
[Faculty of Science
Information and Computing Sciences]

Domain Specific Type Error Diagnosis for
Embedded Domain Specific Languages

Jurriaan Hage

Department of Information and Computing Sciences, Universiteit Utrecht
J.Hage@uu.nl

April 19, 2012

[Faculty of Science
Information and Computing Sciences]

2

About me

I PhD at University Leiden somewhere between 1995 and
2000 under Grzegorz Rozenberg on algorithms and
combinatorics of graphs and groups (switching classes)

I Commercial educator at Leiden during 1999-2000

I Assistant professor with Doaitse Swierstra at Utrecht
University since Nov 2000

I Topics of interest:
I static analysis and software analysis
I mostly functional languages
I plagiarism detection
I testing
I SOA
I type error feedback

I I try to frequent conferences like POPL, ICFP, PEPM

[Faculty of Science
Information and Computing Sciences]

3

Embedded Domain Specific Languages

I Embedded (internal) Domain Specific Languages are
achieved by encoding the DSL syntax inside that of a host
language.

I Many “advantages”:
I familiarity host language syntax
I existing libraries, compilers, IDE’s, etc.
I combining EDSLs
I escape hatch to the host language

I At the very least, useful for prototyping DSLs

[Faculty of Science
Information and Computing Sciences]

4

What host language?

I Some languages provide extensibility as part of their
design, e.g., Ruby, Python, Scheme

I Others are rich enough to encode a DSL with relative ease,
e.g., Haskell, C++

I In most languages we just have to make do

I In this presentation I work with the pure, lazy, higher-order,
polymorphic functional language Haskell (www.haskell.org)

I In Haskell, EDSLs are simply libraries that provide some
form of “fluency”

I Consisting of domain terms and types, and special
operators with particular priority and fixity

[Faculty of Science
Information and Computing Sciences]

5

A smattering of Haskell

I Fortunately, we do not need much of Haskell for this talk

I Lambda’s, higher-order, operator slices(, infinite lists)

work n = let
pl = map (λz → z + n) [1 . .]

in
if (n > 0) then

take n (map (∗2) pl)
else

take 10 pl

main = do
putStrLn (show (work 40))

[Faculty of Science
Information and Computing Sciences]

6

Challenges for EDSLs

I How to achieve:
I domain specific optimisations
I domain specific error diagnosis

I Optimisations and error diagnosis also take up time in a
non-embedded setting, but there we have more control.

I Can we attain this control for error diagnosis?

[Faculty of Science
Information and Computing Sciences]

7

Our case study

I Parser combinators: an EDSL for describing parsers
I An executable and extensible form of EBNF

I Concatenation/juxtaposition: p <∗> q , and p <∗ q
I Choice: p <|> q
I Semantics: f <$> p and f <$ p
I Repetition: many , many1 , ...
I Optional: option p default
I Literals: token "text", pKey "->"
I Others introduced as needed, and defined at will

pExpr = pAndPrioExpr
<|> sem Expr Lam -- a function of two arguments
<$ pKey "\\"

<∗> pFoldr1 (sem LamIds Cons, sem LamIds Nil) pVarid
<∗ pKey "->"

<∗> pExpr

[Faculty of Science
Information and Computing Sciences]

8

My first mistake

pExpr = pAndPrioExpr
<|> sem Expr Lam
<$ pKey "\\"

<∗> pFoldr1 (sem LamIds Cons, sem LamIds Nil) pVarid
<∗> pKey "->"

<∗> pExpr

The error message that results:

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]

[Faculty of Science
Information and Computing Sciences]

9

A closer look at the message

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]

I Message is large and looks complicated

I You have to discover why the types don’t match yourself

I No mention of “parsers” in the error message

I It happens to be a common mistake, and easy to fix

[Faculty of Science
Information and Computing Sciences]

10

The problems

Type error messages typically suffer from the following
problems.

1. A fixed type inference process. The order in which
types are inferred strongly influences the reported error
site, and there is no way to depart from it.

2. The size of the mentioned types. Irrelevant parts are
shown, and type synonyms are not always preserved.

3. The standard format of type error messages. Domain
specific terms are not used.

4. No anticipation for common mistakes. Error messages
focus on the problem, and not on how to fix it.

[Faculty of Science
Information and Computing Sciences]

11

The solution in a nutshell

1 Bring the type inference mechanism under control
I by phrasing the type inference process as a constraint

solving problem

2 Provide hooks in the compiler’s type inference process to
change the process for certain classes of expressions

I specialize type error messages for a particular domain
I control the order in which constraints are solved
I drive heuristics that suggest fixes for often-made mistakes

I Changing the type system is forbidden!
I Only the order of solving, and the provided messages can

be changed

[Faculty of Science
Information and Computing Sciences]

11

The solution in a nutshell

1 Bring the type inference mechanism under control
I by phrasing the type inference process as a constraint

solving problem

2 Provide hooks in the compiler’s type inference process to
change the process for certain classes of expressions

I specialize type error messages for a particular domain
I control the order in which constraints are solved
I drive heuristics that suggest fixes for often-made mistakes

I Changing the type system is forbidden!
I Only the order of solving, and the provided messages can

be changed

[Faculty of Science
Information and Computing Sciences]

12

How is this organised?

I For a given source module Abc.hs, a DSL designer may
supply a file Abs.type containing the directives

I The directives are automatically used when the module is
imported

I The compiler will adapt the type error mechanism based
on these type inference directives.

I The directives themselves are also a(n external) DSL!

[Faculty of Science
Information and Computing Sciences]

13

The type inference process

I We piggy-back ride on Haskell’s underlying type system

I Type rules for functional languages are often phrased as a
set of logical deduction rules

I Inference is then implemented by means of an AST
traversal

I Ad-hoc or using attribute grammars

I Type inference is beyond the scope of a short talk like this,
but we can’t escape it completely

[Faculty of Science
Information and Computing Sciences]

14

The rule for type checking applications

Γ H̀M f : τa → τr Γ H̀M e : τa
Γ H̀M f e : τr

I Γ is an environment, containing the types of identifiers
defined elsewhere

I Rules for variables, anonymous functions and local
definitions omitted

I Algorithm W is a (deterministic) implementation of these
typing rules.

[Faculty of Science
Information and Computing Sciences]

15

Specializing a type rule (1/3)

Applying the type rule for function application twice in
succession results in the following:

Γ H̀M op : τ1 → τ2 → τ3 Γ H̀M x : τ1 Γ H̀M y : τ2
Γ H̀M x ‘op‘ y : τ3

Consider one of the parser combinators, for instance <$>.

<$> :: (a→ b)→ Parser s a→ Parser s b

We can now create a specialized type rule by filling in this type
in the type rule (x and y stand for arbitrary expressions of the
given type)

Γ H̀M x : a→ b Γ H̀M y : Parser s a

Γ H̀M x <$> y : Parser s b

[Faculty of Science
Information and Computing Sciences]

15

Specializing a type rule (1/3)

Applying the type rule for function application twice in
succession results in the following:

Γ H̀M op : τ1 → τ2 → τ3 Γ H̀M x : τ1 Γ H̀M y : τ2
Γ H̀M x ‘op‘ y : τ3

Consider one of the parser combinators, for instance <$>.

<$> :: (a→ b)→ Parser s a→ Parser s b

We can now create a specialized type rule by filling in this type
in the type rule

(x and y stand for arbitrary expressions of the
given type)

Γ H̀M x : a→ b Γ H̀M y : Parser s a

Γ H̀M x <$> y : Parser s b

[Faculty of Science
Information and Computing Sciences]

15

Specializing a type rule (1/3)

Applying the type rule for function application twice in
succession results in the following:

Γ H̀M op : τ1 → τ2 → τ3 Γ H̀M x : τ1 Γ H̀M y : τ2
Γ H̀M x ‘op‘ y : τ3

Consider one of the parser combinators, for instance <$>.

<$> :: (a→ b)→ Parser s a→ Parser s b

We can now create a specialized type rule by filling in this type
in the type rule (x and y stand for arbitrary expressions of the
given type)

Γ H̀M x : a→ b Γ H̀M y : Parser s a

Γ H̀M x <$> y : Parser s b

[Faculty of Science
Information and Computing Sciences]

16

Specializing a type rule (2/3)

I Use equality constraints to make the restrictions that are
imposed by the type rule explicit.

I Γ is unchanged, and therefore omitted from the rule

I Type rules are invalidated by shadowing, here, <$>.

x : τ1 y : τ2
x <$> y : τ3


τ1 ≡ a→ b
τ2 ≡ Parser s a
τ3 ≡ Parser s b

Split up the type constraints in ”smaller” unification steps.

x : τ1 y : τ2
x <$> y : τ3


τ1 ≡ a1 → b1
τ2 ≡ Parser s1 a2
τ3 ≡ Parser s2 b2

s1 ≡ s2
a1 ≡ a2
b1 ≡ b2

[Faculty of Science
Information and Computing Sciences]

16

Specializing a type rule (2/3)

I Use equality constraints to make the restrictions that are
imposed by the type rule explicit.

I Γ is unchanged, and therefore omitted from the rule

I Type rules are invalidated by shadowing, here, <$>.

x : τ1 y : τ2
x <$> y : τ3


τ1 ≡ a→ b
τ2 ≡ Parser s a
τ3 ≡ Parser s b

Split up the type constraints in ”smaller” unification steps.

x : τ1 y : τ2
x <$> y : τ3


τ1 ≡ a1 → b1
τ2 ≡ Parser s1 a2
τ3 ≡ Parser s2 b2

s1 ≡ s2
a1 ≡ a2
b1 ≡ b2

[Faculty of Science
Information and Computing Sciences]

17

Specializing a type rule (3/3)

x : τ1 y : τ2
x <$> y : τ3


τ1 ≡ a1 → b1
τ2 ≡ Parser s1 a2
τ3 ≡ Parser s2 b2

s1 ≡ s2
a1 ≡ a2
b1 ≡ b2

x :: t1; y :: t2;

x <$> y :: t3;

t1 == a1 -> b1

t2 == Parser s1 a2

t3 == Parser s2 b2

s1 == s2

a1 == a2

b1 == b2

[Faculty of Science
Information and Computing Sciences]

18

Special type error messages

x :: t1; y :: t2;

x <$> y :: t3;

t1 == a1 -> b1 : left operand is not a function

t2 == Parser s1 a2 : right operand is not a parser

t3 == Parser s2 b2 : result type is not a parser

s1 == s2 : parser has an incorrect symbol type

a1 == a2 : function cannot be applied to parser’s result

b1 == b2 : parser has an incorrect result type

I Supply an error message for each type constraint. This
message is reported if the corresponding constraint cannot
be satisfied.

[Faculty of Science
Information and Computing Sciences]

19

Example

test :: Parser Char String
test = map toUpper <$> "hello, world!"

This results in the following type error message:

Type error: right operand is not a parser

Important context specific information is missing, for instance:

I Inferred types for (sub-)expressions, and intermediate type
variables

I Pretty printed expressions from the program

I Position and range information

[Faculty of Science
Information and Computing Sciences]

19

Example

test :: Parser Char String
test = map toUpper <$> "hello, world!"

This results in the following type error message:

Type error: right operand is not a parser

Important context specific information is missing, for instance:

I Inferred types for (sub-)expressions, and intermediate type
variables

I Pretty printed expressions from the program

I Position and range information

[Faculty of Science
Information and Computing Sciences]

20

Error message attributes

The error message attached to a type constraint might now
look like:

x :: t1; y :: t2;

x <$> y :: t3;

...

t2 == Parser s1 a2 :

@expr.pos@: The right operand of <$> should be a

expression : @expr.pp@ parser

right operand : @y.pp@

type : @t2@

does not match : Parser @s1@ @a2@

...

[Faculty of Science
Information and Computing Sciences]

21

Example

test :: Parser Char String
test = map toUpper <$> "hello, world!"

This results in the following type error message (including the
inserted error message attributes):

(2,21): The right operand of <$> should be a parser

expression : map toUpper <$> "hello, world!"

right operand : "hello, world!"

type : String

does not match : Parser Char String

[Faculty of Science
Information and Computing Sciences]

22

Implicit constraints

A type constraint can be ”moved” from the constraint set to
the deduction rule.

x :: t1; y :: t2;

x <$> y :: Parser s b;

t1 == a1 -> b : left operand is not a function

t2 == Parser s a2 : right operand is not a parser

a1 == a2 : function cannot be applied to parser’s

result

An implicit constraint with a default error message is inserted
for the type in the conclusion.

[Faculty of Science
Information and Computing Sciences]

23

Order of the type constraints

Each meta-variable represents a subtree for which also type
constraints are collected. This constraint set can be explicitly
mentioned in the type rule.

x :: t1; y :: t2;

x <$> y :: Parser s b;

constraints x

t1 == a1 -> b : left operand is not a function

constraints y

t2 == Parser s a2 : right operand is not a parser

a1 == a2 : function cannot be applied to parser’s

result

[Faculty of Science
Information and Computing Sciences]

24

Soundness and completeness

The soundness of a specialized type rule with respect to the
default type rules is examined at compile time.

I Because a mistake is easily made

I Invalid type rules are rejected when a Haskell file is
compiled

I Type safety can still be guaranteed at run-time
I The type rule may not be too restrictive, so we are also

complete
I This restriction may be dropped

[Faculty of Science
Information and Computing Sciences]

25

Example

x :: t1; y :: t2;

x <$> y :: Parser s b;

t1 == a1 -> b : left operand is not a function

t2 == Parser s a2 : right operand is not a parser

This specialized type rule is not restrictive enough:

The type rule for "x <$> y" is not correct

the type according to the type rule is

(a -> b, Parser c d, Parser c b)

whereas the standard type rules infer the type

(a -> b, Parser c a, Parser c b)

[Faculty of Science
Information and Computing Sciences]

26

Another example

x :: a -> b; y :: Parser Char a;

x <$> y :: Parser Char b;

This specialized type rule is too restrictive: there is no reason to
demand that we parse streams of characters.

The type rule for "x <$> y" is not correct

the type according to the type rule is

(a -> b, Parser Char a, Parser Char b)

whereas the standard type rules infer the type

(a -> b, Parser c a, Parser c b)

[Faculty of Science
Information and Computing Sciences]

27

Another directive: siblings

I Certain combinators are known to be easily confused:
I cons (:) and append (++)
I <$> and <$
I (.) and (++) (PHP programmers)
I (+) and (++) (Java programmers)

I These combinations can be listed among the specialized
type rules.

siblings <$> , <$

siblings ++ , +, .

I The siblings heuristic will try a sibling if an expression with
such an operator fails to type check.

[Faculty of Science
Information and Computing Sciences]

28

Example

data Expr = Lambda [String] Expr

pExpr
= pAndPrioExpr

<|> Lambda <$ pKey "\\"

<∗> many pVarid
<∗ pKey "->"

<∗ pExpr

Extremely concise:

(11,13): Type error in the operator <*

probable fix: use <*> instead

[Faculty of Science
Information and Computing Sciences]

29

Concluding remarks

I I have shown what can be achieved in the context of
Haskell 98 when it comes to domain specific error
diagnosis.

I Implemented in the Helium compiler
(www.cs.uu.nl/wiki/bin/view/Helium/WebHome)

I More details in an ICFP paper from 2003:
Heeren, Hage, Swierstra, Scripting The Type Inference
Process. Eighth International Conference on Functional
Programming. ACM.

I See the paper and a follow-up paper on type classes at
PADL ’05 for many more details.

[Faculty of Science
Information and Computing Sciences]

30

Future Work

I Scaling up to Haskell 2010 (or later)
I Because most libraries/EDSLs use extensions that we do

not yet support
I existentials
I GADTs
I type families

