 482
//aanwezig zijn 483
// ingelezen en gekoppeld aan het interne klassemod el en getoond in de Grammarform (in een 484
//tree structure) 485

 private void GrammarForm_Load(object sender, System.EventArgs e) 486
 { 487

string queryString = "SELECT * FROM ProductionRules"; 488
string mode = "Translate"; 489
System.Globalization.CultureInfo culture = new 490
System.Globalization.CultureInfo("nl"); 491
DataTable ProductionRulesTable = 492
Workbench.NaturalLanguage.Data.NLPDataAccessHelper. GetDataSet(queryString,mode,cultur493
e).Tables[0]; 494
 495
// Aanmaken van de nieuwe productieregelcollectie 496
GrammarRuleCollection ruleCollection = new 497
GrammarRuleCollection(ProductionRulesTable); 498
this .myGrammarModel.SetRoot(ruleCollection); 499
this .grammarTreeView.Reset(); 500

 } 501
 502

private void grammarTreeView_MouseDown(object sender, System.Windows.Forms.MouseEventArgs 503
e) 504

 { 505
 this .myNode = this .grammarTreeView.GetNodeAt(e.X, e.Y); 506
 } 507
 508
 private void menuEdit_Click(object sender, System.EventArgs e) 509
 { 510
 object item = this .grammarTreeView.NodeItem(this .myNode); 511
 512

// Als men zich bevindt op een GrammarRule dan word t de edit (form) van de 513
//GrammarRule aangeroepen 514

 if (item is GrammarRule) 515
 { 516
 new GrammarRuleEdit().DoEdit((GrammarRule)item); 517
 this .grammarTreeView.Reset(this .myNode); 518
 } 519
 520

// Als men zich bevindt op een GrammarElement dan w ordt de edit (form) van de 521
//GrammarElement aangeroepen 522

 else if (item is GrammarElement) 523
 { 524

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 133

 new GrammarElementEdit().DoEdit((GrammarElement)item); 525
 this .grammarTreeView.Reset(this .myNode.Parent); 526
 } 527
 528

// Als men zich bevindt op een GrammarFeature dan w ordt de edit (form) van de 529
//GrammarFeature aangeroepen 530

 else if (item is GrammarFeature) 531
 { 532
 new GrammarFeatureEdit().DoEdit((GrammarFeature)item); 533
 this .grammarTreeView.Reset(this .myNode); 534
 } 535
 } 536
 537
 // Het opbouwen van het contextmenu. 538
 private void contextMenu1_Popup(object sender, System.EventArgs e) 539
 { 540
 object item = this .grammarTreeView.NodeItem(this .myNode); 541
 542
 foreach (MenuItem menuItem in this .contextMenu1.MenuItems) 543
 { 544
 menuItem.Enabled = false ; 545
 } 546
 this .menuNewRule.Enabled = true ; 547
 if (item is GrammarRule) 548
 { 549
 this .menuEdit.Enabled = true ; 550
 this .menuDelete.Enabled = true ; 551
 this .menuNewElement.Enabled = true ; 552
 } 553
 else if (item is GrammarElement) 554
 { 555
 this .menuEdit.Enabled = true ; 556
 this .menuNewFeature.Enabled = true ; 557
 if (!((GrammarElement)item).Lhs) 558
 { 559
 this .menuDelete.Enabled = true ; 560
 if (this .myNode.Index>1) 561
 { 562
 this .menuMoveUp.Enabled = true ; 563
 } 564

if (this .myNode.Index>0 && 565
this .myNode.Index< this .myNode.Parent.Nodes.Count-1) 566

 { 567
 this .menuMoveDown.Enabled = true ; 568
 } 569
 } 570
 } 571
 else if (item is GrammarFeature) 572
 { 573
 this .menuEdit.Enabled = true ; 574
 if (!((GrammarFeature)item).Atomic) 575
 { 576
 this .menuNewFeature.Enabled = true ; 577
 } 578

if (!((GrammarFeature)item).Fixed) // TODO: Eigenlijk moet ook gekeken worden 579
// naar alle subelementen in de boom. 580

 { 581
 this .menuDelete.Enabled = true ; 582
 } 583
 if (this .myNode.Index>1) 584
 { 585
 this .menuMoveUp.Enabled = true ; 586
 } 587
 if (this .myNode.Index>0 && 588
this .myNode.Index< this .myNode.Parent.Nodes.Count-1) 589
 { 590
 this .menuMoveDown.Enabled = true ; 591
 } 592
 } 593
 } 594
 595
 // Event voor de afhandeling van de GrammarRule-c reatie 596
 private void menuNewElement_Click(object sender, System.EventArgs e) 597
 { 598
 object item = this .grammarTreeView.NodeItem(this .myNode); 599
 if (item is GrammarRule) 600
 { 601
 new GrammarElementEdit().DoNew((GrammarRule)item); 602
 this .grammarTreeView.Reset(this .myNode); 603
 } 604
 } 605
 606
 // Event voor de afhandeling van de GrammarFeatur e/Element-creatie 607
 private void menuNewFeature_Click(object sender, System.EventArgs e) 608
 { 609
 object item = this .grammarTreeView.NodeItem(this .myNode); 610
 if (item is GrammarElement) 611
 { 612

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 134

 new GrammarFeatureEdit().DoNew(((GrammarElement)item). FeatureSet); 613
 this .grammarTreeView.Reset(this .myNode); 614
 } 615
 else if (item is GrammarFeature) 616
 { 617
 new GrammarFeatureEdit().DoNew(((GrammarFeature)item). FeatureSet); 618
 this .grammarTreeView.Reset(this .myNode); 619
 } 620
 } 621
 622
 // Event voor de afhandeling een delete 623
 private void menuDelete_Click(object sender, System.EventArgs e) 624
 { 625
 object item = this .grammarTreeView.NodeItem(this .myNode); 626
 object parent = this .grammarTreeView.NodeItem(this .myNode.Parent); 627
 string oldText = DeleteMessageBox.Text; 628
 string itemName = ""; 629
 if (item is GrammarRule) 630
 { 631
 itemName = ((GrammarRule)item).Name; 632
 } 633
 else if (item is GrammarElement) 634
 { 635
 itemName = ((GrammarElement)item).Name; 636
 } 637
 else if (item is GrammarFeature) 638
 { 639
 itemName = ((GrammarFeature)item).Name; 640
 } 641
 DeleteMessageBox.Text = oldText.Replace("%",item Name); 642
 DialogResult x = DeleteMessageBox.Show(); 643
 DeleteMessageBox.Text = oldText; 644
 if (x == DialogResult.OK) 645
 { 646
 if (item is GrammarRule) 647
 { 648
 if (((GrammarRule)item).isNew) 649
 { 650
 ((GrammarRuleCollection) this .grammarTreeView.Model.Root) 651

.RuleCollection.Remove(item); 652
 } 653
 else 654
 { 655
 ((GrammarRule)item).isDeleted = true ; 656
 } 657
 this .grammarTreeView.Reset(); 658
 } 659
 else if (item is GrammarElement) 660
 { 661
 ((GrammarRule)parent).Rhs.Remove(item); 662
 this .grammarTreeView.Reset(this .myNode.Parent); 663
 } 664
 else if (item is GrammarFeature) 665
 { 666
 if (parent is GrammarElement) 667
 { 668
 ((GrammarElement)parent).FeatureSet.Remove(it em); 669
 } 670
 else 671
 { 672
 ((GrammarFeature)parent).FeatureSet.Remove(it em); 673
 } 674
 this .grammarTreeView.Reset(this .myNode.Parent); 675
 } 676
 } 677
 } 678
 679
 // Het verplaatsen van een element (naar boven) 680
 private void menuMoveUp_Click(object sender, System.EventArgs e) 681
 { 682
 object item = this .grammarTreeView.NodeItem(this .myNode); 683
 if (item is GrammarElement) 684
 { 685

GrammarRule rule = 686
(GrammarRule) this .grammarTreeView.NodeItem(this .myNode.Parent); 687

 int pos = rule.Rhs.IndexOf(item); 688
 if (pos > 0) 689
 { 690
 rule.Rhs[pos]=rule.Rhs[pos-1]; 691
 rule.Rhs[pos-1] = item; 692
 this .grammarTreeView.Reset(this .myNode.Parent); 693
 } 694
 } 695
 if (item is GrammarFeature) 696
 { 697

GrammarElement element = 698
(GrammarElement) this .grammarTreeView.NodeItem(this .myNode.Parent); 699

 int pos = element.FeatureSet.IndexOf(item); 700

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 135

 element.FeatureSet[pos]= element.FeatureSet[pos -1]; 701
 element.FeatureSet[pos-1] = item; 702
 this .grammarTreeView.Reset(this .myNode.Parent); 703
 } 704
 } 705
 706
 // Het verplaatsen van een element (naar beneden) 707
 private void menuMoveDown_Click(object sender, System.EventArgs e) 708
 { 709
 object item = this .grammarTreeView.NodeItem(this .myNode); 710
 if (item is GrammarElement) 711
 { 712

GrammarRule rule = 713
(GrammarRule) this .grammarTreeView.NodeItem(this .myNode.Parent); 714

 int pos = rule.Rhs.IndexOf(item); 715
 if (pos < rule.Rhs.Count-1) 716
 { 717
 rule.Rhs[pos]=rule.Rhs[pos+1]; 718
 rule.Rhs[pos+1] = item; 719
 this .grammarTreeView.Reset(this .myNode.Parent); 720
 } 721
 } 722
 if (item is GrammarFeature) 723
 { 724

GrammarElement element = 725
(GrammarElement) this .grammarTreeView.NodeItem(this .myNode.Parent); 726

 int pos = element.FeatureSet.IndexOf(item); 727
 element.FeatureSet[pos]=element.FeatureSet[pos+ 1]; 728
 element.FeatureSet[pos+1] = item; 729
 this .grammarTreeView.Reset(this .myNode.Parent); 730
 } 731
 } 732
 733
 // Het aanmaken van een nieuwe regel 734
 private void menuNewRule_Click(object sender, System.EventArgs e) 735
 { 736
 object item = this .grammarTreeView.Model.Root; 737
 new GrammarRuleEdit().DoNew((GrammarRuleCollection)ite m); 738
 this .grammarTreeView.Reset(); 739
 } 740
 741
 private void cbCancel_Click(object sender, System.EventArgs e) 742
 { 743
 DialogResult x = CancelMessageBox.Show(); 744
 if (x == DialogResult.OK) 745
 { 746
 ((GrammarRuleCollection) this .grammarTreeView.Model.Root).Save(); 747
 this .grammarTreeView.Reset(); 748
 new Grammar().ResetProductionRules(); 749
 } 750
 else 751
 { 752
 this .Close(); 753
 } 754
 } 755
 756
 // Bij het klikken op de save-button wordt de geh ele gemuteerde 757
productieregelcollectie 758
 // weggeschreven naar de database 759
 private void cbSave_Click(object sender, System.EventArgs e) 760
 { 761
 ((GrammarRuleCollection) this .grammarTreeView.Model.Root).Save(); 762
 this .grammarTreeView.Reset(); 763
 new Grammar().ResetProductionRules(); 764
 } 765
 766
 private void cbPrint_Click(object sender, System.EventArgs e) 767
 { 768
 DialogResult ok = this .PrintTo.ShowDialog(); 769
 if (ok == DialogResult.OK) 770
 { 771
 ((GrammarRuleCollection) this .grammarTreeView.Model.Root) 772

.Print(this .PrintTo.FileName); 773
 } 774
 } 775
 } 776
} 777

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 136

Workbench.NaturalLanguage.Grammar.Editor.GrammarTreeModel.csWorkbench.NaturalLanguage.Grammar.Editor.GrammarTreeModel.csWorkbench.NaturalLanguage.Grammar.Editor.GrammarTreeModel.csWorkbench.NaturalLanguage.Grammar.Editor.GrammarTreeModel.cs
/// /////////////// 1
/// WORKBENCH /// 2
/// /// 3
/// /// 4
/// /// 5
/// © Copyright Belastingdienst (http://www.belastingd ienst.nl)/// 6
/// /////////////// 7
/// Revision information: /// 8
/// $Workfile:: GrammarTreeModel.cs $ /// 9
/// $Revision:: 1 $ /// 10
/// $Author:: Ron_van_gog, Kamal_Sayah $ /// 11
/// $Date:: 24/02/04 $ /// 12
/// /////////////// 13
using System; 14
using System.Collections; 15
 16
namespace Workbench.NaturalLanguage.Grammar.Editor 17
{ 18
 /// <summary> 19
 /// Summary description for GrammarTreeModel. 20
 /// </summary> 21
 22
 // Deze klasse zorgt voor de creatie van de TreeSt ructure uit het opgeslagen klassemodel 23
 public class GrammarTreeModel : Belastingdienst.Windows.Forms.B aseTreeModel 24
 { 25
 GrammarRuleCollection root; 26
 27
 public void SetRoot(GrammarRuleCollection obj) 28
 { 29
 root = obj; 30
 } 31
 public override object Root 32
 { 33
 get 34
 { 35
 return root; 36
 } 37
 } 38
 39
 // Het vullen van alle kinderen van elk GrammarEl ement,GrammarFeature etc. 40
 public override System.Collections.IEnumerable ChildrenOf(object item) 41
 { 42
 ArrayList Result = new ArrayList(); 43
 if (item is GrammarRuleCollection) 44
 { 45
 GrammarRuleCollection ruleCollection = (Grammar RuleCollection) item; 46
 foreach (GrammarRule temp in ruleCollection.RuleCollection) 47
 { 48
 if (!temp.isDeleted) 49
 { 50
 Result.Add(temp); 51
 } 52
 } 53
 } 54
 else if (item is GrammarRule) 55
 { 56
 GrammarRule rule = (GrammarRule) item; 57
 Result.Add(rule.Lhs); 58
 foreach (GrammarElement temp in rule.Rhs) 59
 { 60
 Result.Add(temp); 61
 } 62
 } 63
 else if (item is GrammarElement) 64
 { 65
 GrammarElement element = (GrammarElement) item; 66
 foreach (GrammarFeature temp in element.FeatureSet) 67
 { 68
 Result.Add(temp); 69
 } 70
 } 71
 else if (item is GrammarFeature) 72
 { 73
 GrammarFeature feature = (GrammarFeature) item; 74
 foreach (GrammarFeature temp in feature.FeatureSet) 75
 { 76
 Result.Add(temp); 77
 } 78
 } 79
 return Result; 80
 } 81
 82
 // Het genereren van de Stringrepresentaties van elke element 83
 public override string TextOf(object item) 84
 { 85

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 137

 if (item is GrammarRuleCollection) 86
 { 87
 return "Rule Collection"; 88
 } 89
 else if (item is GrammarRule) 90
 { 91
 string Result = ""; 92
 GrammarRule rule = (GrammarRule) item; 93
 Result = rule.Name + " [" + rule.Lhs.Name + " = >"; 94
 foreach (GrammarElement element in rule.Rhs) 95
 { 96
 if (element.Optional) 97
 { 98
 Result += " (" + element.Name + ")"; 99
 } 100
 else 101
 { 102
 Result += " " + element.Name; 103
 } 104
 } 105
 return Result + "]"; 106
 } 107
 else if (item is GrammarElement) 108
 { 109
 GrammarElement element = (GrammarElement) item; 110
 string Result = element.Name; 111
 if (element.Optional) 112
 { 113
 Result = "(" + Result + ")"; 114
 } 115
 if (element.Lhs) 116
 { 117
 Result = "LHS " + Result; 118
 } 119
 else 120
 { 121
 Result = "RHS " + Result; 122
 } 123
 return Result; 124
 } 125
 else if (item is GrammarFeature) 126
 { 127
 GrammarFeature feature = (GrammarFeature) item; 128
 string Result = feature.Name; 129
 if (feature.EquationId > -1) 130
 { 131
 Result += "[" + feature.EquationId.ToString() + "]"; 132
 } 133
 if (feature.Atomic) 134
 { 135
 Result += " = " + feature.FeatureValue; 136
 } 137
 return Result; 138
 } 139
 return "???"; 140
 } 141
 142
 // Het aangeven of een element een leaf is of nie t 143
 public override bool Leaf(object item) 144
 { 145
 if (item is GrammarRuleCollection) 146
 { 147
 return false ; 148
 } 149
 else if (item is GrammarRule) 150
 { 151
 return false ; 152
 } 153
 else if (item is GrammarElement) 154
 { 155
 return false ; 156
 } 157
 else if (item is GrammarFeature) 158
 { 159
 GrammarFeature feature = (GrammarFeature) item; 160
 if (feature.Atomic) 161
 { 162
 return true ; 163
 } 164
 else 165
 { 166
 if (feature.FeatureSet.Count > 0) 167
 { 168
 return false ; 169
 } 170
 else 171
 { 172
 return true ; 173
 } 174
 } 175

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 138

 } 176
 return false ; 177
 } 178
 } 179
}180

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 139

Appendix F

The following table contains a global view of the complete set of translation

patterns (written in Visual Basic). These patterns are used for the translation of

the parsed constructs into a formal model.

The patterns for the noun phrase extraction are based on Ron van Gog [37].

Note that some of the rules have been modified by the author.

Translation Patterns for Noun-phrase Extraction

Id Condition Script
type = "np" and (root
not in ("bedrag",
"waarde", "hoogte") or
pp.prep <> "van")

dim Result as New System.Collections.ArrayList
dim Temp as Object

Temp = Feature.Model.GetType(Feature.Item("root").ToString)
Feature.Item("adj").Translate(Temp)
Feature.Item("pp").Translate(Temp)
Feature.Item("modif").Translate(Temp)

Result.Add(Temp)

return Result

type = "adj_list" Dim Result as New System.Collections.ArrayList
Dim Temp as Object
Dim Counter as Object

Temp = Feature.Item("tl").Translate(Parent)
for each Counter in Temp
Result.Add(Counter)
next

Temp = Feature.Item("hd").Translate(Parent)
for each Counter in Temp
Result.Add(Counter)
next

return Result

type = "adj" Dim Result as New System.Collections.ArrayList
dim Current as Object
dim Temp as Object
dim Counter as Object

if Feature.Item("adv.hd.type").ToString.ToLower = "pp"
Current = Feature.Item("adv.hd.main").Translate(Nothing)
for each Counter in Current
Temp = Feature.Model.GetAssociation(Parent, Counter,
Feature.Item("adv.tl").Translate(Parent) + Feature.Item("root").ToString +
Feature.Item("adv.hd.prep").ToString)
Result.Add(Temp)
next
else
Current = Parent.GetAttribute("Boolean",
Feature.Item("adv").Translate(Parent) + Feature.Item("root").ToString)
Result.Add(Current)
end if

return Result

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 140

type = "pp" dim Result as New System.Collections.ArrayList

dim Temp as Object
dim Current as Object
dim Counter as Object

Current = Feature.Item("main").Translate(Nothing)

for each Counter in Current
Temp = Feature.Model.GetAssociation(Parent, Counter,
Feature.Item("prep").ToString)
Result.Add(Temp)
next
return Result

type = "adv_list" dim Result as Object
Result = Feature.Item("tl").Translate(Parent) +
Feature.Item("hd").Translate(Parent)
return Result

type = "adv" dim Result as Object
Result = Feature.Item("main").ToString
return Result

type = "np" and root in
("bedrag", "waarde",
"hoogte") and pp.prep
= "van"

dim Result as New System.Collections.ArrayList
dim Temp as Object
dim Counter as Object
dim Attr as Object

Temp = Feature.Item("pp.main").Translate(Result)

for each Counter in Temp
Attr = Counter.GetAttribute("Real", Feature.Item("root").ToString)
Result.Add(Attr)
next

return Result

type =
"bijvoeglijke_bijzin"
and main.adv.hd.type
= "pp"

Dim Result as New System.Collections.ArrayList
dim Current as Object
dim Temp as Object
dim Counter as Object
dim Name as String

Current = Feature.Item("main.adv.hd.main").Translate(Nothing)

Name = Feature.Item("main.pred.finit.main").ToString
Name = Name + Feature.Item("main.adv.tl").Translate(Nothing)
Name = Name + Feature.Item("main.pred.hoofd.main").ToString
Name = Name + Feature.Item("main.adv.hd.prep").ToString

for each Counter in Current
Temp = Feature.Model.GetAssociation(Parent, Counter, Name)
Result.Add(Temp)
next

return Result

type = "np_money" dim Result as New System.Collections.ArrayList
dim Temp as Object

Temp = Feature.Model.GetType(Feature.Item("cur").ToString +
Feature.Item("root").ToString)

Result.Add(Temp)

return Result

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 141

type="np_conj" dim Result as New System.Collections.ArrayList

dim Temp as Object
dim Counter as Object

Temp = Feature.Item("s1").Translate(Nothing)
for each Counter in Temp
Feature.Item("modif").Translate(Counter)
Result.Add(Counter)
next

Temp = Feature.Item("s2").Translate(Nothing)
for each Counter in Temp
Feature.Item("modif").Translate(Counter)
Result.Add(Counter)
next

return Result

type = "np_ref" dim Result as New System.Collections.ArrayList
dim Temp as Object

Temp = Feature.Model.GetPackageReference(Feature.Item("main").ToString)

Result.Add(Temp)

return Result

type = "pp_conj" dim Result as New System.Collections.ArrayList
dim Temp as Object
dim Counter as Object

Temp = Feature.Item("s1").Translate(Parent)
for each Counter in Temp
Result.Add(Counter)
next

Temp = Feature.Item("s2").Translate(Parent)
for each Counter in Temp
Result.Add(Counter)
next

return Result

type = "adj_conj" Dim Result as New System.Collections.ArrayList
Dim Temp as Object
Dim Counter as Object
Dim Adv as String

Temp = Feature.Item("s1").Translate(Parent)
for each Counter in Temp
Result.Add(Counter)
next

Temp = Feature.Item("s2").Translate(Parent)
for each Counter in Temp
Result.Add(Counter)
next

Adv = Feature.Item("adv").Translate(Nothing)
If Adv <> "" then
Adv = Adv.Substring(0,1).ToLower + Adv.Substring(1)
for each Counter in Result
Counter.Name = Adv + Counter.Name.Substring(0,1).ToUpper +
Counter.Name.Substring(1)
next
end if

return Result

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 142

type =
"bijvoeglijke_bijzin"
and main.adj.type =
"adj"

Dim Result as New System.Collections.ArrayList
Dim Temp as Object

Temp = Feature.Item("main.adj").Translate(Parent)

Result.Add(Temp)

return Result

type = "pp2" dim Result as New System.Collections.ArrayList
dim Counter as Object

Result = Feature.Item("main").Translate(Parent)

for each Counter in Result
Counter.Name = Feature.Item("prep").ToString.ToLower +
Feature.Item("main.prep").ToString
next

return Result

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 143

Translation Patterns for Verb-phrase Extraction

Id Condition Script
type = "s_dp" dim Result as New System.Collections.ArrayList

dim EC as New System.Collections.ArrayList
dim Counter as Object
dim AttrCounter as Object
dim EcCounter as Object
dim Attr as Object
dim strCondition as String
dim strTemp as String

Result = Feature.Item("subject").Translate(Nothing)
for each Counter in Result
strCondition = ""
for each AttrCounter in Counter.myAttributes
if strCondition = "" then
strCondition = AttrCounter.Name
else
strCondition = strCondition + " and " + AttrCounter.Name
end if
next

if Feature.item("ec.type").ToString <> "" then
EC = Feature.Item("ec").Translate(Nothing)
for each EcCounter in EC
for each AttrCounter in EcCounter.myAttributes
if Counter.Name = EcCounter.Name then
strTemp = AttrCounter.Name
else
strTemp = EcCounter.Name + "." + AttrCounter.Name
end if
if strCondition = "" then
strCondition = strTemp
else
strCondition = strCondition + " and " + strTemp
end if
next
next
end if

if strCondition <> "" then
strCondition = strCondition + " implies "
end if

Attr = Counter.GetAttribute("Boolean", Feature.Item("dp_part1").ToString +
Feature.Item("time_period").Translate(Nothing) +
Feature.Item("dp_part2").ToString +
Feature.Item("fiction").Translate(Nothing))

Counter.GetConstraint("attributeInvariant", strCondition + Attr.Name)
next

Return Result

type = "x_list" dim Result as Object
Result = Feature.Item("hd").ToString + Feature.Item("tl").Translate(Parent)
return Result

type =
"bijvoeglijke_bijzin"
and main.type =
"x_list"

Dim Result as New System.Collections.ArrayList
Dim myAttribute as Object
Dim AttrName as Object

AttrName = Feature.Item("main").Translate(Parent)

myAttribute = Parent.GetAttribute("Boolean", AttrName)
Result.Add(myAttribute)

return Result

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 144

type = "ec" dim Result as New System.Collections.ArrayList

dim Counter as Object

Result = Feature.Item("subject").Translate(Nothing)
for each Counter in Result
Counter.GetAttribute("Boolean", Feature.Item("feature").Translate(Nothing))
next

Return Result

type = "s_def" dim Result as New System.Collections.ArrayList
dim Temp as New System.Collections.ArrayList
dim Counter as Object
dim Counter2 as Object
dim Assoc as Object
dim strConstraint as String
dim boolFound as Boolean

strConstraint = ""

Result = Feature.Item("subject").Translate(Nothing)
for each Counter in Result
Counter.Name = Counter.Name + "*"
next
Temp = Feature.Item("direct_object").Translate(Nothing)
for each Counter in Result
boolFound = false
for each Counter2 in Temp
if Counter.Name = Counter2.Name + "*" then
boolFound = true
end if
next
if boolFound = false then
Counter.Name = Left(Counter.Name, Len(Counter.Name) - 1)
end if
next

for each Counter in Temp
for each Assoc in Counter.myAttributes
strConstraint = strConstraint + " and " + Assoc.Name
next
for each Assoc in Counter.myAssociations
strConstraint = strConstraint + " and " + Assoc.Name + "->notEmpty"
next
if strConstraint <> "" then
strConstraint = strConstraint.SubString(5)
end if
next

for each Counter in Result
Counter.Supertype = Temp(0)
if strConstraint <> "" then
Counter.GetConstraint("Invariant", strConstraint)
end if
next

Result.Add(Temp)

return Result

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 145

type = "s_def2" or type
= "s_def3" or type =
"s_def4"

dim Result as New System.Collections.ArrayList
dim Temp as New System.Collections.ArrayList
dim SDef as New System.Collections.ArrayList
dim EC as New System.Collections.ArrayList
dim Counter as Object
dim Counter2 as Object
dim boolFound as Boolean
dim EcCounter as Object
dim AttrCounter as Object
dim SDefCounter as Object
dim Assoc as Object
dim strConstraint as String
dim strExtraConstraint as String
dim strExtraConstraint2 as String
dim strStereotype as String
dim strTypeName as String
dim strCondition as String
dim StrTemp as String

if Feature.item("ec.type").ToString <> "" then
EC = Feature.Item("ec").Translate(Nothing)
for each EcCounter in EC
for each AttrCounter in EcCounter.myAttributes
strTemp = EcCounter.Name + "." + AttrCounter.Name
if strCondition = "" then
strCondition = strTemp
else
strCondition = strCondition + " and " + strTemp
end if
next
next
end if

Result = Feature.Item("subject").Translate(Nothing)
for each Counter in Result
Counter.Name = Counter.Name + "*"
next
Temp = Feature.Item("definition").Translate(Nothing)
for each Counter in Result
boolFound = false
for each Counter2 in Temp
if Counter.Name = Counter2.Name + "*" then
boolFound = true
end if
next
if boolFound = false then
Counter.Name = Left(Counter.Name, Len(Counter.Name) - 1)
end if
next

if Feature.Item("sdef.type").ToString <> "" then
SDef = Feature.Item("sdef").Translate(Nothing)
end if

Counter = Result(0)
strExtraConstraint = ""
for each Assoc in Counter.myAttributes
strExtraConstraint = strExtraConstraint + " and " + Assoc.Name
next
for each Assoc in Counter.myAssociations
strExtraConstraint = strExtraConstraint + " and " + Assoc.Name + "-
>notEmpty"
next

if Feature.Item("adv").ToString.ToLower = "niet"
strTypeName = "not self:" + Result(0).Name
else
strTypeName = "self:" + Result(0).Name
end if

if Feature.Item("adv").ToString.ToLower = ""
strStereotype = "typeInvariant"
else
strStereotype = "typeExtensionInvariant"

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 146

end if

for each Counter in Temp
strConstraint = ""
for each Assoc in Counter.myAttributes
strConstraint = strConstraint + " and " + Assoc.Name
next
for each Assoc in Counter.myAssociations
strConstraint = strConstraint + " and " + Assoc.Name + "->notEmpty"
next
if strConstraint <> "" then
strConstraint = strConstraint.SubString(5)
end if

if Feature.Item("sdef.type").ToString <> "" then
for each SDefCounter in SDef
Feature.Model.GetAssociation(Counter, SDefCounter, "scopeDefinition")
if strConstraint <> "" then
strConstraint = "applies(" + SDefCounter.Name+ ") and " + strConstraint
else
strConstraint = "applies(" + SDefCounter.Name+ ")"
end if
next
end if

if Counter.Name = Result(0).Name then
strExtraConstraint2 = ""
else
strExtraConstraint2 = strExtraConstraint
end if

if strConstraint <> "" then
if strCondition<> "" then
strConstraint = strCondition + " and " + strConstraint + " implies " +
strTypeName + strExtraConstraint2
else
strConstraint = strConstraint + " implies " + strTypeName +
strExtraConstraint2
end if
else
if strCondition<> "" then
strConstraint = strCondition + " implies " + strTypeName +
strExtraConstraint2
else
strConstraint = strCondition + " implies " + strTypeName +
strExtraConstraint2
end if
end if

Counter.GetConstraint(strStereotype, strConstraint)
next

return Result

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 147

type = "s_app" dim Ref as New System.Collections.ArrayList

dim EC as New System.Collections.ArrayList
dim EcCounter as Object
dim AttrCounter as Object
dim strCondition as String
dim strTemp as String
dim strApplies as String
dim Temp as Object

Ref = Feature.Item("ref").Translate(Nothing)
strCondition = ""

if Feature.item("ec.type").ToString <> "" then
EC = Feature.Item("ec").Translate(Nothing)
for each EcCounter in EC
for each AttrCounter in EcCounter.myAttributes
strTemp = EcCounter.Name + "." + AttrCounter.Name
if strCondition = "" then
strCondition = strTemp
else
strCondition = strCondition + " and " + strTemp
end if
next
Temp = Feature.Model.GetAssociation(EcCounter, Ref(0),
"VanToepassingVerklaring")
next
end if

if Feature.Item("adv").ToString.ToLower = "niet"
strApplies = "not applies(" + Ref(0).Name + ")"
else
strApplies = "applies(" + Ref(0).Name + ")"
end if

if strCondition <> "" then
strCondition = strCondition + " implies " + strApplies
else
strCondition = strApplies
end if

Ref(0).GetConstraint("invariant", strCondition)

return Ref

type="s_va" dim Result as New System.Collections.ArrayList
dim Temp as New System.Collections.ArrayList
dim Invariant as String
dim Attr as Object
dim Counter as Object
dim CounterTemp as Object

Result = Feature.Item("subject").Translate(Nothing)

if Feature.Item("formula.type").ToString.ToLower <> "np_formula" then
Temp = Feature.Item("formula").Translate(Nothing)
if Temp(0).GetType().Name = "PType" then
Attr = Temp(0).GetAttribute("Real", "bedrag")
else
Attr = Temp(0)
end if
Invariant = Attr.ParentType.Name + "." + Attr.Name
else
Invariant = Feature.Item("formula").Translate(Nothing)
end if

if Result(0).GetType().Name = "PType" then
Result(0).GetAttribute("Real", "bedrag")
Result(0).GetConstraint("invariant", "bedrag" + " = " + Invariant)
else
Result(0).ParentType.GetConstraint("invariant", Result(0).Name + " = " +
Invariant)
end if

return Result

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 148

type="np_formula" dim X as New System.Collections.ArrayList
dim Y as New System.Collections.ArrayList
dim Result as String
dim AttrX as Object
dim AttrY as Object

Result = ""

X = Feature.Item("x").Translate(Nothing)
Y = Feature.Item("y").Translate(Nothing)

if X(0).GetType().Name = "PType" then
AttrX = X(0).GetAttribute("Real", "bedrag")
else
AttrX = X(0)
end if

if Y(0).GetType().Name = "PType" then
AttrY = Y(0).GetAttribute("Real", "bedrag")
else
AttrY = Y(0)
end if

if Feature.Item("plusminus").ToString.ToLower = "vermeerderen" then
Result = AttrX.ParentType.Name + "." + AttrX.Name + " + " +
AttrY.ParentType.Name + "." + AttrY.Name
else
Result = AttrX.ParentType.Name + "." + AttrX.Name + " - " +
AttrY.ParentType.Name + "." + AttrY.Name
end if

return Result

type = "scopedef" dim Result as New System.Collections.ArrayList

Result = Feature.Item("ref").Translate(Nothing)

return Result

type = "s_rel" dim Result as New System.Collections.ArrayList
dim Temp as New System.Collections.ArrayList
dim AssocCounter as Object
dim Counter as Object

Result = Feature.Item("subject").Translate(Nothing)

for each Counter in Result
Temp = Feature.Item("pp").Translate(Counter)
for each AssocCounter in Temp
AssocCounter.Name = Feature.Item("verb").ToString.ToLower +
Feature.Item("pp.prep").ToString
next
next

return Result

Automated Norm Extraction from Legal Texts

Master Thesis, Utrecht University, by Kamal Sayah, November 2003- August 2004 149

type = "nabepaling" Dim Result as New System.Collections.ArrayList

Dim NP as New System.Collections.ArrayList
Dim myAttribute as Object
Dim myAssoc as Object
Dim AttrName as Object
Dim Counter as Object

AttrName = Feature.Item("main").Translate(Parent)

if Feature.Item("np.type").ToString = "" then
myAttribute = Parent.GetAttribute("Boolean", Feature.Item("adv").ToString +
AttrName)
Result.Add(myAttribute)
else
NP = Feature.Item("np").Translate(Parent)
for each Counter in NP
if Counter.GetType().Name = "PType" then
myAssoc = Feature.Model.GetAssociation(Parent, Counter, AttrName)
Result.Add(myAssoc)
end if
next
end if

return Result

